
MARS: A System for Publishing XML from Mixed and

Redundant Storage

Alin Deutsch Val Tannen

University of California San Diego University of Pennsylvania

Abstract

We present a system for publishing as XML
data from mixed (relational+XML) propri-
etary storage, while supporting redundancy
in storage for tuning purposes. The cor-
respondence between public and proprietary
schemas is given by a combination of LAV-
and GAV-style views expressed in XQuery.
XML and relational integrity constraints are
also taken into consideration. Starting with
client XQueries formulated against the pub-
lic schema the system achieves the combined
effect of rewriting-with-views, composition-
with-views and query minimization under in-
tegrity constraints to obtain optimal reformu-
lations against the proprietary schema. The
paper focuses on the engineering and the ex-
perimental evaluation of the MARS system.

1 Introduction

In their most basic form, XML publishing systems are
analogous to the Global-As-View (GAV) data integra-
tion scenario [20]. Corporations publish virtual views
of their proprietary business data (the local sources) in
the form of XML documents (the global data). Sen-
sitive proprietary information is typically hidden by
these GAV views. Such systems receive client queries
against the virtual XML. To answer them, the system
must reformulate them as queries on the actual propri-
etary data. This is done using algorithms performing
so-called composition-with-views. This basic function-
ality is provided by systems such as XPeranto [30] and
SilkRoute [16].

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,

Berlin, Germany, 2003

In addition to the basic functionality, it is highly
desirable for such a system to allow for operational
tuning in order to speed up the execution of certain
classes of queries. By tuning we mean, eg., material-
izing views, creating indexes, and maintaining caches
of previously answered queries. For example, portions
of XML documents could be also stored relationally
in order to exploit mature relational technology (see
recent research in [7, 31, 4]). The proprietary stor-
age, therefore, is both mixed (relational + XML) and
redundant.

A shortcoming of the GAV-only approach is that
it cannot easily model redundant source data [20].
Redundancy is best modeled by the complementary
approach, Local-As-View (LAV), in which the local
data (our proprietary data) is described as views of
the global data (our published data). Query refor-
mulation is done using algorithms for rewriting-with-
views. Agora [23], which also handles mixed storage,
is an example of a publishing system based on the
LAV paradigm. The essential shortcoming of LAV is
that all usable proprietary data is in views of the pub-
lic data. Hence, a LAV-only approach cannot properly
support the hiding of sensitive proprietary data. What
is really needed, and what MARS provides, is the abil-
ity to combine the LAV and GAV approaches, as the
following example illustrates.

Example 1.1 Figure 1 shows a proprietary relational
database patient with two tables: patient name -
diagnosis, and patient name - drug - usage. This
data is partially published as XML using the GAV ap-
proach, through the mapping/view CaseMap that pro-
duces case.xml. We emphasize that case.xml is a
virtual document; it is the result that would be ob-
tained if CaseMap were run. CaseMap joins the two ta-
bles on the patient name but then it projects the name
away, hiding this sensitive information. Clearly, it is
not possible to express patient as a view of case.xml.
The LAV approach cannot capture this situation.

The proprietary data is mixed: we also have a na-
tive XML document catalog.xml which associates
to each drug a price and some notes (on side-effects,
generic alternatives, etc.). This part of the proprietary
data is published in its entirety through the identity



���������	
��
����������


���������� 
�������

��
�
��

�
����
��

���������	�
��	


�������
�
�	
��



������
��

��

���������	
������
��	�
��	 
��	�����
�
�



�
�����������

��
��
 

����
�
�
�����

������
��	�����
�
�


��!��
�����

�������������������

����������	��
��	


Figure 1: Configuration for Example 1.1

mapping/view IdMap.
The rest of the stored data comes from tuning. To

speed up querying involving catalog.xmlwe decide to
put some of its data redundantly in relational storage.
We choose to copy the drug - price information, in
a table drugPrice leaving the irregularly structured
notes only in XML. Such a choice could be made for
example by the STORED system [7] where drugPrice
would be specified (in LAV style) as a materialized
view of catalog.xml. We shall call the query defining
this view DrugPriceMap.

For more tuning, suppose we cache an XML doc-
ument cacheEntry.xml that is the result of a previ-
ously answered query, call it PrevQ, that retrieves from
case.xml only the association between drugs and di-
agnosis disregarding usage. PrevQ is another example
of LAV view. No GAV view could have done this.
Overall, the proprietary-public correspondence in this
example needed a combination of two GAV and two
LAV views (see the extended version [13] for the code
of this example).

Now assume that a client query is posed against
the published documents catalog.xml and case.xml,
to find the association between each diagnosis and the
corresponding drug’s price. Because of the redundancy
in the stored data, there are multiple reformulations
of this query, notably as queries that:

- access patient and catalog.xml, or
- access patient and drugPrice, or
- access catalog.xml and cacheEntry.xml.

With the drugPrice table stored in the same RDBMS
as the patient information and with current technol-
ogy, the second one is likely the best. •

This example shows that redundancy enables multiple
reformulations, some potentially cheaper to execute
than others. Hence, MARS should also be able to find
and compare the candidates for best reformulation.

GLAV A specific way of combining LAV and
GAV, known as GLAV has been introduced in the
context of data integration [19]. This approach was
developed for relational conjunctive queries but even
if it were further adapted to XML publishing we
would have the following problem. GLAV reformu-
lation looks for a maximally contained reformulation
of the original query even when there is no equiv-

client XQuery
+ 

LAV & GAV XQuery views

relational 
query + constraints

optimal among
all minimal 

reformulations

C&B

compile

executable reformulation
(XQuery and/or SQL)

post-process

plug-in cost
estimator

Figure 2: Reduction of XQuery reformulation to min-
imization of relational queries under constraints.

alent reformulation. This is achieved by generating
a Datalog program who accesses all available data
sources. With redundancy in storage, this means re-
dundant data accesses, i.e. a non-optimal reformula-
tion, thus defeating the purpose of tuning in XML pub-
lishing. In the context of Example 1.1, this reformu-
lation would access patient,catalog.xml,drugPrice
and cacheEntry.xml, performing the combined work
of all three reformulations we listed.

The GLAV approach relies on previous LAV re-
formulation techniques. But the reformulation algo-
rithms used for rewriting-with-views are quite different
from the algorithms for composition-with-views used
for GAV. Hence the inefficient reformulation described
above that performs redundant work. To be able
to combine GAV and LAV in MARS we switched to
a different, “direction-neutral”, representation of the
views, compiling them into constraints. Moreover, in
order to avoid reformulations that perform redundant
work like the one above, we have a query minimization
(under constraints) capability in MARS. Thus MARS
has a completely different kind of reformulation algo-
rithm leading to a new set of engineering difficulties.

The MARS system. We present a system called
MARS (Mixed And Redundant Storage) for publish-
ing as XML data from mixed (XML+relational) pro-
prietary storage, while supporting redundancy in stor-
age for tuning purposes. Client queries, as well as
GAV and LAV views are expressed using the standard
XQuery language [34], and MARS finds the minimal
query reformulations. By minimal we mean (roughly)
that there is no redundant data source scan. This
is compatible with cost reduction, assuming that the
cost model is monotone. In addition, MARS exploits
integrity constraints on both the XML and relational
data. This may help in finding even better reformula-
tions. The functionality of MARS subsumes and goes
beyond that of existing systems such as XPeranto,
SilkRoute (no redundancy, no integrity constraints)
and Agora (no data hiding, no integrity constraints).1

Prior theoretical work. MARS uses a compila-
tion of queries, views and constraints from XML into
the relational framework. In [11] the compilation algo-
rithm was introduced and proven complete for a large

1Like these other middleware systems, MARS does not man-
age its own storage. It reformulates queries and then sends them
to actual relational or native XML database engines for execu-
tion.



and expressive fragment of XQuery and an expressive
XML constraint language (see also [12, 13]). The com-
pilation reduces the original reformulation problem to
a problem of minimization of relational queries under
relational integrity constraints. This problem in turn
is solved by the C&B algorithm [8] (see Figure 2). A
second result in [11] shows that the C&B algorithm
is itself complete, for a large and expressive class of
relational queries and constraints. Hence the MARS
reformulation algorithm is overall complete (under the
restrictions detailed in [13]). Complete means that
MARS finds all existing minimal reformulations.

The value of completeness. MARS compares
all minimal reformulations using a plug-in cost estima-
tor. Assuming a monotone cost model this guarantees
that the reformulation with optimal cost will be found.
Previous XML publishing systems that handle redun-
dancy do not make such claims. One could ignore the-
oretical incompleteness if the practical aspects of the
problem were well understood and a convincing body
of examples were given in which the “desired” refor-
mulations are found anyway. However, the semantics
of XQuery is quite complicated and we do not think
that the research field has developed enough practical
experience for this. Our theoretical guarantee of com-
pleteness avoids such worries, assuming of course that
the algorithm can be implemented practically!

The focus of this paper: MARS engineering.

A priori challenges: several phases of the reformula-
tion algorithm run in worst-case exponential time (this
is inherent as the underlying problems are NP-hard).
But in practice the input (queries, views, constraints)
can be small enough to make the problem feasible. In
this paper, we show that this approach is indeed fea-
sible, and that its reformulation effort is worthwhile.
Salient contributions:

1. We present a series of XML-specific optimiza-
tion techniques which exploit the fact that the in-
put to the C&B algorithm is not arbitrary relational
queries and integrity constraints, but rather results
from the reduction of XML query reformulation. The
effect of these techniques is to significantly restrict the
space explored by the C&B algorithm in search for
minimal reformulations.

2. A new, scalable implementation of
the C&B algorithm for minimization of relational
queries under integrity constraints. A previous, di-
rect implementation of the C&B algorithm was de-
scribed in [26], and was shown to be practical for query
and constraint sizes that arise in relational scenarios
(queries with up to 15 joins, and about a dozen con-
strains). However, even after using the XML-specific
optimization techniques, the reduction from XML re-
formulation produces much larger relational queries
(hundreds of joins) and more numerous constraints
(hundreds as well). The prototype in [26] does not
scale to such input, and we are not aware of any other

system providing a module for complete minimization
of queries under such a large class of constraints. Con-
sequently, the new C&B implementation is a contribu-
tion of independent interest even to the area of opti-
mization of relational queries under semantic integrity
constraints.

The new implementation is not based on incremen-
tal engineering of the original one, but rather on an
entirely new paradigm. The main operation used in
the C&B algorithm is the chase. The new implemen-
tation exploits the observation in [25] that chasing a
query Q with a constraint c can be viewed as evalu-
ating a relational query obtained from c over a small
database obtained from Q. This enables us to ap-
ply classical query processing techniques (such as com-
piling constraints to join trees, pushing selection into
them, etc.) to obtain a scalable implementation. We
measure the improvements in several experiments and
find that the new implementation is between 30 and
100 times faster.

3. We introduce schema specialization, a new
technique which exploits regularity in the structure of
XML documents to obtain a reduction to more concise
relational queries and constraints. Since minimization
is NP-hard in the query and constraint size, we ob-
tain significant savings this way. The technique can be
applied to any XML document but its benefit grows
with the degree of regularity exhibited, and the best
case scenario is reached when the document is really
an XML dump of relational data (which is quite com-
mon in XML publishing). Practice has shown that it is
reasonable to expect a quite high degree of regularity
in the structure of most XML documents.

4. We conduct experiments that show the prac-
ticality of the approach. We use synthetic configu-
rations to measure separately the improvements due
to the new C&B implementation, and those due to
schema specialization. The synthetic configurations go
beyond realistic situations in order to study the cor-
relation between the complexity of the reformulation
problem and MARS performance. The reformulation
times turn out to be highly worthwhile when related to
the net savings in execution time by leading XQuery
engines. We use a scenario based on the XML bench-
mark [27] to demonstrate the feasibility of overall re-
formulation on realistic queries and views that exercise
various features of XQuery. The reformulation times
are well within feasibility range (with an average of
about 350 ms). This scenario also allows us to discuss
qualitatively how MARS supports the XML publishing
paradigm by relating reformulation times to execution
times reported in [27].

Other related work. There has been much work
in LAV reformulation, see the references in [20]. [17]
reformulates simple XPath expressions using extended
access support relations, which are LAV views in a
broader sense. The LegoDB project [4] performs re-



formulation of XQueries against a relational schema
chosen to best support a certain application. The re-
formulation algorithm is similar to the one performed
in [31], which picks the storage schema according to
the XML DTD. Since we focus on publishing, MARS
must support storage that may not conform to either
of the forms chosen above, which calls for more flexible
storage mappings. At the other extreme, we find sys-
tems storing XML in native storage, such as Natix [24]
and TIMBER [21]. The reformulation happening here
is mostly from the logical XQuery level to algebraic op-
erator plans (such as the TAX algebra for TIMBER).
[3] solves a particular case of MARS minimization,
namely minimization of XPath queries defined by tree
patterns, under a simple class of constraints inferred
from a DTD.

Paper organization. In section 2 we describe
MARS’ architecture and we review the XML-to-
relational compilation algorithm [11] as well as the
principles of the C&B algorithm [8]. In section 3 we de-
scribe the new implementation of the C&B algorithm
and the XML-specific optimizations that we add to
C&B. In section 4 we describe the experiments, ex-
cept those related to schema specialization. Schema
specialization and its experimental evaluation are the
subject of section 5. Conclusions and further work are
in section 6.

2 Architecture of the MARS System

As shown in Figure 2, the strategy behind the design of
MARS is to reduce the input to the MARS system to
a problem of reformulation of relational queries under
relational integrity constraints, and then use the C&B
algorithm to solve the latter. More details are shown
in the architecture diagram in Figure 3. We start our
overview of the MARS system by describing its input.

2.1 Input to the MARS system

XBind queries. Like [5, 23] we follow [16] in split-
ting XQuery = navigation part + tagging template.
According to [34], in a first phase the navigation part
searches the input XML tree(s) binding the query vari-
ables to nodes or string values. In a second phase
that uses the tagging template a new element of the
output tree is created for each tuple of bindings pro-
duced in the first phase. Previous research has ad-
dressed the efficient implementation of the second
phase [14, 30], and we adopt the sorted outer union
approach from [30]. Only the first phase depends on
the schema correspondence so we focus in this paper
on reformulating the navigation part of XQueries. To
describe this first navigation stage, we introduce XBind
queries, a notation that abstracts away the process of
generating XML tags, describing only the navigation
and binding of variables. Their general form is akin
to conjunctive queries. Their head returns a tuple of
variables, and the body atoms can be purely relational

��������	
���


�����
�����
��������

���

������
������
�
����
�

���

�������������������
���������������

�	
���
����


����������
��������

���


� �


����������
���������
���
������


�
�����
�����

���

!���	
��
����

�����������
���
������


�����������
�
����
�

����������������

������
����


Figure 3: MARS architecture

or are predicates defined by XPath expressions [33].
The predicates can be binary, of the form [p](x, y),
being satisfied whenever y belongs to the set of nodes
reachable from node x along the path p. Alternatively,
predicates are unary, of form [p](y), whenever p is an
absolute path starting from the root.

Example 2.1 Consider a document containing book
elements, each of whom contain a title and some
author subelements. The query Q below restructures
the data by grouping the book titles with each author.

Q: <result>
for $a in distinct(//author/text())
return

<item>
<writer>$a</writer>
{for $b in //book

$a1 in $b/author/text()
$t in $b/title

where $a = $a1
return $t}

</item>
</result>

A naive way of evaluating Q is via nested loops. How-
ever, research in evaluating correlated SQL queries
suggests an alternative strategy that consists in break-
ing the query into two decorrelated queries which can
be efficiently evaluated separately and then putting to-
gether their results using an outer join [29]. We will
borrow this technique, obtaining for Q the two decor-
related XBind queries below. Xbo computes the bind-
ings for the variables introduced in the outer for loop
($a), while Xbi computes the bindings of the variables
from the inner loop ($b,$a1,$t) that agree with some
value for $a as computed by Xbo. Notice that this
value of $a is output by Xbi as well, in order to pre-
serve the correlation between variable bindings. In the
query definitions below, we drop the $ signs from the
variable names.

Xbo(a) : −[//author/text()](a)

Xbi(a, b, a1, t) : −Xbo(a), [//book](b),

[./author/text()](b, a1), [./title](b, t), a = a1•

In summary, we describe the navigational part of an
XQuery by a set of decorrelated XBind queries, each
of them to be reformulated by MARS.



The schema correspondence. To make view
specification user-friendly we allow the DB administra-
tors to think of the stored relational schema through
an XML “lens” and therefore (as in XPeranto [5]) to
specify the views in XQuery. Any of several straight-
forward RDB in XML schema-level encoding can be
picked, which is then compiled into a set of rela-
tional constraints (Figure 3). Then, RDB→XML
or XML→RDB mappings/views (e.g., CaseMap, re-
spectively DrugPriceMap in Figure 1) can be defined
just as XML→XML mappings written in XQuery.
The schema correspondence is hence given by several
XQuery views (in both directions, LAV+GAV) be-
tween published and proprietary schemas.

Integrity constraints: XICs and DEDs. We
support integrity constraints on both the XML and the
relational data. The relational integrity constraints
are expressed as disjunctive embedded dependencies
(DEDs) introduced in [10]. DEDs extend classical
embedded dependencies [1] with disjunction and non-
equalities and they can express all common relational
integrity constraints such as referential integrity and
key constraints. All constraints in the set TIX pre-
sented in section 2.2 are DED examples.

For XML, MARS accepts as input the class of XML
Integrity Constraints (XICs) introduced in [9]. XICs
have the same general form as DEDs, in which re-
lational atoms are replaced by predicates defined by
XPath expressions, just like for XBind queries. XICs
allow us to express key and inclusion constraints such
as given by XML Schema, but also more expressive in-
tegrity constraints. For example, (2) below says that
each person element has a ssn child element, and (1)
says that the ssn element is a key for person elements.

∀p, q, s [//person](p) ∧ [./ssn](p, s) ∧

[//person](q) ∧ [./ssn](q, s)→ p = q (1)

∀p [//person](p)→ ∃s [./ssn](p, s) (2)

2.2 Basics of XML-to-relational compilation

The relational framework we compile to. The
above input is compiled to the relational input of the
C&B module as follows. We define a generic relational
schema encoding XML, called GReX

GReX = [root, el, child, desc, tag, attr, id, text].

The relations child, desc, root, etc. model respec-
tively the parent-child, ancestor-descendant and root
relationships in the XML document. el contains the
set of element nodes, and tag, attr, id, text asso-
ciates to each element node respectively a tag, at-
tribute, identity and text. We emphasize that the
XML data is not stored according to GReX. GReX is just
a logical representation for reasoning about XQueries.

Of course, child and desc are not independent
relations (the second is the transitive closure of the
first). We try to capture such relationships using a

set of built-in integrity constraints called TIX (True
In XML). The full list is given in [11]. We show
only the most interesting ones below. For example,
(base),(trans),(refl) state that desc is a reflexive, tran-
sitive relation which contains child. (line) says that
all ancestors of an element reside on the same root-leaf
path. Similarly, TIX contains key constraints which say
that elements have only one tag or attribute of given
name, etc., in all, there are 13 such built-in constraints.
Note that all constraints in TIX are DEDs.

(base) ∀x, y child(x, y) → desc(x, y)

(trans) ∀x, y, z desc(x, y) ∧ desc(y, z) → desc(x, z)

(refl) ∀x el(x)→ desc(x, x)

(line) ∀x, y, u desc(x, u) ∧ desc(y, u)→

x = y ∨ desc(x, y) ∨ desc(y, x)

The compilation. The relational framework con-
sisting of the schema GReX and the constraints TIX is
what we compile the MARS input to. In particular,
we compile:

(i) each XBind query describing the navigational
part of the client XQuery into a relational conjunc-
tive query with inequality and disjunction over schema
GReX. The compilation is done by a straightforward
syntax-directed translation. For instance, the XBind
query Xb0 from Example 2.1 compiles to

Bo(a) : −root(r), desc(r, d), child(d, c),

tag(c,′′ author′′), text(c, a) (3)

(ii) the XICs into sets of relational DEDs over GReX.
This is done using the same translation of path atoms
into relational atoms over GReX, used in compiling
XBind queries. For instance, the XIC (2) compiles to

∀r, d, p root(r) ∧ desc(r, d) ∧ child(d, p) ∧

tag(p,′′ person′′)→ ∃s child(p, s) ∧ tag(s,′′ ssn′′)

(iii) the XQuery views in the schema correspon-
dence into sets of DEDs (as detailed in section 2.4).

Solving the relational problem. We now have a
relational query that needs to be reformulated modulo
equivalence under the set of all relational constraints
obtained from compiling the schema correspondence,
the XICs, and from adding the built-in constraints from
TIX. For this we use the C&B algorithm described
in Section 2.3. For details on the restrictions under
which we can provide theoretical guarantees for this
approach, see [11, 12].

2.3 The C&B Algorithm

We explain C&B through an example involving views.
To deal with view uniformly as with constraints,
we model conjunctive query views with DEDs relat-
ing the input of the defining query with its output.



For example, consider the view defined by V (x, z) :

−A(x, y), B(y, z). The following dependencies state the
inclusion of the result of the defining query in the rela-
tion V (cV ), respectively the opposite inclusion (bV ).

(cV ) ∀x∀y∀z [A(x, y) ∧ B(y, z)→ V (x, z)]

(bV ) ∀x∀z [V (x, z)→ ∃y A(x, y) ∧B(y, z)]

Phase 1: the chase. Universal Plan. Assume
that in addition, the following semantic constraint is
known to hold on the database (it is an inclusion de-
pendency):

(ind) ∀x∀y [A(x, y) → ∃z B(y, z)]

Let Q(x) : −A(x, y) be the query to reformulate. In the
first phase, the query is chased [1] with all available de-
pendencies, until no more chase steps apply (the chase
definition is recalled in section 3.1, where the imple-
mentation is discussed as well). The resulting query is
called the universal plan. In our example, a chase step
with (ind) applies, yielding Q1(x) : −A(x, y), B(y, z)

which in turn chases with (cV ) to the universal plan
Q2(x) : −A(x, y), B(y, z), V (x, z). Notice how the chase
step with (cV ) brings the view into the chase result,
and how this was only possible after the chase with
the semantic constraint (ind).

Phase 2: the backchase. Subqueries. In this
phase, the subqueries of the universal plan are in-
spected and checked for equivalence with Q. Sub-
queries are induced by a subset of the atoms in the
body of the universal plan, using the same variables
for the head. For example, S(x) : −V (x, z) is a sub-
query of Q2 which turns out to be equivalent to Q
under the available constraints, as can be checked by
chasing S “back” to Q2 using a chase step with (bV ).

Minimal reformulations. Notice that when ap-
plied to the particular case when (i) {A, B} is the pub-
lic schema, (ii) {V } is the storage schema, and (iii) the
schema correspondence is given in LAV style by the
query defining V , the C&B algorithm discovers the re-
formulation S of Q exploiting the semantic constraint
(ind). It is not accidental that a reformulation of Q
was found among the subqueries of the chase result:
in [11], we prove that all minimal reformulations can
be found this way. A reformulation is minimal if no
atoms can be removed from its body without compro-
mising equivalence to the original query. More intu-
itively, minimal reformulations perform no redundant
data accesses, and this is why it makes sense to restrict
our attention to them. Clearly, if a reformulation ex-
ists then a minimal one will exist too.

Cost-based pruning. Even so, a query may have
exponentially many minimal reformulations, and we
do not want to inspect all of them to find one of min-
imum cost. To this end, the backchase stage performs
cost-based pruning as implemented in [25]: start by
examining all subqueries of one atom, next all those of

two atoms, etc. in a bottom-up fashion. When a sub-
query is hit which is equivalent to the original query, a
reformulation is found, and the best cost seen so far is
updated. Whenever the cost of a subquery S is higher
than the best found so far, S is discarded, as well as
all subqueries containing the atoms of S. Note that a
subquery is not yet an execution plan, it only specifies
which relations are to be joined. To cost a subquery,
the algorithm performs join reordering using dynamic
programming (see [25] for details).

Initial reformulation. In scenarios when the pro-
prietary storage features no significant redundancy, or
when finding any reformulation fast is more impor-
tant than finding a non-redundant one, we can sim-
ply “switch off” the backchase minimization, and re-
turn the largest subquery M induced by proprietary
schema atoms. It follows from [11] that, if there exists
some reformulation, then M is a reformulation as well.
We call this the initial reformulation. Notice that all
minimal reformulations are subqueries of it, so it is in
general not minimal, especially when the proprietary
storage is redundant. It so happens that for the above
example, there is no redundant storage, and the initial
reformulation is minimal. We know from [11] that only
polynomially many chase steps (in the size of the orig-
inal query) apply until the universal plan is reached.
However, each step is exponential in the size of the
constraint, so it is a priori not clear how the chase be-
haves before running extensive experiments. We do so
in Section 4, showing that M is always found fast. In
contrast, obtaining a minimal reformulation can take
worst case exponential time in the size of the universal
plan, if the backchase has to inspect many subqueries
before finding it. In section 4 we show that for com-
mon scenarios there is significant benefit to neverthe-
less search for the best cost minimal reformulation.

2.4 Compiling XQuery Views to DEDs

We have seen in section 2.3 how we model a relational
view defined by a conjunctive query with two DEDs
stating the inclusions between the extent of the view
and the result of its defining query. Adapting this
idea to views defined by XQueries is not straightfor-
ward because these are more expressive than conjunc-
tive queries in the following ways. (i) XQueries contain
nested, correlated subqueries in the return clause. (ii)
XQueries create new nodes, which do not exist in the
input document, so there is no inclusion relationship
between input and output node sets. (iii) XQueries re-
turn deep, recursive copies of elements from the input.
Due to space constraints, we only sketch the solution
for (i) and (ii) here (see [11, 13] for (iii)).

Nested, Correlated Subqueries. Recall that
the navigation part of an XQuery is described by a
set of decorrelated XBind queries (Xbo,Xbi in exam-
ple 2.1), which can be straightforwardly translated to
relational queries over schema GReX(recall B0 from



equation (3)). These are (unions of) conjunctive
queries, which can be modeled with two DEDs, as
shown in section 2.3. For B0, here is one of the re-
sulting DEDs:

∀r, d, c, a root(r) ∧ desc(r, d) ∧ child(d, c) ∧

tag(c,′′ author′′) ∧ text(c, a)→ Bo(a) (4)

Creation of new elements. For every bind-
ing for $a, a new element node tagged item is cre-
ated whose identity does not exist anywhere in the
input document, but rather is an invented value. This
value depends on the binding of $a, as distinct bind-
ings of $a result in distinct invented item elements.
In other words, the node identities of the item ele-
ment nodes are the image of the bindings for $a un-
der some injective function Fitem. We capture this
function by extending the schema with the relational
symbol Gitem, intended to hold the graph of Fitem:
Gitem(x, y) ⇔ y = Fitem(x). Similarly, we introduce
the relational symbol Gwriter to capture the invention
of writer element nodes. Recall that Q constructs a
unique result element node, whose identity does not
depend on the bindings of Q’s variables (it is a con-
stant). This constant is represented as a function of no
arguments Fresult whose graph is the unary relation
Gresult. We use constraints to enforce the intended
meaning for Gitem, Gwriter , Gresult. Here are a few of
them (Q’s input and output are XML documents en-
coded over schema GReX1, respectively GReX2):

∀x1, x2, y [Gitem(x1, y) ∧Gitem(x2, y)→ x1 = x2](5)

∀x, y1, y2 [Gitem(x, y1) ∧Gitem(x, y2)→ y1 = y2] (6)

∀x [Bo(x)→ ∃y Gitem(x, y)] (7)

∀x, c [Gitem(x, c)→ ∃r Gresult(r)

∧ child2(r, c) ∧ tag2
(c,′′ item′′)] (8)

∀a, w [Gwriter(a, w)→ text2(w, a)] (9)

∀a, w [Gwriter(a, w) ∧ desc2(w, d)→ d = w] (10)

(5) and (6) state that Fitem is an injective function.
By (7), the domain of Fitem contains the set of bind-
ings for $a. The range of Fitem consists of item nodes
that are children of the result node (8). The contents
of the writer elements is the text $a was bound to (9),
and the writer node has no children (10).

The important thing to note is that we can com-
pile any behaved XQuery view to a set of DEDs. The
number of DEDs is linear in the size of the view, but
still significantly larger than the 2 DEDs needed for
relational views.

3 Engineering the MARS System

The implementation of the reformulation algorithm
described in the previous section raises difficult prob-
lems. These problems are caused by the fact that the
compilation of the XML views and queries produces
large numbers of relational dependendencies as well as

relational conjunctive queries and dependencies with
many atoms.

“Stress” test for the chase phase. We chose an
XPath query fragment that is probably too complex
to arise often in practice but that we would definitely
want to be able to handle: //a/b/c/d/e/f/g/h/i/j.
This compiles to a conjunctive query with 20 atoms (9
child, 1 desc, 10 tag). We want to chase this query
with a set of DEDs consisting mostly of the ones from
TIX. None of the DEDs has more than 2 atoms in the
premise. The chase result should contain 270 atoms
(representing a 270-way join).

We used the first implementation of the C&B al-
gorithm [26, 25] on this problem (chase only) with-
out converging after running for more than 12h. This
first implementation was able to handle relational and
object-oriented query reformulation problems of prac-
tical sizes. But this stress test proved that it would not
scale up to handling XML query reformulation prob-
lems. Therefore, we set forth to

• build a novel, significantly more efficient, imple-
mentation of the C&B algorithm, specifically of
its critical chase component, and

• incorporate into the C&B implementation opti-
mizations that take advantage of the specific na-
ture of the queries and dependencies resulting
from XML compilation.

3.1 A Novel C&B Implementation

A chase step of a query Q with a constraint (c) applies
only if (i) we can find a mapping h from the universally
quantified variables of (c) into the variables of Q, such
that the image under h of each atom of the premise
of the implication in (c) is in the body of Q. Such a
mapping is called a homomorphism from the premise
of (c) into the body of Q. (ii) Moreover, there should
be no extension of h to a homomorphism from the
conclusion of (c) into the body of Q. The effect of a
chase step is to add to the body of Q the image of (c)’s
conclusion under h (if the conclusion has existentially
quantified variables, fresh variables are used).

Example 3.1 Assume we want to chase the query
Q(a, g) : −R(a, b), R(b, c), R(c, d), S(d, e), S(e, f), S(f, g)

with the following constraint, call it (c):
∀x, y, z, u, v R(x, y)∧R(y, z)∧S(z, u)∧S(u, v)→ T (x, v).
It is easy to see that the mapping m = {x 7→ b, y 7→
c, z 7→ d, u 7→ e, v 7→ f} is a homomorphism from
(c)’s premise, but not its conclusion. The effect of the
chase step is to add T (m(x), m(v)), i.e. T (b, f), to
the body of Q. Notice that, when attempting to chase
the resulting query with (c), the chase step does not
apply since condition (ii) is violated. •

Notice how a chase step can alternatively be seen
as evaluating a query obtained from (c) on a symbolic



R
(a,b) (b,c) (c,d)

R
(a,b) (b,c) (c,d)

S
(d,e) (e,f) (f,g)

S
(d,e) (e,f) (f,g)

(a,b,c) (b,c,d) (b,c,d,e) (b,c,d,e,f)

Figure 4: Evaluating JTP on Inst(Q)

database instance whose constants are the variables
of Q, and whose tuples are the atoms in Q’s body.
For Example 3.1, we represent Q internally as a sym-
bolic database instance Inst(Q) consisting of the rela-
tions R, S of extents {(a, b), (b, c), (c, d)} respectively
{(d, e), (e, f), (f, g)}. (c) is represented as the query
T (x, v) : −R(x, y), R(y, z), S(z, u), S(u, v). Conse-
quently, we can employ standard relational optimiza-
tion techniques to speed up this evaluation. For ex-
ample, we compile constraints down to operator trees,
whose nodes are relational algebra operators. Con-
tinuing Example 3.1, we compile (c)’s premise into the
join tree JTP from Figure 4. (c)’s conclusion is pre-
compiled to a join tree JTC (this is a single node tree
containing a scan of the T relation). This compilation
step is done once and for all, when the constraints are
read into the system. Figure 4 shows the intermediate
results obtained at every node when evaluating JTP

on Inst(Q). The only tuple propagating bottom-up to
the root is (b, c, d, e, f), which corresponds to the ho-
momorphism m from Example 3.1. Next, we need to
check that m cannot be extended to a homomorphism
from (c)’s conclusion into the body of Q. The ho-
momorphisms that extend to the conclusion are easily
computed in bulk using the same idea: compute the
semijoin of the result of evaluating JTP with that of
evaluating JTC . In our example, the semijoin is empty,
therefore m has no extension to (c)’s conclusion, and
the chase step applies. Its effect is adding the tuple
T (b, f) to Inst(Q).

We implemented joins as hash-joins, and pushed se-
lections into them. Using such set-oriented processing
techniques reduced the time to chase tremendously.
Clearly, since in the backchase phase we chase sub-
queries “back” to the universal plan, this phase ben-
efits from the chase speedup as well. In section 4, we
measure this speedup experimentally.

As a first encouraging sign, the new MARS C&B
implementation runs in 2.6s through the chase stress-
test problem described earlier that required more than
12h from the implementation from [26].

3.2 XML-specific Optimizations

Short-cutting the chase. For particular sets of con-
straints, we can predict the chase outcome up front.
Doing so allows us to skip the chase entirely and con-
struct its result directly. For example, we observe
that the result of chasing a query solely with the
(refl),(base) and (trans) DEDs from TIX (recall sec-

tion 2) adds to this query those desc atoms miss-
ing from the reflexive, transitive closure of the child
atoms. We can think of the chase as proceeding ac-
cording to the following conceptual implementation:

repeat until no more chase step applies:
(1) chase with (refl),(base),(trans) until termination
(2) continue with all other DEDs until termination
end

Since we know up front what the result of phase (1)
in every iteration is, (namely the reflexive, transitive
closure) we do not have to use the chase to compute it.
Instead, we jump directly to the beginning of phase (2)
by computing the closure using a standard adjacency
matrix-based algorithm. This trick cuts the time to
chase considerably.

Example Consider a chain of n atoms

root(x1), child(x1, x2), . . . , child(xn−1, xn) (11)

Chasing with (refl),(base),(trans) will add atoms
desc(x2, x2), desc(x2, x3), desc(x2, x4) etc., resulting

in n(n+1)
2 chase steps. Their effect can be simulated

by directly computing the transitive closure of child
in the symbolic instance associated to the chain. •

Recall the stress-test in which the time to chase was
cut from over 12 hours to 2.6 seconds using the new
implementation with join trees. If we add this shortcut
technique, the same result is obtained in 640ms.

Pruning the Backchase. Recall that during the
backchase phase, we inspect subqueries of the universal
plan U . By removing atoms from U before starting
the backchase, we decrease the number of inspected
subqueries. Treating the GReX atoms as interpreted
symbols, we developed a few criteria for decreasing
the size of the universal plan while guaranteeing that
the optimal reformulation won’t be missed.

1. Assume that the universal plan U contains both
an atom child(x, y) and an atom desc(x, y). Clearly,
by removing desc(x, y) we preserve equivalence to the
original query, and also we do no lose optimality of the
reformulation, since in any reasonable cost model ac-
cessing the descendants of a node is at least as expen-
sive as accessing its children. We therefore eliminate
all desc atoms that are “parallel” to a chain of child
and desc atoms. For the example chain (11), this

means removing n(n+1)
2 desc atoms introduced in the

chase phase, thus reducing the number of subqueries

from O(2n
2

) to O(2n).
Criteria 2–3 prune subqueries that do not corre-

spond to legal XQuery navigation.
2. Child and descendant navigation steps must be

contiguous. For example, we won’t consider the sub-
query induced by the atoms root(x1), child(x2, x3)
of the chain (11) because it involves jumping di-
rectly from x1 to some element x2, instead of navi-
gating there via the missing child(x1, x2) atom. This
pruning criterion reduces the search space size from



O(2n+1) to O(n2) subqueries. Notice the drop from
exponential to polynomial size.

3. Subsets of atoms that do not contain at least an
atom describing the root of a document, or some other
valid entry point into it, are not considered. there is no
point considering the subquery induced by the atoms
child(x1, x2), child(x2, x3) of the chain (11). This
reduces the number of eligible subqueries further, from
O(n2) to O(n).

Of course, a naive implementation that first gen-
erates the subquery and then checks the criteria still
results in exponential work. Instead, we eliminate the
redundant desc atoms from criterion 1 by working di-
rectly on the universal plan. More interestingly, we
avoid generating subqueries that violate criteria 2 and
3 by constructing a directed reachability graph of the
atoms: the nodes represent atoms, and e.g. there is
an edge from a child atom a1 to a desc atom a2 iff
the second variable of a1 coincides with the first of a2.
Similar rules are defined for all pairs of relational sym-
bols from GReX. The roots of the graph are given by
root atoms. We traverse this graph starting from the
roots to generate the legal subsets of atoms.2

4 Experiments

The MARS system is implemented in JDK1.2, and
the experiments were run on a Windows XP Dell 4450
desktop with a 2.4GHz PentiumIV and 1GB of RAM.

4.1 Synthetic Experimental Configuration

XML star queries. We designed the following class
of XML reformulation problems, based on the XML
equivalent of relational star queries.

The public schema describes R elements (children
of the root element) with K-, A1,. . . An-, subelements.
Similarly, for 1 ≤ i ≤ NC there are Si elements with
subelements A and B. R’s subelements Ai are foreign
keys referencing subelement A in Si, and K is a key for
R (see [13] for the XICs expressing these constraints).

The proprietary schema contains the public
schema as well as redundantly materialized XML star
views Vl (1 ≤ l ≤ NV ) which join the hub (R) with two
if its corners (Sl and Sl+1). The joins are along the
foreign keys, and the view projects on the B subele-
ments of both corners, as well as R’s subelement K.
Note that there is considerable redundancy in the stor-
age: view Vl redundantly stores the data from R and
Sl, Sl+1 elements, but there is also overlap among the
views themselves: Vl and Vl+1 for each l.

The query has a similar shape as the queries defin-
ing the views, but it joins R-elements with all NC Si

elements. Notice that in the absence of integrity con-
straints, there is no reformulation using the views, but

2This technique is related to that of sideways information
passing used in System R’s optimizer [28] to avoid plans that
compute Cartesian products, which are precisely the plans vio-
lating criterion (2) (such as root(x1), child(x2, x3)).

if we take into account the key constraint on R, then
the star join can be rewritten using any subset of the
views corresponding to it. There are hence 2NV possi-
ble reformulations, all of which are discovered by the
C&B algorithm. Consequently, the universal plan will
contain all NV views, and the backchase stage will have
to deal with 2NV possible reformulations.

4.2 Scalability Experiments

We study the behavior of MARS reformulation as the
number of views increases in a situation that puts
the backchase implementation under significant stress,
forcing it to pick from exponentially many minimal
reformulations.

The configuration we used to obtain such a worst-
case scenario is the XML star query, in which we al-
lowed NV = NC − 1 views per star:

0

200

400

600

800

1000

1200

1400

1600

1800

2000

3 4 5 6 7 8 9 10

Nc (star query size)

m
ill

is
ec

o
n

d
s

time to initial reformulation delta to best minimal reformulation

Figure 5: Scalability of Reformulation

We measured the time to find the initial reformula-
tion, and the additional time to find the best minimal
reformulation. It turns out that these are negligible
compared to the execution times of leading XQuery
engines for these queries, even on small documents.
For example, for NC = 3 and a toy document of 60
elements, the Galax [15] engine takes 1.5s to execute
the query as is, and 128ms to execute the reformula-
tion using views. The 141ms invested by MARS to find
this reformulation hence gives a net saving of 1.331s.
The net saving increases with increasing complexity of
the query and views. For NC = 6 and the same docu-
ment, it reaches 20.532s, and for NC = 10, it reaches 2
minutes (when spending 2s in reformulation). Larger
document sizes only increase the net saving. We tried
the same experiment with the Enosys [32] engine, ob-
taining net savings of the same order of magnitude.

More Experiments. The extended version [13]
shows that the speedup of the new C&B implementa-
tion compared to the original one is at least two orders
of magnitude. Furthermore, it presents a suite of ex-
periments which study the behavior of the MARS sys-
tem on more realistic queries and views, using a con-
figuration based on the XMark benchmark [27]. The
experiments show that MARS performs well within



name

first last street city state zip

address

author

Figure 6: XML representation of author entities

feasible range for realistic size queries. The optimal
reformulated queries (exploiting the redundancy we
added to the schema) run very fast and it is well worth
spending the time to find them (on average 350ms).

5 Schema Specialization

This technique taps a completely different source of
potential improvements in MARS performance: using
an application-specific schema as a part of the target
for the XML-to-relational compilation. Its effect is to
reduce the number of atoms in the query and con-
straints, thus obtaining a faster chase, a smaller uni-
versal plan, and consequently a faster backchase stage.

5.1 Exploiting Regularity in the Structure of
Documents

The basic idea is to model a set of atoms corresponding
to an XML navigation pattern by a single tuple of a
virtual relation from a special schema. We will call
the technique of associating this relational schema to
the XML schema specialization. For example, if we
know that the relatively complex XML tree pattern
in Figure 6 represents author entities, we can model
these as tuples of the schema

Author(id,pid,first,last,street,city,state,zip)

Note that the identities of internal nodes of the tree
(name, address), as well as the parent-child relation-
ships are abstracted away in this relational view. The
id attribute holds the identity of the author nodes,
and pid that of their parents. These are needed in
translating queries against the XML schema to rela-
tional queries against the special schema. Now con-
sider the XBind query returning the names of authors
living in a city where a publisher is located:

Xb(l) ← [//author](id), [./name/last/text()](id, l),

[./address/city/text()](id, c),

[//publisher/address/city/text()](c)

Assume the existence of a relational materialized
view associating author last names with the city they
live in:3

V (l, c) ← [//author](id), [./name/last/text()](id, l),

[./address/city/text()](id, c)

3For brevity, we give the view definition using an XBind query,
rather than an XQuery outputting the XML encoding of the
relation, as would be done in XPeranto.

Xb(P)
compile

CQ(GReX(P))
C&B with ∆∆∆∆

R(GReX(S))

specialize

CQ’(spec(P))
C&B with 

R’(spec(S))
spec(∆∆∆∆))))

Figure 7: Reformulation by schema specialization

The C&B algorithm will find a reformulation of Xb
using V by chasing the relational compilation of Xb
(which we shall denote c(Xb)) with the constraints
capturing V. Here is one of them:

∀r∀d∀id∀n∀x∀l∀c root(r) ∧ desc(r, d) ∧ child(d, id) ∧

tag(id,′′ author′′) ∧ child(id, n) ∧ tag(n,′′ name′′) ∧

child(n, x) ∧ tag(x,′′ last′′) ∧ text(x, l) ∧ child(id, a)

∧tag(a,′′ address′′) ∧ child(a, y) ∧ tag(y,′′ city′′) ∧

text(y, c)→ V (l, c) (12)

The verbosity of this constraint makes for a relatively
expensive chase step, since any such step involves find-
ing a homomorphism from the premise of (12) into the
body of c(Xb), which is NP-hard in the size (number
of atoms) of the premise. The premise size can be re-
duced by using the above relational specialization of
author elements. (12) turns into (13) below, with 13
less atoms in the premise:

∀d∀id∀f∀l∀str∀c∀sta∀z

Author(id, d, f, l, str, c, sta, z)→ V (l, c) (13)

Similar concise translations hold for c(Xb).

Figure 7 shows our specialization strategy. As be-
fore, the correspondence between proprietary schema
S and public schema P is compiled to the set ∆ of
DEDs. Let spec(P ),spec(S) denote the specializations
of schemas P, S. We again start by compiling the
XBind query Xb (formulated against P ) to a relational
conjunctive query CQ over schema GReX(P ), which
is the generic relational encoding of XML schema P .
However, instead of applying the C&B algorithm to
CQ and ∆ to directly obtain a reformulation R, we first
specialize CQ, translating it to a query CQ′ against
spec(P ). Similarly, we specialize the DEDs in ∆, to
obtain the more concise DEDs spec(∆) defining the
correspondence between schemas spec(P ) and spec(S).
We next reformulate CQ′ under spec(∆) to a query
R′ over spec(S). Finally, R′ is post-processed, which
means substituting the relational specializations from
spec(S) with the original XML entities from S (en-
coded relationally in GReX(S)). Notice that, while the
specialization of the query must be done on-line, that
of the schemas P, S and constraints ∆ can be done
once and for all, off-line. For our example, Author
belongs to schema spec(P ), CQ is c(Xb), and its spe-
cialization is



CQ′(l, c)← Author(id, d, f, l, str, c, sta, z),

root(r), desc(r, d′), child(d′, p), tag(p,′′ publisher′′),

child(p, a′), tag(a′,′′ address′′), child(a′, u),

tag(u,′′ city′′), text(u, c)

Notice how only the navigation of Xb pertaining to
author data could be specialized, while that pertaining
to publisher could not. The C&B reformulation of
CQ′ involves chasing it with constraint (13), (instead
of chasing c(Xb) with (12)). We obtain, among others,
a reformulation using V .

Finding the schema specialization. The spe-
cializations can be specified explicitly by domain ex-
perts. A more desirable alternative is to infer them
automatically, by detecting the parts of the XML doc-
ument which are highly structured, and associating
a relation to them. Tools solving exactly this task
have been developed, albeit with a different motiva-
tion, namely that of storing XML data relationally.
We can therefore adapt tools like STORED [7] or hy-
brid inlining [31]. The specialization in the above ex-
ample would be found by hybrid inlining using a DTD
or XML Schema associated with the document.

Specifying the specializations using map-

pings. Regardless of how the specializations are
found, and especially if a domain expert defines them,
we need a notation for describing the corresponding
XML-to-relational mapping. This can be done using
various syntaxes (see [13] for an example in XBind
syntax).

Restrictions on the specialization mappings

to ensure efficient specialization. Specializing a
query means reformulating it according to the special-
ization mappings. This can be done in two ways. In
one approach we could use independent techniques.
For example, if the specialization mappings are the re-
sult of hybrid inlining, then the query reformulation
algorithm from [31] could be used. A more desirable
approach is to reuse the C&B algorithm. Since the
specializations can be expressed as mappings, we can
compile them to constraints and use the C&B refor-
mulation to obtain the specialized queries as reformu-
lations against the intermediate specialization schema
I . However, if the specialization mappings are arbi-
trary, this approach shifts the complexity from the
C&B reformulation to the specialization step itself,
thus defeating its purpose. We identified reasonable
restrictions on the expressive power of specialization
mappings which lead to polynomial running time of
the C&B when used for specialization (see [13]).

Proposition 5.1 Given a restricted specialization
mapping, there is a compilation of this mapping to a
set of constraints ρ such that the C&B algorithm ap-
plied with ρ reformulates any XBind query in PTIME
in its size.

The restrictions still allow interesting specialization
mappings. It turns out that the specialization map-
ping we would obtain by hybrid inlining satisfies them
(space does not allow us to show details). This sug-
gests borrowing the hybrid inlining technique (devel-
oped for storing the XML data) in order to specialize
XML queries and integrity constraints.

Corollary 5.2 If the specialization mappings corre-
spond to the mapping discovered by hybrid inlining, the
specialization step can be performed in PTIME in the
size of the query using the C&B algorithm itself.

5.2 Improvements due to Specialization

In this experiment, we use the same family of pub-
lic schema and query as introduced in the XML star
query scenario. However, the proprietary schema con-
tains only the views now, and we measure the ratio of
the times to find all reformulations without and with
schema specialization. This ratio is again measured as
a function of the NC parameter, shown in Figure 8.
Note the exponential increase of the benefit. The ben-

Effect of specialization

1

10

100

3 4 5 6 7 8 9 10

Nc (corners per star)

ru
n

n
in

g
 t

im
e 

ra
ti

o
: 

w
it

h
o

u
t/

w
it

h
 s

p
ec

ia
liz

at
io

n
 

initial reformulation best reformulation total

Figure 8: Effect of schema specialization

efit is broken down for (1) the time to obtain the initial
reformulation using all views, (2) the time to perform
backchase minimization on this reformulation, to ob-
tain all minimal reformulations, and (3) the sum of
these times. Recall from Section 2.3 that the initial re-
formulation obtained in (1) is computed by first chas-
ing the query to the universal plan, and then picking
the largest subquery that mentions only proprietary
schema elements (in this case views). To see that the
optimization time is negligible when compared to the
time to execute the unoptimized query, note that the
actual running time for the C&B with specialization
is 1.1sec for NC = 9, while the running time for the
unoptimized query is over 10 minutes.

6 Further Work

Of course, there are more relational evaluation / op-
timization techniques than the ones we have used to
speed up the implementation of the chase. We are par-
ticularly interested in applying multi-query optimiza-
tion techniques, given that during chasing we need to



evaluate in parallel all queries corresponding to con-
straints. We would like to investigate the applicabil-
ity of the reformulation techniques presented here for
XQuery optimizers of the future. Also, we plan to
exploit the completeness of MARS reformulation to
create a testbed for various cost models and XQuery
optimization heuristics. Cost models for XQuery are
still under research, and in order to check their per-
formance, we need to have a good understanding of
what reformulations they discard and how close they
come to the optimal one. This can be achieved only
by enumerating all reformulations.

Acknowledgements This work owes much to our
prior collaboration with Lucian Popa. We are indebted
to Peter Buneman, Susan Davidson, Mary Fernandez,
Dan Suciu and Scott Weinstein for extensive and valu-
able feedback on this work.

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu.
Foundations of Databases. Addison-Wesley, 1995.

[2] A. Aboulnaga, A. Alameldeen, and J. F. Naughton.
Estimating the selectivity of xml path expressions for
internet scale applications. In VLDB, 2001.

[3] S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and
D. Srivastava. Minimization of tree pattern queries.
In SIGMOD, 2001.

[4] P. Bohannon, J. Freire, P. Roy, and J. Simeon. From
xml schema to relations: A cost-based approach to
xml storage. In ICDE, 2002.

[5] M. Carey, J. Kiernan, J. Shanmugasundaram, E.
Shekita, and S. Subramanian. XPERANTO: Middle-
ware For Publishing Object-Relational Data as XML.
VLDB, 2000.

[6] Z. Chen, H. V. Jagadish, F. Korn, N. Koudas,
S. Muthukrishnan, Raymond T. Ng, and D. Srivas-
tava. Counting Twig Matches in a Tree. In ICDE,
2001.

[7] A. Deutsch, M. F. Fernandez, and D. Suciu. Storing
Semistructured Data with STORED. In SIGMOD,
1999.

[8] A. Deutsch, L. Popa, and V. Tannen. Physical Data
Independence, Constraints and Optimization with
Universal Plans. In VLDB,1999.

[9] A. Deutsch and V. Tannen. Containment and integrity
constraints for xpath fragments. In KRDB, 2001.

[10] A. Deutsch and V. Tannen. Optimization proper-
ties for classes of conjunctive regular path queries. In
DBPL, 2001.

[11] A. Deutsch and V. Tannen. Reformulation of xml
queries and constraints. In ICDT, 2003.

[12] A. Deutsch and V. Tannen. XML queries and con-
straints, containment and reformulation. To appear
in JTCS, 2003.

[13] A. Deutsch and V. Tannen. MARS: A System for Pub-
lishing XML from Mixed and Redundant Storage (ex-
tended version). http://db.ucsd.edu/people/alin.

[14] M. Fernandez, A. Morishima, and D. Suciu. Efficient
Evaluation of XML Middle-ware Queries. In SIG-
MOD’01.

[15] M. Fernandez, J. Simeon, P. Wadler, and B. Choi.
Galax. http://db.bell-labs.com/galax.

[16] M. Fernandez, W.-C. Tan, and D. Suciu. SilkRoute:
Trading between Relations and XML. In WWW9,
2000.

[17] T. Fiebig and G. Moerkotte. Evaluating queries on
structure with extended access support relations. In
WebDB, 2000.

[18] J. Freire, J. R. Haritsa, M. Ramanath, P. Roy, and J.
Simon. Statix: making xml count. In ICDE. 2002.

[19] M. Friedman, A. Y. Levy, and T. D. Millstein. Nav-
igational plans for data integration. In AAAI/IAAI,
p. 67–73,1999.

[20] Alon Halevy. Logic-based techniques in data integra-
tion. In Logic Based Artificial Intelligence, 2000.

[21] H.V.Jagadish, S.Al-Khalifa, A.Chapman,
L.V.S.Lakshmanan, A.Nierman, S.Paparizos, J.Patel,
D.Srivastava, N.Wiwatwattana, Y.Wu, and C.Yu.
Timber:a native xml database. VLDB Journal, 11(4),
2002.

[22] A. Kemper and G. Moerkotte. Access support rela-
tions in object bases. In SIGMOD, 1990.

[23] I. Manolescu, D. Florescu, and D. Kossman. An-
swering XML Queries on Heterogeneous Data Sources.
VLDB’01.

[24] G. Moerkotte and C.-C. Kanne. Efficient storage of
xml data. In ICDE, 2000.

[25] L. Popa. Object/Relational Query Optimization with
Chase and Backchase. PhD thesis, Univ. of Pennsyl-
vania, 2000.

[26] L. Popa, A. Deutsch, A. Sahuguet, and V. Tannen. A
Chase Too Far? In SIGMOD, May 2000.

[27] A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,
I. Manolescu, and R. Busse. Xmark: A benchmark
for xml data management. In VLDB, 2002.

[28] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. Access path selection in a
relational database management system. In SIGMOD,
1979.

[29] P. Seshadri, H. Pirahesh, and T. Y. Cliff Leung. Com-
plex query decorrelation. In ICDE, 1996.

[30] J. Shanmugasundaram, J. Kiernan, E. J. Shekita, C.
Fan, and J. Funderburk. Querying XML Views of
Relational Data. In VLDB, 2001.

[31] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He,
D. J. DeWitt, and J. F. Naughton. Relational
Databases for Querying XML Documents. In VLDB,
1999.

[32] Enosys Software. http://www.enosyssoftware.com.

[33] W3C. XML Path Language (XPath) 1.0. W3C Rec-
ommendation. http://www.w3.org/TR/xpath.

[34] W3C. XQuery: A query Language for XML. W3C
Working Draft. http://www.w3.org/TR/xquery.

[35] Y. Wu, J. M. Patel, and H. V. Jagadish. Estimating
answer sizes for xml queries. In EDBT, 2002.


