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Most standard model predictive control (MPC) implementations partition the plant into sev-

eral units and apply MPC individually to these units. It is known that such a completely de-

centralized control strategy may result in unacceptable control performance, especially if the

units interact strongly. Completely centralized control of large, networked systems is viewed

by most practitioners as impractical and unrealistic. In this dissertation, a new framework for

distributed, linear MPC with guaranteed closed-loop stability and performance properties is

presented. A modeling framework that quantifies the interactions among subsystems is em-

ployed. One may think that modeling the interactions between subsystems and exchanging

trajectory information among MPCs (communication) is sufficient to improve controller per-

formance. We show that this idea is incorrect and may not provide even closed-loop stability.

A cooperative distributed MPC framework, in which the objective functions of the local MPCs

are modified to achieve systemwide control objectives is proposed. This approach allows prac-

titioners to tackle large, interacting systems by building on local MPC systems already in place.

The iterations generated by the proposed distributed MPC algorithm are systemwide feasible,

and the controller based on any intermediate termination of the algorithm is closed-loop sta-
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ble. These two features allow the practitioner to terminate the distributed MPC algorithm at

the end of the sampling interval, even if convergence is not achieved. If iterated to conver-

gence, the distributed MPC algorithm achieves optimal, centralized MPC control.

Building on results obtained under state feedback, we tackle next, distributed MPC

under output feedback. Two distributed estimator design strategies are proposed. Each es-

timator is stable and uses only local measurements to estimate subsystem states. Feasibility

and closed-loop stability for all distributed MPC algorithm iteration numbers are established

for the distributed estimator-distributed regulator assembly in the case of decaying estimate

error. A subsystem-based disturbance modeling framework to eliminate steady-state offset

due to modeling errors and unmeasured disturbances is presented. Conditions to verify suit-

ability of chosen local disturbance models are provided. A distributed target calculation al-

gorithm to compute steady-state targets locally is proposed. All iterates generated by the

distributed target calculation algorithm are feasible steady states. Conditions under which

the proposed distributed MPC framework, with distributed estimation, distributed target cal-

culation and distributed regulation, achieves offset-free control at steady state are described.

Finally, the distributed MPC algorithm is augmented to allow asynchronous optimization and

asynchronous feedback. Asynchronous feedback distributed MPC enables the practitioner to

achieve performance superior to centralized MPC operated at the slowest sampled rate. Ex-

amples from chemical engineering, electrical engineering and civil engineering are examined

and benefits of employing the proposed distributed MPC paradigm are demonstrated.
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Chapter 1

Introduction

Large engineering systems typically consist of a number of subsystems that interact with each

other as a result of material, energy and information flows. A high performance control tech-

nology such as model predictive control (MPC) is employed for control of these subsystems.

Local models and objectives are selected for each individual subsystem. The interactions

among the subsystems are ignored during controller design. In plants where the subsystems

interact weakly, local feedback action provided by these subsystem (decentralized) controllers

may be sufficient to overcome the effect of interactions. For such cases, a decentralized control

strategy is expected to work adequately. For many plants, ignoring the interactions among

subsystems leads to a significant loss in control performance. An excellent illustration of the

hazards of such a decentralized control structure was the failure of the North American power

system resulting in the blackout of August 14, 2003. The decentralized control structure pre-

vented the interconnected control areas from taking emergency control actions such as selec-

tive load shedding. As each subsystem tripped, the overloading of the remaining subsys-

tems became progressively more severe, leading finally to the blackout. It has been reported

by the U.S.-Canada Power System Outage Task Force (2004) that the extent of the cascading
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system failure was so drastic that within 7 minutes the blackout rippled from the Cleveland-

Akron area in northern Ohio to much of northeastern USA and Canada. In many situations,

such catastrophic network control failures are prevented by employing conservative design

choices. Conservative controller design choices are expensive and reduce productivity.

An obvious recourse to decentralized control is to attempt centralized control of large-

scale systems. Centralized controllers, however, are viewed by most practitioners as mono-

lithic and inflexible. For most large-scale systems, the primary hurdles to centralized control

are not computational but organizational. Operators are usually unwilling to deal with the

substantial data collection and data handling effort required to design and maintain a valid

centralized control system for a large plant. To the best of our knowledge, no such centralized

control systems are operational today for any large, networked system. Operators of large,

networked systems also want to be able to take the different subsystems offline for routine

maintenance and repair without affecting a complete plantwide control system shutdown.

This is not easily accomplished under centralized MPC. In many applications, plants are al-

ready in operation with decentralized MPCs in place. Plant personnel do not wish to en-

gage in a complete control system redesign required to implement centralized MPC. In some

cases, different parts of the networked system are owned by different organizations making

the model development and maintenance effort required for centralized control impractical.

Unless these organizational impediments change in the future, centralized control of large,

networked systems is useful primarily as a benchmark against which other control strategies

can be compared and assessed.

For each decentralized MPC, a sequence of open-loop controls are determined through

the solution of a constrained optimal control problem. A local objective is used. A subsystem
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model, which ignores the interactions, is used to obtain a prediction of future process behav-

ior along the control horizon. Feedback is usually obtained by injecting the first input move.

When new local measurements become available, the optimal control problem is resolved and

a fresh forecast of the subsystem trajectory is generated. For distributed control, one natural

advantage that MPC offers over other controller paradigms is its ability to generate a pre-

diction of future subsystem behavior. If the likely influence of interconnected subsystems is

known, each local controller can possibly determine suitable feedback action that accounts

for these external influences. Intuitively, one expects this additional information to help im-

prove systemwide control performance. In fact one of the questions that we will answer in this

dissertation is the following: Is communication of predicted behavior of interconnected subsystems

sufficient to improve systemwide control performance?

The goal of this dissertation is to develop a framework for control of large, networked

systems through the suitable integration of subsystem-based MPCs. For the distributed MPC

framework proposed here, properties such as feasibility, optimality and closed-loop stability

are established. The approach presented in this dissertation is aimed at allowing practitioners

to build on existing infrastructure. The proposed distributed MPC framework also serves to

equip the practitioner with a low-risk strategy to explore the benefits attainable with central-

ized control using subsystem-based MPCs.

1.1 Organization and highlights of this dissertation

The remainder of this dissertation is organized as follows:
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Chapter 2.

Current literature on distributed MPC is reviewed in this chapter. Shortcomings of available

distributed MPC formulations are discussed. Developments in the area of distributed state

estimation are investigated. Finally, contributions to closed-loop stability theory for MPC are

examined.

Chapter 3.

This chapter motivates distributed MPC methods developed in this dissertation. Two exam-

ples are also provided. First, an example consisting of two interacting chemical plants is pre-

sented to illustrate the disparity in performance between centralized and decentralized MPC.

Next, a four area power system is used to show that modeling the interactions between sub-

systems and exchange of trajectories among MPCs (pure communication) is insufficient to

provide even closed-loop stability.

Chapter 4.

A state feedback distributed MPC framework with guaranteed feasibility, optimality and closed-

loop stability properties is described. An algorithm for distributed MPC is presented. It is

shown that the distributed MPC algorithm can be terminated at any intermediate iterate; on

iterating to convergence, optimal, centralized MPC performance is achieved.

Chapter 5.

The distributed MPC framework described in Chapter 4 is expanded to include state estima-

tion. Two distributed state estimation strategies are described. Robustness of the distributed
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estimator-distributed regulator combination to decaying state estimate error is demonstrated.

Chapter 6.

In this chapter, we focus on the problem of achieving zero offset objectives with distributed

MPC. For large, networked systems, the number of measurements typically exceeds the num-

ber of manipulated variables. Offset-free control can be achieved for at most a subset of the

measured variables. Conditions for appropriate choices of controlled variables that enable

offset-free control with local disturbance models are described. A distributed target calcu-

lation algorithm that enables calculation of the steady-state targets at the subsystem level is

presented.

Chapter 7.

The control actions generated by the MPCs are not usually injected directly into the plant but

serve as setpoints for lower level flow controllers. In addition to horizontal integration across

subsystems, system control performance may be improved further by vertically integrating

each subsystem’s MPC with its lower level flow controllers. Structural simplicity of the result-

ing controller network is a key consideration for vertical integration. The concept of partial

cooperation is introduced to tackle vertical integration between MPCs.

Chapter 8.

The distributed MPC algorithm introduced in Chapter 4 is augmented to allow asynchronous

optimization. This feature enables the integration of MPCs with disparate computational time

requirements without forcing all MPCs to operate at the slowest computational rate. This fea-
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ture also avoids the need for synchronized clock keeping at each iterate. Because all MPCs are

required to exchange information periodically only, the communication load (between MPCs)

is reduced.

Chapter 9.

Algorithms for distributed constrained LQR (DCLQR) are described in this chapter. These

algorithms achieve infinite horizon optimal control performance at convergence using finite

values of the control horizon, N . To formulate a tractable DCLQR optimization problem, the

system inputs are parameterized using the unconstrained, optimal, centralized feedback con-

trol law. Two flavors for implementable DCLQR algorithms are considered. First, an algo-

rithm in which a terminal set constraint is enforced explicitly is described. Next, algorithms

for which the terminal set constraint remains implicit through the choice of N are presented.

Advantages and disadvantages of either approach are discussed.

Chapter 10.

In this chapter, we utilize distributed MPC for power system automatic generation control

(AGC). A modeling framework suitable for power networks is used. Both terminal penalty

and terminal control distributed MPC are evaluated. It is shown that the distributed MPC

strategies proposed also allow coordination of the flexible AC transmission system controls

with AGC.
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Chapter 11.

In this chapter, we consider the problem of integrating MPCs with different sampling rates.

Asynchronous feedback distributed MPC allows MPCs to inject appropriate control actions at

their respective sampling rates. This feature enables one to achieve performance superior to

centralized MPC designed at the slowest sampling rate. Algorithms for fast sampled and slow

sampled MPCs are described. Nominal asymptotic stability for the asynchronous feedback

distributed MPC control law is established.

Chapter 12.

This chapter summarizes the contributions of this dissertation and outlines possible directions

for future research.
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Chapter 2

Literature review

Model predictive control (MPC) is a process control technology that is being increasingly em-

ployed across several industrial sectors (Camacho and Bordons, 2004; Morari and Lee, 1997;

Qin and Badgwell, 2003; Young, Bartusiak, and Fontaine, 2001). The popularity of MPC in

industry stems in part from its ability to tackle multivariable processes and handle process

constraints. At the heart of MPC is the process model and the concept of open-loop optimal

feedback. The process model is used to generate a prediction of future subsystem behavior.

At each time step, past measurements and inputs are used to estimate the current state of the

system. An optimization problem is solved to determine an optimal open-loop policy from

the present (estimated) state. Only the first input move is injected into the plant. At the subse-

quent time step, the system state is re-estimated using new measurements. The optimization

problem is resolved and the optimal open-loop policy is recomputed. Figure 2.1 presents a

conceptual picture of MPC.
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Future

Prediction horizon
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Estimation horizon

Desired output setpoint

Input

Output (measured)

k

Output trajectory (forecast)

Optimal input
trajectory (time k)

trajectory (time k + 1)
Re-optimized input

uk

uk+1

k + 1

Figure 2.1: A conceptual picture of MPC. Only uk is injected into the plant at time k. At time
k + 1, a new optimal trajectory is computed.

Distributed MPC.

The benefits and requirements for cross-integration of subsystem MPCs has been discussed

in Havlena and Lu (2005); Kulhavý, Lu, and Samad (2001). A two level decomposition-

coordination strategy for generalized predictive control, based on the master-slave paradigm

was proposed in Katebi and Johnson (1997). A plantwide control strategy that involves the in-

tegration of linear and nonlinear MPC has been described in Zhu and Henson (2002); Zhu,

Henson, and Ogunnaike (2000). A distributed MPC framework, for control of systems in

which the dynamics of each of the subsystems are independent (decoupled) but the local state

and control variables of the subsystems are nonseparably coupled in the cost function, was

proposed in Keviczky, Borelli, and Balas (2005). In the distributed MPC framework described

in Keviczky et al. (2005), each subsystem’s MPC computes optimal input trajectories for itself

and for all its neighbors. A sufficient condition for stability has also been established. Ensur-
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ing the stability condition in Keviczky et al. (2005) is satisfied is, however, a nontrivial exer-

cise. Furthermore, as noted by the authors, the stability condition proposed in Keviczky et al.

(2005) has some undesirable consequences: (i) Satisfaction of the stability condition requires

increasing information exchange rates as the system approaches equilibrium; this information

exchange requirement to preserve nominal stability is counter-intuitive. (ii) Increasing the pre-

diction horizon may lead to instability due to violation of the stability condition; closed-loop

performance deteriorates after a certain horizon length. A globally feasible, continuous time

distributed MPC framework for multi-vehicle formation stabilization was proposed in Dun-

bar and Murray (2006). In this problem, the subsystem dynamics are decoupled but the states

are nonseparably coupled in the cost function. Stability is assured through the use of a com-

patibility constraint that forces the assumed and actual subsystem responses to be within a

pre-specified bound of each other. The compatibility constraint introduces a fair degree of

conservatism and may lead to performance that is quite different from the optimal, centralized

MPC performance. Relaxing the compatibility constraint leads to an increase in the frequency

of information exchange among subsystems required to ensure stability. The authors claim

that each subsystem’s MPC needs to communicate only with its neighbors is a direct conse-

quence of the assumptions made: the subsystem dynamics are decoupled and only the states

of the neighbors affect the local subsystem stage cost. A decentralized MPC algorithm for sys-

tems in which the subsystem dynamics and cost function are independent of the influence of

other subsystem variables but have coupling constraints that link the state and input variables

of different subsystems has been proposed in Richards and How (2004). Robust feasibility

is established when the disturbances are assumed to be independent, bounded and a fixed,

sequential ordering for the subsystems’ MPC optimizations is allowed.
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A distributed MPC algorithm for unconstrained, linear time-invariant (LTI) systems in

which the dynamics of the subsystems are influenced by the states of interacting subsystems

has been described in Camponogara, Jia, Krogh, and Talukdar (2002); Jia and Krogh (2001). A

contractive state constraint is employed in each subsystem’s MPC optimization and asymp-

totic stability is guaranteed if the system satisfies a matrix stability condition. An algorith-

mic framework for partitioning a plant into suitably sized subsystems for distributed MPC

has been described in Motee and Sayyar-Rodsari (2003). An unconstrained, distributed MPC

algorithm for LTI systems is also described. However, convergence, optimality and closed-

loop stability properties, for the distributed MPC framework described in Motee and Sayyar-

Rodsari (2003), have not been established. A distributed MPC strategy, in which the effects of

the interacting subsystems are treated as bounded uncertainties, has been described in Jia and

Krogh (2002). Each subsystem’s MPC solves a min-max optimization problem to determine

local control policies. The authors show feasibility of their distributed MPC formulation; op-

timality and closed-loop stability properties are, however, unclear. Recently in Dunbar (2005),

an extension of the distributed MPC framework described in Dunbar and Murray (2006) that

handles systems with interacting subsystem dynamics was proposed. At each time step, ex-

istence of a feasible input trajectory is assumed for each subsystem. This assumption is one

limitation of the formulation. Furthermore, the analysis in Dunbar (2005) requires at least 10

agents for closed-loop stability. This lower bound on the number of agents (MPCs) is an un-

desirable and artificial restriction and limits the applicability of the method. In Magni and

Scattolini (2006), a completely decentralized state feedback MPC framework for control of

nonlinear systems was proposed. A contractive state constraint is used to ensure stability. It

is assumed in Magni and Scattolini (2006) that no information exchange among subsystems is
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possible. An attractive feature of this approach is the complete decentralization of the MPCs.

The requirement of stability with no communication leads to rather conservative conditions

for feasibility of the contractive constraint and closed-loop stability, that may be difficult to ver-

ify in practice. Optimality properties of the formulation have not been established and remain

unclear. For the distributed MPC strategies available in the literature, nominal properties such

as feasibility, optimality and closed-loop stability have not all been established for any sin-

gle distributed MPC framework. Moreover, all known distributed MPC formulations assume

perfect knowledge of the states (state feedback) and do not address the case where the states

of each subsystem are estimated from local measurements (output feedback). In Chapters 5

and 6, we investigate distributed MPC with state estimation and disturbance modeling.

To arrive at distributed MPC algorithms with guaranteed feasibility, stability and per-

formance properties, we also examine contributions to the area of plantwide decentralized

control. Several contributions have been made in the area. A survey of decentralized con-

trol methods for large-scale systems can be found in Sandell-Jr., Varaiya, Athans, and Safonov

(1978). Performance limitations arising due to the decentralized control framework has been

described in Cui and Jacobsen (2002). Several decentralized controller design approaches ap-

proximate or ignore the interactions between the various subsystems and lead to a suboptimal

plantwide control strategy (Acar and Ozguner, 1988; Lunze, 1992; Samyudia and Kadiman,

2002; Siljak, 1991). The required characteristics of any problem solving architecture in which

the agents are autonomous and influence one another’s solutions has been described in Taluk-

dar, Baerentzen, Gove, and de Souza (1996).
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State estimation, disturbance modeling and target calculation for distributed MPC.

All the states of a large, interacting system cannot usually be measured. Consequently, esti-

mating the subsystem states from available measurements is a key component in any practical

MPC implementation. Theory for centralized linear estimation is well understood. For large-

scale systems, organizational and geographic constraints may preclude the use of centralized

estimation strategies. The centralized Kalman filter requires measurements from all subsys-

tems to estimate the state. For large, networked systems, the number of measurements is usu-

ally large to meet redundancy and robustness requirements. One difficulty with centralized

estimation is communicating voluminous local measurement data to a central processor where

the estimation algorithm is executed. Another difficulty is handling the vast amounts of data

associated with centralized processing. Parallel solution techniques for estimation are avail-

able (Lainiotis, 1975; Lainiotis, Plataniotis, Papanikolaou, and Papaparaskeva, 1996). While

these techniques reduce the data transmission requirement, a central processor that updates

the overall system error covariances at each time step is still necessary. Analogous to central-

ized control, the optimal, centralized estimator is a benchmark for evaluating the performance

of different distributed estimation strategies. A decentralized estimator design framework for

large-scale systems was proposed in Sundareshan (1977); Sundareshan and Elbanna (1990);

Sundareshan and Huang (1984). Local estimators were designed based on the decentralized

dynamics and additional compensatory inputs were included for each estimator to account

for the interactions between the subsystems. Estimator convergence was established under

assumptions on either the strength of the interconnections or the structure of the intercon-

nection matrix. A decentralized estimator design strategy, in which the interconnections are
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treated as unknown inputs was proposed in Saif and Guan (1992); Viswanadham and Ra-

makrishna (1982) for a restricted class of systems where the interconnections satisfy certain

algebraic conditions and the number of outputs, for each subsystem, is greater than the num-

ber of interacting inputs.

Disturbance models are used to eliminate steady-state offset in the presence of nonzero

mean, constant disturbances and/or plant-model mismatch. The output disturbance model is

the most widely used disturbance model in industry to achieve zero offset control performance

at steady state (Cutler and Ramaker, 1980; Garcı́a and Morshedi, 1986; Richalet, Rault, Testud,

and Papon, 1978). It is well known that output disturbance models cannot be used in plants

with integrating modes as the effects of the augmented disturbance cannot be distinguished

from the plant integrating modes. An alternative is to use input disturbance models (Davi-

son and Smith, 1971), where the disturbances are assumed to enter the system through the

inputs. For single (centralized) MPCs, Muske and Badgwell (2002); Pannocchia and Rawlings

(2002) derive conditions that guarantee zero offset control, using suitable disturbance models,

in the presence of unmodelled effects and/or nonzero mean disturbances. In a distributed

MPC framework, many choices for disturbance models exist. From a practitioner’s stand-

point, it is usually convenient to use local integrating disturbances. To track nonzero output

setpoints, we require input and state targets that bring the system to the desired output targets

at steady state. One option for determining the optimal steady-state targets in a distributed

MPC framework is to perform a centralized target calculation (Muske and Rawlings, 1993)

using the composite model for the plant. Alternatively, the target calculation problem can

be formulated in a distributed manner with all the subsystem targets computed locally. A

discussion on distributed target calculation is provided in Chapter 6.
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Closed-loop stability for MPC.

The idea of designing optimal, open-loop, feedback controllers has been studied in the auto-

matic control community for nearly four decades. The focus of initial work in the area was sta-

bilization of unconstrained linear time-varying systems (Kleinman, 1970; Kwon and Pearson,

1978; Kwon, Bruckstein, and Kailath, 1983). The earliest known stability result for constrained

systems was by Chen and Shaw (1982), who used a terminal equality constraint to stabilize

nonlinear discrete time systems. The initial popularity of MPC was primarily due to inter-

esting applications in the process industry (Cutler and Ramaker, 1980; Garcı́a and Prett, 1986;

Richalet et al., 1978). Several MPCs were successfully implemented, even though no stability

guarantees were available at the time.

Theory for MPC has evolved significantly over the years. Review articles tracing the

progress in the area are available (Garcı́a, Prett, and Morari, 1989; Mayne, Rawlings, Rao, and

Scokaert, 2000; Morari and Lee, 1997). A few well known recipes for guaranteeing closed-loop

stability with MPC are available for single (centralized) MPCs. The commonly used techniques

for ensuring stability with MPC are terminal constraint MPC, terminal penalty MPC and ter-

minal control MPC. Terminal constraint MPC (Kwon and Pearson, 1978) achieves stability by

employing an additional state constraint that forces the predicted system state at the end of

the control horizon to be at the origin. In Keerthi and Gilbert (1986), a general stability anal-

ysis for terminal constraint MPC of constrained nonlinear discrete time systems is provided.

An alternative strategy to guarantee closed-loop stability for MPC is to employ a stabilizing

terminal penalty (Rawlings and Muske, 1993). Neither terminal constraint MPC nor terminal

penalty MPC achieves infinite horizon optimal performance for a finite control horizon (N ).
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Subsequently for small values of N , there may be significant mismatch between the predicted

system trajectory and the actual closed-loop response. This mismatch is known to complicate

controller tuning. To achieve infinite horizon optimal performance with finite values of N ,

a terminal control MPC framework was proposed (Chmielewski and Manousiouthakis, 1996;

Scokaert and Rawlings, 1998; Sznaier and Damborg, 1990). Terminal control MPC relies on

solving a finite dimensional optimization problem to compute a set of inputs that drives the

predicted system state inside an invariant set in which the optimal unconstrained feedback

law is feasible (and therefore optimal). Characterization of the maximum invariant set satisfy-

ing the above mentioned property is possible in most cases and algorithms to approximate the

maximal admissible set have been proposed in Gilbert and Tan (1991); Gutman and Cwikel

(1987).

Exponential stability for the output feedback MPC control law is established in Scokaert,

Rawlings, and Meadows (1997) using perturbed stability results for linear systems (Halanay,

1963). Lipschitz continuity of the control law w.r.t the state is a key requirement to establish ex-

ponential stability. In Meadows (1994), Lipschitz continuity of the control law for a single (cen-

tralized) linear MPC is proved using (Hager, 1979, Theorem 3.1). A limitation of the approach

in Meadows (1994) is that (Hager, 1979, Theorem 3.1) assumes the set of active constraints to

be linearly independent. This is usually difficult to ensure in practice and consequently, Lip-

schitz properties of the control law are difficult to establish in general. In a recent work, Choi

and Kwon (2003) prove exponential stability for single (centralized) output feedback MPCs

by constructing a single Lyapunov function. The attractive feature of the approach presented

in Choi and Kwon (2003) is that Lipschitz continuity of the control law is not assumed.
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Chapter 3

Motivation

Decentralized MPC is attractive to practitioners because it requires only local process data for

controller design and model maintenance. Furthermore, routine maintenance operations such

as taking units offline for repair are achieved easily under decentralized MPC. There is one

well known caveat however: the performance of decentralized MPC is usually far from opti-

mal when the subsystems interact significantly. Centralized MPC, on the other hand, achieves

optimal nominal control for any system. However, as discussed in Chapter 1, centralized MPC

viewed by most practitioners as impractical and unsuitable for control of large, networked sys-

tems.

To impact today’s highly competitive markets, practitioners are constantly striving to

push limits of performance. In cases where the subsystems are interacting, the control perfor-

mance of centralized and decentralized MPC may differ significantly. In Section 3.1, we con-

sider an example consisting of two networked styrene polymerization plants. In this example

the control performance of decentralized and centralized MPC differ significantly. Such exam-

ples are not uncommon. Integrating subsystem-based MPCs has been recognized as a possible

avenue for improving systemwide control performance (Havlena and Lu, 2005; Kulhavý et al.,
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2001; Lu, 2000). One of the goals of this dissertation is to develop a distributed MPC frame-

work with guaranteed performance properties i.e., an assured performance improvement over

decentralized MPC, and capable of approaching centralized MPC performance.

Another motivation for this work is the current state of distributed MPC. Most dis-

tributed MPC formulations in the literature are based on the assumption that transmitting

predicted trajectory information among subsystems (pure communication) is sufficient to im-

prove systemwide control performance. In Section 3.2, a four area power system for which

communication-based MPC is closed-loop unstable is presented. In this dissertation, other

examples for which communication-based MPC either fails or gives unacceptable closed-loop

performance are provided. A reliable distributed MPC strategy with provable feasibility, op-

timality and closed-loop stability properties is required. Furthermore, all known distributed

MPC frameworks require state feedback and do not address the more realistic scenario in

which the subsystem states are estimated from measurements. To the best of our knowledge,

ensuring offset-free control with distributed MPC is an important issue that has not been ad-

dressed in the literature.

3.1 Networked chemical processes with large potential for perfor-

mance improvement

An example in which chemical systems are integrated as a result of material and energy flows

between them is considered. In today’s increasingly competitive markets, such inter-plant in-

tegration (in addition to plantwide integration) may assume significant economic relevance.

A simplified scenario with two interacting plants shown in Figure 3.1 is considered. The first
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plant consists of a styrene polymerization reactor producing grade A (a lower grade) of the

polymer. Representative publications on the modeling and control of styrene polymerization

reactors are Hidalgo and Brosilow (1990) and Russo and Bequette (1998). Based on supply and

demand economics, a fraction of the lower grade polymer is transported to the second plant

where a higher grade polymer is produced (grade B). The unreacted monomer and initiator

are separated from the product polymer and recycled to the first plant. Transport of mate-

rial between the plants is associated with significant time delays. Time delays coupled with

complications arising due to recycle dynamics make the control problem challenging (Luyben,

1993a,b, 1994). Reductions in inventory and operational costs may dictate the need for such

integrated schemes however. In the absence of integration, either MPC is a centralized con-

troller. The MPCs employ a model obtained by linearizing the corresponding plant around

the desired steady state. In this example, the two polymerization plants operate at different

steady states, each of which correspond to the grade of polymer to be produced. Once the two

plants are linked, the MPCs ignore the inter-plant interactions and function as two decentral-

ized MPCs. The MPC in the first plant controls the temperature of the styrene polymerization

reactor (T1) by manipulating the initiator flow rate Finit0 . The MPC in the second plant con-

trols the temperature in the polymerization reactor (T2), monomer concentration at the top of

the distillation column (Cmr) and the sum of the monomer and initiator concentrations at the

bottom of the column (Cmbot + Cinitbot) by manipulating the initiator flow rate to the reactor

(Finit2), recycle flow rate (Frecy) and vapor boilup flow rate (V ). The time delay due to trans-

port of material between the plants is 1.1 hrs. Each MPC employs a Kalman filter to estimate

the states of the system from local measurements. Input constraints are given in Table 3.1.

The control performance of decentralized and centralized MPC are compared when



20

Plant 1

End use grade fraction: (1− β)

V

L D

B

Frecy, Cmr, Tr

Fm1, cm1, T1

Plant 2

Fs0, cs, Tf0

Fc2, Tc2

Fs2, cs2, Tf2

Fm2, cm2, Tf2

Fc0, Tc0

Cp, Cmbot, Cinitbot

Finit2, ci2, Tf2

Finit0, ci0, Tf0

Fm0, cm0, Tf0

Fm3, cm3, T2

Figure 3.1: Interacting styrene polymerization processes. Low grade manufacture in first
plant. High grade manufacture in second plant with recycle of monomer and solvent.

Table 3.1: Two integrated styrene polymerization plants. Input constraints.
−0.25 ≤ Finit0 ≤ 0.25
−0.4 ≤ Finit2 ≤ 0.4
−0.4 ≤ Frecy ≤ 0.4
−0.4 ≤ V ≤ 0.4

the setpoint temperatures of the two polymerization reactors are decreased by −10◦C and

−5◦C respectively. The performance of decentralized and centralized MPC for temperature

control in the two polymerization reactors is shown in Figure 3.2. Under decentralized MPC,
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the inputs Finit0 and Frecy remain saturated until time ∼ 42 hrs and ∼ 20 hrs respectively.

Consequently, the reactors under decentralized MPC take more than 50 hrs to settle at their

new temperature setpoints. Under centralized MPC, the reactor temperatures are within 0.5%

of the respective temperature setpoints in about ∼ 7 hrs. The same qualitative behavior is also

observed with the other two outputs. Under centralized MPC, outputs Cmr and Cmbot + Cinitbot

track their respective set points in ∼ 25 hrs. Tracking the concentration setpoints takes over

60 hrs with decentralized MPC. The control costs with decentralized and centralized MPC are

given in Table 3.2. Decentralized MPC gives unacceptable closed-loop performance for this

example.
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Figure 3.2: Interacting polymerization processes. Temperature control in the two polymeriza-
tion reactors. (a) Temperature control in reactor 1. (b) Temperature control in reactor 2. (c)
Initiator flowrate to reactor 1. (d) Recycle flowrate.
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Table 3.2: Performance comparison of centralized and decentralized MPC
Λcost Performance loss

(w.r.t centralized MPC)
Centralized-MPC 18.84 -

Decentralized-MPC 1608 8400%

3.2 Instability with communication-based MPC : Example of a four

area power system

Consider the four area power system shown in Figure 3.3. A description of the model for

each control area is given in Section 10.4 (Chapter 10, p. 243). Model parameters are given in

Table A.1 (Appendix A). In each control area, a change in local power demand (load) alters the

nominal operating frequency. The MPC in each control area i manipulates the load reference

setpoint Prefi
to drive the frequency deviations ∆ωi and tie-line power flow deviations ∆P ij

tie

to zero. Power flow through the tie lines gives rise to interactions among the control areas.

Hence a load change in area 1, for instance, causes a transient frequency change in all control

areas.

CONTROL AREA 2 CONTROL AREA 3

P23
tie

CONTROL AREA 1
CONTROL AREA 4

P34
tie

P12
tie

Figure 3.3: Four area power system.
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The performance of centralized MPC (cent-MPC) and communication-based MPC (comm

MPC) are compared for a 25% load increase in area 2 and a simultaneous 25% load drop in

area 3. This load disturbance occurs at 5 sec. For each MPC, we choose a prediction horizon

N = 20. In comm-MPC, the load reference setpoint (∆Prefi
) in each area is manipulated to

reject the load disturbance and drive the change in local frequencies (∆ωi) and tie-line power

flows (∆P ij
tie) to zero. In the cent-MPC framework, a single MPC manipulates all four ∆Prefi

.

The load reference setpoint for each area is constrained between ±0.5.

The performance of cent-MPC and comm-MPC are shown in Figure 3.4. Only ∆ω2

and ∆P 23
tie are shown as the frequency and tie-line power flow deviations in the other areas

display similar qualitative behavior. Likewise, only ∆Pref2 and ∆Pref3 are shown as other load

reference setpoints behave similarly. Under comm-MPC, the load reference setpoints for areas

2 and 3 switch repeatedly between their upper and lower saturation limits. Consequently, the

power system network is unstable under comm-MPC. Cent-MPC, on the other hand, is able

to reject the load disturbance and achieves good closed-loop performance.
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Figure 3.4: Four area power system. Performance of centralized and communication-based
MPC rejecting a load disturbance in areas 2 and 3. Change in frequency ∆ω2, tie-line power
flow ∆P 23

tie and load reference setpoints ∆Pref2 ,∆Pref3 .
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Chapter 4

State feedback distributed MPC 1

In this chapter, we describe a new approach for controlling large, networked systems through

the integration of subsystem-based MPCs. The proposed distributed MPC framework is itera-

tive with the subsystem-based MPC optimizations executed in parallel. It is assumed that the

interactions between the subsystems are stable. This assumption presumes the feasibility of a

decentralized, manipulated variable (MV)-controlled variable (CV) design in which open-loop

unstable modes, if any, are controlled and not allowed to evolve open loop. System redesign is

recommended if such an initial design is not possible. The term iterate indicates a set of MPC

optimizations executed in parallel (one for each subsystem) followed by an exchange of infor-

mation among interconnected subsystems. We show that the distributed MPC algorithm can

be terminated at any intermediate iterate to allow for computational or communication limits.

At convergence, the distributed MPC algorithm is shown to achieve optimal, centralized MPC

performance.

This chapter is organized as follows. First, a modeling framework suitable for dis-

tributed MPC is described. Next, the different candidate MPC formulations for systemwide
1Portions of this chapter appear in Venkat, Rawlings, and Wright (2005b) and in Venkat, Rawlings, and

Wright (2006f).
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control are described. We provide further proof and answer why modeling the interactions

between subsystems and exchanging trajectory information among MPCs ((pure) communi-

cation) is insufficient to provide even closed-loop stability. We then proceed to characterize

optimality conditions for distributed MPC and present an algorithm for distributed MPC.

Closed-loop properties for the distributed MPC framework under state feedback are estab-

lished subsequently. Three examples are presented to highlight the benefits of the described

approach. Finally, we summarize the contributions of this chapter and present some exten-

sions for the proposed distributed MPC framework.

4.1 Interaction modeling

Consider a plant comprised of M subsystems. The symbol IM denotes the set of integers

1, 2, . . . ,M .

Decentralized models. Let the decentralized (local) model for each subsystem i ∈ IM be

represented by a discrete, linear time invariant (LTI) model of the form

xii(k + 1) = Aiixii(k) + Biiui(k)

yi(k) = Ciixii(k)

in which k is discrete time, and we assume (Aii ∈ Rnii×nii , Bii ∈ Rnii×mi , Cii ∈ Rzi×nii) is a

realization for each (ui, yi) input-output pair such that (Aii, Bii) is stabilizable and (Aii, Cii) is

detectable.
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Interaction models (IM). Consider any subsystem i ∈ IM . We represent the effect of any

interacting subsystem j ∈ IM , j 6= i on subsystem i through a discrete LTI model of the form

xij(k + 1) = Aijxij(k) + Bijuj(k)

The output equation for each subsystem is written as yi(k) =
∑M

j=1 Cijxij(k). The model

(Aij ∈ Rnij×nij , Bij ∈ Rnij×mj , Cij ∈ Rzi×nij ) is a minimal realization of the input-output pair

(uj , yi).

Composite models (CM). The combination of the decentralized model and the interaction

models for each subsystem yields the composite model (CM). The decentralized state vector

xii is augmented with states arising due to the effects of all other subsystems.

Let xi = [xi1
′, . . . , xii

′, . . . , xiM
′] ′ ∈ Rni denote the CM states for subsystem i. For

notational simplicity, we represent the CM for subsystem i as

xi(k + 1) = Aixi(k) + Biui(k) +
∑
j 6=i

Wijuj(k) (4.1a)

yi(k) = Cixi(k) (4.1b)
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in which Ci = [Ci1 . . . Cii . . . CiM ] and

Ai =



Ai1

. . .

Aii

. . .

AiM


, Bi =



0

...

Bii

0

...


, Wij =



0

...

Bij

0

...


The composite model (CM) for the entire plant is written as



x11
...

x1M

...
xM1

...
xMM


︸ ︷︷ ︸

xcm

(k + 1) =



A11

. . .
A1M

. . .
AM1

. . .
AMM


︸ ︷︷ ︸

Acm



x11
...

x1M

...
xM1

...
xMM


(k)

+



B11

. . .
B1M

...
BM1

. . .
BMM


︸ ︷︷ ︸

Bcm

 u1
...

uM

 (k) (4.2a)

 y1
...

yM

 (k) =

 C11 · · · C1M

. . .
CM1 · · · CMM


︸ ︷︷ ︸

Ccm



x11
...

x1M

...
xM1

...
xMM


(k) (4.2b)
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After identification of the significant interactions from closed-loop operating data, we

expect that many of the interaction terms will be zero. In the decentralized model, all of the

interaction terms are zero. Further discussion of closed-loop identification procedures for dis-

tributed MPC can be found in Gudi and Rawlings (2006).

Centralized model. The centralized model is represented as

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

4.2 Notation and preliminaries

For any i ∈ IM the notation j 6= i indicates that j can take all values in IM except j = i. Let

I+ denote the set of positive integers. Given a bounded set Λ, int(Λ) denotes the interior of

the set. For any two vectors r, s ∈ Rn, the notation 〈r, s〉 represents the inner product of the

two vectors. For any arbitrary, finite set of vectors a1, a2, . . . , as, define vec(a1, a2, . . . , as) =

[a1
′, a2

′, . . . , as
′]′.

Lemma 4.1. Let Ax = b be a system of linear equations with A ∈ Rm×n, b ∈ Rm, m ≤ n. Consider

X ⊂ Rn nonempty, compact, convex with 0 ∈ int(X ). The set B ⊆ range(A) is defined as B =

{b | Ax = b, x ∈ X}. For every b ∈ B, ∃ x(b) dependent on b, and K > 0 independent of b such that

Ax(b) = b, x(b) ∈ X and ‖x(b)‖ ≤ K‖b‖.

A proof is given in Appendix 4.10.1.
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Let the current (discrete) time be k. For any subsystem i ∈ IM , let the predicted state

and input at time instant k + j, j ≥ 0, based on data at time k be denoted by xi(k + j|k) ∈ Rni

and ui(k + j|k) ∈ Rmi , respectively. The stage cost is defined as

Li(xi, ui) =
1
2
[
xi
′Qixi + ui

′Riui

]
(4.3)

in which Qi ≥ 0, Ri > 0. Denote a closed ball of radius ε > 0 centered at a ∈ Rn by Bε(a) =

{x| ‖x− a‖ ≤ ε}.

The notation µ(k) denotes the set of CM states x1(k), x2(k), . . . xM (k) i.e.,

µ(k) = [x1(k), x2(k), . . . , xM (k)].

With slight abuse of notation, we write µ(k) ∈ X to denote vec(µ(k)) = vec(x1(k), x2(k), . . . ,

. . . , xM (k)) ∈ X . The norm operator for µ(k) is defined as

‖µ(k)‖ = ‖vec(x1(k), x2(k), . . . , xM (k))‖ =

√√√√ M∑
i=1

‖xi(k)‖2.
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The following notation represents the predicted infinite horizon state and input trajectory vec-

tors in the different MPC frameworks

Centralized state trajectory: x(k)
′
=
[
x(k + 1|k)′, x(k + 2|k)′, . . . . . .

]
Centralized input trajectory: u(k)

′
=
[
u(k|k)′, u(k + 1|k)′, . . . . . .

]
CM state trajectory (subsystem i): xi(k)

′
=
[
xi(k + 1|k)′, xi(k + 2|k)′, . . . . . .

]
Input trajectory (subsystem i): ui(k)

′
=
[
ui(k|k)′, ui(k + 1|k)′, . . . . . .

]
Decentralized state trajectory (subsystem i): xii(k)

′
=
[
xii(k + 1|k)′, xii(k + 2|k)′, . . . . . .

]

Let N denote the control horizon. The finite horizon trajectories use an over bar to distinguish

them from the corresponding infinite horizon trajectories i.e.,

Centralized state trajectory: x(k)
′
=
[
x(k + 1|k)′, x(k + 2|k)′, . . . . . .

]
Centralized input trajectory: u(k)

′
=
[
u(k|k)′, u(k + 1|k)′, . . . . . .

]
CM state trajectory (subsystem i): xi(k)

′
=
[
xi(k + 1|k)′, xi(k + 2|k)′, . . . . . .

]
Input trajectory (subsystem i): ui(k)

′
=
[
ui(k|k)′, ui(k + 1|k)′, . . . . . .

]
Decentralized state trajectory (subsystem i): xii(k)

′
=
[
xii(k + 1|k)′, xii(k + 2|k)′, . . . . . .

]

Define

CN (A,B) =
[
B AB . . . AN−1B

]
.

Assumption 4.1. All interaction models are stable i.e., for each i, j ∈ IM , |λmax(Aij)| < 1, ∀j 6= i.
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4.3 Systemwide control with MPC

In this section, four MPC based systemwide control formulations are described. In each case,

the controller is defined by implementing the first input in the solution to the corresponding

optimization problem. Let Ωi ⊂ Rmi , the set of admissible controls for subsystem i, be a

nonempty, compact, convex set containing the origin in its interior. The set of admissible

controls for the whole plant Ω is the Cartesian product of the admissible control sets of each of

the subsystems. It follows that Ω is a compact, convex set containing the origin in its interior.

The constrained stabilizable set X is the set of all initial subsystem states µ = [x1, x2, . . . , xM ]

that can be steered to the origin by applying a sequence of admissible controls (see (Sznaier

and Damborg, 1990, Definition 2)). In each MPC based framework, µ(0) ∈ X. Hence a feasible

solution exists to the corresponding optimization problem.

P1 : Centralized MPC

min
x(k),u(k)

φ (x(k),u(k);x(k)) =
∑

i

wiφi (xi(k),ui(k);xi(k))

subject to

x(l + 1|k) = Ax(l|k) + Bu(l|k), k ≤ l

ui(l|k) ∈ Ωi, k ≤ l,∀ i ∈ IM

x(k) = x̂(k)

in which x(k), u(k) represents the centralized state and input trajectories. The cost function

for subsystem i is φi. The system objective is a convex combination of the local objectives in
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which wi > 0, i ∈ IM ,
∑

i wi = 1. The vector x̂(k) represents the current estimate of the

centralized model states x(k) at discrete time k.

P2(i) : Decentralized MPC

min
xii(k),ui(k)

φd
i (xii(k),ui(k);xii(k))

subject to

xii(l + 1|k) = Aiixii(l|k) + Biiui(l|k), k ≤ l

ui(l|k) ∈ Ωi, k ≤ l

xii(k) = x̂ii(k)

in which (xii,ui) represents the decentralized state and input trajectories for subsystem i ∈

IM . The notation x̂ii(k) represents the estimate of the decentralized model states at discrete

time k. The subsystem cost function φd
i (xii(k),ui(k);xii(k)), in the decentralized MPC frame-

work is defined as

φd
i (xii(k),ui(k);xii(k)) =

1
2

∞∑
t=k

[
xii(t|k)′Qiixii(t|k) + ui(t|k)′Riui(t|k)

]

in which Qii ≥ 0, Ri > 0 and (Aii, Q
1/2
ii ) is detectable.

For communication and cooperation-based MPC, an iteration and exchange of vari-

ables between subsystems is performed during a sample time. We may choose not to iterate

to convergence. We denote this iteration number as p. The cost function for communication-
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based MPC is defined over an infinite horizon and written as

φi (xi(k),ui(k);xi(k)) =
∞∑

t=k

Li (xi(t|k), ui(t|k)) (4.5)

in which Qi ≥ 0, Ri > 0 are symmetric weighting matrices with (Ai, Q
1/2
i ) detectable. For each

subsystem i and iterate p, the optimal state-input trajectory (xp
i (k),up

i (k)) is obtained as the

solution to the optimization problem P3(i) defined as

P3(i) : Communication-based MPC

min
xp

i (k),up
i (k)

φi (x
p
i (k),up

i (k);xi(k))

subject to

xp
i (l + 1|k) = Aix

p
i (l|k) + Biu

p
i (l|k) +

∑
j 6=i

Wiju
p−1
j (l|k), k ≤ l

up
i (l|k) ∈ Ωi, k ≤ l

xi(k) = x̂i(k)

in which xp
i (k)′ = [xp

i (k + 1|k)′, xp
i (k + 2|k)′, . . . , . . .], up

i (k)′ = [up
i (k|k)′, up

i (k + 1|k)′, . . . , . . .]

and x̂i(k) represents the current estimate of the composite model states. Notice that the input

sequence for subsystem i, up
i (k), is optimized to produce its value at iteration p, but the other

subsystems’ inputs are not updated during this optimization; they remain at iterate p − 1.

The objective function is the one for subsystem i only. For notational simplicity, we drop the

time dependence of the state and input trajectories in each of the MPC frameworks described

above. For instance, we write (xp
i ,u

p
i ) ≡ (xp

i (k),up
i (k)).
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Each communication-based MPC 2 transmits current state and input trajectory infor-

mation to all interconnected subsystems’ MPCs. Competing agents have no knowledge of

each others cost/utility functions. From a game theoretic perspective, the equilibrium of such

a strategy, if it exists, is called a noncooperative equilibrium or Nash equilibrium Başar and

Olsder (1999). The objectives of each subsystem’s MPC controller are frequently in conflict

with the objectives of other interacting subsystems’ controllers. The best achievable perfor-

mance is characterized by a Pareto optimal path which represents the set of optimal trade-offs

among these conflicting/competing controller objectives. It is well known that the Nash equi-

librium is usually suboptimal in the Pareto sense (Cohen (1998); Dubey and Rogawski (1990);

Neck and Dockner (1987)).

4.3.1 Geometry of Communication-based MPC

We illustrate possible scenarios that can arise under communication-based MPC. In each case,

Φi (·) denotes the subsystem cost function obtained by eliminating the states from the cost

function φi(xi,ui;xi) using the subsystem CM equation (see p. 39). The Nash equilibrium

(NE) and the Pareto optimal solution are denoted by n and p, respectively. To allow a 2-

dimensional representation, a unit control horizon (N = 1) is used. In each example, existence

of the NE follows using (Başar and Olsder, 1999, Theorem 4.4, p. 176). The NE n is the point

of intersection of the reaction curves of the two cost functions (see (Başar and Olsder, 1999,

p. 169)). The Pareto optimal path is the locus of (u1, u2) obtained by minimizing the weighted

sum w1Φ1 + w2Φ2 for each 0 ≤ w1, w2 ≤ 1, w1 + w2 = 1. If (w1, w2) = (1, 0), the Pareto optimal

solution is at point a, and if (w1, w2) = (0, 1), the Pareto optimal solution is at point b.

2Similar strategies have been proposed in Camponogara et al. (2002); Jia and Krogh (2001)
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Figure 4.1: A stable Nash equilibrium exists and is near the Pareto optimal solution. Commu-
nication based iterates converge to the stable Nash equilibrium.

Example 1. Figure 4.1 illustrates the best case scenario for pure communication strategies.

The NE n is located near the Pareto optimal solution p. For initial values of u1 and u2 located

at point 0, the first communication-based iterate steers u1 and u2 to point 1. On iterating

further, the sequence of communication-based iterates converges to n. In this case, the NE

is stable i.e., if the system is displaced from n, the sequence of communication-based iterates

brings the system back to n. The closed-loop system will likely behave well in this case.

Example 2. Here, the initial values of the inputs are located near the Pareto optimal solution

(Point 0 in Figure 4.2). However, as observed from Figure 4.2, the NE n for this system is

not near p and therefore, the sequence of communication-based iterates drives the system

away from the Pareto optimal solution. Even though the NE is stable, the solution obtained

at convergence (n) of the communication-based strategy is far from optimal. Consequently, a

stable NE need not imply closed-loop stability.
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Figure 4.2: A stable Nash equilibrium exists but is not near the Pareto optimal solution. The
converged solution, obtained using a communication-based strategy, is far from optimal.
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Figure 4.3: A stable Nash equilibrium does not exist. Communication-based iterates do not
converge to the Nash equilibrium.

Example 3. We note from Figure 4.3 that the NE (n) for this system is in the proximity of the

Pareto optimal solution p. For initial values of u1 and u2 at the origin and in the absence of
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input constraints, the sequence of communication-based iterates diverges. For a compact fea-

sible region (the box in Figure 4.3), the sequence of communication-based iterates is trapped at

the boundary of the feasible region (Point 4) and does not converge to n. Here, a stable NE for

a (pure) communication-based strategy, in the sense of (Başar and Olsder, 1999, Definition 4.5,

p. 172), does not exist. The closed-loop system is likely to be unstable in this case.

For strongly coupled systems, the NE may not be close to the Pareto optimal solution.

In some situations (Example 3), communication-based strategies do not converge to the NE.

In fact, it is possible to construct simple examples where communication-based MPC leads

to closed-loop instability (Section 4.7). Communication-based MPC is therefore, an unreliable

strategy for systemwide control. The unreliability of the communication-based MPC formu-

lation as a systemwide control strategy motivates the need for an alternate approach. We next

modify the objective functions of the subsystems’ controllers in order to provide a means for

cooperation among the controllers. We replace the objective φi with an objective that measures

the systemwide impact of local control actions. Many suitable objectives are possible. Here

we choose the simplest case, the overall plant objective, which is a strict convex combination

of the individual subsystems’ objectives, φ =
∑

i wiφi, wi > 0,
∑M

i=1 wi = 1.

In practical situations, the process sampling interval may be insufficient for the com-

putation time required for convergence of a cooperation-based iterative algorithm. In such

situations, the cooperation-based distributed MPC algorithm has to be terminated prior to

convergence of the state and input trajectories (i.e., when time runs out). The last calculated

input trajectory is used to arrive at a suitable control law. To allow intermediate termination,

all iterates generated by the distributed MPC algorithm must be plantwide feasible, and the re-

sulting controller must be closed-loop stable. By plantwide feasibility, we mean that the state–
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input sequence {xi,ui}Mi=1 satisfies the model and input constraints of each subsystem. To

guarantee plantwide feasibility of the intermediate iterates, we eliminate the states xi, i ∈ IM

from each of the optimization problems using the set of CM equations (Equation (4.1)). Subse-

quently, the cost function φi(xi,ui;xi(k)) can be re-written as a function of all the interacting

subsystem input trajectories with the initial subsystem state as a parameter i.e.,

φi(xi,ui;xi(k)) ≡ Φi (u1, . . . ,ui, . . . ,uM ;xi(k)) .

For each subsystem i, the optimal input trajectory u
∗(p)
i is obtained as the solution to

the feasible cooperation-based MPC (FC-MPC) optimization problem defined as

P4(i) : Feasible cooperation-based MPC

u
∗(p)
i (k) ∈ arg(Fi) where

Fi , min
ui

M∑
r=1

wrΦr

(
up−1

1 , . . . ,up−1
i−1 ,ui,u

p−1
i+1 , . . . ,up−1

M ;xr(k)
)

subject to

ui(l|k) ∈ Ωi, k ≤ l

xr(k) = x̂r(k),∀ r ∈ IM
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4.4 Distributed, constrained optimization

Consider the following centralized MPC optimization problem.

min
u1,u2,...,uM

Φ (u1,u2, . . . ,uM ;µ(k)) =
M∑
i=1

wiΦi (u1,u2, . . . ,uM ;xi(k)) (4.6a)

subject to

ui(l|k) ∈ Ωi, k ≤ l ≤ k + N − 1, (4.6b)

ui(l|k) = 0, k + N ≤ l, (4.6c)

xi(k) = x̂i(k), ∀ i ∈ IM

For open-loop integrating/unstable systems, an additional terminal state constraint that forces

the unstable modes to the origin at the end of the control horizon is necessary to ensure stabil-

ity (Rawlings and Muske (1993)).

Definition 4.1. The normal cone to a convex set Ω at a point x ∈ Ω is denoted by N(x,Ω) and

defined by N(x; Ω) = {s | 〈s, y − x〉 ≤ 0 for all y ∈ Ω}.

Let (u∗1,u
∗
2, . . . ,u

∗
M ) denote the solution to the centralized optimization problem of

Equation (4.6). By definition, u∗i
′ = [u∗i

′, 0, 0, . . .] , ∀ i ∈ IM . For each subsystem i ∈ IM ,

define Ui ∈ RmiN as Ui = Ωi × Ωi × . . . × Ωi. Hence, u∗i ∈ Ui, ∀ i ∈ IM . The results presented

here are valid also for Φ (·) =
∑M

i=1 wiΦi (·) convex and differentiable on some open neighbor-

hood of U1 × U2 × . . .× UM
3. Optimality is characterized by the following result (which uses

convexity but does not assume that the solution is unique).

3The assumptions on Φ (·) imply that Φ (u1, u2, . . . , uM ; µ(k)) > −∞ for all
vec(u1(j|k), u2(j|k), . . . , uM (j|k)) ∈ Ω1 × Ω2 × . . . × ΩM ,∀ j ≥ k and that Φ (·) is a proper convex func-
tion in the sense of (Rockafellar, 1970, p. 24).
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Lemma 4.2. (u∗1,u
∗
2, . . . ,u

∗
M ) is optimal for the optimization problem of Equation (4.6) if and only if

−∇uiΦ (u∗1,u
∗
2, . . . ,u

∗
M ];µ(k)) ∈ N(u∗i ;Ui), for all i ∈ IM .

Proof. By definition (Equation (4.6)), ui
′ = [ui

′, 0, 0, . . .], ∀ i ∈ IM . We note that Φ (·) is a

proper convex function, that U1×U2× . . .×UM ⊂ dom (Φ (·)), and that the relative interior of

U1 ×U2 × . . .×UM is nonempty (see (Rockafellar, 1970, Theorem 6.2, p. 45)). Hence, the result

is a consequence of (Rockafellar, 1970, Theorem 27.4, p. 270).

Suppose that the following level set is bounded and closed (hence compact):

L =
{

(u1,u2, . . . ,uM )
∣∣∣∣Φ (u1,u2, . . . ,uM ;µ(k)) ≤ Φ

(
u0

1,u
0
2, . . . ,u

0
M ;µ(k)

)
,

ui(k + j|k) ∈ Ωi, 0 ≤ j ≤ N − 1, ui(k + j|k) = 0, N ≤ j, i ∈ IM

}
(4.7)

We have the following result concerning the limiting set of a sequence of normal cones

of a closed convex set.

Lemma 4.3. Let Ω ∈ Rn be closed and convex. Let x ∈ Ω and let {xi} be a sequence of points satisfying

xi ∈ Ω and xi → x. Let {vi} be any sequence satisfying vi ∈ N(xi; Ω) for all i. Then all limit points

of the sequence {vi} belong to N(x; Ω).

Proof. Let v be a limit point of {vi} and let S be a subsequence such that limi∈S vi = v. By

definition of normal cone, we have 〈vi, y − xi〉 ≤ 0 for all y ∈ Ω and all i ∈ S. By taking limits

as i→∞, i ∈ S , we have 〈v, y − x〉 ≤ 0 for all y ∈ Ω, proving that v ∈ N(x,Ω), as claimed.
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4.5 Feasible cooperation-based MPC (FC-MPC)

The FC-MPC optimization problem for subsystem i ∈ IM is defined as

Fi , min
ui

M∑
r=1

wrΦr

(
up−1

1 , . . . ,up−1
i−1 ,ui,u

p−1
i+1 , . . . ,up−1

M ;xr(k)
)

(4.8a)

subject to

ui(l|k) ∈ Ωi, k ≤ l ≤ k + N − 1 (4.8b)

ui(l|k) = 0, k + N ≤ l (4.8c)

in which xi(k) = x̂i(k),∀ i ∈ IM . For Φi(·) quadratic and obtained by eliminating the CM

states xi from Equation (4.5) using the subsystem CM (Equation (4.1)), ∀ i ∈ IM , the FC-MPC

optimization problem (Equation (4.8)) can be rewritten as

Fi , min
ui

1
2
ui(k)′Riui(k) +

ri(k) +
M∑

j=1,j 6=i

Hiju
p−1
j (k)

 ′ui(k) + constant (4.9a)

subject to

ui(l|k) ∈ Ωi, k ≤ l ≤ k + N − 1 (4.9b)

in which Qi = diag(Qi(1), . . . , Qi(N − 1), Qi), Ri = diag(Ri(0), Ri(1), . . . , Ri(N − 1)),

Ri = wiRi + wiEii
′QiEii +

M∑
j 6=i

wjEji
′QjEji, Hij =

M∑
l=1

wlEli
′QlElj ,

ri(k) = wiEii
′Qifixi(k) +

M∑
j 6=i

wjEji
′Qjfjxj(k),
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Eii =



Bi 0 . . . . . . 0

AiBi Bi 0 . . . 0

...
...

...
...

...

AN−1
i Bi . . . . . . . . . Bi


, Eij =



Wij 0 . . . . . . 0

AiWij Wij 0 . . . 0

...
...

...
...

...

AN−1
i Wij . . . . . . . . . Wij


, fi =



Ai

A2
i

...

...

AN
i



with Qi denoting an appropriately chosen terminal penalty, as described in the sequel.

An implementable algorithm for FC-MPC is now described. Convergence and opti-

mality properties of the proposed FC-MPC algorithm are established subsequently. Some

additional notation is required. Let Φ(up
1,u

p
2, . . . ,u

p
M ;µ(k)) represent the cooperation-based

cost function at iterate p and discrete time k with the initial set of subsystem states µ(k). Let

u
∗(p)
i ,∀ i ∈ IM denote the solution to the FC-MPC optimization problem 4 (Equation (4.9)). By

definition, the corresponding infinite horizon input trajectory u
∗(p)
i = [u∗(p)

i
′, 0, 0, . . .], ∀ i ∈ IM .

The cost associated with the input trajectory u
∗(p)
i constructed from the solution to Fi (Equa-

tion (4.9)), is represented as Φ(up−1
1 , . . . ,up−1

i−1 ,u
∗(p)
i ,up−1

i+1 , . . . ,up−1
M ;µ(k)). The state sequence

for subsystem i generated by the subsystems’ input trajectories (u1,u2, . . . ,uM ) and initial

set of subsystem states µ is represented as xi (u1,u2, . . . ,uM ;µ). For notational convenience,

we write xi ← xi (u1,u2, . . . ,uM ;µ) and xi ← xi (u1,u2, . . . ,uM ;µ). At discrete time k, let

pmax(k) denote the maximum number of permissible iterates during the sampling interval. By

definition, 0 < p(k) ≤ pmax(k), ∀ k ≥ 0.

Algorithm 4.1. Given u0
i , xi(k), Qi ≥ 0, Ri > 0, ∀ i ∈ IM , pmax(k) > 0 and ε > 0

p← 1, κi ← Γε,Γ� 1

4For notational simplicity, we drop the functional dependence of u
∗(p)
i on µ(k) and up−1

j , j 6= i.
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while κi > ε for some i ∈ IM and p ≤ pmax(k)

do ∀ i ∈ IM

u
∗(p)
i ∈ arg(Fi) (see Equation (4.9))

up
i ← wiu

∗(p)
i + (1− wi) up−1

i

Transmit up
i to each interconnected subsystem j 6= i

κi ← ‖up
i − up−1

i ‖

end (do)

p← p + 1

end (while)

In Algorithm 4.1 above, the state trajectory for subsystem i at iterate p is obtained as

xp
i ← xp

i

(
up

1,u
p
2, . . . ,u

p
M ;µ(k)

)
. The maximum allowable iterates in each sampling interval

pmax(k) is a design limit; one may choose to terminate Algorithm 4.1 prior to this limit.

Assumption 4.2. p ∈ I+, 0 < pmax(k) ≤ p∗ <∞.

Assumption 4.3. N ≥ max(α, 1), in which α = maxi∈IM
αi and αi ≥ 0 denotes the number of

unstable modes for subsystem i ∈ IM .

Lemma 4.4. Consider the FC-MPC formulation of Equations (4.8), (4.9). The sequence of cost func-

tions
{
Φ(up

1,u
p
2, . . . ,u

p
M ;µ(k))

}
generated by Algorithm 4.1 is a nonincreasing function of the itera-

tion number p.

Proof. From Algorithm 4.1 we know, for all i ∈ IM that

Φ
(
up−1

1 , . . . up−1
i−1 ,u

∗(p)
i ,up−1

i+1 , . . . ,up−1
M ;µ(k)

)
≤ Φ

(
up−1

1 ,up−1
2 , . . . ,up−1

M ;µ(k)
)
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Therefore, from the definition of up
i (Algorithm 4.1) we have

Φ
(
up

1,u
p
2, . . . ,u

p
M ;µ(k)

)
= Φ

(
w1u

∗(p)
1 + (1− w1)u

p−1
1 , . . . , wMu

∗(p)
M + (1− wM )up−1

M ;µ(k)
)

= Φ
(
w1(u

∗(p)
1 ,up−1

2 , . . . ,up−1
M ) + w2(u

p−1
1 ,u

∗(p)
2 , . . . ,up−1

M ) + . . .

. . . + wM (up−1
1 ,up−1

2 , . . . ,u
∗(p)
M );µ(k)

)
(by convexity of Φ(·)) ≤

M∑
r=1

wrΦ
(
up−1

1 , . . . ,up−1
r−1,u

∗(p)
r ,up−1

r+1, . . . ,u
p−1
M ;µ(k)

)
≤ Φ

(
up−1

1 ,up−1
2 , . . . ,up−1

M ;µ(k)
)

(4.10)

Lemma 4.5. All limit points of Algorithm 4.1 are optimal

Proof. Let (t1, t2, . . . , tM ) be a limit point and S be a subsequence for which

lim
p∈S

(up−1
1 ,up−1

2 , . . . ,up−1
M ) = (t1, t2, . . . , tM ).

By definition, ti
′ = [ti

′, 0, 0, . . .], ∀ i ∈ IM , where ti ∈ Ui. By taking a further subsequence

of S if necessary and using compactness of the level set L (Equation (4.7)), we can define

(v1,v2, . . . ,vM ) such that

lim
p∈S

(up
1,u

p
2, . . . ,u

p
M ) = (v1,v2, . . . ,vM ).
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We have, vi
′ = [vi

′, 0, 0, . . .], ∀ i ∈ IM , where vi ∈ Ui. From Equation (4.10) (Lemma 4.4), by

taking limits and noting that Φ
(
up

1,u
p
2, . . . ,u

p
M ;µ(k)

)
is bounded below, we have that

Φ (t1, t2, . . . , tM ;µ(k)) = Φ (v1,v2, . . . ,vM ;µ(k))

From Algorithm 4.1, we have u
∗(p)
i = 1

wi
up

i −
(

1
wi
− 1
)

up−1
i , i ∈ IM . Using the definitions of

vi and ti, define zi = 1
wi

vi−
(

1
wi
− 1
)

ti, ∀ i ∈ IM , we have by taking limits in Equation (4.10)

(Lemma 4.4) and using, ∀ i ∈ IM ,

Φ
(
up−1

1 , . . . ,up−1
i−1 ,u

∗(p)
i ,up−1

i+1 , . . . ,up−1
M ;µ(k)

)
≤ Φ

(
up−1

1 ,up−1
2 , . . . ,up−1

M ;µ(k)
)

that in fact

Φ (t1, t2, . . . , tM ;µ(k)) = Φ (t1, . . . , ti−1,zi, ti+1, . . . , tM ;µ(k))

= Φ (v1,v2, . . . ,vM ;µ(k)) , ∀ i ∈ IM (4.11)

From Algorithm 4.1, we have for each i,

−∇uiΦ
(
up−1

1 , . . . ,up−1
i−1 ,u

∗(p)
i ,up−1

i+1 , . . . ,up−1
M ;µ(k)

)
∈ N(u∗(p)

i ,Ui).

Taking limits and invoking Lemma 4.3, we see that

−∇uiΦ (t1, . . . , ti−1,zi, ti+1, . . . , tM ;µ(k)) ∈ N(zi,Ui), ∀ i ∈ IM
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in which zi
′ = [zi

′, 0, 0, . . .]. From Equation (4.11), we know

Φ (t1, t2, . . . , tM ;µ(k)) = Φ (t1, . . . , ti−1,zi, ti+1, . . . , tM ;µ(k)) .

Therefore, ti is also a minimizer of Φ (t1, . . . , ti−1,zi, ti+1, . . . , tM ;µ(k)) over Ui and so, we

have −∇uiΦ (t1, t2, . . . , tM ;µ(k)) ∈ N(ti,Ui), ∀ i ∈ IM . Hence, (t1, t2, . . . , tM ) satisfies the

optimality condition.

For the iterates confined to the level set L (Equation (4.7)), a limit point is guaranteed

to exist. From Lemma 4.5, all limit points are optimal. Using strict convexity of the objective

in Equation (4.9), it follows that (u∗1, . . . ,u
∗
M ) is in fact the limit.

4.6 Closed-loop properties of FC-MPC under state feedback

At time k, let the FC-MPC scheme be terminated after p(k) = q iterates. Let

uq
i (µ(k))′ =

[
uq

i (µ(k), 0)′, uq
i (µ(k), 1)′, . . . , uq

i (µ(k), N − 1)′, 0, 0, . . .
]

for each i ∈ IM represent the solution to the FC-MPC algorithm (Algorithm 4.1) after q iterates.

The distributed MPC control law is obtained through a receding horizon implementation of

optimal control whereby the input applied to subsystem i is ui(k) = uq
i (µ(k), 0).

Assumption 4.4. For each i ∈ IM , (Aii, Bii) is stabilizable.

Assumption 4.5. Qi(0) = Qi(1) = . . . = Qi(N − 1) = Qi > 0 and Ri(0) = Ri(1) = · · · =

Ri(N − 1) = Ri > 0, ∀ i ∈ IM .

Lemmas 4.4 and 4.5 lead to the following results on closed-loop stability.
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4.6.1 Nominal stability for systems with stable decentralized modes

Feasibility of FC-MPC optimizations and domain of attraction. For open-loop stable sys-

tems, the domain of the controller is Rn, n =
∑M

i=1 ni. Convexity of each of the admissible

input sets Ωi, i ∈ IM and Algorithm 4.1 guarantee that if a feasible input trajectory exists for

each subsystem i ∈ IM at time k = 0 and p(0) = 0, then a feasible input trajectory exists for

all subsystems at all future times. One trivial choice for a feasible input trajectory at k = 0 is

ui(k + l|k) = 0, l ≥ 0, ∀ i ∈ IM . This choice follows from our assumption that Ω is nonempty

and 0 ∈ int(Ω). The domain of attraction for the closed-loop system is Rn.

Initialization. At time k = 0, let u0
i (0) = [0, 0, . . . . . .]′, ∀ i ∈ IM . Since 0 ∈ int(Ω), this

sequence of inputs is feasible. Define J̃N (µ(0)) = Φ(u0
1(0), . . . ,u0

M (0);µ(0)) to be the value of

the cooperation-based cost function with the set of zero input initialization trajectories and the

set of initial subsystem states µ(0). At time k > 0, define ∀ i ∈ IM

u0
i (k)′ =

[
u

p(k−1)
i (µ(k − 1), 1)′, . . . , up(k−1)

i (µ(k − 1), N − 1)′, 0, 0, . . .
]

(4.12)

(u0
1(k),u0

2(k), . . . ,u0
M (k)) constitutes a set of feasible subsystem input trajectories with an as-

sociated cost function J0
N (µ(k)) = Φ

(
u0

1(k),u0
2(k), . . . ,u0

M (k);µ(k)
)
. The value of the cooper-

ation based cost function after p(k) iterates is denoted by

J
p(k)
N (µ(k)) = Φ(up(k)

1 (k), . . . ,up(k)
M (k);µ(k)).

The following lemma establishes the relationship between the different cost function values.
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Lemma 4.6. Given Algorithm 4.1, employing the FC-MPC optimization problem of Equation (4.9),

for a system with stable decentralized modes. At time k = 0, let Algorithm 4.1 be initialized with input

ui(k + l|k) = 0, l ≥ 0, ∀ i ∈ IM . If for all times k > 0, each FC-MPC optimization problem is

initialized with the strategy described in Equation (4.12), then we have,

J
p(k)
N (µ(k)) ≤ J0

N (µ(k)) ≤ J̃N (µ(0))−
k−1∑
j=0

M∑
i=1

wiLi(xi(j), 0) ≤ J̃N (µ(0)) (4.13)

∀ p(k) ≥ 0 and all k ≥ 0

A proof is available in Appendix 4.10.2.

Lemma 4.6 can be used to show stability in the sense of Lyapunov (Vidyasagar, 1993,

p. 136). Attractivity of the origin follows from the cost relationship 0 ≤ J
p(k+1)
N (µ(k + 1)) ≤

J0
N (µ(k)) = J

p(k)
N (µ(k))−

∑M
i=1 wiLi(xi(k), up(k)

i (k)). Asymptotic stability, therefore, follows.

Assumption 4.6. For each i ∈ IM , Aii is stable, Qi = diag
(

Qi(1), . . . , Qi(N − 1), Qi

)
, in which

Qi is the solution of the Lyapunov equation Ai
′QiAi −Qi = −Qi

Remark 4.1. Consider a ball Bε(0), ε > 0 such that the input constraints in each FC-MPC op-

timization problem are inactive. Because 0 ∈ int(Ω1 × · · · × ΩM ) and the distributed MPC

control law is stable and attractive, an ε > 0 exists. Let Assumption 4.6 hold. For µ ∈ Bε(0),

up
i (µ), i ∈ IM is linear in xi, i ∈ IM . Also, the initialization strategy for Algorithm 4.1 is inde-

pendent of µ. The input trajectory up
i (µ), i ∈ IM generated by Algorithm 4.1 is, therefore, a

Lipschitz continuous function of µ for all p ∈ I+. If p ≤ p∗ < ∞ (Assumption 4.2), a global

Lipschitz constant (independent of p) can be estimated.

A stronger, exponential stability result is established using the following theorem.
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Theorem 4.1 (Stable decentralized modes). Consider Algorithm 4.1 under state feedback employing

the FC-MPC optimization problem of Equation (4.9), ∀ i ∈ IM . Let Assumptions 4.1 to 4.6 be satisfied.

The origin is an exponentially stable equilibrium for the nominal closed-loop system

xi(k + 1) = Aixi(k) + Biu
p(k)
i (µ(k), 0) +

M∑
j 6=i

Wiju
p(k)
j (µ(k), 0), i ∈ IM ,

for all µ(0) ∈ Rn and all p(k) = 1, 2, . . . , pmax(k).

A proof is available in Appendix 4.10.4.

4.6.2 Nominal stability for systems with unstable decentralized modes

From Assumption 4.1, unstable modes may be present only in the decentralized model. For

systems with some decentralized model eigenvalues on or outside the unit circle, closed-loop

stability under state feedback can be achieved using a terminal state constraint that forces the

unstable decentralized modes to zero at the end of the control horizon. Define

Si = {xii | ∃ui ∈ Ui such that Sui
′[ CN (Aii, Bii) ui + AN

ii xii] = 0} steerable set

to be the set of decentralized states xii that can be steered to the origin in N moves. From

Assumption 4.1 and because the domain of each xij , i, j ∈ IM , j 6= i is Rnij , we define

DRi = Rni1 × · · · ×Rni(i−1) × Si ×Rni(i+1) × · · · ×RniM ⊆ Rni , i ∈ IM , domain of regulator

to be the of all xi for which an admissible input trajectory ui exists that drives the unstable

decentralized modes Uui
′xi to zero (in N moves). The domain of the controller for the nominal
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closed-loop system

x+
i = Aixi + Biu

p
i (µ, 0) +

M∑
j 6=i

up
j (µ, 0), i ∈ IM

is given by

DC = {µ |xi ∈ DRi , i ∈ IM}. domain of controller

The set DC is positively invariant for the nominal system.

Initialization. Since µ(0) ∈ DC , a feasible input trajectory exists and can be computed by

solving the following simple quadratic program (QP) for each i ∈ IM .

u0
i = arg min

ui

‖ui‖2 (4.14a)

subject to

Uui
′ ( CN (Ai, Bi) ui + AN

i xi(0)
)

= 0 (4.14b)

ui(l|0) ∈ Ωi, 0 ≤ l ≤ N − 1 (4.14c)

in which Uui is obtained through a Schur decomposition (Golub and Van Loan, 1996, p. 341)

of Ai
5. Since unstable modes, if any, are present only in the decentralized model (Assump-

tion 4.1), we have Uui
′ ( CN (Ai, Bi) ui + AN

i xi(0)
)

= Sui
′ ( CN (Aii, Bii) ui + AN

ii xii(0)
)
.

5The Schur decomposition of Ai =
ˆ
Usi Uui

˜ »
Asi

N
Aui

– »
Usi

′

Uui
′

–
and Aii =

ˆ
Ssi Sui

˜ »
Asii

L
Auii

– »
Ssi

′

Sui
′

–
.

The eigenvalues of Asi , Asii are strictly inside the unit circle and the eigenvalues of Aui , Auii are on or outside the
unit circle.
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Feasibility of FC-MPC optimizations and domain of attraction. In the nominal case, the

initialization QP (Equation (4.14)) needs to be solved only once for each subsystem i.e., at time

k = 0. Nominal feasibility is assured for all k ≥ 0 and p(k) > 0 if the initialization QP at

k = 0 is feasible for each i ∈ IM . At time k + 1, the the initial input trajectory is given by

Equation (4.12) for all i ∈ IM . The domain of attraction for the closed-loop system is the set

DC .

Consider subsystem i with αi ≥ 0 unstable modes. Since all interaction models are

stable, all unstable modes arise from the decentralized model matrix Aii. To have a bounded

objective, the predicted control trajectory for subsystem i at iterate p(k), u
p(k)
i , must bring the

unstable decentralized modes Uui
′xi to the origin at the end of the control horizon. Bounded-

ness of the infinite horizon objective can be ensured by adding an end constraint

Uui
′ ( CN (Ai, Bi) ui + AN

i xi(k)
)

= 0

to the FC-MPC optimization problem (Equations (4.8), (4.9)) within the framework of Algo-

rithm 4.1. Feasibility of the above end constraint follows because N ≥ αi and (Ai, Bi) is

stabilizable 6.

At time k = 0, let the FC-MPC formulation be initialized with the feasible input tra-

jectory u0
i (0) = [vi(0)′, vi(1)′, . . .]′ obtained as the solution to Equation (4.14), in which vi(s) =

0, N ≤ s, ∀ i ∈ IM , and let JN (µ(0)) = Φ(u0
1(0), . . . ,u0

M (0);µ(0)) denote the associated

cost function value. We have J
p(k)
N (µ(k)) ≤ J0

N (µ(k)) ≤ JN (µ(0)) −
∑k−1

j=0 wiLi(xi(k), 0) ≤

JN (µ(0)), ∀ k ≥ 0, p(k) > 0. The proof for the above claim is identical to the proof for

6Stabilizability of (Ai, Bi) follows from Assumptions 4.1 and 4.4.
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Lemma 4.6. Asymptotic stability can be established using arguments identical to those out-

lined in Section 4.6.1.

Assumption 4.7. α > 0 (see Assumption 4.3). For each i ∈ IM ,

Qi = diag
(

Qi(1), . . . , Qi(N − 1), Qi

)
,

in which Qi = UsiΣiUsi
′ with Σi obtained as the solution of the Lyapunov equation Asi

′ΣiAsi−

Σi = −Usi
′QiUsi .

The following theorem establishes exponential stability for systems with unstable de-

centralized modes.

Theorem 4.2 (Unstable decentralized modes). Consider Algorithm 4.1 under state feedback, em-

ploying the FC-MPC optimization problem of Equation (4.9), ∀ i ∈ IM , with an additional terminal

constraint Uui
′xi(k + N |k) = Uui

′ ( CN (Ai, Bi) ui + AN
i xi(k)

)
= 0 enforced on the unstable decen-

tralized modes. Let Assumptions 4.1 to 4.5 and Assumption 4.7 hold. The origin is an exponentially

stable equilibrium point for the nominal closed-loop system

xi(k + 1) = Aixi(k) + Biu
p(k)
i (µ(k), 0) +

M∑
j 6=i

Wiju
p(k)
j (µ(k), 0), i ∈ IM ,

for all µ(0) ∈ DC and all p(k) = 1, 2, . . . , pmax(k).

For positive semidefinite penalties on the states xi, i ∈ IM , we have the following results:

Remark 4.2. Let Assumption 4.1 hold and let Qi ≥ 0, (Ai, Q
1/2
i ), i ∈ IM be detectable. The

nominal closed-loop system xi(k+1) = Aixi(k)+Biu
p(k)
i (µ(k), 0)+

∑
j 6=i Wiju

p(k)
j (µ(k), 0), i ∈
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IM is exponentially stable under the state feedback distributed MPC control law defined by

either Theorem 4.1 or Theorem 4.2.

Remark 4.3. Let Assumption 4.1 hold and let Qi = diag(Q1i, . . . , QMi) with Qii > 0, Qij ≥

0, ∀ i, j ∈ IM , j 6= i. The nominal closed-loop system xi(k + 1) = Aixi(k) + Biu
p(k)
i (µ(k), 0) +∑

j 6=i Wiju
p(k)
j (µ(k), 0), i ∈ IM is exponentially stable under the state feedback distributed

MPC control law defined by either Theorem 4.1 or Theorem 4.2.

4.7 Examples

Controller performance index. For the examples presented in this paper, the controller per-

formance index for each systemwide control configuration is calculated as

Λcost(k) =
1
k

k∑
j=0

M∑
i=1

1
2
[
xi(j)′Qixi(j) + ui(j)′Riui(j)

]
∆Λcost(config)% =

Λcost(config)− Λcost(cent)
Λcost(cent)

× 100

in which Qi = Ci
′QyiCi + εiI ≥ 0, Ri > 0, εi ≥ 0 and k is the simulation time.

4.7.1 Distillation column control

Table 4.1: Constraints on inputs L, V and regulator parameters.
-1.5 ≤ V ≤ 1.5
-2 ≤ L ≤ 2

Qy1 = 50 Qy2 = 50
R1 = 1 R2 = 1
ε1 = 10−6 ε2 = 10−6
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Figure 4.4: Setpoint tracking performance of centralized MPC, communication-based MPC
and FC-MPC. Tray temperatures of the distillation column (Ogunnaike and Ray (1994)).

Consider the distillation column of (Ogunnaike and Ray, 1994, p. 813). Tray tempera-

tures act as inferential variables for composition control. The outputs T21, T7 are the temper-

atures of trays 21 and 7, respectively and the inputs L, V denote the reflux flowrate and the

vapor boilup flowrate to the distillation column. The sampling rate is 1 sec. The implications
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Figure 4.5: Setpoint tracking performance of centralized MPC, communication-based MPC
and FC-MPC. Input profile (V and L) for the distillation column (Ogunnaike and Ray (1994)).

of the relative gain array (RGA) elements on controller design has been studied in Skogestad

and Morari (1987). While the RGA for this system suggests pairing L with T21 and V with

T7, we intentionally choose a bad control variable–manipulated variable pairing. While deal-

ing with subsystem-based control of large-scale systems, situations arise in which an optimal
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pairing policy for the controlled and manipulated variable sets (CVs and MVs) either does not

exist or is infeasible due to physical or operational constraints. Such situations are not uncom-

mon. From a control perspective, one prerequisite of a reliable subsystem-based systemwide

control strategy is the ability to overcome bad CV-MV choices. Figures 4.4 and 4.5 depict the

closed-loop performance of centralized MPC (cent-MPC), communication-based MPC (comm-

MPC) and FC-MPC when the temperature setpoint of trays 21 and 7 are altered by −1◦C and

1◦C, respectively. For each MPC, a control horizon N = 25 is used. The nominal plant model

is available in Appendix A (see Table A.2). Input constraints and regulator parameters and

constraints are given in Table 4.1.

Table 4.2: Closed-loop performance comparison of centralized MPC, decentralized MPC,
communication-based MPC and FC-MPC.

Λcost ∆Λcost%
Cent-MPC 1.72 −−

Comm-MPC ∞ ∞
FC-MPC (1 iterate) 6.35 269.2%

FC-MPC (10 iterates) 1.74 1.32%

In the comm-MPC framework, inputs V and L saturate at their constraints and the

resulting controller is closed-loop unstable. In principle, the situation here is similar to that

depicted in Figure 4.3 (Example 3). The distributed controller derived by terminating the FC-

MPC algorithm after just 1 iterate stabilizes the closed-loop system. However, the closed-loop

performance of this distributed controller is significantly worse than the performance of cen-

tralized MPC. The control costs incurred using the different MPC frameworks are given in

Table 4.2. The distributed controller defined by terminating the FC-MPC algorithm after 10 it-

erates, on the other hand, achieves performance that is within ∼ 1.4% of centralized MPC per-

formance. On iterating the FC-MPC algorithm to convergence, the distributed MPCs achieve
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performance that is within a pre-specified tolerance of centralized MPC performance.

4.7.2 Two reactor chain with flash separator

We consider a plant consisting of two continuous stirred tank reactors (CSTRs) followed by

a nonadiabatic flash. A schematic of the plant is shown in Figure 4.6. In each of the CSTRs,

the desired product B is produced through the irreversible first order reaction A
k1−→ B. An

undesirable side reaction B
k2−→ C results in the consumption of B and in the production

of the unwanted side product C. The product stream from CSTR-2 is sent to a nonadiabatic

flash to separate the excess A from the product B and the side product C. Reactant A has the

highest relative volatility and is the predominant component in the vapor phase. A fraction

of the vapor phase is purged and the remaining (A rich) stream is condensed and recycled

back to CSTR-1. The liquid phase (exiting from the flash) consists mainly of B and C. The

first principles model and parameters for the plant are given in Appendix A (see Tables A.3

to A.5). Input constraints are given in Table 4.3. A linear model for the plant is obtained by

linearizing the plant around the steady state corresponding to the maximum yield of B, which

is the desired operational objective.

In the distributed MPC frameworks, there are 3 MPCs, one each for the two CSTRs and

one for the nonadiabatic flash. In the centralized MPC framework, a single MPC controls the

entire plant. The manipulated variables (MVs) for CSTR-1 are the feed flowrate F0 and the

cooling duty Qr. The measured variables are the level of liquid in the reactor Hr, the exit mass

fractions of A and B i.e., xAr , xBr , respectively and the reactor temperature Tr. The controlled

variables (CVs) for CSTR-1 are Hr and Tr. The MVs for CSTR-2 are the feed flowrate F1 and the

reactor cooling load Qm. The (local) measured variables are the level Hm, the mass fractions
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Figure 4.6: Two reactor chain followed by nonadiabatic flash. Vapor phase exiting the flash is
predominantly A. Exit flows are a function of the level in the reactor/flash.

of A and B xAm , xBm at the outlet, and the reactor temperature Tm . The CVs are Hm and Tm.

For the nonadiabatic flash, the MVs are the recycle flowrate D and the cooling duty for the

flash Qb. The CVs are the level in the flash Hb and the temperature Tb. The measurements are

Hb, Tb and the product stream mass fractions of A and B (xAb
and xBb

).

Table 4.3: Input constraints for Example 4.7.2. The symbol ∆ represents a deviation from the
corresponding steady-state value.

−0.1 ≤ ∆F0 ≤ 0.1 −0.15 ≤ ∆Qr ≤ 0.15
−0.04 ≤ ∆F1 ≤ 0.04 −0.15 ≤ ∆Qr ≤ 0.15
−0.1 ≤ ∆D ≤ 0.1 −0.15 ≤ ∆Qb ≤ 0.15

Table 4.4: Closed-loop performance comparison of centralized MPC, communication-based
MPC and FC-MPC.

Λcost × 10−2 ∆Λcost%
Cent-MPC 2.0 −−

Comm-MPC ∞ ∞
FC-MPC (1 iterate) 2.13 6%

FC-MPC (10 iterates) ∼ 2.0 < 0.1%
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The performance of centralized MPC (Cent-MPC), communication-based MPC (Comm-

MPC) and FC-MPC are evaluated when a setpoint change corresponding to a 42% increase in

the level Hm is made at time 15. The control horizon for each MPC is N = 15. Figures 4.7

and 4.8 depict the performance of the different MPC frameworks for the prescribed setpoint

change. In the Comm-MPC framework, the flowrate F1 switches continually between its up-

per and lower bounds. Subsequently, Comm-MPC leads to unstable closed-loop performance.

Both Cent-MPC and FC-MPC (1 iterate) stabilize the closed-loop system. In response to an

increase in the setpoint of Hm, the FC-MPC for CSTR-2 orders a maximal increase in flowrate

F1. The flowrate F1, therefore, saturates at its upper limit. The FC-MPCs for CSTR-1 and the

flash cooperate with the FC-MPC for CSTR-2 by initially increasing F0 and later increasing D,

respectively. This feature i.e., cooperation among MPCs is absent under Comm-MPC and is

the likely reason for its failure. A performance comparison of the different MPC frameworks

is given in Table 4.4. If Algorithm 4.1 is terminated after just 1 iterate, the FC-MPC frame-

work incurs a performance loss of 6% compared to cent-MPC performance. If 10 iterates per

sampling interval are possible, the performance of FC-MPC is almost identical to cent-MPC

performance.

4.7.3 Unstable three subsystem network

Consider a plant consisting of three subsystems. The nominal subsystem models are available

in Appendix A (see Table A.6). Input constraints and regulator parameters are given in Ta-

ble 4.5. For each MPC, a control horizon N = 15 is used. Since each of the subsystems has an

unstable decentralized mode, a terminal state constraint that forces the unstable mode to the
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Figure 4.7: Performance of cent-MPC, comm-MPC and FC-MPC when the level setpoint for
CSTR-2 is increased by 42%. Setpoint tracking performance of levels Hr and Hm.

origin at the end of the control horizon is employed (Theorem 4.2 for the FC-MPC framework).

A setpoint change of 1 and −1 is made to outputs y1 and y5, respectively at time = 6. The per-

formance of the distributed controller derived by terminating the FC-MPC algorithm after 1

and 5 iterates, respectively is shown in Figures 4.9-4.11. A closed-loop performance compar-
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Figure 4.8: Performance of cent-MPC, comm-MPC and FC-MPC when the level setpoint for
CSTR-2 is increased by 42%. Setpoint tracking performance of input flowrates F0 and Fm.

ison of the different MPC based frameworks, for the described setpoint change is given in

Table 4.6. The performance loss, compared to centralized MPC, incurred under the FC-MPC

formulation terminated after just 1 iterate is ∼ 14%, which is a substantial improvement over

the performance of decentralized and communication-based MPC. Both the decentralized and
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Table 4.5: Input constraints and regulator parameters.
-1 ≤ u1 ≤ 1

-0.15 ≤ u2 ≤ 0.15
-1.5 ≤ u3 ≤ 1.5
-0.2 ≤ u4 ≤ 0.2
-0.75 ≤ u5 ≤ 0.75

Qy1 = 25 Qy2 = 25 Qy3 = 1
R1 = 1 R2 = 1 R3 = 1
ε1 = 10−6 ε2 = 10−6 ε3 = 10−6

Table 4.6: Closed-loop performance comparison of centralized MPC, decentralized MPC,
communication-based MPC and FC-MPC.

Λcost ∆Λcost%
Cent-MPC 1.78 −−

Decent-MPC 3.53 98.3%
Comm-MPC 3.53 98.2%

FC-MPC (1 iterate) 2.03 13.9%
FC-MPC (5 iterates) 1.8 0.8%

communication-based MPC frameworks incur a performance loss of ∼ 98% relative to cen-

tralized MPC performance. The behavior of the cooperation-based cost function with iteration

number at time = 6 is shown in Figure 4.11. At time = 6, convergence to the centralized MPC

solution is achieved after ∼ 10 iterates.

4.8 Discussion and conclusions

In this chapter, a new distributed, linear MPC framework with guaranteed feasibility, optimal-

ity and closed-loop stability properties was described. It is shown that communication-based

MPC strategies are unreliable for systemwide control and can lead to closed-loop instability. A

cooperation-based distributed MPC algorithm was proposed. The intermediate iterates gener-

ated by this cooperation-based MPC algorithm are feasible and the state feedback distributed

MPC control law based on any intermediate iterate is nominally closed-loop stable. Therefore,
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Figure 4.9: Performance of centralized MPC and FC-MPC for the setpoint change described in
Example 4.7.3. Setpoint tracking performance of outputs y1 and y4.

one can terminate Algorithm 4.1 at end of each sampling interval, irrespective of convergence.

At each time k, the states of each subsystem are relayed to all the interconnected subsystems’

MPCs. At each iterate p, the MPC for subsystem i ∈ IM calculates its optimal input trajectory

up
i assuming the input trajectories generated by the interacting subsystems’ MPCs remain at
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Figure 4.10: Performance of centralized MPC and FC-MPC for the setpoint change described
in Example 4.7.3. Inputs u2 and u4.

up−1
j , ∀ j 6= i. The recomputed trajectory up

i is subsequently communicated to each intercon-

nected subsystem’s MPC.

Implementation. For a plant with M subsystems employing decentralized MPCs, conver-

sion to the FC-MPC framework involves the following tasks. First, the interaction models
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Figure 4.11: Behavior of the FC-MPC cost function with iteration number at time 6. Conver-
gence to the optimal, centralized cost is achieved after ∼ 10 iterates.

must be identified. Techniques for identifying the interaction models under closed-loop oper-

ating conditions have been described in Gudi and Rawlings (2006). Next, the Hessian and the

linear term in the QP for each subsystem MPC need to be modified as shown in Equation 4.8.

Notice that in the decentralized MPC framework, the linear term in the QP is modified after

each time step; in the FC-MPC framework, the linear term is updated after each iterate. The

Hessian in both frameworks is a constant and requires modification only if the models change.

Also, unlike centralized MPC, both decentralized MPC and FC-MPC do not require any infor-

mation regarding the constraints on the external input variables. Finally, a communication

protocol must be established for relaying subsystem state information (after each time step)

and input trajectory information (after each iterate). This communication protocol can range

from data transfer over wireless networks to storing and retrieval of information from a cen-

tral database. One may also consider utilizing recent developments in technology for control

over networks (Baliga and Kumar, 2005; Casavola, Papini, and Franzé, 2006; Imer, Yuksel, and

Basar, 2004) to establish a communication protocol suitable for distributed MPC. This issue is
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beyond the scope of this work and remains an open research area. Along similar lines, devel-

oping reliable buffer strategies in the event of communication disruptions is another important

research problem.

The FC-MPC framework allows the practitioner to seamlessly transition from com-

pletely decentralized control to completely centralized control. For each subsystem i, by set-

ting wi = 1, wj = 0, j 6= i, and by switching off the communication between the subsystems’

MPCs, the system reverts to decentralized MPC. On the other hand, iterating Algorithm 4.1

to convergence gives the optimal, centralized MPC solution. By terminating Algorithm 4.1 at

intermediate iterates, we obtain performance that lies between the decentralized MPC (base

case) and centralized MPC (best case) performance limits allowing the practitioner to inves-

tigate the potential control benefits of centralized control without requiring the large control

system restructuring and maintenance effort needed to implement and maintain centralized

MPC. Taking subsystems off line and bringing subsystems back online are accomplished eas-

ily in the FC-MPC framework. Through simple modifications, the FC-MPC framework can be

geared to focus on operational objectives (at the expense of optimality), in the spirit of modu-

lar multivariable control Meadowcroft, Stephanopoulos, and Brosilow (1992). For instance, it

is possible to modify the FC-MPC framework such that only local inputs are used to track a

certain output variable. Details of such a modified FC-MPC framework are available in Chap-

ter 7.
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4.9 Extensions

Several extensions for the proposed FC-MPC framework are possible. Here, we present two

simple extensions.

4.9.1 Rate of change of input penalty and constraint

Constraints and penalties on the rate of change of each subsystem’s inputs can be included in

the FC-MPC framework. For subsystem i ∈ IM , define ∆ui(k) = ui(k)−ui(k−1). Let ∆umin
i ≤

∆ui ≤ ∆umax
i , ∀ i ∈ IM . Bound constraints on the rate of change of each subsystem’s inputs

represent limits on how rapidly the corresponding actuators/valves can move in practice. The

stage cost is defined as

Li(xi, ui,∆ui) =
1
2
[xi

′Qixi + ui
′Riui + ∆ui

′Si∆ui] (4.15)

in which Qi ≥ 0, Ri + Si > 0 are symmetric matrices and (Ai, Q
1/2
i ) is detectable. To con-

vert Equation (4.15) to the standard form (see Equation (4.3)), we use a strategy similar to

that described in Muske and Rawlings (1993) for single MPCs. The decentralized state xii for

subsystem i ∈ IM is augmented with the subsystem input ui obtained at the previous time

step. At time k, define zii(k) = [xii
′(k), ui(k − 1)′] to be the augmented decentralized state for
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subsystem i ∈ IM . The augmented decentralized model is

zii(k + 1) = Ãiizii(k) + B̃iiui(k), (4.16a)

yii(k + 1) = C̃iizii(k), (4.16b)

in which Ãii =

Aii 0

0 0

 , B̃ii

Bii

I

 , C̃ii =
[
Cii 0

]

The augmented CM state is defined as zi = [xi1
′, . . . , zii

′, . . . , ziM
′]′. The augmented CM for

subsystem i is

zi(k + 1) = Ãizi(k) + B̃iui(k) +
∑
j 6=i

W̃ijuj(k) (4.17a)

yi(k) = C̃izi(k) (4.17b)

in which

Ãi = diag(Ai1, . . . , Ãii, . . . , AiM ), B̃i =

Bi

I

 , W̃ij =

Wij

0

 , C̃i = diag(Ci1, . . . , C̃ii, . . . , CiM )

The stage cost defined in Equation (4.15) can be rewritten as

Li(zi, ui) =
1
2
[zi

′Q̃izi + ui
′R̃iui + zi

′M̃iui] (4.18)
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where

Q̃i =

Qi

Si

 , R̃i = Ri + Si, M̃i =

 0

−Si



Notice that if Si = 0, we revert to the earlier definition of the stage cost (Equation (4.3), p. 30).

The cost function φi(·) (see Equation (4.5), p. 34) is obtained by using Equation (4.18) for the

definition of Li(·). Let zii = [zii(1)′, . . . , zii(N)′]′. Using Equation (4.16), we write zii = F̃iiui +

ẽiizii(0), in which

F̃ii =



B̃ii 0 . . . . . . 0

ÃiiB̃ii B̃ii 0 . . . 0

...
...

...
...

...

ÃN−1
ii B̃ii . . . . . . . . . B̃ii


, ẽii =



Ãii

Ã2
ii

...

ÃN
ii



Define Tii =
[
0 −I

]
for each i ∈ IM . The bound constraint on ∆ui can be expressed as

∆umin
i ≤ Tiizii +ui ≤ ∆umax

i . The FC-MPC optimization problem for subsystem i is, therefore,

u
∗(p)
i ∈ arg min

ui

1
2
ui(k)′Riui(k) +

ri(k) +
M∑

j=1,j 6=i

Hiju
p−1
j (k)


′

ui(k) + constant (4.19a)

subject to

ui ∈ Ui (4.19b)

Πmin
i ≤ Diui + Ziẽiizii(k) ≤ Πmax

i (4.19c)
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in which Qi = diag(Q̃i(1), . . . , Q̃i(N − 1), Qi), Ri = diag(R̃i(0), R̃i(1), . . . , R̃i(N − 1)),

Mi =



0 M̃i

0 M̃i

0
. . .

. . . M̃i

0 0 . . . . . . 0


, P̃i =



M̃i

0

...

0


, f̃i =



Ãi

Ã2
i

...

ÃN
i



Πmin
i =



∆umin
i − Tiizii(k)

∆umin
i

...

...

∆umin
i


, Πmax

i =



∆umax
i − Tiizii(k)

∆umax
i

...

...

∆umax
i


, Zi =



0 0 0

Tii

. . .

Tii 0


,

Ẽii =



B̃i 0 . . . . . . 0

ÃiB̃i B̃i 0 . . . 0

...
...

...
...

...

ÃN−1
i B̃i . . . . . . . . . B̃i


, Ẽij =



W̃ij 0 . . . . . . 0

ÃiW̃ij W̃ij 0 . . . 0

...
...

...
...

...

ÃN−1
i W̃ij . . . . . . . . . W̃ij


,
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for each j ∈ IM , j 6= i. Also,

Ri = wi[Ri + Ẽii
′QiẼii + 2Ẽii

′Mi] +
M∑
j 6=i

wjẼji
′QjẼji

Hij =
M∑
l=1

wlẼli
′QlẼlj + Mi

′Ẽij + Ẽji
′Mj

ri(k) = wi[Ẽii
′Qifizi(k) + Mi

′fizi(k) + P̃izi(k)] +
M∑
j 6=i

wjẼji
′Qjfjzj(k)

Di = TiF̃ii + I

The terminal penalty is obtained using Theorem 4.1 for stable systems or Theorem 4.2 for sys-

tems with unstable decentralized modes, and replacing each Ai, Qi with Ãi, Q̃i, respectively.

For systems with unstable decentralized modes, a terminal decentralized state constraint is

also required (see Section 4.6.2). All established properties (feasibility, optimality and closed-

loop stability) apply for this case.

4.9.2 Coupled subsystem input constraints

The FC-MPC formulation can be employed for control of systems with coupled subsystem

input constraints of the form
∑M

i=1 Hiui ≤ h, h > 0. At time k and iterate p, the FC-MPC
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optimization problem for subsystem i ∈ IM is

u
∗(p)
i (k) ∈ arg min

ui

M∑
r=1

wrΦr

(
up−1

1 , . . . ,up−1
i−1 ,ui,u

p−1
i+1 , . . . ,up−1

M ;xr(k)
)

(4.20a)

subject to

ui(l|k) ∈ Ωi, k ≤ l ≤ k + N − 1 (4.20b)

ui(l|k) = 0, k + N ≤ l (4.20c)

Hiui(l|k) +
M∑

j=1,j 6=i

Hju
p−1
j (l|k) ≤ h, k ≤ l ≤ k + N − 1 (4.20d)

It can be shown that the sequence of cost functions generated by Algorithm 4.1 (solving the

optimization problem of Equation (4.20) instead) is a nonincreasing function of the iteration

number and converges. Also, the distributed MPC control law based on any intermediate iter-

ate is guaranteed to be feasible and closed-loop stable. Let Φ∞ be the converged cost function

value and let S∞ = {(u1, . . . ,uM ) |Φ(u1, . . . ,uM ;µ) = Φ∞} denote the limit set. Using strict

convexity of the objective, it can be shown that Algorithm 4.1 converges to a point u∞1 , . . . ,u∞M

in S∞. Because a coupled input constraint is present, the converged solution u∞1 , . . . ,u∞M may

be different from the optimal centralized solution. We present two examples to illustrate pos-

sible nonoptimality of Algorithm 4.1 in the presence of coupled subsystems’ input constraints.

Example for nonoptimality of Algorithm 4.1 in the presence of coupled constraints. A sim-

ple optimization example is described here. Consider the following optimization problem in
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decision variables u1 and u2

min
u1,u2

(u1 − 1)2 + (u2 − 1)2 (4.21a)

subject to

1 ≥ u1 ≥ 0 (4.21b)

1 ≥ u2 ≥ 0 (4.21c)

1− u1 − u2 ≥ 0 (4.21d)

A graphical representation of the optimization problem is given in Figure 4.12. The optimal

solution to the optimization problem of Equation (4.21) is (u∗1, u
∗
2) = (1

2 , 1
2).

(1, 1)

(1, 0)

(0, 1)

(u1 − 1)2 + (u2 − 1)2

1−
u
1 −

u
2 ≥

0

u1

u2

(0, 0)

Figure 4.12: Example demonstrating nonoptimality of Algorithm 4.1 in the presence of cou-
pled decision variable constraints.
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In the cooperation-based distributed optimization framework, the optimizer for u1

solves the following optimization problem at iterate p

min
u1

(u1 − 1)2 + (up−1
2 − 1)2 (4.22a)

subject to

1 ≥ u1 ≥ 0 (4.22b)

1− u1 − up−1
2 ≥ 0 (4.22c)

Similarly, the optimizer for u2 solves

min
u2

(up−1
1 − 1)2 + (u2 − 1)2 (4.23a)

subject to

1 ≥ u2 ≥ 0 (4.23b)

1− up−1
1 − u2 ≥ 0 (4.23c)

At iterate p, let the solution to the optimization problems described in Equations (4.22) and (4.23)

be u
∗(p)
1 and u

∗(p)
2 , respectively. We consider three cases.

Case 1. (u0
1, u

0
2) = (1, 0)

Using Algorithm 4.1 employing the optimization problems given by Equations (4.22) and (4.23)

gives (up
1, u

p
2) = (1, 0) = (up−1

1 , up−1
2 ) = (u0

1, u
0
2). Algorithm 4.1, therefore, gives a nonoptimal

solution for all p.
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Case 2. (u0
1, u

0
2) = (3

4 , 1
4)

Using Algorithm 4.1, we have (up
1, u

p
2) = (3

4 , 1
4) = (up−1

1 , up−1
2 ) = (u0

1, u
0
2). Like case 1, Algo-

rithm 4.1 gives a nonoptimal solution for all values of p.

Case 3. (u0
1, u

0
2) = (0, 0)

For this case, we have using Algorithm 4.1 that u
∗(1)
1 = 1 and u

∗(1)
2 = 1. The first iterate,

(u1
1, u

1
2) = (1

2 , 1
2), the optimal solution. Hence, unlike cases 1 and 2, Algorithm 4.1 converges

to the optimal solution after just 1 iterate.

Distributed MPC of distillation column with coupled constraints. We consider the dis-

tillation column described in Section 4.7.1 with an additional coupled input constraint 0 ≤

L + V ≤ 0.25. The performance of FC-MPC at convergence is compared to centralized MPC

(see Figure 4.13). While the coupled input constraint is active, the performance of FC-MPC

(convergence) is different from centralized MPC. If the coupled input constraint is inactive,

the performance of FC-MPC (convergence) is within a pre-specified tolerance of centralized

MPC. The closed-loop control cost of FC-MPC (convergence) exceeds that of centralized MPC

by nearly 1%.

4.10 Appendix

4.10.1 Proof for Lemma 4.1

Proof. It follows from compactness of X and continuity of the linear mapping A(·) that the

set B is compact. Let A = V ΣW ′ denote a singular value decomposition of A. Also, let

r = rank(A). Therefore, ΣW ′x = V ′b. If r < m then a necessary and sufficient condition for
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Figure 4.13: Setpoint tracking performance of centralized MPC and FC-MPC (convergence).
An additional coupled input constraint 0 ≤ L + V ≤ 0.25 is employed.

the system Ax = b to be solvable is that the last m − r left singular vectors are orthogonal

to b. If V = [v1, v2, . . . , vm], W = [w1, w2, . . . , wn] and Σ = diag(σ1, σ2, . . . , σr, 0, . . .) then

x(b) =
∑r

i=1
vi
′b

σi
wi is a solution to the system Ax = b with minimum l2 norm (Horn and

Johnson, 1985, p. 429).

Since 0 ∈ X , there exists a ε > 0 such that x(b) ∈ X for all b ∈ Bε(0). For b ∈ Bε(0),

choose K1 =
∑r

i=1
‖vi‖‖wi‖

σi
. This choice gives ‖x(b)‖ ≤ K1‖b‖,Ax(b) = b, x(b) ∈ X with K1
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independent of the choice of b ∈ Bε(0).

Define B \ Bε(0) = {b | b ∈ B, ‖b‖ > ε}. Compactness of X implies ∃ R > 0 such that

‖x‖ ≤ R, ∀x ∈ X . Therefore, ‖x‖ ≤ R
ε ‖b‖, ∀ b ∈ B\Bε(0), x ∈ X . The choice K = max(K1,

R
ε )

gives ‖x(b)‖ ≤ K‖b‖, ∀ b ∈ B.

4.10.2 Proof for Lemma 4.6

Proof. The proof is by induction. At time k = 0, the FC-MPC algorithm is initialized with the

input sequence ui(k + l|k) = 0, l ≥ 0, ∀ i ∈ IM . Hence J0
N (µ(0)) = J̃N (µ(0)). We know

from Lemma 4.6 that J
p(0)
N (µ(0)) ≤ J0

N (µ(0)) = J̃N (µ(0)). The relationship (Equation (4.13)),

therefore, holds at k = 0. At time k = 1, we have

J
p(1)
N (µ(1)) ≤ J0

N (µ(1)) = J
p(0)
N (µ(0))−

M∑
i=1

wiLi(xi(0), up(0)
i (0))

≤ J̃N (µ(0))−
M∑
i=1

wiLi(xi(0), 0)

≤ J̃N (µ(0))

Hence the relationship in Equation (4.13) is true for k = 1.
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Assume now that the result is true for some time k > 1. At time k + 1,

J
p(k+1)
N (µ(k + 1) ≤ J0

N (µ(k + 1)) = J
p(k)
N (µ(k))−

M∑
i=1

wiLi

(
xi(k), up(k)

i (k)
)

≤ J
p(k)
N (µ(k))−

M∑
i=1

wiLi (xi(k), 0)

≤ J̃N (µ(0))−
k∑

j=0

M∑
i=1

wiLi(xi(j), 0)

≤ J̃N (µ(0))

The result is, therefore, true for all k ≥ 0, as claimed.

4.10.3 Lipschitz continuity of the distributed MPC control law: Stable systems

Lemma 4.7. Let the input constraints in the FC-MPC optimization problem of Equation (4.9) be spec-

ified in terms of a collection of linear inequalities such that the set of active constraints is linearly

independent for each i ∈ IM . Let Assumption 4.6 hold. The input trajectory up
i (µ), ∀ i ∈ IM generated

by Algorithm 4.1 is a Lipschitz continuous function of the set of subsystem states µ for all p ∈ I+,

p ≤ p∗.

Proof. Lipschitz continuity of the control law in the set of subsystem states is proved in two

steps. First, we show that the solution to the FC-MPC optimization problem (Equation (4.9))

for each subsystem i is Lipschitz continuous in the data. In the FC-MPC optimization problem

of Equation (4.9), Ri > 0. The solution to the FC-MPC optimization problem is, therefore,

unique. The parameters that vary in the data are µ and the input trajectories ∆p−1
−i , in which

∆p−1
−i = up−1

1 , . . . ,up−1
i−1 ,up−1

i+1 , . . . ,up−1
M . Let u

∗(p)
i (µ;∆p−1

−i (µ)) represent the solution to Equa-

tion (4.9) at iterate p and system state µ. Also, let ζ = [z1, z2, . . . , zM ]. By assumption, the set
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of active constraints is linearly independent. From (Hager, 1979, Theorem 3.1), ∃ ρ < ∞ such

that

‖u∗(p)
i (µ;∆p−1

−i (µ))− u
∗(p)
i (ζ;∆p−1

−i (ζ)‖ ≤ ρ

‖µ− ζ‖2 +
M∑
j 6=i

‖up−1
j (µ)− up−1

j (ζ)‖2
1/2

From Algorithm 4.1, we have

‖up
i (µ)− up

i (ζ)‖ ≤ wi‖u∗(p)
i (µ; ·)− u

∗(p)
i (ζ; ·)‖

+ (1− wi) ‖up−1
i (µ)− up−1

i (ζ)‖

≤ ρwi

‖µ− ζ‖2 +
M∑
j 6=i

‖up−1
j (µ)− up−1

j (ζ)‖2
1/2

+ (1− wi) ‖up−1
i (µ)− up−1

i (ζ)‖, p ∈ I+ (4.24)

It follows from Equation (4.24) that if up−1
i (µ) is Lipschitz continuous w.r.t µ for all i ∈ IM then

up
i (µ) is Lipschitz continuous w.r.t µ.

If k = 0, we choose u0
i (0) = [0, 0, . . .]′,∀ i ∈ IM . For k > 0, we have (Equation (4.12))

u0
i (k) =

[
u

p(k−1)
i (µ(k − 1), 1)′, . . . , up(k−1)

i (µ(k − 1), N − 1)′, 0
]

Either initialization is independent of the current system state µ. Since the models are causal,

u1
i (µ) is Lipschitz continuous in µ. Subsequently, by induction, up

i (µ) is Lipschitz continuous

in µ for all p ∈ I+. For pmax(k) ≤ p∗ < ∞ for all k ≥ 0, a global Lipschitz constant can

be estimated. By definition, up
i (µ) = [up

i (µ)′, 0, 0, . . .]′, i ∈ IM . Hence, up
i (µ) is a Lipschitz

continuous function of µ for all p ∈ I+, p ≤ pmax.
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Corollary 4.7.1. The distributed MPC control law up
i (µ, 0), i ∈ IM is Lipschitz continuous in µ for

all p ∈ I+, p ≤ p∗.

4.10.4 Proof for Theorem 4.1

Proof. To prove exponential stability, the value function J
p(k)
N (µ(k)) is a candidate Lyapunov

function. We need to show (Vidyasagar, 1993, p. 267) there exists constants a, b, c > 0 such that

a
M∑
i=1

‖xi(k)‖2 ≤ J
p(k)
N (µ(k)) ≤ b

M∑
i=1

‖xi(k)‖2 (4.25a)

∆J
p(k)
N (µ(k)) ≤ −c

M∑
i=1

‖xi(k)‖2 (4.25b)

in which ∆J
p(k)
N (µ(k)) = J

p(k+1)
N (µ(k + 1))− J

p(k)
N (µ(k)).

Let xp
i = [xp

i (µ, 1)′, xp
i (µ, 2)′, . . .]′ denote the state trajectory for subsystem i ∈ IM gen-

erated by the input trajectories up
1(µ), . . . ,up

M (µ) obtained after p ∈ I+ (Algorithm 4.1) iterates

and initial state µ. Rewriting the cooperation-based cost function in terms of the calculated

state and input trajectories, we have

J
p(k)
N (µ(k)) =

M∑
i=1

wi

[
N−1∑
l=0

Li(x
p(k)
i (µ(k), l), up(k)

i (µ(k), l)) +
1
2
‖xp(k)

i (µ(k), N)‖2
Qi

]

in which Qi, Ri and Qi are all positive definite and x
p(k)
i (µ(k), 0) = xi(k), i ∈ IM .

Because Qi > 0, there exists an a > 0 such that a
∑M

i=1 ‖xi(k)‖2 ≤ J
p(k)
N (µ(k)). One

possible choice is a = mini∈IM
1
2wiλmin(Qi). From

∆J
p(k)
N (µ(k)) ≤ −

M∑
i=1

wiLi

(
xi(k), up(k)

i (µ(k), 0)
)
≤ −

M∑
i=1

wi
1
2
xi(k)′Qixi(k),
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there exists c > 0 such that ∆J
p(k)
N (µ(k)) ≤ −c

∑M
i=1 ‖xi(k)‖2. One possible choice for c is

c = mini∈IM
1
2wiλmin(Qi).

At time k = 0, each subsystem’s FC-MPC optimization is initialized with the zero

input trajectory. Using Lemma 4.4, we have J
p(0)
N (µ(0)) ≤ σ

∑M
i=1 ‖xi(0)‖2, in which 0 <

maxi∈IM
wiλmax(Qi) ≤ σ. Since 0 ∈ int (Ω1 × . . .ΩM ) and the origin is Lyapunov stable and

attractive with the cost relationship given in Lemma 4.6, there exists ε > 0 such that the input

constraints remain inactive in each subsystem’s FC-MPC optimization for any µ ∈ Bε(0). From

Remark 4.1, there exists ρ > 0 such that ‖up
i (µ)‖ ≤ √ρ‖µ‖,∀µ ∈ Bε(0), 0 < p ≤ p∗, i ∈ IM

7. Us-

ing the definition of the norm operator on µ and squaring, we have ‖up
i (µ)‖2 ≤ ρ

∑M
i=1 ‖xi‖2.

Since Ωi, i ∈ IM is compact, a constant Z > 0 exists satisfying ‖ui‖ ≤
√
Z, ∀ ui ∈ Ωi and all

i ∈ IM . For ‖µ‖ > ε, we have ‖ui‖ ≤
√
Z
ε ‖µ‖. Choose K = max(ρ, Z

ε2 , σ) > 0. The constant K

is independent of xi and ‖up
i (µ, j)‖2 ≤ K

∑M
i=1 ‖xi‖2, ∀ i ∈ IM , j ≥ 0 and all 0 < p ≤ p∗.

Using stability of Ai, ∀ i ∈ IM and (Horn and Johnson, 1985, 5.6.13, p. 299), there exists

c > 0 and maxi∈IM
λmax(Ai) ≤ λ < 1 such that ‖Aj

i‖ ≤ cλj , ∀ i ∈ IM , j ≥ 0. For any i ∈ IM

7Lipschitz continuity of up
i (µ), i ∈ IM also follows from Lemma 4.10.3. For µ ∈ Bε(0), none of the input

constraints are active. The requirement of linear independence of active constraints (in Lemma 4.10.3) is trivially
satisfied.
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and 0 ≤ l ≤ N , therefore,

‖xp(k)
i (µ(k), l)‖ ≤ ‖Al

i‖‖xi(k)‖+
l−1∑
j=0

‖Al−1−j
i ‖

[
‖Bi‖‖up(k)

i (µ(k), j)‖

+
∑
s 6=i

‖Wis‖‖up(k)
j (µ(k), j)‖

]

≤ cλl‖xi(k)‖+
l−1∑
j=0

cλl−1−jγ
√

K

(
M∑
i=1

‖xi(k)‖2
)1/2

≤ c

(
λl +

γ
√

K

1− λ

)(
M∑
i=1

‖xi(k)‖2
)1/2

≤
√

Γ

(
M∑
i=1

‖xi(k)‖2
)1/2

in which γ = maxi∈IM
‖Bi‖+

∑M
s 6=i ‖Wis‖ and Γ = c2

(
1 + γ

√
K

1−λ

)2
. Hence,

J
p(k)
N (µ(k)) ≤

M∑
i=1

wi

[
1
2

N−1∑
j=0

λmax(Qi)‖xp(k)
i (µ(k), j)‖2 + λmax(Ri)‖up(k)

i (µ(k), j)‖2

+
1
2
λmax(Qi)‖x

p(k)
i (µ(k), N)‖2

]

≤ 1
2

M∑
i=1

wi

N−1∑
j=0

(λmax(Qi)Γ + λmax(Ri)K) + λmax(Qi)Γ

 M∑
i=1

‖xi(k)‖2

= b
M∑
i=1

‖xi(k)‖2

in which the positive constant b = 1
2

∑M
i=1 wi

[
N(λmax(Qi)Γ + λmax(Ri)K) + λmax(Qi)Γ

]
.

4.10.5 Lipschitz continuity of the distributed MPC control law: Unstable systems

Lemma 4.8. Let Ωi, i ∈ IM be specified in terms of a collection of linear inequalities. For each

i ∈ IM , consider the FC-MPC optimization problem of Equation (4.9) with a terminal state constraint
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Uui
′ ( CN (Ai, Bi) ui + AN

i xi(k)
)

= 0. Let Bε(0), ε > 0 be defined such that the input inequality

constraints in each FC-MPC optimization problem and initialization QP (Equation (4.14)) remain

inactive for µ ∈ Bε(0). Let Assumptions 4.1, 4.4 and 4.7 hold. The input trajectory up
i (µ), i ∈ IM

generated by Algorithm 4.1 is a Lipschitz continuous function of µ for all p ∈ I+, p ≤ p∗.

Proof. Since 0 ∈ int(Ω1×· · ·×ΩM ) and the distributed MPC control law is stable and attractive,

an ε > 0 exists. The main difference between the proof for this lemma and the proof for

Lemma 4.7 is showing that the initialization using the solution to the QP of Equation (4.14) (at

initial time i.e., k = 0) is Lipschitz continuous in the initial subsystem state xi for µ ∈ Bε(0).

From Assumptions 4.1 and 4.4, (Ai, Bi), i ∈ IM is stabilizable. Because (Ai, Bi) is stabilizable

and Uui is obtained from a Schur decomposition, the rows of Uui
′CN (Ai, Bi) are independent

(hence, the active constraints are independent).

Consider two sets of initial subsystem states µ(0), ζ(0) ∈ DC containing the initial sub-

system states xi(0) and zi(0), i ∈ IM , respectively. Let the solution to the initialization QP

(Equation (4.14)) for the two initial states be v∗i (xi(0)) and v∗i (zi(0)), respectively. From (Hager,

1979, Theorem 3.1), ∃ ρ < ∞ satisfying ‖v∗i (xi(0)) − v∗i (zi(0))‖ ≤ ρ‖xi(0) − zi(0)‖. We have

u0
i (·) = v∗i (xi(0)), i ∈ IM . This gives ‖u0

i (µ(0)) − u0
i (ζ(0))‖ = ‖v∗i (xi(0)) − v∗i (zi(0))‖ ≤

ρ‖xi(0)− zi(0)‖ ≤ ρ‖µ(0)− ζ(0)‖,∀ i ∈ IM . Also, by definition u0
i = [u0

i
′, 0, . . .]′. The remain-

der of the proof follows the arguments in the proof for Lemma 4.7.

4.10.6 Proof for Theorem 4.2

Proof. To show exponential stability for the set of initial subsystem states µ(k) ∈ DC , we need

to show that there exists positive constants a, b, c satisfying Equations (4.25a) and (4.25b). De-

termination of constants a and c closely follows the argument presented in the proof for The-
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orem 4.1. To complete the proof, we need to show that a constant b > 0 exists such that

J
p(k)
N (µ(k)) ≤ b

M∑
i=1

‖xi(k)‖2

Let xp
i = [xp

i (µ, 1)′, xp
i (µ, 2)′, . . .]′ denote the state trajectory for subsystem i ∈ IM gen-

erated by the input trajectories up
1(µ), . . . ,up

M (µ) obtained after p ∈ I+ (Algorithm 4.1) it-

erates and initial state µ. Let x
p(k)
i (µ(k), 0) = xi(k), i ∈ IM . At time k = 0, we have

µ(0) ∈ DC . From the definition of the initialization QP (Equation (4.14)) and Lemma 4.1,

there exists constant Kui > 0 independent of xi such that the N input sequence ũi(0)′ =

[ũi(0|0)′, ũi(1|0)′, . . . , ũi(N−1|0)′] obtained as the solution to Equation (4.14) satisfies ‖ũi(l|0)‖ ≤√
Kui‖xi(0)‖ ≤

√
Kui‖µ(0)‖, 0 ≤ l ≤ N − 1, i ∈ IM . Let Ku = maxi∈IM

Kui . Since 0 ∈

int(Ω1 × . . .× ΩM ) and the origin is Lyapunov stable and attractive with the cost relationship

given in Section 4.6.2, there exists an ε1 > 0 such that all the input inequality constraints in

the FC-MPC optimization for each subsystem remain inactive for any µ ∈ Bε1(0). Similarly,

choose ε2 > 0 such that the minimum l2 norm solution is feasible (and hence optimal) for

the initialization QP (Equation (4.14)) for all i ∈ IM and any µ ∈ Bε2(0). Feasibility of the

minimum l2 norm solution implies none of the input inequality constraints are active. Pick

ε = min(ε1, ε2) > 0. For µ ∈ Bε(0), the only active constraint, for each subsystem i ∈ IM , is

the terminal equality constraint Uui
′ ( CN (Ai, Bi)ui + AN

i xi(k)
)

= 0. In the above constraint,

Uui is obtained from a Schur decomposition of Ai and (Ai, Bi) is stabilizable. The rows of

Uui
′CN (Ai, Bi) are, therefore, linearly independent. From Lemma 4.8, ui(·) is Lipschitz con-

tinuous in µ for µ ∈ Bε(0). Hence, there exists ρ > 0 such that ‖up
i (µ)‖2 ≤ ρ

∑M
i=1 ‖xi‖2,
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∀ 0 < p ≤ p∗, i ∈ IM
8. Using arguments identical to those described in the proof for Theo-

rem 4.1, we have K = max(ρ, Zε
2
,Ku) where K > 0 and independent of xi, i ∈ IM such that

‖up
i (µ, j)‖2 ≤ K

∑M
i=1 ‖xi‖2, ∀ i ∈ IM , j ≥ 0, and all 0 < p ≤ p∗.

Define Ai = max0≤j≤N ‖Aj
i‖. For any i ∈ IM and 0 ≤ l ≤ N

‖xp(k)
i (µ(k), l)‖ = ‖Al

ix
p(k)
i (µ(k), 0) +

l−1∑
j=0

Al−1−j
i Biu

p(k)
i (µ(k), j)

+
∑
s 6=i

l−1∑
j=0

Al−1−j
i Wisu

p(k)
s (µ(k), j)‖

≤ ‖Al
i‖‖xi(k)‖+

l−1∑
j=0

‖Al−1−j
i ‖

‖Bi‖+
∑
s 6=i

‖Wis‖

√K

(
M∑
i=1

‖xi(k)‖2
)1/2

≤ Ai‖xi(k)‖+Ai

l−1∑
j=0

γ
√

K

(
M∑
i=1

‖xi(k)‖2
)1/2

≤ Ai

(
1 + γN

√
K
)( M∑

i=1

‖xi(k)‖2
)1/2

=
√

Γi

(
M∑
i=1

‖xi(k)‖2
)1/2

(4.26)

in which γ = maxi∈IM
‖Bi‖+

∑M
s 6=i ‖Wis‖ and Γi = Ai

(
1 + γN

√
K
)2

.

Define Σi to be the solution to the Lyapunov equation Asi
′ΣiAsi−Σi = −Usi

′QiUsi and

let Qi = UsiΣiUsi
′. The infinite sum

∑M
i=1 wi

∑∞
j=N Li(Al

ix
p(k)
i (µ(k), j), 0) subject to the termi-

nal state constraint Uui
′x

p(k)
i (µ(k), N) = 0 is equal to

∑M
i=1 wi

1
2x

p(k)
i (µ(k), N)′Qix

p(k)
i (µ(k), N).

8The details are available in the proof for Theorem 4.1 and are, therefore, omitted.
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J
p(k)
N (µ(k)) =

M∑
i=1

wi

[N−1∑
j=0

Li

(
x

p(k)
i (µ(k), j), up(k)

i (µ(k), j)
)

+
1
2
x

p(k)
i (µ(k), N)′Qix

p(k)
i (µ(k), N)

]
≤

M∑
i=1

wi

[
1
2

N−1∑
j=0

λmax(Qi)‖xp(k)
i (µ(k), j)‖2 + λmax(Ri)‖up(k)

i (µ(k), j)‖2

+
1
2
λmax(Qi)‖x

p(k)
i (µ(k), N)‖2

]

≤ 1
2

M∑
i=1

wi

N−1∑
j=0

(λmax(Qi)Γi + λmax(Ri)K) + λmax(Qi)Γi

 M∑
i=1

‖xi(k)‖2

≤ 1
2

M∑
i=1

wi

[
Nλmax(Qi)Γi + Nλmax(Ri)K + λmax(Qi)Γi

] M∑
i=1

‖xi(k)‖2

≤ b

M∑
i=1

‖xi(k)‖2

in which the constant b is independent of the initialization strategy used for the subsystem

input trajectories and selected such that

0 ≤ 1
2

M∑
i=1

wi

[
Nλmax(Qi)Γi + Nλmax(Ri)K + λmax(Qi)Γi

]
≤ b

Hence, the closed-loop system is exponentially stable, as claimed.
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Chapter 5

Output feedback distributed MPC 1

In this chapter, we consider the FC-MPC framework with distributed state estimation. Subsys-

tem based Kalman filters are used to estimate subsystem states from local measurements. Two

distributed estimation strategies are presented here. Feasibility, optimality and closed-loop

stability properties for the distributed estimator-distributed regulator combination in the case

of decaying estimate error are investigated. Finally, two examples are presented to illustrate

the effectiveness of the proposed approach

5.1 Notation and preliminaries

The symbol IM represents the set of integers {1, 2, . . . ,M}. The notation used in this chapter

is consistent with the notation introduced in Chapter 4. Some additional notation is required.

The vec(·) operator defined in Section 4.2 is extended for a finite set of (compatible) matrices

Yj ∈ Rsj×r, j = 1, 2, . . . , J, J ≥ 1 and finite i.e., vec(Y1, Y2, . . . , YJ) =
[
Y1
′ Y2

′ . . . YJ
′

]
′.

1Portions of this chapter appear in Venkat, Rawlings, and Wright (2006e) and in Venkat, Rawlings, and
Wright (2006g).
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For any matrix P , the symbol λmax(P ) denotes the maximum eigenvalue of P . Define

CN (A,B) =
[
B AB . . . AN−1B

]
,

in which N represents the control horizon. Let x̂i denote an estimate of the states of subsystem

i. The notation µ̂ denotes the set of estimated composite model (CM) states x̂1, x̂2, . . . x̂M i.e.,

µ̂ = [x̂1, x̂2, . . . , x̂M ].

We use µ̂ ∈ X to imply vec(µ̂) = vec(x̂1, . . . , x̂M ) ∈ X . The norm operator for µ̂ is defined

as ‖µ̂‖ = ‖vec(x̂1, . . . , x̂M )‖ =
√∑M

i=1 ‖x̂i‖2. Let ei denote the state estimate error for subsys-

tem i ∈ IM . Let (Acm ∈ Rn×n, Bcm ∈ Rn×m, Ccm ∈ Rny×n) denote the A,B and C matrices

respectively for the composite model (CM) for the entire plant (see Chapter 4, Equation (4.2))

with n =
∑M

i=1 ni, m =
∑M

i=1 mi and ny =
∑M

i=1 nyi . It is assumed that (Acm, Bcm) is stabiliz-

able and (Acm, Ccm) is detectable. For each (Aij , Bij , Cij) in the CM for subsystem i, we have

Aij ∈ Rnij×nij , Bij ∈ Rnij×mj , Cij ∈ Rnyi×nij with ni =
∑M

j=1 nij .

Consider the nonminimal, LTI system (Am, Bm, Cm, Gm) defined as

x(k + 1) = Amx(k) + Bmu(k) + Gmw(k) (5.1a)

y(k) = Cmx(k) + ν(k) (5.1b)

in which Am ∈ Rn×n, Bm ∈ Rn×m, Cm ∈ Rny×n, Gm ∈ Rn×g. The terms w(k) and ν(k) are

zero-mean disturbances, with covariances Qx, Rv respectively, that affect the state and out-

put equation. It is assumed that (Am, Bm) is stabilizable and (Am, Cm) is detectable. The
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noise shaping matrix Gm and the noise covariances Qx, Rv are usually unknown and have to

be estimated from process data. Let T be a similarity transform for the LTI system and let

(Ãm, B̃m, C̃m, G̃m) = (TAmT−1, TBm, CmT−1, TGm) be the transformed system.

Lemma 5.1. Detectability (and hence stabilizability) is invariant under a similarity transformation.

This result follows from (Chen, 1999, Theorems 5.15 and 5.16, p. 200). An alternate

proof is given in Appendix 5.7.1.

5.2 State estimation for FC-MPC

Assumption 5.1. All interaction models are stable i.e., for each i, j ∈ IM , |λmax(Aij)| < 1, ∀j 6= i.

In the context of FC-MPC, the goal of distributed estimation is to ascertain the states

of each subsystem (decentralized and interaction) from local measurements. Observability

for the subsystem CM follows from Lemma 5.2, which is a mere restatement of the Hautus

Lemma (Sontag, 1998, p. 272).

Lemma 5.2 (Observability). For each subsystem i ∈ IM , (Ai, Ci) is observable if

rank

λI −Ai

Ci

 = ni, ∀ λ = λ(Ai)

A sufficient condition for CM observability is stated below.

Corollary 5.2.1 (CM observability). For subsystem i, let (Aij , Cij), ∀ j ∈ IM be observable. If

λ(Ai1) ∩ λ(Ai2) ∩ . . . ∩ λ(AiM ) = ∅, the CM (Ai, Ci) is observable.
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Proof. For any λ ∈ λ(Ai), the conditions of the corollary imply, λ ∈ λ(Aij) for some unique

j ∈ IM . If the columns of

λI −Ai

Ci

 are not independent, we contradict observability of

(Aij , Cij), which proves the corollary.

Observability is usually a stronger than necessary requirement. The following lemma

provides a necessary and sufficient condition for detectability of each subsystem CM.

Lemma 5.3 (Detectability). Let Assumption 5.1 hold. The CM (Ai, Ci) is detectable if and only if

(Aii, Cii) is detectable.

A proof is given in Appendix 5.8.1.

Lemma 5.4. Let the noise shaping matrix, Gcm, for the plant CM (see Equation (4.2)) be defined as

GCM =
[
G1

′ G2
′ . . . GM

′

]
′. If (Acm, Gcm) is stabilizable then (Ai, Gi), ∀ i ∈ IM is stabilizable.

A proof is given in Appendix 5.8.2.

5.2.1 Method 1. Distributed estimation with subsystem-based noise shaping ma-

trices

We consider first, a distributed estimation framework in which the noise shaping matrix Gi ∈

Rni×gi and noise covariances Qxi , Rvi are estimated locally for each i ∈ IM . The steady-state

subsystem-based Kalman filters designed subsequently, require only local measurements. For

each subsystem i ∈ IM , let

xi(k + 1) = Aixi(k) + Biui(k) +
M∑
j 6=i

Wijuj(k) + Giwxi(k), wxi(k) ∼ N(0, Qxi) (5.2a)

yi(k) = Cixi(k) + νi(k), νi(k) ∼ N(0, Rvi) (5.2b)
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denote the CM employed by each subsystem’s Kalman filter, in which wxi ∼ N(0, Qxi) ∈ Rgi

and νi ∼ N(0, Rvi) ∈ Rnyi represent zero-mean white noise disturbances affecting the CM

state equation and output equation, respectively.

Assumption 5.2. For each i ∈ IM , (Aii, Cii) is detectable.

Assumption 5.3. For each i ∈ IM , (Aii, Bii) is stabilizable.

For the CM (Ai, Bi, {Wij}j 6=i, Ci, Gi) with (Aii, Cii) detectable and (Aii, Bii) stabiliz-

able, Lemma 5.3 gives (Ai, Ci) is detectable and (Ai, Bi) is stabilizable. There exists a sim-

ilarity transformation Ti that converts the CM for subsystem i into observability canonical

form (Kailath, 1980). Let (Âi, Ĉi) = (TiAiT
−1
i , CiT

−1
i ) be the A and C matrices of the CM in

observability canonical form, where

Âi =

Ao
i 0

A12
i Ao

i

 , Ĉi =
[
Co

i 0

]
(5.3)

From Lemma 5.1, (Âi, Ĉi) is detectable. Therefore, Ao
i , which corresponds to the unobservable

partition of the subsystem CM, is stable. The observable subsystem CM is

xo
i (k + 1) = Ao

i x
o
i (k) + Bo

i ui(k) +
∑
j 6=i

W o
ijuj(k) + Go

i wi(k), yi(k) = Co
i xo

i (k), xo
i ∈ Rno

i .

The noise covariances Go
i QxiG

o
i
′ and Rvi can be determined for the observable CM above,

using any of autocovariance least squares (ALS) methods available in the literature (Carew and

Bélanger, 1973; Mehra, 1970, 1972; Odelson, Rajamani, and Rawlings, 2006; Sims, Lainiotis,

and Magill, 1969). Here, we use the procedure described in Odelson et al. (2006). Since (Ai, Ci)

is detectable, a stable estimator gain Li exists and (Odelson et al., 2006, Assumptions 1 and
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2) are satisfied. The closed-loop data for estimating the covariances is generated using any

stable filter gain for each estimator i ∈ IM . The FC-MPC algorithm (Algorithm 4.1, p. 43) is

used for regulation. Two possible scenarios arise during estimation of the noise covariances.

In the first case, Go
i QxiG

o
i
′ and Rvi can be estimated uniquely. A necessary and sufficient

rank condition under which the ALS procedure gives unique estimates is given in (Odelson

et al., 2006, Lemma 4). For the observable subsystem model (Ao
i , C

o
i ) used in ALS estimation,

unique estimates of Go
i QxiG

o
i
′ and Rvi are obtained only if nyi ≥ no

i . For the case nyi < no
i ,

the estimates of Go
i QxiG

o
i
′ and Rvi are not unique. In this case, several choices for disturbance

covariances that generate the same output data exist. One may choose any solution to the

constrained ALS estimation problem (Odelson et al., 2006, Equation 13, p. 307) to calculate the

estimator gain. Let Go
iQxiGo

i
′ and Rvi represent a solution to the constrained ALS estimation

problem of (Odelson et al., 2006, Equation 13, p. 307) for subsystem i ∈ IM . A possible choice

for the noise shaping matrix and the noise covariances is Go
i ← Ini , Qxi ← Go

iQxiGo
i
′ and

Rvi ← Rvi . Another choice is Go
i ← Go

i

√
Qxi , Qxi ← Igi and Rvi = Rvi .

Lemma 5.5. Let Assumptions 5.1 and 5.2 be satisfied. Define Ĝi =

Go
i

0

. (Âi, Ĝi) is stabilizable if

and only if (Ao
i , G

o
i ) is stabilizable.

A proof is given in Appendix 5.8.3.

Define Gi = T−1
i Ĝi. From Lemma 5.1, (Ai, Gi) is stabilizable if and only if (Âi, Ĝi) is stabiliz-

able.

Corollary 5.5.1. Let Assumptions 5.1 and 5.2 be satisfied. Let Ĝi =

Go
i

0

. (Âi, ĜiQ
1/2
xi ) is stabiliz-

able if and only if (Ao
i , G

o
i Q

1/2
xi ) is stabilizable.
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The proof for Corollary 5.5.1 is similar to the proof for Lemma 5.5 and is omitted.

Remark 5.1. For each subsystem i ∈ IM , the conditions for the existence of a stable, steady-

state Kalman filter are identical to those described in (Poubelle, Bitmead, and Gevers, 1988,

Theorem 1) for a single (centralized) Kalman filter. Thus, if Rvi > 0, Qxi ≥ 0, (Ai, Ci) is

detectable and (Ai, GiQ
1/2
xi ) is stabilizable, the steady-state Kalman filter for subsystem i exists

and is a stable estimator. If Qxi > 0, the requirements for stability of the steady-state Kalman

filter reduce to Rvi > 0, (Ai, Ci) is detectable and (Ai, Gi) is stabilizable (Bertsekas, 1987).

Remark 5.2. The steady-state estimate error covariance for subsystem i ∈ IM , Pi, is the solution

to the algebraic Riccati equation

Pi = GiQxiGi
′ + AiPiAi

′ −AiPiCi
′ (Rvi + CiPiCi

′)−1
CiPiAi

′.

The steady-state Kalman filter gain Li for subsystem i is calculated as,

Li = PiCi
′ (Rvi + CiPiCi

′)−1
.

Under the conditions of Remark 5.1, we have |λmax(Ai −AiLiCi)| < 1.

In this distributed estimation framework, the noise shaping matrix and noise covari-

ances for each subsystem are identified using local process data. The estimators are decoupled,

stable, and require only local measurement information. The estimates generated by each local

Kalman filter may not be optimal, however.
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5.2.2 Method 2. Distributed estimation with interconnected noise shaping matri-

ces

In this estimation framework, the model used by each subsystem-based Kalman filter is

xi(k + 1) = Aixi(k) + Biui(k) +
M∑
j 6=i

Wijuj(k) + Giiwxi(k) +
M∑
j 6=i

Gijwxj (k)

yi(k) = Cixi(k) + νi(k),

in which wx
′ = [wx1

′, wx2
′, . . . , wxM

′] and ν ′ = [ν1
′, ν2

′, . . . , νM
′] denote zero mean white noise

disturbances affecting each CM state equation and output equation respectively, with wx(k) ∼

N(0, Qx), ν(k) ∼ N(0, Rv).

There exists a similarity transformation Tkf that converts the plant CM (Acm, Bcm, Ccm)

into the LTI system (Akf , Bkf , Ckf) in Kalman decomposition form (Kailath, 1980), in which

Akf =



Aco 0 A13 0

A21 Aco A23 A24

0 0 Aco 0

0 0 A43 Aco


, Bkf =



Bco

Bco

0

0


, Ckf =

[
Cco 0 Cco 0

]
. (5.4)

Let Gkf =
[
Gco

′ Gco
′ Gco

′ Gco
′

]
′ be the noise shaping matrix for the overall plant CM in

Kalman decomposition form. The matrix Gkf , is unknown and has to be determined from

available closed-loop data. Using Lemma 5.1, we know (Akf , Ckf) is detectable and (Akf , Bkf)

is stabilizable. Therefore, Aco, Aco and Aco, which correspond to the uncontrollable and/or

unobservable modes are stable matrices. Using any autocovariance least squares (ALS) tech-
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niques the plant noise covariances GcoQxGco
′ and Rv can be determined using closed-loop

data for the minimal plant CM (Aco ∈ Rnco×nco , Bco ∈ Rnco×m, Cco ∈ Rny×nco , Gco × Rnco×gco).

The closed-loop data for ALS estimation is generated by using any stable filter gain for each

subsystem-based estimator and the FC-MPC framework of Section 4.5 for each regulator. In

fact, the estimators designed using Section 5.2.1 may be used to generate closed-loop data for

this estimation framework. Similar to the scenario in Section 5.2.1, two cases arise here too. In

the first case, GcoQxGco
′ and Rv can be uniquely determined from closed-loop data by solv-

ing the constrained ALS estimation problem (Odelson et al., 2006, Equation 13). This scenario

corresponds to the case ny ≥ nco. For ny < nco, the solution the constrained ALS estimation

problem is not unique. In this case, a solution to the ALS estimation problem is used. Let

GcoQxGco
′,Rv denote a solution to the constrained ALS estimation problem (Odelson et al.,

2006, Equation 13). Two possible choices for the covariances and noise shaping matrix are

Gco ← Inco , Qx ← GcoQxGco
′, Rv ← Rv and Gco ← Gco

√
Qx, Qx ← Igco , Rv = Rv.

Lemma 5.6. Let (Aco, Gco) be stabilizable. If G
′
kf =

[
G
′
co, 0, 0, 0

]
, then (Akf , Gkf) is stabilizable.

The proof for Lemma 5.6 is similar to the proof for Lemma 5.5, and is omitted for

brevity.

By definition, Gcm =
[
G1

′ G2
′ . . . GM

′

]
′ = T−1

kf Gkf . Lemmas 5.1 and 5.6 give (Acm, Gcm)

is stabilizable. From Lemma 5.4, we know (Ai, Gi), ∀ i ∈ IM is stabilizable. Define Gi =

[Gi1, Gi2, . . . , GiM ].

Remark 5.3. For (Ai, Ci) detectable and (Ai, GiQ
1/2
x ) stabilizable, the steady-state error covari-

ance P i, for subsystem i ∈ IM is the solution to the algebraic Riccati equation

P i = GiQxGi
′ + AiP iAi

′ −AiP iCi
′ (Rvi + CiP iCi

′)−1
CiP iAi

′
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The steady-state Kalman filter gain is

Li = P iCi
′ (Rvi + CiP iCi

′)−1
, i ∈ IM

Under the conditions specified in Remark 5.1 (with Qxi replaced by Qx), the steady-state

Kalman filter for subsystem i is a stable estimator.

This distributed estimation framework described here is suboptimal, but admits a wider

class of structures for the noise shaping matrix as compared to the framework described in Sec-

tion 5.2.1. A systemwide computation of the noise covariances is required however. In fact the

estimation framework of Section 5.2.1 is a special case, in which each Gij = 0, j 6= i, ∀ i ∈ IM

and each off-diagonal block of Qx is a zero submatrix.

5.3 Output feedback FC-MPC for distributed regulation

For the set of estimated states µ̂, let Φ(up
1, . . . ,u

p
M ; µ̂) =

∑M
r=1 wrΦr(u

p
1, . . . ,u

p
M ; x̂r) represent

the value of the cooperation-based cost function after p (Algorithm 4.1) iterates. We assume

the following:

Assumption 5.4. For Algorithm 4.1, pmax(k) ≡ pmax = p∗, k ≥ 0, pmax ∈ I+ and 0 < pmax <∞.

Assumption 5.5. N ≥ max(α, 1), in which α = max(α1, . . . , αM ) and αi ≥ 0 denotes the number

of unstable modes for subsystem i ∈ IM .

Assumption 5.6. Qi(0) = Qi(1) = . . . = Qi(N − 1) = Qi > 0 and Ri(0) = Ri(1) = · · · =

Ri(N − 1) = Ri > 0, ∀ i ∈ IM .

Assumption 5.7. For each i ∈ IM , (Ai −AiLiCi) is stable.
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The evolution of the estimate error is given by ei(k + 1) = (Ai − AiLiCi)ei(k), in which ei(k)

is the state estimate error for subsystem i ∈ IM at time k. From Assumption 5.7 and Equa-

tion (5.12) (see Appendix 5.9.1), Zi = LiCi(Ai −AiLiCi), i ∈ IM .

FC-MPC control law under output feedback At time k and set of estimated subsystem states

µ̂(k), let the FC-MPC algorithm (Algorithm 4.1) be terminated after p(k) = q ≥ 1 cooperation-

based iterates. Let

uq
i (µ̂(k)) =

[
uq

i (µ̂(k), 0)′, uq
i (µ̂(k), 1)′, . . . , uq

i (µ̂(k), N − 1)′, 0, 0, . . .
] ′, ∀ i ∈ IM

represent the solution to Algorithm 4.1 after q iterates. The input injected into subsystem

i ∈ IM is uq
i (µ̂(k), 0). Let

u+
i (µ̂(k)) = [up

i (µ̂(k), 1)′, . . . , up
i (µ̂(k), N − 1)′, 0, 0, . . .]′ (5.5)

represent a shifted version of up
i (µ̂(k)), i ∈ IM .

5.3.1 Perturbed stability of systems with stable decentralized modes

Initialization. At time 0, each MPC is initialized with the zero input trajectory ui(j|0) =

0, 0 ≤ j, ∀ i ∈ IM . At time k + 1, the initial input trajectory for each subsystem’s MPC is

u0
i (k + 1) = u+

i (µ̂(k)), i ∈ IM . The cost function value for the set of feasible initial subsystem

input trajectories at k + 1 is J0
N (µ̂(k + 1)) = Φ

(
u0

1(k + 1),u0
2(k + 1), . . . ,u0

M (k + 1); µ̂(k + 1)
)
.
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Feasibility and domain of attraction. For (x̂ii(0), ei(0)) ∈ Rnii×Rni , the zero input trajectory

is feasible for each i ∈ IM . Existence of a feasible input trajectory for each i ∈ IM at k = 0 and

p(0) = 0 guarantees feasibility of Fi, ∀ i ∈ IM (Equation (4.9), p. 42) at all k ≥ 0, p(k) > 0. This

result follows from the initialization procedure, convexity of Ωi,∀ i ∈ IM and Algorithm 4.1.

The controllable domain for the nominal closed-loop system is Rn × Rn.

Assumption 5.8. For each i ∈ IM , Aii is stable, Qi = diag
(

Qi(1), . . . , Qi(N − 1), Qi

)
, in which

Qi is the solution of the Lyapunov equation Ai
′QiAi −Qi = −Qi

Exponential stability for the closed-loop system under the output feedback distributed

MPC control law is stated in the following theorem, which requires that the local estimators

are exponentially stable but makes no assumptions on the optimality of the estimates.

Theorem 5.1 (Stable modes). Consider Algorithm 4.1 employing the FC-MPC optimization problem

of Equation (4.9). Let Assumptions 5.1 to 5.8 hold. The origin is an exponentially stable equilibrium

for the perturbed closed-loop system

x̂i(k + 1) = Aix̂i(k) + Biu
p
i (µ̂(k), 0) +

∑
j 6=i

Wiju
p
j (µ̂(k), 0) + Ziei,

ei(k + 1) = (Ai −AiLiCi)ei(k), i ∈ IM ,

for all ((x̂i(0), ei(0)), i ∈ IM ) ∈ Rn × Rn and all p = 1, 2, . . . , pmax.

The proof is given in Appendix 5.9.3.
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5.3.2 Perturbed closed-loop stability for systems with unstable decentralized modes

For systems with unstable modes, a terminal state constraint that forces the unstable modes to

the origin at the end of the control horizon is employed in each FC-MPC optimization problem

(Equation (4.9)). This terminal state constraint is necessary for stability. From Assumption 5.1,

unstable modes, if any, are present only in the decentralized model. We have, therefore, that

Uui
′x̂i = Sui

′x̂ii, i ∈ IM , in which Uui and Sui , are obtained through a Schur decomposition of

Ai and Aii respectively 2. For i ∈ IM , define,

Si = {xii | ∃ui ∈ Ui such that Sui
′[ CN (Aii, Bii) ui + AN

ii xii] = 0} steerable set

to be the set of unstable decentralized modes that can be steered to zero in N moves. For stable

systems, Si = Rnii , i ∈ IM . By definition, Uui
′[ CN (Ai, Bi) ui + AN

i x̂i] = Sui
′[ CN (Aii, Bii) ui +

AN
ii x̂ii]. From Assumption 5.1 and because the domain of each xij , i, j ∈ IM , j 6= i is Rnij ,

DRi = Rni1 × · · · ×Rni(i−1) × Si ×Rni(i+1) × · · · ×RniM ⊆ Rni , i ∈ IM , domain of regulator

represents the set of all xi for which an admissible input trajectory ui exists that drives the

unstable decentralized modes Uui
′xi to the origin. A positively invariant set, DC , for the per-

turbed closed-loop system

x̂+
i = Aix̂i + Biu

p
i (µ̂, 0) +

M∑
j 6=i

Wiju
p
j (µ̂, 0) + Ziei, e+

i = (Ai −AiLiCi)ei, i ∈ IM (5.6)

2The Schur decomposition of Aii =
ˆ
Ssi Sui

˜ »
Asii

L
Auii

– »
Ssi

′

Sui
′

–
,Ai =

ˆ
Usi Uui

˜ »
Asi

N
Aui

– »
Usi

′

Uui
′

–
.

Eigenvalues of Auii , Aui are on or outside the unit circle. Eigenvalues of Asii , Asi are strictly inside the unit
circle.



101

is given by

DC = {((x̂i, ei), i ∈ IM ) |
(
(x̂+

i , e+
i ), i ∈ IM

)
∈ DC , x̂i ∈ DRi , i ∈ IM} domain of controller

(5.7)

A subsystem-based procedure to construct DC is described below. Let the current de-

centralized state for subsystem i be x̂ii. The perturbed decentralized model for subsystem

i ∈ IM is

x̂+
ii = Aiix̂ii + Biiu

p
i (µ̂, 0) + TiiZiei, (5.8a)

e+
i = (Ai −AiLiCi)ei, (5.8b)

in which ei is the estimate error for subsystem i, Zi is defined in Equation (5.12) (see Ap-

pendix 5.9.1), and Tii = [0, . . . , I︸︷︷︸
ith

, . . . , 0] ∈ Rnii×ni . A positively invariant set can be con-

structed for the system described by Equation (5.8) using any of the techniques available

in the literature for backward construction of polytopic sets under state and control con-

straints (Blanchini, 1999; Gutman and Cwikel, 1987; Keerthi and Gilbert, 1987; Rakovic, Kerri-

gan, Kouramas, and Mayne, 2004). The positively invariant set DDi is defined as

DDi = {(x̂ii, ei) | (x̂+
ii , e

+
i ) ∈ DDi , x̂ii ∈ Si}, domain of steerable decentralized states

in which (x̂+
ii , e

+
i ) is obtained using Equation (5.8). A brief synopsis of the construction is

given in Appendix 5.9.4. The positively invariant set, DC , for the perturbed closed-loop system
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(Equation (5.6)) can also be obtained as

DC = {((x̂i, ei), i ∈ IM ) | (x̂+
ii , e

+
i ) ∈ DDi , x̂i ∈ DRi , i ∈ IM}.

Initialization. At time 0, let ((x̂i(0), ei(0)), i ∈ IM ) ∈ DC . A feasible input trajectory, there-

fore, exists for each i ∈ IM , and can be computed by solving the following quadratic program

(QP).

u0
i (0) = arg min

ui

‖ui‖2

subject to

ui ∈ Ui

Uui
′[ CN (Ai, Bi) ui + AN

i x̂i(0)] = 0

We have u0
i (0) = [u0

i (0), 0, 0, . . . . . .]. Let u+
i (µ̂(k)) = [up(k)

i (µ̂(k), 1)′, . . . , up(k)
i (µ̂(k), N − 1)′, 0]′

represent a shifted version of u
p(k)
i (µ̂(k)). For times k > 0, u0

i (k) = u+
i (µ̂(k − 1)) + vi(k), in

which vi(k) ∈ RmiN is calculated by solving the following QP for each i ∈ IM .

vi(k) = arg min
vi(k)

‖vi(k)‖2 (5.9a)

subject to

u+
i (µ̂(k − 1)) + vi(k) ∈ Ui (5.9b)

U
′
ui

[ CN (Ai, Bi)
(
u+

i (µ̂(k − 1), 1) + vi(k)
)

+ AN
i x̂i(k)] = 0 (5.9c)
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Since DC is positively invariant (by construction) and ((x̂i(0), ei(0)), i ∈ IM ) ∈ DC , a solution

to the optimization problem of Equation (5.9) exists for all i ∈ IM and all k > 0. Define

vi(k) = [vi(k)′, 0, 0, . . .]′.

Assumption 5.9. α > 0 (see Assumption 5.5).

For each i ∈ IM , Qi = diag
(

Qi(1), . . . , Qi(N − 1), Qi

)
, in which Qi = UsiΣiUsi

′ with Σi

obtained as the solution of the Lyapunov equation Asi
′ΣiAsi − Σi = −Usi

′QiUsi .

The following theorem establishes exponential closed-loop stability under output feed-

back for systems with unstable modes.

Theorem 5.2 (Unstable modes). Let Assumptions 5.1 to 5.7 and Assumption 5.9 hold. Consider

Algorithm 4.1, using the FC-MPC optimization problem of Equation (4.9) with an additional end con-

straint Uui
′x̂i(k +N |k) = Uui

′[ CN (Ai, Bi) ui +AN
i x̂i(k)] = 0 enforced on the unstable decentralized

modes. The origin is an exponentially stable equilibrium for the perturbed closed-loop system

x̂i(k + 1) = Aix̂i(k) + Biu
p
i (µ̂(k), 0) +

∑
j 6=i

Wiju
p
j (µ̂(k), 0) + Ziei,

ei(k + 1) = (Ai −AiLiCi)ei(k), i ∈ IM ,

for all ((x̂i(0), ei(0)), i ∈ IM ) ∈ DC (Equation (5.7)) and all p = 1, 2, . . . , pmax.

The proof is given in Appendix 5.9.5.

Remark 5.4. In Venkat et al. (2006f), it is shown that the nominal distributed MPC control law

is exponentially stable. Lipschitz continuity of the nominal distributed MPC control law in the

subsystem states µ is established. Asymptotic stability of the output feedback distributed MPC

control law under decaying perturbations follows using (Scokaert et al., 1997, Theorem 3).



104

5.4 Example: Integrated styrene polymerization plants

We revisit the integrated styrene polymerization plants example described in Section 3.1. The

performance of the FC-MPC framework under output feedback is evaluated and compared

against the performance of decentralized and centralized MPC. The evolution of the system

states is affected by zero mean random disturbances (noise). These random disturbances also

corrupt available measurements. Subsystem-based Kalman filters are employed to estimate

the composite model states. Two cases for the FC-MPC framework are considered, In the first

case, the FC-MPC algorithm (Algorithm 4.1) is terminated after 1 iterate and in the second

case, Algorithm 4.1 is terminated after 10 iterates. The performance of the FC-MPC frame-

work tracking the temperature of each polymerization reactor in the first plant is shown in

Figure 5.1. The closed-loop costs are compared in Table 5.1. The FC-MPC framework, with Al-

gorithm 4.1 terminated after 1 iterate achieves performance that is within 1.2% of the optimal,

centralized MPC performance. All plant outputs track their respective set points in ∼ 25 hrs,

roughly two-fifths the time required under decentralized MPC.

Λcost Performance loss
(w.r.t centralized MPC)

Centralized-MPC 18.84 -
Decentralized-MPC 1608 8400%
FC-MPC (1 iterate) 18.94 0.54%
FC-MPC (5 iterates) 18.84 0%

Table 5.1: Closed-loop performance comparison of centralized MPC, decentralized MPC and
FC-MPC.
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Figure 5.1: Interacting polymerization processes. Temperature control in the two polymeriza-
tion reactors. Performance comparison of centralized MPC, decentralized MPC and FC-MPC
(1 iterate).

5.5 Distillation column control

We revisit the distillation column considered in Section 4.7.1 (p. 54). The performance of cen-

tralized MPC, communication-based MPC and FC-MPC is investigated under output feed-

back. For communication and cooperation-based MPC, a local Kalman filter is employed for

each subsystem. For centralized MPC, a single Kalman filter is used to estimate system states.

Stochastic disturbances affect the evolution of the states and corrupts process measurements.

The state and measurement noise covariances for each local estimator are Qxi = 0.5Ini and

Rvi = 0.1Inyi
, i = 1, 2. For the centralized estimator Qx = diag(Qx1 , Qx2), Rv = diag(Rv1 , Rv2).

At time 0, xi(0) = 0ni , x̂i(0) = −0.1Ini , i = 1, 2. The performance of the different

MPC frameworks, in the presence of estimate error, is shown in Figure 5.2. Communication-
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based MPC is unstable for this case. FC-MPC (1 iterate) stabilizes the system but achieves poor

closed-loop performance relative to centralized MPC. FC-MPC (10 iterates) achieves improved

closed-loop performance that is within 30% of the optimal centralized MPC. On iterating Al-

gorithm 4.1 to convergence, the performance of FC-MPC is within a pre-specified tolerance of

centralized MPC.
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Figure 5.2: Setpoint tracking performance of centralized MPC, communication-based MPC
and FC-MPC under output feedback. The prior model state at k = 0 underestimates the actual
system states by 10%.

5.6 Discussion and conclusions

An output feedback distributed MPC framework with guaranteed feasibility, optimality and

perturbed closed-loop stability properties was described in this chapter. Two distributed state

estimation strategies were proposed for estimating the subsystem states using local measure-
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ments. An attractive feature of the distributed estimator design procedure described in Sec-

tion 5.2.1 is that it requires only local process data. The subsystem-based estimation strategy

proposed in Section 5.2.2 allows a more general structure for the noise covariances and the

noise shaping matrix. The latter strategy, however, requires a systemwide computation of the

noise covariances, which may not be feasible in some cases. The distributed estimation strate-

gies presented here do not need a master processor. The designed subsystem-based Kalman

filters are stable estimators. Only local measurements are required for estimator updates. The

trade-off here is the suboptimality of the generated estimates; the obtained estimates, how-

ever, converge to the optimal (centralized) estimates exponentially. The FC-MPC algorithm

(Algorithm 4.1, p 43) is used for distributed regulation. Closed-loop stability under decaying

perturbations for all (Algorithm 4.1) iteration numbers was established. The perturbed closed-

loop stability result guarantees that the distributed estimator-distributed regulator assembly

is stabilizing under intermediate termination of the FC-MPC algorithm.

5.7 Appendix: Preliminaries

5.7.1 Proof of Lemma 5.1

Proof. Let T be a similarity transform for the LTI system (Am, Bm, Cm, Gm) with (Am, Bm)

stabilizable and (Am, Cm) detectable. Let the transformed LTI system be

(Ãm, B̃m, C̃m, G̃m) = (TAmT−1, TBm, CmT−1, TGm).
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We know from the Hautus lemma Sontag (1998) that

rank(H[λ]) = rank

λI −Am

Cm

 = n, ∀ λ ∈ λ(Am), |λ| ≥ 1

From the definition of T and H[λ], we have

H[λ] =

λI −Am

Cm

 =

λI − T−1ÃmT

C̃mT

 =

T−1

I


λI − Ãm

C̃m

T

Let H̃[λ] =

λI − Ãm

C̃m

. Therefore, H̃[λ] =

T

I

H[λ] T−1. Suppose (Ãm, C̃m) is not de-

tectable. By assumption, there exists λ1, |λ1| ≥ 1 and z such that H̃[λ1]z = 0, z 6= 0, which

gives

T

I

H[λ1] T−1z = 0, z 6= 0

Let v = T−1z. Since z 6= 0 and T is full rank, v 6= 0. This gives H[λ1]v = 0, v 6= 0, which

contradicts detectability of (Am, Cm). The arguments establishing the implication (Ãm, C̃m)

detectable =⇒ (Am, Cm) detectable are similar to those used earlier with T replaced by T−1.

Since stabilizability of (Ãm, B̃m) ≡ detectability of (Ãm
′, B̃m

′), stabilizability is also invariant

under a similarity transformation.
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5.8 Appendix: State estimation for FC-MPC

Theorem 5.3. Let

A =

A
As

 ∈ R(n+ns)×(n+ns), C =
(
C Cs

)
∈ Rny×(n+ns), (5.10)

in which As is stable, A ∈ Rn×n and C ∈ Rny×n. The pair (A, C) is detectable if and only if (A, C) is

detectable.

Proof. From the Hautus lemma for detectability (Sontag, 1998, p. 318), (A, C) is detectable iff

rank


λI −A

C


 = n, ∀ |λ| ≥ 1.

(A, C) detectable =⇒ (A, C) detectable. Consider |λ| ≥ 1. Detectability of (A, C) implies the

columns of

λI −A

C

 are independent. Hence,


λI −A

0

C

 has independent columns. SinceAs

is stable, the columns of λI − As are independent, which implies the columns of


0

λI −As

Cs


are also independent. Due to the positions of the zeros, the columns of


λI −A 0

0 λI −As

C Cs



are also independent. Hence, (A, C) is detectable.
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(A, C) detectable =⇒ (A, C) detectable. We have from the Hautus lemma for detectability

that the columns of


λI −A

λI −As

C Cs



are independent for all |λ| ≥ 1. The columns of


λI −A

0

C

 are, therefore, independent. Hence,

the columns of

λI −A

C

 are independent, which gives (A, C) is detectable.

5.8.1 Proof for Lemma 5.3

Proof. Let A = Aii, C = Cii,

As = diag(Ai1, . . . , Ai(i−1), Ai(i+1), . . . , AiM ) and Cs = [Ci1, . . . , Ci(i−1), Ci(i+1), . . . , CiM ].

Also, let A, C be given by Equation (5.10). We note that Ai = UAU , Ci = CU , in which U is a

unitary matrix (hence a similarity transform). Invoking Theorem 5.3 and Lemma 5.1, we have

the required result.
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5.8.2 Proof for Lemma 5.4

Proof. Define Al = diag(A1, A2, . . . , Al−1) and Gl = [G1
′, G2

′, . . . , Gl−1
′]′, l ∈ IM . We have for

all λ ∈ λ(Acm), |λ| ≥ 1

rank
[
λI −Acm Gcm

]
= rank

λI − AM GM

λI −AM GM

 = n

This gives rank
[
λI −AM GM

]
= nM or we violate stabilizability of (Acm, Gcm). Hence,

(AM , GM ) is stabilizable. We also have rank
[
λI − AM GM

]
= n−nM = sM−1. Now consider[

λI − AM GM

]
. We have

rank
[
λI − AM λI −GM

]
rank

λ1I − AM−1 GM−1

λ1I −AM−1 GM−1

 = sM−1 = sM−2+nM−1,

which gives rank
[
λI −AM−1 GM−1

]
= nM−1 i.e., (AM−1, GM−1) is stabilizable. Proceeding

in this manner, we have (Ai, Gi), ∀ i ∈ IM is detectable.

5.8.3 Proof for Lemma 5.5

Proof. (Âi, Ĝi) stabilizable =⇒ (Ao
i , G

o
i ) stabilizable. By assumption, we have

rank

λI −Ao
i 0 Go

i

−A12
i λI −Ao

i 0

 = ni = no
i + no

i , ∀ |λ| ≥ 1,
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in which Ao
i ∈ Rno

i×no
i . Consider |λ| ≥ 1. From the rank condition above, we have that the

rows of [λI −Ao
i , 0, Go

i ] are independent. Hence, the rows of
[
λI −Ao

i Go
i

]
are independent

i.e., (Ao
i , G

o
i ) is stabilizable.

(Ao
i , G

o
i ) stabilizable =⇒ (Âi, Ĝi) stabilizable. Since (Ao

i , G
o
i ) is stabilizable, the rows of[

λI −Ao
i Go

i

]
are independent for all |λ| ≥ 1. Hence, the rows of

[
λI −Ao

i 0 Go
i

]
are

also independent. From Lemma 5.3, (Ai, Ci) is detectable. Since (Ai, Ci) is detectable, its

observability canonical form (Âi, Ĉi) is also detectable (Lemma 5.1). From Equation (5.3), Ao
i

is stable. The rows of λI−Ao
i are independent, which implies the rows of

[
−A12

i λI −Ao
i 0

]
are also independent. Due to the positions of the zeros, the rows of

λI −Ao
i 0 Go

i

−A12
i λI −Ao

i 0



are independent, which gives (Âi, Ĝi) is stabilizable.

5.9 Appendix: Perturbed closed-loop stability

Lemma 5.7 (Choi and Kwon (2003)). Suppose Z is a positive semidefinite n× n matrix and a, b are

n-dimensional vectors. Then given δ > 0,

(a + b) ′Z (a + b) ≤ (1 + δ) a′Za +
(

1 +
1
δ

)
b′Zb (5.11)
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Table 5.2: Two valid expressions for αi

Case α1 α2 α3

1 (1 + δ) (1 + δ)
(
1 + 1

δ

) (
1 + 1

δ

)2

2 (1 + δ)2 (1 + δ)
(
1 + 1

δ

) (
1 + 1

δ

)
Consider the case in which Z = I . Lemma 5.7 gives

‖a + b‖2 ≤ (1 + δ)‖a‖2 +
(

1 +
1
δ

)
‖b‖2

Now, consider ‖a + b + c‖2. Repeated use of Lemma 5.7 gives

‖a + b + c‖2 ≤ α1‖a‖2 + α2‖b‖2 + α3‖c‖2

There are six valid expressions for the αi. Two valid expressions are given in Table 5.2.

Definition 5.1 (Hölder’s inequality). For any set of nonnegative quantities ai and bi, i =

1, 2, . . . , n, we have

(ap
1 + ap

2 + . . . + ap
n)1/p(bq

1 + bq
2 + . . . + bq

n)1/q ≥ a1b1 + a2b2 + . . . + anbn

in which p and q are related by

1
p

+
1
q

= 1

Corollary 5.1.1. For any set of nonnegative quantities ai, i = 1, 2, . . . , n, np−1 (
∑n

i=1 ap
i ) ≥

(
∑n

i=1 ai)
p.
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Proof. The result follows by choosing bi = 1, i = 1, 2, . . . , n in Hölder’s inequality (Defini-

tion 5.1), and noting that p
q = p− 1.

5.9.1 Preliminaries

Nominal closed-loop subsystem. Let Algorithm 4.1 be terminated after p ∈ I+ iterates. The

evolution of each nominal closed-loop subsystem i ∈ IM follows x+
i = Aixi + Biu

p
i (µ, 0) +∑

j 6=i Wiju
p
j (µ, 0) = F p

i (µ), in which up
i (µ, 0) is the control law for subsystem i.

Perturbed closed-loop subsystem. Let ei = xi − x̂i,	 denote the current estimate error for

subsystem i ∈ IM . The symbol x̂i,	 denotes the estimate of xi before current measurement yi

is available; x̂i represents the estimate of xi after yi is available. Let e+
i denotes the estimate

error at the subsequent time step.

Assumption 5.10. e+
i = AL

i ei, |λmax(AL
i )| < 1, i ∈ IM ,

For Algorithm 4.1 terminated after p iterates, the control law for subsystem i ∈ IM is

up
i (µ̂, 0) (see Section 5.3). We have the following equations for the filter for subsystem i

x̂i = x̂i,	 + Li(yi − Cix̂i,	), x̂+
i,	 = Aix̂i + Biu

p
i (µ̂, 0) +

M∑
j 6=i

Wiju
p
j (µ̂, 0),

in which x̂+
i,	 represents an estimate of the successor subsystem state x+

i before new measure-

ment y+
i is available and Li, i ∈ IM is the filter gain. For each subsystem i ∈ IM , we have

ξi(1) = x̂+
i − x̂+

i,	 = (x̂+
i,	 + LiCie

+
i )− x̂+

i,	 = Ziei, (5.12)
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in which Zi = LiCiAL
i and x̂+

i represents an estimate of x+
i after y+

i is available. Consider

Figure 5.3. Let xp
i = [ρp

i (1)′, ρp
i (2)′, . . .]′ be the state trajectory for subsystem i ∈ IM generated

by up
1, . . . ,u

p
M and initial subsystem state x̂i (trajectory A

p
i in Figure 5.3). We have ρp

i (1) =

x̂+
i,	, i ∈ IM . The evolution of ρp

i (j), j ≥ 1 in A
p
i is

ρp
i (j) = Aj−1

i ρp
i (1) +

j−1∑
l=1

Aj−1−l
i Biu

p
i (µ̂, l) +

M∑
s 6=i

j−1∑
l=1

Aj−1−l
i Wisu

p
s(µ̂, l) (5.13)

The state estimate for subsystem i ∈ IM at the subsequent time step is x̂+
i = ρp

i (1) + Ziei. Let

zi(1) = x̂+
i . For each i ∈ IM , let wi = [wi(1)′, wi(2)′, . . .]′, wi(j) ∈ Ωi, j ≥ 1 be an admissible

input trajectory from zi(1). Let zi = [zi(2)′, zi(3), . . .]′ be the state trajectory for subsystem

i ∈ IM generated by w1, . . . ,wM and initial subsystem state zi(1) (trajectory B0
i in Figure 5.3).

For zi(j) in B0
i , we write

zi(j) = Aj−1
i zi(1) +

j−1∑
l=1

Aj−1−l
i Biwi(l) +

M∑
s 6=i

j−1∑
l=1

Aj−1−l
i Wisws(l) (5.14)

ξi(1) = Ziei

trajectory Ap
i

trajectory B0
i

ξi(2)

x̂+
i,	 = ρp

i (1)

ρp
i (2)

ρp
i (3)

x̂i

x̂+
i = zi(1)

wi(1)

zi(2)

wi(2)
zi(3)

wi(3)

Figure 5.3: Trajectory A
p
i is the state trajectory for subsystem i generated by up

1, . . . ,u
p
M and

initial subsystem state x̂i. The state trajectory B0
i for subsystem i is generated by w1, . . . ,wM

from initial state zi(1).
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Define ξi(j) = zi(j)− ρp
i (j), vi(j) = wi(j)− up

i (µ̂, j), j ≥ 1 and all i ∈ IM . For j = 1, we

know from Equation (5.12) that ξi(1) = Ziei, i ∈ IM . For j > 1, we have from Equations (5.13)

and (5.14) that

ξi(j) = Aj−1
i ξi(1) +

j−1∑
l=1

Aj−1−l
i Bivi(l) +

M∑
s 6=i

j−1∑
l=1

Aj−1−l
i Wisvs(l) (5.15)

For Algorithm 4.1 terminated after p iterates, the evolution of each perturbed closed-loop sub-

system i ∈ IM follows

x̂+
i = Aix̂i + Biu

p
i (µ̂, 0) +

M∑
j 6=i

Wiju
p
j (µ̂, 0) + Ziei, e+

i = AL
i ei (5.16)

5.9.2 Main result

Let µ̂+ = [x̂+
1 , . . . x̂+

M ] and p, q ∈ I+. For the set of estimated subsystem states µ̂, we assume

(WLOG) that Algorithm 4.1 is terminated after p iterates. At the subsequent time step with

estimated state µ̂+), let q (possibly different from p) iterates be performed. Let the distributed

MPC control law up
i (µ̂, 0), i ∈ IM be defined for µ̂ ∈ X0. Define Xu = {µ̂ | µ̂ ∈ X0, u

p
i (µ̂, 0) ∈

Ωi, i ∈ IM}.

Assumption 5.11. For the nominal closed-loop system x+
i = F p

i (µ), i ∈ IM ,

Jp
N (µ) = Φ(up

1, . . . ,u
p
M ;µ)
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is a Lyapunov function satisfying

ar

M∑
i=1

‖xi‖2 ≤Jp
N (µ) ≤ br

M∑
i=1

‖xi‖2 (5.17a)

∆JN (µ) ≤ −cr

M∑
i=1

‖xi‖2 (5.17b)

in which ar, br, cr > 0 and ∆JN (µ) = Jq
N (µ+)− Jp

N (µ).

Define the set

Z = { ((x̂i, ei), i ∈ IM ) |
(
(x̂+

i , e+
i ), i ∈ IM

)
∈ Z, µ̂ ∈ Xu}, (5.18)

in which (x̂+
i , e+

i ) is given by Equation (5.16). Let ((x̂i(0), ei(0)), i ∈ IM ) represent the set of

initial (estimated) subsystem states and initial estimate errors, respectively.

Theorem 5.4. Let Assumptions 5.6, 5.10 and 5.11 hold. Consider the auxiliary system

ξi(j + 1) = Aiξi(j) + Bivi(j) +
M∑
l 6=i

Wilvl(j), vi(j) + up
i (µ̂(0), j) ∈ Ωi, ∀ i ∈ IM , j ≥ 1,

with initial condition ξi(1) = Ziei(0). Suppose a set of perturbation trajectories

vi = [vi(1)′, vi(2)′, . . .]′, i ∈ IM

and a constant σr > 0 exist such that

M∑
i=1

wi

∞∑
j=1

Li(ξi(j), vi(j)) ≤ σr‖ei(0)‖2, (5.19)
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the perturbed closed-loop system

x̂i(k + 1) = Aix̂i(k) + Biu
p
i (µ̂(k), 0) +

M∑
l 6=i

Wilu
p
l (µ̂(k), 0) + Ziei(k),

ei(k + 1) = AL
i ei(k), i ∈ IM ,

is exponentially stable for all ((x̂i(0), ei(0)), i ∈ IM ) ∈ Z (Equation (5.18)).

Proof. To establish exponential stability, we choose a candidate Lyapunov function that com-

bines the regulator cost function and the subsystem state estimation errors (Choi and Kwon,

2003) employ a similar idea to show exponential stability of a single (centralized) MPC un-

der output feedback). Define V p
N ((x̂i, ei), i ∈ IM ) = Jp

N (µ̂)+ 1
2

∑M
i=1 wie

′
iΨiei to be a candidate

Lyapunov function, in which Ψi is the solution of the Lyapunov equationAL
i
′ΨiAL

i −Ψi = −Πi

and Πi > 0 is a user-defined matrix. Since AL
i is a stable matrix and Πi > 0, it follows that Ψi

exists, is unique and positive definite (p.d.) (Sontag, 1998, p. 230) for all i ∈ IM . Consider any

x̂i(0) = x̂i and ei(0) = ei, i ∈ IM such that ((x̂i, ei), i ∈ IM ) ∈ Z. We need to show (Vidyasagar,

1993, p. 267) that there exists constants a, b, c > 0 such that

a
M∑
i=1

[
‖x̂i‖2 + ‖ei‖2

]
≤ V p

N ((x̂i, ei), i ∈ IM ) ≤ b
M∑
i=1

[
‖x̂i‖2 + ‖ei‖2

]
(5.20a)

∆VN ((x̂i, ei), i ∈ IM ) ≤ −c

M∑
i=1

[
‖x̂i‖2 + ‖ei‖2

]
, (5.20b)

in which ∆V p
N ((x̂i, ei), i ∈ IM ) = V q

N

(
(x̂+

i , e+
i ), i ∈ IM

)
− V p

N ((x̂i, ei), i ∈ IM ).

For subsystem i ∈ IM , let xp
i = [ρp

i (1)′, ρp
i (2)′, . . .]′, ρp

i (1) = x̂+
i,	 = F p

i (x̂i) be the state

trajectory generated by the input trajectories up
1, . . . ,u

p
M , obtained after p Algorithm 4.1 iter-
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ates, and initial subsystem state x̂i (see Figure 5.3). Let wi = u+
i (µ) + vi, i ∈ IM (see Equa-

tion (5.5)) be a set of feasible subsystem input trajectories from µ̂+. The set of input trajectories

w1, . . . ,wM is used to initialize Algorithm 4.1 at the subsequent time step (from µ̂+). Let

zi = [zi(2)′, zi(3)′, . . .]′ denote the state trajectory generated by the set of feasible input trajec-

tories w1, . . . ,wM , in which zi(2) = Aix̂
+
i + Biwi(1) +

∑M
j 6=i wj(1). For convenience, we define

zi(1) = x̂+
i , ∀ i ∈ IM . By definition (see p. 116), we have zi(j) = ρp

i (j) + ξi(j), j ≥ 1, i ∈ IM ,

and from Equation (5.12), ξi(1) = Ziei, i ∈ IM . Using Lemma 4.4, we have

Jq
N (µ̂+) = Φ([uq

1, . . . ,u
q
M ]; µ̂+) ≤ Φ([w1, . . . ,wM ]; µ̂+)

=
M∑
i=1

wi

∞∑
j=1

Li(zi(j), wi(j))

=
M∑
i=1

wi

∞∑
j=1

Li(ρ
p
i (j) + ξi(j), u

p
i (j) + vi(j))

Invoking Lemma 5.7 gives,

≤
M∑
i=1

wi

∞∑
j=1

[
(1 + δ)Li(ρ

p
i (j), u

p
i (j)) +

(
1 +

1
δ

)
L(ξi(j), vi(j))

]

Hence, we have

Jq
N (µ̂+) ≤ (1 + δ)

M∑
i=1

wi

∞∑
j=1

Li(ρ
p
i (j), u

p
i (j)) +

(
1 +

1
δ

) M∑
i=1

wi

∞∑
j=1

Li(ξi(j), vi(j))

≤ (1 + δ)

[
Jp

N (µ̂)−
M∑
i=1

wiLi(x̂i, u
p
i (µ, 0))

]
+
(

1 +
1
δ

)
σr

M∑
i=1

‖ei‖2
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We know Jp
N (µ) ≤ br

∑M
i=1 ‖xi‖2. Let ω = mini∈IM

wi
1
2λmin(Qi). Therefore,

Jq
N (µ̂+)− Jp

N (µ) ≤ δJp
N (µ̂)−

M∑
i=1

wiLi(x̂i, u
p
i (µ, 0)) +

(
1 +

1
δ

)
σr

M∑
i=1

‖ei‖2

≤ −(ω − δbr)
M∑
i=1

‖x̂i‖2 +
(

1 +
1
δ

)
σr

M∑
i=1

‖ei‖2

Since wi, Qi > 0, ∀ i ∈ IM , ω > 0. Subsequently, we can choose 0 < c < ω and δ∗ = ω − c
br

> 0.

Let d = σr

(
1 + 1

δ∗

)
. We have

Jq
N (µ̂+)− Jp

N (µ) ≤ −c
M∑
i=1

‖xi‖2 + d
M∑
i=1

‖ei‖2

Define

∆e =
1
2

M∑
i=1

wie
+
i
′Ψie

+(k + 1)− 1
2

M∑
i=1

wiei
′Ψiei

=
1
2

M∑
i=1

wi

{
ei
′ [AL

i
′ΨiAL

i −Ψi

]
ei

}

= −1
2

M∑
i=1

wiei
′Πiei

Let wmin = mini∈IM
wi. The restriction wi > 0, i ∈ IM implies wmin > 0. Since Πi is a user-

defined matrix, we can choose Πi = Π,∀ i ∈ IM such that λmin(Π) = 2
wmin

(d+ c) 3. Noting that

3e.g., choose Π to be any diagonal matrix with the smallest diagonal entry equal to 2
wmin

(d + c).
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∆VN (·) = Jq
N (µ̂+)− Jp

N (µ̂) + ∆e gives

∆VN ((x̂i, ei), i ∈ IM ) ≤ −c
M∑
i=1

‖x̂i‖2 + d
M∑
i=1

‖ei‖2 −
1
2

(
min
i∈IM

wiλmin(Πi)
) M∑

i=1

‖ei‖2

= −c

M∑
i=1

‖x̂i‖2 −
(

1
2
wminλmin(Π)− d

) M∑
i=1

‖ei‖2

= −c

M∑
i=1

[
‖x̂i‖2 + ‖ei‖2

]

Since Ψi > 0, ∀ i ∈ IM , there exists constants ae, be > 0 such that

ae

M∑
i=1

‖ei‖2 ≤
1
2

M∑
i=1

wiei
′Ψiei ≤ be

M∑
i=1

‖ei‖2.

The choice a = min(ar, ae), b = max(br, be) satisfies Equation (5.20a).

5.9.3 Proof for Theorem 5.1

Proof for Theorem 5.1. From Lemma 5.3, we have (Ai, Ci) is detectable. It follows from Sec-

tion 5.2 that there exists Li,∀i ∈ IM such thatAL
i = (Ai−AiLiCi) is a stable matrix. From (Son-

tag, 1998, p. 231), Qi > 0, i ∈ IM . Using arguments identical to the state feedback case

(see proof for Theorem 4.1, p. 81), constants ar, br and cr that satisfy Equation (5.17) can be

determined. We note that u+
i (µ̂), i ∈ IM is a set of feasible input trajectories for the suc-

cessor subsystem states µ̂+. For the choice vi = [0, 0, . . .]′, ∀ i ∈ IM , Equation (5.15) gives
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ξi(j) = Aj−1
i ξi(1), 1 ≤ j. Hence,

M∑
i=1

wi

∞∑
j=1

Li(ξi(j), vi(j)) =
M∑
i=1

wi

∞∑
j=1

Li(ξi(j), 0) =
M∑
i=1

wi

∞∑
j=1

ξi(j)′A
j−1
i

′QiA
j−1
i ξi(j)

=
M∑
i=1

wiξi(1)′Qiξi(1)

≤
M∑
i=1

wiλmax(Qi)‖Zi‖2‖ei‖2

The choice σr = max(w1λmax(Qi)‖Zi‖2, . . . , wMλmax(QM )‖ZM‖2) satisfies Equation (5.19). In-

voking Theorem 5.4 with Z = Rn × Rn completes the proof.

5.9.4 Construction of DDi
for unstable systems

Let εi > 0, selected arbitrarily small. Choose x̂ii ∈ X0
i ⊆ Si and ei ∈ Bεi(0). Define

Xi
0 = {(x̂ii, ei) | x̂ii ∈ X0

i , ei ∈ Bεi(0)}

Let

Xi
−1 = {(x̂ii, ei) | ∃up

i (µ̂, 0) ∈ Ωi such that (x̂+
ii , e

+
i ) ∈ Xi

0, x̂ii ∈ Si}

The set Xi
−1 consists of (x̂ii, ei) pairs for which an admissible distributed MPC control law for

subsystem i exists that drives the successor decentralized state and estimate error inside Xi
0.

Proceeding backwards in this manner, we have for any l ∈ I+ that

Xi
−l = {(x̂ii, ei) | ∃up

i (µ̂, 0) ∈ Ωi such that (x̂+
ii , e

+
i ) ∈ Xi

−l+1, x̂ii ∈ Si}



123

The maximal, positively invariant stabilizable set for subsystem i is Xi
−∞ =

⋃∞
l=1 X−l+1. Fi-

nite determination of this maximal, positively invariant stabilizable set is possible if and only

if Xi
−l = Xi

−l+1) for some l ∈ I+ (Blanchini, 1999; Kolmanovsky and Gilbert, 1998; Rakovic

et al., 2004). If finite determination of Xi
−∞ is possible, we set DDi = Xi

−∞. If Xi
−∞ cannot be

determined finitely, we make the conservative choice DDi = X−L for some L large.

5.9.5 Proof for Theorem 5.2

Proof for Theorem 5.2. Existence of Li = Li, i ∈ IM such that AL
i = (Ai − AiLiCi) is a stable

matrix follows from Lemma 5.3. A procedure for determining constants ar, br and cr satisfying

Equation (5.17) is given in the proof for Theorem 4.2 (see Appendix 4.10.6, p. 84) and is omitted

for brevity. Consider Figure 5.3. We have using Equation (5.13) and the definition of up
i (µ) that

Uui
′ρp

i (N) = Uui
′ρp

i (N + 1) = 0. For ((x̂i, ei), i ∈ IM ) ∈ DC (see Section 5.3.2), vi, i ∈ IM exists.

One possible choice for vi is the solution to the QP of Equation (5.9). Let vi = [vi
′, 0, . . .]′

and define wi = u+
i (µ̂) + vi, i ∈ IM to be admissible input trajectories from µ̂+ satisfying

Uui
′zi(N + 1) = 0, i ∈ IM . Hence, Uui

′ξi(N + 1) = 0, ∀ i ∈ IM . Let j ∈ I+ ∪ {0}. From

Lemma 4.1 (p. 29), a constant Kei independent of ei exists for each i ∈ IM such that ‖vi(j)‖ ≤

Kei‖ei‖, 0 ≤ j and Uui
′ξi(N + 1) = 0. Let Ai = max0≤j≤N ‖Aj

i‖ and A = maxi∈IM
Ai. For each
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subsystem i ∈ IM , we have from Equation (5.15) that

‖ξi(j)‖ ≤ ‖Aj−1
i ‖‖ξi(1)‖+

j−1∑
l=1

‖Aj−1−l
i ‖‖Bi‖‖vi(l)‖+

j−1∑
l=1

M∑
s 6=i

‖Aj−1−l
i ‖‖Wis‖‖vs(l)‖

= A‖Zi‖‖ei‖+
j−1∑
l=1

A‖Bi‖Kei‖ei‖+
M∑
s 6=i

j−1∑
l=1

A‖Wis‖Kei‖es‖

≤ A(‖Zi‖+ N‖Bi‖Kei)‖ei‖+
M∑
s 6=i

NA‖Wis‖Kes‖es‖

≤ βei

M∑
s=1

‖es‖, ∀ 1 ≤ j ≤ N + 1,

in which βei = max(A(‖Zi‖ + N‖Bi‖Kei),Ξi) and Ξi = NAmaxs∈IM
‖Wis‖Kes . Let F∞ =∑M

i=1 wi
∑∞

j=1 Li (ξi(j), vi(j)). We have

F∞ =
M∑
i=1

wi

 N∑
j=1

Li(ξi(j), vi(j)) +
∞∑

j=N+1

Li(ξi(j), vi(j))


=

M∑
i=1

wi

 N∑
j=1

Li(ξi(j), vi(j)) +
1
2
ξi(N + 1)′Qiξi(N + 1)


≤

M∑
i=1

wi
1
2

[λmax(Qi)N + λmax(Qi)
]
β2

ei

(
M∑

s=1

‖es‖

)2

+ Nλmax(Ri)K2
ei
‖ei‖2



Invoking Corollary 5.1.1 with p, q = 2 and n = M gives,
(∑M

i=1 ‖ei‖
)2
≤M

∑M
i=1 ‖ei‖2. Hence,

F∞ ≤
M∑
i=1

wi
1
2

{[
λmax(Qi)N + λmax(Qi)

]
β2

ei
M

M∑
s=1

‖es‖2 + Nλmax(Ri)K2
ei
‖ei‖2

}
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Define the constants

ηa = max
i∈IM

1
2
wi

[
λmax(Qi)N + λmax(Qi)

]
β2

ei
M

ηb = max
i∈IM

1
2
wiNλmax(Ri)K2

ei

and η = Mηa + ηb. This gives F∞ ≤ η
∑M

i=1 ‖ei‖2, η > 0. Choosing σr = η and invoking

Theorem 5.4 with Z = DC proves the theorem.
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Chapter 6

Offset-free control with FC-MPC 1

This chapter addresses the issue of achieving offset-free control objectives with distributed

MPC. The standard practice in MPC is to augment the states in the process model with inte-

grating disturbances. In a distributed MPC framework, many choices for disturbance models

exist. From a practitioner’s standpoint, it is usually convenient to use local integrating distur-

bances. We consider first, a disturbance modeling framework to achieve zero-offset steady-

state control in the presence of nonzero mean disturbances and/or plant model mismatch.

Next, a distributed algorithm for computing the steady-state input, state and output targets

locally is described. Conditions that ensure offset-free control at steady state are discussed

subsequently. Two examples are presented to illustrate the efficacy of the distributed MPC

framework with distributed estimation, local disturbance modeling and distributed target cal-

culation. Finally, the main contributions of this chapter are summarized.

We make the following assumptions:

Assumption 6.1. All interaction models are stable i.e., for each i, j ∈ IM , |λmax(Aij)| < 1, ∀j 6= i.

Assumption 6.2. For each i ∈ IM , (Aii, Cii) is detectable.

1Portions of this chapter appear in Venkat et al. (2006e) and in Venkat et al. (2006g).
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Assumption 6.3. For each i ∈ IM , (Aii, Bii) is stabilizable.

6.1 Disturbance modeling for FC-MPC

For each subsystem i ∈ IM , the CM state is augmented with the integrating disturbance. The

augmented CM (Ãi, B̃i, {W̃ij}j 6=i, C̃i, G̃i) for subsystem i is

xi

di


︸ ︷︷ ︸

x̃i

(k + 1) =

Ai Bd
i

0 I


︸ ︷︷ ︸

Ãi

xi

di

 (k) +

Bi

0


︸ ︷︷ ︸

B̃i

ui(k) +
M∑
j 6=i

Wij

0


︸ ︷︷ ︸

W̃ij

uj(k) +

Gi

I


︸ ︷︷ ︸

G̃i

wxi

wdi

 (k),

yi(k) =
(

Ci Cd
i

)
︸ ︷︷ ︸

C̃i

xi

di

 (k) + νi(k),

in which di ∈ Rndi , Bd
i ∈ Rni×ndi , Cd

i ∈ Rnyi×ndi . The vectors wxi(k) ∼ N(0, Qxi) ∈ Rngi ,

wdi
(k) ∼ N(0, Qdi

) ∈ Rndi and νi(k) ∼ N(0, Rvi) ∈ Rnyi are zero mean white noise distur-

bances affecting the augmented CM state equation and output equation, respectively. The no-

tation (Bd
i , Cd

i ) represents the input–output disturbance model pair for subsystem i, in which

Bd
i = vec(Bd

i1, . . . , B
d
ii, . . . , Bd

iM ). The augmented decentralized model (Ãii, B̃ii, C̃ii) is ob-

tained by augmenting the decentralized state xii with the integrating disturbance di. It is

assumed that the augmented decentralized model with the input-output disturbance model

pair (Bd
ii, Cd

i ) is detectable (hence, ndi
≤ nyi)

2.

Lemma 6.1. Let Assumptions 6.1 and 6.2 hold. For each subsystem i ∈ IM , let the augmented de-

centralized model (Ãii, C̃ii) with the input-output disturbance model pair (Bd
ii, Cd

i ) be detectable. The
2Conditions for detectability of the augmented decentralized model are given in (Pannocchia and Rawlings,

2002, Lemma 1, p. 431)
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augmented CM (Ãi, C̃i) with input disturbance model Bd
i = vec(Bd

i1, . . . B
d
ii, . . . , B

d
iM ), in which

Bd
ii = Bd

ii, Bd
ij = 0, j ∈ IM , j 6= i, and output disturbance model Cd

i , is detectable.

A proof is presented in Appendix 6.6.1.

In view of the internal model principle of Francis and Wonham (1976), it may be prefer-

able to choose disturbance models that best represent the actual plant disturbances. Hence, in

certain cases, it may be useful to use a more general input disturbance model of the form

Bd
i = vec(Bd

i1, . . . , B
d
ii, . . . , B

d
iM ) in conjunction with the output disturbance model Cd

i . The

following lemma gives a general condition for detectability of the augmented CM (Ãi, C̃i).

Lemma 6.2. Let Assumption 6.1 and 6.2 hold. The augmented CM (Ãi, C̃i), with input disturbance

model Bd
i = vec(Bd

i1, . . . , B
d
ii, . . . , B

d
iM ) and output disturbance model Cd

i , is detectable if and only if

rank

I −Ai −Bd
i

Ci Cd
i

 = ni + ndi
(6.1)

A proof is given in Appendix 6.6.2.

One method to satisfy the rank condition of Equation (6.1) is to pick Bd
i and Cd

i such

that range


 Bd

i

−Cd
i


 ⊆ null


I −Ai

Ci


′. Let (Ãi, C̃i) be detectable and let the steady-state

estimator gain for the state and integrating disturbance vector for subsystem i be denoted by
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Lxi and Ldi
respectively. The filter equations for subsystem i are

x̂i

d̂i

 (k|k) =

x̂i

d̂i

 (k|k − 1) +

Lxi

Ldi

(yi(k)− Cix̂i(k|k − 1)− Cd
i d̂i(k|k − 1)

)
(6.2a)

x̂i

d̂i

 (k + 1|k) =

Ai Bd
i

I


x̂i

d̂i

 (k|k) +

Bi

0

ui(k) +
M∑
j 6=i

Wij

0

uj(k) (6.2b)

in which x̂i, d̂i denotes an estimate of the state and integrating disturbance respectively, for

subsystem i.

6.2 Distributed target calculation for FC-MPC

For robustness and redundancy, the number of measurements is typically chosen greater than

the number of manipulated inputs. Consequently, one can achieve offset-free control for only

a subset of the measured variables. Define zi = Hiyi, zi ∈ Rnci ,Hi ∈ Rnci×nyi to be the set

of controlled variables (CVs) for each subsystem i ∈ IM . The choice of CVs is presumed to

satisfy:

Assumption 6.4.

rank

I −Aii −Bii

HiCii 0

 = nii + nci , i ∈ IM , (6.3)

Assumption 6.4 implies that the number of CVs for each subsystem i ∈ IM cannot

exceed either the number of manipulated variables (MVs) mi or the number of measurements

nyi , and that HiCii must be full row rank.
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Lemma 6.3. Let Assumptions 6.1 and 6.4 hold.

rank

I −Ai

HiCi

 = ni if and only if rank

I −Aii

HiCii

 = nii.

The proof is similar to the proof for Lemma 5.3, and is omitted.

Assumption 6.5. rank

I −Aii

HiCii

 = nii, i ∈ IM .

Assumption 6.5 is a weaker restriction than detectability of (Aii,HiCii). In the dis-

tributed target calculation framework, the steady-state targets are computed at the subsystem

level. At each iterate, an optimization and exchange of calculated steady-state information

among interacting subsystems is performed. For subsystem i ∈ IM , let zsp
i denote the setpoint

for the CVs and let uss
i represent the corresponding steady-state value for the MVs. Hence, we

write zsp
i = Giu

ss
i , where Gi is a steady-state gain matrix. The triplet (ysi , xsi , usi) represents the

steady-state output, state and input target for subsystem i. The target objective for subsystem

i ∈ IM , Ψi, is defined as Ψi(usi) = 1
2(uss

i −usi)
′Rui(u

ss
i −usi), in which Rui > 0. Each subsystem

i ∈ IM , solves the following QP at iterate t.

(x∗(t)sii
, u∗(t)si

) ∈ arg min
xsii,usi

1
2
(uss

i − usi)
′Rui(u

ss
i − usi) (6.4a)

subject to

usi ∈ Ωi (6.4b)I −Aii −Bii

HiCii


xsii

usi

 =

 Bd
iid̂i

zsp
i −HiC

d
i d̂i −

∑M
j 6=i

(
giju

t−1
sj

+ hij d̂i

)
 (6.4c)
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in which gij = HiCij(I −Aij)−1Bij , hij = HiCij(I −Aij)−1Bd
ij , ∀ i, j ∈ IM , j 6= i.

Existence. Let Assumption 6.4 be satisfied. Consider

I −Aii Bii

HiCii


xsii

usi

 =

 Bd
iid̂i

zsp
i −HiC

d
i d̂i −

∑M
j 6=i

(
gijusj + hij d̂i

)
 , i ∈ IM (6.5)

DT =
{(

(zsp
i , d̂i), i ∈ IM

)
| ∃ ((xsii , usi), i ∈ IM ) satisfying Equation (6.5)

and usj ∈ Ωj , ∀ j ∈ IM

}
domain of target

If DT is empty, the constraints are too stringent to meet zsp
i , i ∈ IM . For DT nonempty and(

(zsp
i , d̂i), i ∈ IM

)
∈ DT , the feasible region for Equation (6.4) is nonempty for each i ∈ IM .

Since Rui > 0, the objective is bounded below. A solution to Equation (6.4), therefore, exists

for all i ∈ IM (Frank and Wolfe, 1956).

Uniqueness.

Lemma 6.4. For each subsystem i ∈ IM , let Hi satisfy Assumption 6.4. Let Assumption 6.1 hold. The

solution to the target optimization problem (Equation (6.4)) for each i ∈ IM , if it exists, is unique if and

only if Assumption 6.5 is satisfied.

A proof is given in Appendix 6.6.4.

Corollary 6.4.1. x
∗(t)
si = [x∗(t)si1

′, . . . , x
∗(t)
siM

′]′, i ∈ IM is unique.
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Remark 6.1. It can be shown that (Ai,HiCi) is detectable if and only if (Aii,HiCii) is detectable.

For subsystem i, if Hi satisfies Assumption 6.4, (Aii,HiCii) is detectable and Assumption 6.1

holds, the solution to the optimization problem of Equation (6.4) is unique.

The steady-state targets for each i ∈ IM are obtained using the distributed target calcu-

lation algorithm given below.

Algorithm 6.1. Given
(
u0

si
, zsp

i , uss
i

)
, Rui > 0, ∀ i ∈ IM , tmax > 0, ε > 0

t← 1, κi ← Γε, Γ� 1

while κi > ε for some i ∈ IM and t ≤ tmax

do ∀ i ∈ IM

Determine (x∗(t)sii , u
∗(t)
si ) from Equation (6.4)

(xt
sii

, ut
si

)← wi(x
∗(t)
sii , u

∗(t)
si ) + (1− wi)(xt−1

sii
, ut−1

si
)

κi ← ‖(xt
sii

, ut
si

)− (xt−1
sii

, ut−1
si

)‖

Transmit (xt
sii

, ut
si

) to each interconnected subsystem j ∈ IM , j 6= i

end (do)

t← t + 1

end (while)

For each subsystem i ∈ IM at iterate t, the target state xt
sij

, j 6= i is calculated using

xt
sij

= (I − Aij)−1
[
Biju

t
sj

+ Bd
ij d̂i

]
and by definition, xt

si
= [xt

si1

′, . . . , xt
siM

′]′. All iterates gen-

erated by Algorithm 6.1 are feasible steady states. Furthermore, the target calculation objective

Ψ(·) =
∑M

i=1 wiΨi(ut
si

), in which wi > 0, i ∈ IM and
∑M

i=1 wi = 1, is a nonincreasing func-

tion of the iteration number t. Since Ψi(·), i ∈ IM is bounded below, the sequence of costs

{Ψ(ut
s1

, . . . , ut
sM

)} converges. The proof for monotonicity and convergence is identical to the
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proof for Lemma 4.4 and is omitted. Let Ψ(ut
s1

, . . . , ut
sM

)→ Ψ∞. Because an equality constraint

that couples input targets of different subsystems is included in the target optimization (Equa-

tion (6.4)), optimality at convergence may not apply for Algorithm 6.1. Define the limit set

S∞ = {((xsii , usi), i ∈ IM ) |Ψ(·) = Ψ∞}. It can be shown that the sequence (xt
sii

, ut
si

), i ∈ IM

(generated by Algorithm 6.1) converges to a point
(
(x∞sii

, u∞si
), i ∈ IM

)
∈ S∞. The targets

(x∞sii
, u∞si

), i ∈ IM may be different from (x∗si
, u∗si

), i ∈ IM , the optimal state and input targets

obtained using a centralized target calculation (Venkat, 2006). However, zsp
i = Cix

∞
si

+ Cd
d d̂i

and (I −Ai)x∞si
= Biu

∞
si

+
∑M

j 6=i Wiju
∞
sj

+ Bd
i d̂i, i ∈ IM .

6.2.1 Initialization

At time k = 0, Algorithm 6.1 is initialized with any feasible (x0
sii

(0), u0
si

(0)), i ∈ IM . Let Algo-

rithm 6.1 be terminated after t ∈ I+, t ≤ tmax iterates. For the nominal or constant disturbance

case, the steady-state pair (xt
si

(k), ut
si

(k)), i ∈ IM is a feasible initial guess for the distributed

target optimization problem (Equation (6.4)) at time k + 1. Using monotonicity and conver-

gence properties for Algorithm 6.1, (xt
si

(k), ut
si

(k)) converges to (x∞si
, u∞si

), i ∈ IM as k →∞.

6.3 Offset-free control with FC-MPC

The regulation problem described in Chapters 4 and 5 assumed the input and output targets

are at the origin. The targets may of course need to be nonzero while tracking nonzero set-

points or rejecting nonzero constant disturbances. To achieve offset-free control in the above

scenarios, a target calculation is performed and the target shifted states, inputs and outputs

are used in the regulator. In the FC-MPC framework, Algorithm 6.1 may be terminated at in-
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termediate iterates. For a large, networked system, the number of local measurements usually

exceeds the number of subsystem inputs. Also, only the CVs typically have setpoints. Offset-

free control can, therefore, be achieved for only the CVs. The choice of regulator parameters is

restricted to enable offset-free control in the CVs. Accordingly, the stage cost for subsystem i

is defined as

Li(ωi, νi) =
1
2

[
‖zi − zt

si
‖2Qzi

+ ‖ui − ut
si
‖2Ri

]
=

1
2
[
ωi
′Qiωi + νi

′Riνi

]

in which t is the number of distributed target calculation iterates, ω̂i = x̂i − xt
si

, νi = ui −

ut
si

, zsp
i = HiCix

t
si

+ HiC
d
i d̂i, Qzi , Ri > 0, Qi = Ci

′Hi
′QziHiCi and

(
(zsp

i , d̂i), i ∈ IM

)
∈ DT .

The cost function for subsystem i (Equation (4.5)) is rewritten as φi(ω̂ωωi(k), νννi(k); ω̂i(k)), where

ω̂ωωi(k) = [ωi(k + 1|k)′, ωi(k + 2|k)′, . . .]′, νννi(k) = [νi(k)′, νi(k + 1|k), . . .] and ω̂i(k + j + 1|k) =

Aiω̂i(k+j|k)+Biνi(k+j|k)+
∑M

s 6=i Wisνs(k+j|k), 0 ≤ j. It can be shown under the assumption

Qzi > 0 that (Ai, Q
1/2
i ) (with Qi defined as above) is detectable if and only if (Aii,HiCii) is

detectable. Let νννi(k) = [νi(k)′, . . . , νi(k + N − 1|k)]′. The FC-MPC optimization problem for

subsystem i is given by Equation (4.9), in which each uj , x̂j , j ∈ IM replaced by νννj , ω̂j ,

respectively.

For the augmented subsystem model (see Section 6.1), detectability of (Ãi, C̃i) implies

that a steady-state estimator gain L̃i exists such that Ãi − ÃiL̃iC̃i is stable. We have ẽ+
i =

(Ãi − ÃiL̃iC̃i)ẽi and Z̃i = L̃iC̃i(Ãi − ÃiL̃iC̃i), where ẽi is the estimate error for the augmented

subsystem model. Let µt
s = [xt

s1
, . . . , xt

sM
]. The evolution of the perturbed augmented system
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is given by

x̂i

d̂i


+

= Ãi

x̂i

d̂i

+ B̃iu
p
i (µ̂− µt

s, 0) +
M∑
j 6=i

W̃iju
p
j (µ̂− µt

s, 0) + Z̃iẽi, (6.6a)

ẽ+
i = (Ãi − ÃiL̃iC̃i)ẽi, zsp,+

i = zsp
i , i ∈ IM , (6.6b)

in which µ̂− µt
s = [x̂1 − xt

s1
, . . . , x̂M − xt

sM
]. Define

D̃C =
{(

(x̂i, d̂i, ẽi, z
sp
i ), i ∈ IM

)
|
(
(x̂+

i , d̂+
i , ẽ+

i , zsp,+
i ), i ∈ IM

)
∈ D̃C(

(zsp
i , d̂i), i ∈ IM

)
∈ DT , x̂i − xsi(z

sp
i , d̂i) ∈ DRi , i ∈ IM

}
domain of controller (6.7)

In Equation (6.7), (x̂+
i , d̂+

i , ẽ+
i , zsp,+

i ), i ∈ IM is calculated using Equation (6.6). The set D̃C is

positively invariant. The set D̃C represents the maximal positively invariant stabilizable set

for distributed MPC (with target calculation, state estimation and regulation) under constant

disturbances and time invariant setpoints.

Let (xt
si

, ut
si

) represent the state and input targets obtained for subsystem i ∈ IM after

t ∈ I+, t ≤ tmax Algorithm 6.1 iterations. Let FC-MPC based on either Theorem 5.1 (stable sys-

tems) or Theorem 5.2 (unstable systems) be used for distributed regulation. Let Algorithm 4.1

(p. 43) be terminated after p ∈ I+, p ≤ pmax iterations. The target shifted perturbed closed-loop

system evolves according to

ω̂i(k + 1) = Aiω̂i(k) + Biνi(k) +
M∑
j 6=i

Wijνj(k) + τx
i Z̃iẽi(k), (6.8a)

ẽi(k + 1) = (Ãi − ÃiL̃iC̃i)ẽi(k), i ∈ IM , (6.8b)
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in which ω̂i = x̂i − xt
si

, νi = up
i (µ̂ − µt

s, 0) and τx
i [x̂i

′, d̂i
′]′ = x̂i, i ∈ IM . The input injected into

subsystem i ∈ IM , after p Algorithm 4.1 iterations and t Algorithm 6.1 iterations, is up
i (µ̂ −

µt
s, 0)+ut

si
. The evolution of the disturbance estimate follows d̂i(k+1) = d̂i(k)+τd

i Z̃iẽi(k), i ∈

IM , where τd
i [x̂i

′, d̂i
′]′ = d̂i.

Theorem 6.1. Let (Ãi, C̃i), i ∈ IM be detectable. The origin is an exponentially stable equilibrium for

the target shifted perturbed closed-loop system given by Equation (6.8), in which (Ãi−ÃiL̃iC̃i), i ∈ IM

is stable and ω̂i(0) = x̂i(0) − xt
si

(0), for all p = 1, 2, . . . , pmax, t = 1, 2, . . . , tmax, k ≥ 0 for all(
(x̂i(0), d̂i(0), ẽi(0), zsp

i ), i ∈ IM

)
∈ D̃C .

A proof is given in Appendix 6.6.5.

Lemma 6.5. Let Assumptions 6.1 to 6.3 hold. Let (Ãi, C̃i), i ∈ IM be detectable, (Ãi−ÃiL̃iC̃i), i ∈ IM

be stable and ndi
= nyi , ∀ i ∈ IM . Also, let the input inequality constraints for each subsystem i ∈ IM

be inactive at steady state. If the closed-loop system under FC-MPC is stable, the FC-MPCs with

subsystem-based estimators, local disturbance models and distributed target calculation, track their

respective CV setpoints with zero offset at steady state i.e., zsp
i = Hiyi(∞), where yi(∞) is the output

for subsystem i at steady state, and Hi satisfies Assumption 6.4.

A proof is given in Appendix 6.6.6.

6.4 Examples

6.4.1 Two reactor chain with nonadiabatic flash

A plant consisting of two continuous stirred tank reactors (CSTRs) and a nonadiabatic flash is

considered. A schematic of the plant is shown in Figure 6.2. A description of the plant as well
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as MVs, CVs for each control subsystem was provided in Section 4.7.2 (p. 58). A linear model

for the plant is obtained by linearizing the plant around the steady state corresponding to the

maximum yield of B. The constraints on the manipulated variables are given in Table 6.1. In

the decentralized and distributed MPC frameworks, there are 3 MPCs, one each for the two

CSTRs and one for the nonadiabatic flash. In the centralized MPC framework, a single MPC

controls the entire plant.

Hm

F0, xA0, T0

Qb

Fpurge

D, xAd, xBd, Td

Hr

B→ C
A→ BA→ B

B→ C

Hb

Fb, xAb, xBb, Tb

MPC3

MPC1 MPC2

CSTR-1 CSTR-2

FLASH

Fm, xAm, xBm, Tm
Qr Qm

Fr, xAr, xBr, Tr

F1, xA1, T0

dk

Figure 6.1: Two reactor chain followed by nonadiabatic flash. Vapor phase exiting the flash is
predominantly A. Exit flows are a function of the level in the reactor/flash.

Table 6.1: Input constraints for Example 6.4.1. The symbol ∆ represents a deviation from the
corresponding steady-state value.

−0.2 ≤ ∆F0 ≤ 0.2 −8 ≤ ∆Qr ≤ 8
−0.04 ≤ ∆F1 ≤ 0.04 −2 ≤ ∆Qr ≤ 2
−0.25 ≤ ∆D ≤ 0.25 −8 ≤ ∆Qb ≤ 8

The states and integrating disturbances for each subsystem are estimated from mea-

surements. Input disturbance models are used to eliminate steady-state offset. The distur-
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bance models employed in each MPC framework are given in Table 6.2. In the FC-MPC

framework under output feedback, the states of each subsystem are estimated from local mea-

surements using subsystem-based Kalman filters. The steady-state targets are calculated in a

distributed manner employing Algorithm 6.1. Two cases for distributed target calculation in

the FC-MPC framework are considered. In the first case, distributed target calculation algo-

rithm is terminated after 10 iterates, and in the second case, the distributed target calculation

algorithm is iterated to convergence.

Table 6.2: Disturbance models (decentralized, distributed and centralized MPC frameworks)
for Example 6.4.1.

Bd
11 = 0.5

[
B11 B11

]
Cd

11 = 0.5Iz1

Bd
1 = vec(Bd

11, 0, 0) Cd
1 = 0.5Iz1

Bd
22 = 0.5

[
B22 B22

]
Cd

22 = 0.5Iz2

Bd
2 = vec(0, Bd

22, 0) Cd
2 = 0.5Iz2

Bd
33 = 0.5

[
B33 B33

]
Cd

33 = 0.5Iz3

Bd
3 = vec(0, 0, Bd

33) Cd
3 = 0.5Iz3

Bd = diag(Bd
1 , Bd

2 , Bd
3) Cd = diag(Cd

1 , Cd
2 , Cd

3 )

A feed flowrate disturbance affects CSTR-1 from time = 30. As a result of this flowrate

disturbance, the feed flowrate to CSTR-1 is increased by 5% (relative to the steady-state value).

The disturbance rejection performance of centralized MPC, decentralized MPC and FC-MPC

is investigated for the described disturbance scenario. A control horizon N = 15 is used for

each MPC. The sampling interval is 1.5. The weight for each CV is 10 and the weight for

each MV is 1. The performance of the different MPC frameworks rejecting the feed flowrate

disturbance to CSTR-1 (dk in Figure 6.1) is shown in Figure 6.2. The resulting temperature

and cooling duty changes are small and therefore, not shown. The closed-loop control costs

incurred by the different MPC frameworks are compared in Table 6.3.
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Figure 6.2: Disturbance rejection performance of centralized MPC, decentralized MPC and FC-
MPC. For the FC-MPC framework, ’targ=conv’ indicates that the distributed target calculation
algorithm is iterated to convergence. The notation ’targ=10’ indicates that the distributed tar-
get calculation algorithm is terminated after 10 iterates.

Under decentralized MPC, the feed flowrate disturbance causes closed-loop instabil-

ity. With the centralized MPC and FC-MPC frameworks, the system is able to reject the feed

flowrate disturbance. The feed flowrate disturbance dk to CSTR-1 causes an increase in Hr.

In the FC-MPC framework, MPC-1 lowers F0 to compensate for the extra material flow into

CSTR-1. MPC-3 cooperates with MPC-1 and helps drive Hr back to its setpoint by decreasing
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the recycle flowrate D to CSTR-1. The initial increase in Hr results in an increase in Fr, which

in turn increases Hm. Subsequently, Fm and hence, Hb also increase. To compensate for the

initial increase in Hm, MPC-2 decreases F1. The initial increase in Hb is due to an increase

in Fm (MPC-2) and decrease in D (MPC-3). To lower Hb, MPC-3 subsequently increases D.

MPC-1 continues to steer Hr to its setpoint, in spite of an increase in D (by MPC-3), through a

corresponding (further) reduction in F0.

Table 6.3: Closed-loop performance comparison of centralized MPC, decentralized MPC and
FC-MPC. The distributed target calculation algorithm (Algorithm 6.1) is used to determine
steady-state subsystem input, state and output target vectors in the FC-MPC framework.

Λcost × 102 ∆Λcost%
Cent-MPC 4.14 −−

Decent-MPC ∞ −−
FC-MPC (1 iterate, targ=conv) 5.74 38.4%

FC-MPC (1 iterate, targ=10) 7.12 71.2%
FC-MPC (10 iterates, targ=conv) 4.17 0.62%

FC-MPC (10 iterates, targ=10) 5.93 43.2%

The performance loss incurred under FC-MPC, with Algorithm 4.1 (p. 43) terminated

after 1 cooperation-based iterate and Algorithm 6.1 (p. 132) terminated after 10 iterates, is ∼

72% relative to centralized MPC. If the distributed target calculation algorithm (Algorithm 6.1)

is iterated to convergence, the performance loss w.r.t centralized MPC reduces to ∼ 38%. If

both Algorithm 4.1 and Algorithm 6.1 are terminated after 10 iterates, the performance loss

relative to centralized MPC is ∼ 43%. Iterating Algorithm 6.1 to convergence, and terminat-

ing Algorithm 4.1 after 10 iterates, improves performance to within 1% of centralized MPC

performance.
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6.4.2 Irrigation Canal Network

The key to agricultural productivity and the goal of irrigation canal networks is to provide

the right quantity of water at the right time and place. The need for flexible, “on-demand”

schedules has motivated the need for automatic control of these water networks. Each irriga-

tion canal consists of a fixed number of reaches that are interconnected through control gates.

In reach i (see Figure 6.3), the downstream water level yi is controlled by manipulating the

gate opening ui. However the water level yi is also affected by the gate opening ui+1 in reach

i + 1. At the downstream end of each reach i, an off-take discharge Qi supplies water to meet

local demands. For each reach, the off-take discharge is dictated by the local water demand.

Variations in the off-take discharge are disturbances for the system. Representative publica-

tions on the modeling and control of canal networks include Garcia, Hubbard, and de Vries

(1992); Sawadogo, Malaterre, and Kosuth (1995); Sawadogo, Faye, and Mora-Camino (2001);

Schuurmans, Bosgra, and Brouwer (1995). In most cases, different sections of the irrigation

canal network are administered by different governing bodies (e.g., different municipalities)

making centralized control impractical and unrealizable. It is also well known that a decen-

tralized control formulation in which each canal reach employs a local controller to regulate

water levels may realize poor closed-loop performance as a result of the interaction between

adjacent reaches.

The example we consider here is canal 2 of the test cases established by the ASCE task

committee Clemmens et al. (1998). The canal under consideration is fed by a constant water

level reservoir at its head. The canal consists of 8 interconnected reaches with the downstream

end closed (Figure 6.4). Between times 0.5 hrs and 2.5 hrs, an off-take discharge disturbance
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Reach i + 1

ui−1
ui

Reach i− 1

Qi+1

Qi−1

Qi−2

Reach i

yi

Qi

ui+1

Figure 6.3: Structure of an irrigation canal. Each canal consists of a number of interconnected
reaches.

affects reaches 1 − 8. During this time, reaches 1, 3, 5 and 7 experience an off-take discharge

disturbance of 2.5 m3/min and simultaneously, a discharge disturbance −2.5 m3/min affects

reaches 2, 4, 6 and 8. The closed-loop performance of centralized MPC, decentralized MPC

and FC-MPC, rejecting this off-take discharge disturbance is assessed. The permissible gate

opening ∆ui (deviation w.r.t to steady state) for each reach i, i ∈ {1, 2, . . . , 8} is given in Ta-

ble 6.4. In the decentralized and distributed MPC frameworks, there are 8 MPCs, one for each

reach.

Reach 8

7 Km

Gate 1

3 Km 3 Km 4 Km 4 Km 3 Km 2 Km 2 Km

Reach 1

Gate 8

Q1

Figure 6.4: Profile of ASCE test canal 2 Clemmens et al. (1998). Total canal length 28 km.
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Table 6.4: Gate opening constraints for Example 6.4.2. The symbol ∆ denotes a deviation from
the corresponding steady-state value.

−1.5 ≤ ∆u1 ≤ 1.5
−1.5 ≤ ∆u2 ≤ 1.5
−0.4 ≤ ∆u3 ≤ 0.4
−0.1 ≤ ∆u4 ≤ 0.1
−0.25 ≤ ∆u5 ≤ 0.25
−0.15 ≤ ∆u6 ≤ 0.15
−0.1 ≤ ∆u7 ≤ 0.1
−0.1 ≤ ∆u8 ≤ 0.1

In each MPC framework, the state and constant disturbances are estimated using a

steady-state Kalman filter. Output disturbance models are used to eliminate steady-state off-

set due to the unmeasured off-take discharge disturbances. In the FC-MPC formulation, the

distributed target calculation algorithm is iterated to convergence. The performance of the

different MPC frameworks, rejecting the off-take discharge disturbance in reaches 3, 4 and 6 is

shown in Figure 6.5. For each MPC, Qi = 10, Ri = 0.1, i ∈ {1, 2, . . . , 8}. The sampling rate is

0.1 hrs (or every 6 minutes) and the control horizon N for each MPC is 30.

Table 6.5: Closed-loop performance of centralized MPC, decentralized MPC and FC-MPC re-
jecting the off-take discharge disturbance in reaches 1 − 8. The distributed target calculation
algorithm (Algorithm 6.1) is iterated to convergence.

Λcost × 104 ∆Λcost%
Cent-MPC 4.58 −−

Decent-MPC 7.81 70.5%
FC-MPC (1 iterate) 7.41 61.8
FC-MPC (2 iterates) 5.88 28.4%
FC-MPC (5 iterates) 4.99 9.0%
FC-MPC (10 iterates) 4.72 3.1%

Based on control costs calculated at steady state (Table 6.5), decentralized MPC leads to

a control performance loss of ∼ 70% relative to centralized MPC performance. In the FC-MPC

framework, with Algorithm 4.1 terminated after a single iterate, the incurred performance loss

w.r.t centralized MPC is ∼ 62%. If the FC-MPC algorithm is terminated after 2 cooperation-
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Figure 6.5: Control of ASCE test canal 2. Water level control for reaches 3, 4 and 6.

based iterates, the performance loss reduces to ∼ 29% of centralized MPC performance. The

FC-MPC framework achieves performance that is within 3.25% of centralized MPC perfor-

mance if 10 cooperation-based iterates are allowed.
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6.5 Discussion and conclusions

A disturbance modeling framework that uses local integrating disturbances was employed.

This choice of local integrating disturbances is motivated by considerations of simplicity and

practical convenience. A simple rank test is shown to be necessary and sufficient to verify

suitability of postulated subsystem disturbance models. Next, a distributed target calculation

algorithm that computes steady-state input, state and output targets at the subsystem level

was described. All iterates generated by the distributed target calculation algorithm are feasi-

ble steady states. Also, the target cost function is monotonically nonincreasing with iteration

number. The attributes described above allow intermediate termination of the distributed tar-

get calculation algorithm. A maximal positively invariant stabilizable set for distributed MPC,

with state estimation, target calculation and regulation, was defined. This positively invariant

set characterizes system state, disturbance, estimate error and setpoint quadruples for which

the system can be stabilized using the distributed MPC control law. Zero-offset control at

steady state is established for the set of subsystem-based MPCs under the assumption that the

input constraints for each subsystem are inactive at the target. An interesting result, which

follows from Lemmas 6.1 and 6.5, is that disturbance models that achieve zero-offset steady-

state control under decentralized MPC are sufficient to realize offset-free steady-state control

in the FC-MPC framework.

Two examples were presented to illustrate the effectiveness of the proposed output

feedback distributed MPC framework. In the first example, control of a chemical plant was

investigated in the presence of a feed flowrate disturbance. The states of each subsystem were

estimated using a Kalman filter. Decentralized MPC is unable to reject the disturbance and re-
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sults in closed-loop unstable behavior. Here, the distributed target calculation algorithm was

terminated at an intermediate iterate. The FC-MPC framework is able to reject the disturbance

and achieves zero offset steady-state control performance for all values of distributed target

calculation and distributed regulation algorithm iteration numbers. Next, the distributed MPC

framework was employed to reject a discharge disturbance in a simulated irrigation canal net-

work. Local output disturbance models were used to achieve zero offset steady-state control

performance. The first iterate was observed to improve performance marginally (∼ 9%) com-

pared to decentralized MPC. A second iterate, however, leads to a significant improvement in

performance (∼ 41%) compared to decentralized MPC. For this example, it is recommended

that at least two iterates per sampling interval be performed.

Implementation. The structure of the FC-MPC framework with distributed estimation, local

disturbance modeling and distributed target calculation is shown in Figure 6.6. Each subsys-

tem uses a local Kalman filter to estimate its states and integrating disturbances. The only

external information required are the inputs injected into the interconnected subsystems. This

input information, however, is available in the regulator and consequently, no information

transfer between subsystems is needed at the estimation level. Next, the targets are calcu-

lated locally. The input target is relayed to all interacting subsystems after each iterate (Al-

gorithm 6.1). The setpoint for subsystem CVs, local integrating disturbances and the decen-

tralized state target need not be communicated to interconnected subsystems. For distributed

regulation, the subsystem state estimate is communicated to all interconnected subsystems at

each k; the recalculated input trajectories are broadcast to interacting subsystems after each

iterate. For each subsystem i ∈ IM , by setting wi = 1 and wj = 0, ∀ j 6= i in the FC-MPC
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regulator optimization problem and Aij , Cij = 0, ∀ j 6= i in the estimator and the target op-

timization problem, and by switching off the communication between the subsystems, we

revert to decentralized MPC.

y1 y2
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x̂1, d̂1 x̂2, d̂2

Target-1 Target-2
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Figure 6.6: Structure of output feedback FC-MPC.
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6.6 Appendix

6.6.1 Proof for Lemma 6.1

Proof for Lemma 6.1. From the Hautus Lemma for detectability (Sontag, 1998, p. 318), (Ãi, C̃i)

is detectable iff rank


λI − Ãi

C̃i


 = ni + ndi

, ∀ |λ| ≥ 1. Define

S(λ) =



λI −Aii −Bd
ii

(λ− 1)I

Cii Cd
i Cs

λI − As


=


λI − Ãii 0

C̃ii Cs

0 λI − As

 ,

in which Ãii =

Aii Bd
ii

I

, C̃d
ii =

[
Cii Cd

ii

]
denote respectively, the A and C matrix for the

augmented decentralized model and

As = diag(Ai1, . . . , Ai(i−1), Ai(i+1), . . . , AiM ), Aii ∈ Rnii×nii

Cs = [Ci1, . . . , Ci(i−1), Ci(i+1), . . . , CiM ]

Consider |λ| ≥ 1. Since As is stable, the columns of λI−As are independent. Hence the

columns of


0

Cs

λI − As

 are independent. By assumption,

λI − Ãii

C̃ii

 has nii +ndi
independent

columns. Due to the positions of the zeros, S(λ) has ni+ndi
independent columns. To complete
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the proof, we note that λI − Ãi

C̃i

 = US(λ)U,

in which U is an unitary matrix. Consequently, the columns of

λI − Ãi

C̃i

 are independent for

all |λ| ≥ 1. Hence, (Ãi, C̃i) is detectable.

6.6.2 Proof for Lemma 6.2

Proof. (Ãi, C̃i) detectable =⇒ rank condition. From the Hautus lemma for detectability (Son-

tag, 1998, p. 318), the columns of


λI −Ai −Bd

i

(λ− 1)I

Ci Cd
i

 are independent for any λ satisfying

|λ| ≥ 1. The columns of

λI −Ai −Bd
i

Ci Cd
i

 are, therefore, independent for all |λ| ≥ 1. The

choice λ = 1 gives the desired rank relationship.

rank condition =⇒ (Ãi, C̃i) detectable. The assumed rank condition implies the columns

of

I −Ai −Bd
i

Ci Cd
i

 are independent. From Lemma 5.3, (Ai, Ci) is detectable. The columns

of

λI −Ai

Ci

 are, therefore, independent for all |λ| ≥ 1. Consider


λI −Ai −Bd

i

Ci Cd
i

0 (λ− 1)I

. For
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λ 6= 1, the columns of (λ − 1)I are independent and therefore, the columns of


−Bd

i

Cd
i

(λ− 1)I



are independent. Due to the position of the zero, the columns of


λI −Ai −Bd

i

Ci Cd
i

0 (λ− 1)I

 are

independent. For λ = 1, we know that the columns of

I −Ai −Bd
i

Ci Cd
i

 are independent (by

assumption). Hence, (Ãi, C̃i) is detectable, as claimed.

6.6.3 Existence and uniqueness for a convex QP

Theorem 6.2. Let f(x) = 1
2x′Qx + c′x + d and −∞ < f ≤ f(x), ∀ x. Consider the constrained QP

min
x

f(x) subject to Ax = b, x ∈ X

in which x ∈ Rn, b ∈ Rp, Q ≥ 0, A ∈ Rp×n, and X ⊆ Rs×n is polygonal. Let the feasible region be

nonempty. Let rank(A) = p. A solution to this problem exists. Furthermore, the solution is unique if

rank

Q

A

 = n.

Proof. Since the feasible region is nonempty and polygonal, and the QP is bounded below by

f , a solution exists (Frank and Wolfe, 1956). Suppose that there exists two solutions x and x.

Let w = x− x. We have Aw = A(x− x) = b− b = 0. The normal cone optimality conditions 3

3We note that f(·) is a proper convex function in the sense of (Rockafellar, 1970, p. 24), that the relative interior
of Ax = b, x ∈ X is nonempty and that the feasible region defined by (Ax = b, x ∈ X) ⊂ dom(f(·)). The normal
cone optimality conditions are, therefore, both necessary and sufficient (Rockafellar, 1970, Theorem 27.4, p. 270).
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for x and x gives

(y − x)′(Qx + c) ≥ 0 ∀ y|Ay = b, y ∈ X

(y − x)′(Qx + c) ≥ 0 ∀ y|Ay = b, y ∈ X

Substituting y = x in the first equation and y = x in the second equation, we have w′Qx ≤

−w′c and w′Qx ≥ −w′c. These two equations together imply w′Qx ≥ w′Qx, and therefore

w′Qw ≤ 0. Because Q ≥ 0, w′Qw ≥ 0. Hence, w′Qw = 0, which implies Qw = 0. Using

Aw = 0 and full column rank for

Q

A

, we have that the only solution for

Q

A

w = 0 is w = 0.

This gives x = x.

6.6.4 Proof for Lemma 6.4

Proof for Lemma 6.4. Reverse implication. The objective function for the optimization prob-

lem of Equation (6.4) can be rewritten as

Ψi(·) =
1
2

xsii

usi


′ 0

Rui


xsii

usi

+

 0

−Ruiu
ss
i


′xsii

usi

+
1
2
uss

i
′Ruiu

ss
i .

From Theorem 6.2, the solution to the target optimization problem for each i ∈ IM is unique

if the columns of



0

Rui

I −Aii −Bii

HiCii


, i ∈ IM are independent. Because Rui > 0, i ∈ IM , and due
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to the position of the zeros, the columns of



0

Rui

I −Aii −Bii

HiCii


are independent if and only if the

columns of

I −Aii

HiCii

 are independent.

Forward implication. Let (x∗(t)sii , u
∗(t)
si ), i ∈ IM be unique and assume rank

I −Aii

HiCii

 < nii

for some i ∈ IM . By assumption, there exists v such that

I −Aii

HiCii

 v = 0, v 6= 0. The pair

(x∗(t)sii + v, u
∗(t)
si ) achieves the optimal cost 1

2‖u
ss
i − u

∗(t)
si ‖2Rui

and

I −Aii

HiCii

 (x∗(t)sii
+ v) =

 Biiu
∗(t)
si + Bd

iid̂i

zsp
i −HiC

d
i d̂i −

∑M
j 6=i

(
giju

t−1
sj

+ hijdi

)
 ,

which contradicts uniqueness of x
∗(t)
sii .

6.6.5 Proof for Theorem 6.1

Proof for Theorem 6.1. Since (Ãi, C̃i), i ∈ IM is detectable, an estimator gain L̃i exists such

that (Ãi − ÃiL̃iC̃i) is stable for each i ∈ IM . From the positive invariance of D̃C ,

(
(zsp

i , d̂i(k)), i ∈ IM

)
∈ DT
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for all k ≥ 0. The target optimization problem (Equation (6.4)) is feasible for each i ∈ IM

for all k ≥ 0. In Theorem 5.4 (Appendix 5.9.2), replace ei by ẽi, Zi by τx
i Z̃i, AL

i by (Ãi −

ÃiL̃iC̃i), x̂i by ω̂i, and µ̂ by µ̂ − µt
s. The model matrices (Ai, Bi, {Wij}j 6=i, Ci) are unaltered.

From the definition of DT , and positive invariance of D̃C , feasible perturbation trajectories

vi, i ∈ IM exist such that vi(j) + (up
i (µ̂ − µt

s, j) + ut
si

) ∈ Ωi, j ≥ 1, i ∈ IM . Existence of σr for

stable and unstable systems can be demonstrated using arguments used to prove Theorem 5.1

and Theorem 5.2, respectively (with appropriate variable name changes as outlined above).

Invoking Theorem 5.4 completes the proof.

6.6.6 Proof for Lemma 6.5

Proof. From Lemma 5.3, (Ai, Ci) is detectable and (Ai, Bi) is stabilizable. Zero offset steady-

state tracking performance can be established in the FC-MPC framework through an extension

of either (Muske and Badgwell, 2002, Theorem 4) or (Pannocchia and Rawlings, 2002, Theo-

rem 1). Let Algorithm 4.1 be terminated after p ∈ I+, p < ∞ iterates. At steady state, using

Lemma 4.4 we have up
i (µ(∞), 0) = u∞i (µ(∞), 0), i ∈ IM , p ∈ I+. Let the targets generated

by Algorithm 6.1 at steady state be (x∞si
, u∞si

),∀ i ∈ IM (see Section 6.2.1). Let (x̂i(∞), d̂i(∞))

denote an estimate of the subsystem state and integrating disturbance vectors at steady state.

From Equation (6.2), we have

x̂i(∞) = Aix̂i(∞) + Biu
∞
i (µ(∞), 0) +

∑
j 6=i

Wiju
∞
j (µ(∞), 0) + Bdi

d̂i(∞)

+ Lxi

(
yi(∞)− Cix̂i(∞)− Cd

i d̂i(∞)
)

and d̂i(∞) = d̂i(∞) + Ldi

(
yi(∞)− Cix̂i(∞)− Cd

i d̂i(∞)
)
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Invoking (Pannocchia and Rawlings, 2002, Lemma 3) for each subsystem i ∈ IM gives

Ldi
is full rank. Hence, yi(∞) = Cix̂i(∞) + Cd

i d̂i(∞) and (x̂i(∞) − x∞si
) = Ai(x̂i(∞) − x∞si

) +

Bi(u∞i (µ(∞), 0)−u∞si
)+
∑

j 6=i Wij(u∞j (µ(∞), 0)−u∞sj
), i ∈ IM . Because all input constraints are

inactive at steady state, there exists K such that the solution to Algorithm 4.1 at steady state is



(u∞1 (µ(∞), 0)− u∞s1
)

(u∞2 (µ(∞), 0)− u∞s2
)

...

(u∞M (µ(∞), 0)− u∞sM
)


= −K



(x̂1(∞)− x∞s1
)

(x̂2(∞)− x∞s2
)

...

(x̂M (∞)− x∞sM
)



Stability of the closed-loop system requires Acm −BcmK to be a stable matrix. Therefore,

(I −Acm −BcmK)



(x̂1(∞)− x∞s1
)

(x̂2(∞)− x∞s2
)

...

(x̂M (∞)− x∞sM
)


= 0,

which gives (x̂i(∞)− x∞si
) = 0, i ∈ IM and u∞i (µ(∞), 0) = u∞si

. This implies

Hiyi(∞)− zsp
i =

(
HiCix̂i(∞) + HiC

d
i d̂i(∞)

)
−
(
HiCix

∞
si

+ HiC
d
i d̂i(∞)

)
= HiCi(x̂i(∞)− x∞si

)

= 0
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6.6.7 Simplified distributed target calculation algorithm for systems with nonin-

tegrating decentralized modes

For systems without integrating decentralized modes, an alternative, simpler, distributed tar-

get calculation algorithm can be derived by eliminating the decentralized states xsii , i ∈ IM

from the optimization problem of Equation (6.4). For subsystem i ∈ IM at iterate t, the follow-

ing QP is solved

u∗(t)si
∈ arg min

usi

1
2
(uss

i − usi)
′Rui(u

ss
i − usi) (6.9a)

subject to usi ∈ Ωi (6.9b)

giiusi = zsp
i −HiC

d
i d̂i −

M∑
j 6=i

giju
t−1
sj
−

M∑
j=1

hij d̂i, (6.9c)

in which gii = HiCii(I − Aii)−1Bii and hii = HiCii(I − Aii)−1Bd
ii. The following algorithm

may be employed to determine steady-state targets.

Algorithm 6.2. Given
(
u0

si
, zsp

i , uss
i

)
, Rui > 0, i ∈ IM , tmax > 0, ε > 0

t← 1, κi ← Γε,Γ� 1

while κi > ε for some i ∈ IM and t ≤ tmax

do ∀ i ∈ IM

Determine u
∗(t)
si from Equation (6.9)

ut
si
← wiu

∗(t)
si + (1− wi)ut−1

si

ρi ← ‖ut
si
− ut−1

si
‖

Transmit ut
si

to each interconnected subsystem j ∈ IM , j 6= i

end (do)
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t← t + 1

end (while)

At each iterate t, the target state vector xt
si

, ∀ i ∈ {1,M} is calculated as xt
si
← (I −

Ai)−1Biu
t
si

+
∑

j 6=i(I − Ai)−1Wiju
t
sj

+ (I − Ai)−1Bd
i d̂i. For

(
(zsp

i , d̂i), i ∈ IM

)
∈ DT , a feasible

solution for the target optimization problem above exists for each i ∈ IM . Because the objective

is strictly convex, the solution to Equation (6.9) is unique.
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Chapter 7

Distributed MPC with partial

cooperation 1

In the FC-MPC framework, the objective of each local MPC is known to all interconnected

subsystem MPCs. This global sharing of objectives may not be desirable in some situations.

As a simple example, consider the system depicted in Figure 7.1. Assume that the y2 setpoint

is unreachable and that u2 is at its bound constraint. From a practitioner’s standpoint, it is

desirable to manipulate input u1, to the largest extent possible, to achieve all future y1 setpoint

changes. Conversely, it is desirable to manipulate u2 to track setpoint changes in y2. By defini-

tion, a decentralized control structure is geared to realize this operational objective. However,

the resulting closed-loop performance may be quite poor. Centralized control, on the other

hand, utilizes an optimal combination of the inputs u1, u2 to achieve the new setpoint. The

centralized MPC framework, though optimal, may manipulate both u1 and u2 significantly.

1Portions of this chapter appear in Venkat, Rawlings, and Wright (2005a).
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u1

pFC−MPC1

pFC−MPC2

u2

y1

y2

Plant

Weak interaction

Strong interaction

Figure 7.1: 2 × 2 interacting system. Effect of input u1 on output y2 is small compared to
u1 − y1, u2 − y1 and u2 − y2 interactions.

7.1 Partial feasible cooperation-based MPC (pFC-MPC)

To track the setpoint of y1 exclusively with input u1 and setpoint of y2 primarily with u2, the

concept of partial cooperation is employed. This approach of designing controllers to explicitly

handle operational objectives is similar in philosophy to the modular multivariable controller

(MMC) approach of Meadowcroft et al. (1992). The principal goal is to meet operational ob-

jectives, even if the resulting controller performance is not optimal. The partial cooperation-

based MPC for subsystem 1 (pFC− MPC1) manipulates u1 but has access only to the local

objective φ1 that quantifies the cost of control action u1 on y1. The partial cooperation-based

MPC for subsystem 2 (pFC−MPC2) manipulates u2 and retains access to both subsystem ob-

jectives φ1 and φ2. Therefore, pFC−MPC2 evaluates the cost of control action u2 on a global

level i .e., its effect on both system outputs y1 and y2.
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7.1.1 Geometry of partial cooperation

To illustrate the behavior of partial feasible cooperation-based MPC (pFC-MPC), we consider

a simple example consisting of two subsystems with cost functions Φ1(·) and Φ2(·). Both Φ1(·)

and Φ2(·) are obtained by eliminating the states xi, i = 1, 2 from the cost functions φ1(·) and

φ2(·) respectively using the corresponding composite model equations (see p. 39, Chapter 4).

The point p in Figure 7.2 represents the Pareto optimal solution for w1 = w2 = 1
2 . If both

MPCs cooperate completely (FC-MPC), we know from Lemma 4.5 (p. 45) that the FC-MPC

algorithm (Algorithm 4.1, p. 43) converges to p. Under partial cooperation, pFC−MPC1 uti-

lizes only Φ1(·) to determine its control actions. For cases in which the u1 − y2 interactions are

weak compared to the u1−y1, u2−y2 and u2−y1 interactions, the pFC-MPC framework is ob-

served to converge to a point in a neighborhood of p. In Figure 7.2, p′ represents the converged

solution obtained using partial cooperation. The displacement of p′ relative to p is observed to

be a function of the strength of the u1 − y2 interactions relative to the other interaction pairs.

If the u1 − y2 interactions are identically zero, p and p′ coincide. Unlike FC-MPC, there are no

convergence guarantees for pFC-MPC however. For situations in which u1 − y2 interactions

are much stronger than the other interaction pairs, partial cooperation may not converge. Em-

ploying pFC-MPCs for cases in which the u1 − y2 interactions are significant is a bad design

strategy; FC-MPCs should be used instead.
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Figure 7.2: Geometry of partial cooperation. p denotes the Pareto optimal solution. p′ repre-
sents the converged solution with partial cooperation. d is the solution obtained under decen-
tralized MPC. n is the Nash equilibrium.

7.1.2 Example

We consider an example in which the u1 − y2 interaction is weak compared to the u1 − y1,

u2 − y2 and u2 − y1 interactions. The plant is described by

y1

y2

 =

G11 G12

G21 G22


u1

u2



in which

G11 =
1.26

9.6s + 1
G12 =

0.5(−5s + 1)
(18s + 1)(5s + 1)

G21 =
1.5(−20s + 1)

(10.5s + 1)(20s + 1)
G22 =

3.9
5.4s + 1
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The input constraints are |u1| ≤ 1.25 and |u2| ≤ 0.3. The sampling rate is 1.5. An initial

(reachable) setpoint change is made to y2. Tracking errors for output y2 are weighted 50 times

more than tracking errors for output y1. The regulator penalties on u1 and u2 are R1 = 1 and

R2 = 0.01 respectively.

At times 4 and 7, unreachable y2 setpoint changes are made. For each of the new y2

setpoints, the input u2 is at its upper bound at steady state. The pFC-MPC algorithm is ter-

minated after 1 iterate. The closed-loop performance of cent-MPC and pFC-MPC are shown

in Figure 7.3. Cent-MPC, in violation of the desired mode of operation, manipulates input

u1 (in addition to u2) to track the y2 target optimally. Since the y1 setpoint is unchanged and

pFC−MPC1 has access to objective φ1 only, u1 remains unaltered. To alter y2, pFC−MPC2

needs to manipulate u2. However, u2 is already at its bound constraint and consequently, y2

remains unchanged. Thus, the pFC−MPC formulation, though suboptimal, achieves desired

operational objectives.

7.2 Vertical integration with pFC-MPC

In previous chapters, we were concerned with horizontal integration of the higher level sub-

systems’ MPCs. In practice, the outputs from each MPC are almost never injected directly

into the plant, but are setpoints for lower level flow controllers. Such a cascaded controller

structure results in a vertical hierarchy within each subsystem. By integrating the lower level

flow controllers with the higher level subsystem MPC, it may be possible to further improve

systemwide control performance. Traditionally, PID controllers have been used in industry

for control of fast flow loops. Recent advances in explicit MPC solution techniques (Bempo-
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Figure 7.3: Closed-loop performance of pFC-MPC and cent-MPC for the system in Figure 7.1.

rad and Filippi, 2003; Bemporad, Morari, Dua, and Pistikopoulos, 2002; Pannocchia, Laachi,

and Rawlings, 2005; Tondel, Johansen, and Bemporad, 2003) allows the evaluation of the opti-

mal MPC control action within milliseconds for SISO systems. This development provides the

practitioner with an option to replace conventional PID controllers with SISO MPCs for con-

trol of fast flow loops (Pannocchia et al., 2005). In addition, employing MPCs at each control

level provides an opportunity for cooperative vertical integration within each subsystem.

An obvious choice for integrating different flow controllers (SISO MPCs) with the higher

level multivariable MPC is to use FC-MPC (complete cooperation). For a large, networked

system with a substantial number of these flow controllers, FC-MPC may result in an intricate

network of interconnected and communicating flow controllers. By exploiting the time-scale

separation between the flow control loops and the MV-CV loops directed by the higher level
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MPC, this seemingly complicated network of controllers can be simplified using partial coop-

eration. The time constants for the flow loops are typically much smaller than those for the

CV-MV loops controlled by the higher level MPC. A change in the valve position, for instance,

has an almost instantaneous effect on the exit flowrate from the valve. The effect of a change

in valve position has a significantly slower and damped effect on subsystem CVs such as tem-

perature or concentration. In partial cooperation, each lower level flow controller optimizes

its local objective. For cascade control, the objective of each flow controller is typically to ma-

nipulate the control valve opening such that the desired flowrate is achieved optimally. The

desired flowrate for the flow controller is provided by the higher level FC-MPC, which uses

a global objective to determine its control outputs. A schematic for the structure of partial

cooperation-based cascade control is shown in Figure 7.4. Under partial cooperation, the only

information exchange performed by each flow controller is with its (higher level) subsystem

MPC; the different flow controllers are not required to communicate with each other.

7.2.1 Example: Cascade control of reboiler temperature

In this example, we investigate the disturbance rejection performance of pFC-MPC employed

for cascade control of temperature in a distillation column reboiler. A schematic of the plant

is given in Figure 7.5. To implement pFC-MPC, two interaction models are required. The first

interaction model describes the effect of a change in the control valve position on the reboiler

temperature. The second interaction model describes the effect of a change in the flowrate

setpoint on the exit flow from the valve. These interaction models may be identified from

operating data using closed-loop identification techniques (Gudi and Rawlings, 2006; Juang
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Process

MPC 1 MPC 2

Process
1 2

u1

usp2

Φ = w1(Φa + Φ1) + w2(Φb + Φ2)

Φa

usp1

usp1

y1 y2

xv1

MPC-a

Figure 7.4: Structure for cascade control with pFC-MPC. Φi, i = 1, 2 represents the local objec-
tive for each higher level MPC. Φa and Φb denote the local objective for the lower level MPCs a
and b respectively. The overall objective is Φ. The notation xvi , i = 1, 2 denotes the percentage
valve opening for flow control valve i. MPCs 1 and 2 use Φ to determine appropriate control
outputs. MPCs a and b use Φa and Φb respectively to compute their control actions. MPC-a
broadcasts trajectories to MPC-1 only. Similarly, MPC-b communicates with MPC-2 only.

and Phan, 1994; Lakshminarayanan, Emoto, Ebara, Tomida, and Shah, 2001; Verhaegen, 1993).

A complete description of the model is given below.
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Figure 7.5: Cascade control of reboiler temperature.

The deviational flowrate from the valve is constrained as |F | ≤ 2. At time k = 0, a

valve pressure disturbance d of magnitude 0.1 affects the exit flowrate from the valve. The
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disturbance rejection performance of pFC-MPC, when the exchange of information between

the two nested MPCs is terminated after one iterate is investigated. The cascade control per-

formance of pFC-MPC is compared against the performance of traditional cascade control, in

which decentralized MPCs are used in place of PID controllers.

MPC-1 manipulates the flowrate setpoint Fsp to control reboiler temperature T . MPC-2

manipulates the valve opening xv to control the exit flowrate from the valve F . The local ob-

jective for MPC-1 is to maintain T at its desired target by manipulating Fsp. The local objective

for MPC-2 is to manipulate xv to bring F as close as possible to Fsp. The higher level MPC i.e.,

MPC-1 utilizes both its own local objective as well as the objective for MPC-2 to determine its

control outputs. MPC-2, on the other hand, uses only its local objective to determine suitable

control action. Cascade control performance of decentralized MPC and pFC-MPC rejecting the

pressure disturbance in the valve is shown in Figure 7.6. A closed-loop performance compar-

ison of the different MPCs is provided in Table 7.1. Cascade control with FC-MPC (1 iterate)

achieves performance within 1.5% of the optimal centralized MPC performance. Cascade con-

trol with pFC-MPC (1 iterate) incurs a performance loss of about 7% relative to FC-MPC (1

iterate). Cascade control using decentralized MPCs gives unacceptable closed-loop perfor-

mance.

Table 7.1: Closed-loop performance comparison of cascaded decentralized MPC, pFC-MPC
and FC-MPC. Incurred performance loss measured relative to closed-loop performance of FC-
MPC (1 iterate).

Λcost × 102 ∆Λcost%
FC-MPC (1 iterate) 2.16 −−

Decent-MPC 82 > 3000%
pFC-MPC (1 iterate) 2.3 6.6%
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Figure 7.6: Disturbance rejection performance comparison of cascaded SISO decentralized
MPCs and cascaded pFC-MPCs. Disturbance affects flowrate from valve.
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7.3 Conclusions

The concept of distributed MPC with partial cooperation was introduced in this chapter. Par-

tial cooperation is an attractive strategy for cases in which some of the interactions are signif-

icantly weaker than others. The structure of the resulting controller network is simpler, and

communication requirements are reduced compared to FC-MPC. When the weak interactions

are identically zero, the converged solution using partial cooperation is Pareto optimal. Two

applications were considered here. In the first application, partial cooperation was used to

incorporate operational objectives in distributed MPC. In the second application, partial coop-

eration was used to integrate lower level flow controllers with each subsystem’s MPC. As an

example, partial cooperation was employed to integrate controllers used for cascade control of

reboiler temperature. Partial cooperation was observed to improve closed-loop performance

significantly compared to conventional cascade control with decentralized SISO MPCs.
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Chapter 8

Asynchronous optimization for

distributed MPC.

In previous chapters, it was assumed that all MPCs perform their iterations synchronously

i.e., have the same computational time requirements and frequency of information exchange.

Several factors determine the computational time necessary for each subsystem’s MPC. These

factors include model size, processor speed, hardware and software used etc. For many large

networked systems, the demands on computational time may differ considerably from sub-

system to subsystem. If all MPCs are forced to operate synchronously, the worst case compu-

tational time requirement for the slowest MPC is used. The essence of asynchronous optimiza-

tion (for FC-MPC) is to exploit the difference in required computational times for subsystems’

MPCs to further improve systemwide control performance.

To illustrate the idea behind asynchronous optimization for FC-MPC, we consider a

simple example consisting of three MPCs (see Figure 8.1). We assume MPCs 1 and 2 can per-

form their respective MPC optimizations faster than MPC 3. During an iterate, MPCs 1 and
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2 solve their respective MPC optimizations and transmit calculated input trajectories to the

other subsystems. Under synchronous operation, MPCs 1 and 2 remain idle and commence

a subsequent iterate only after they receive new input trajectories from MPC 3. Under asyn-

chronous operation, MPCs 1 and 2 do not idle; they commence another iterate (termed an in-

ner iterate) utilizing previously obtained input trajectories from MPC 3. Information exchange

during the inner iterates occurs between MPCs 1 and 2 only. On receiving new input trajec-

tories from MPC 3, the three MPCs synchronize to correct all assumed and calculated input

trajectories. The corrected input trajectories are transmitted to all other MPCs. Further details

on the synchronization procedure are provided in Section 8.2. Several synchronizations may

be performed within a sampling interval; several inner iterations may be performed between

any two synchronization iterates.

1

3

2

Figure 8.1: Asynchronous optimization for FC-MPC- a conceptual picture. MPCs 1 and 2 have
shorter computational time requirements than MPC 3. Solid lines represent information ex-
change at synchronization. Dashed lines depict information exchange during inner iterations
between MPCs 1 and 2.
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8.1 Preliminaries

Lemma 8.1. Let X be a convex, compact set and let f(·) be a continuous, strictly convex function on

X . Then, the solution x∗ to the optimization problem

min
x∈X

f(x) (8.1)

exists and is unique.

Proof. Since Equation (8.1) optimizes a continuous function f(·) over a compact set X , a min-

imizer x∗ exists. The second claim is well know and is stated in several textbooks without

proof e.g., (Bertsekas, 1999, p. 193). A simple proof is presented here.

Assume there exists x 6= x∗ such that f(x) = f(x∗). Since f(·) is strictly convex, we

have for some 0 < λ < 1 and w = λx + (1− λ)x∗ that

f(w) = f(λx + (1− λ)x∗) < λf(x) + (1− λ)f(x∗)

= f(x∗),

which contradicts optimality of f(x∗) and thereby establishes the lemma.

Lemma 8.2. Let W ⊆ Rn be a nonempty, compact set. Consider an infinite sequence wk ∈ W. If w∗

is the unique limit point of the sequence {wk}, then wk → w∗.

Proof. Suppose wk 9 w∗, then ∃ an open ball Bo
ε(w

∗) such that wk /∈ Bo
ε(w

∗) infinitely often.

It follows that W\Bo
ε(w

∗) is a closed, bounded set (hence compact) and therefore the infinite
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subsequence {vk = wk ∈ W\Bo
ε(w

∗)} has a limit point w in W\Bo
ε(w

∗). By construction,

w 6= w∗, which is a contradiction.

8.2 Asynchronous optimization for FC-MPC

Define I+ to be the set of positive integers. Let the collection of M subsystem-based MPCs be

divided into I > 0 groups. MPCs with similar computational time requirements are grouped

together. We define the index set Ji ∈ Isi
+ to be the set of indices corresponding to subsystems

in group i. Define the finite positive sequence t1 = s1, t2 = t1 + s2, . . . , tj = tj−1 + sj , . . . , tI =

tI−1 + sI = M . WLOG we assume J1 = {1, 2, . . . , t1}, J2 = {t1 + 1, t1 + 2, . . . , t2}, . . . ,JI =

{tI−1 + 1, tI−1 + 2, . . . , tI = M}.

For asynchronous optimization, MPCs within a group perform a sequence of optimiza-

tions in parallel and exchange input trajectories with each other. For each group, a set of

subsystems’ MPC optimizations performed in parallel and the subsequent exchange of input

trajectories between subsystems in the group is termed an inner iterate. During each inner

iterate, MPCs in a group do not communicate with MPCs in other groups; information trans-

fer is strictly within the group. The selected weight for each subsystem’s MPC optimization

is wi, i ∈ IM (see p. 38). The choice of subsystem weights satisfies wi > 0, ∀ i ∈ IM and∑M
i=1 wi = 1. For each Ji, i = 1, 2, . . . , I, qi denotes the inner iteration number. A synchroniza-

tion weight γi is selected for each group Ji, i = 1, 2, . . . , I such that γi > 0, ∀ i = 1, 2, . . . , I

and
∑I

i=1 γi = 1. Periodically, all MPCs exchange input trajectories; this is termed an outer it-

erate or a synchronization iterate. A local recalculation of all input trajectories is also performed

during synchronization. In Algorithm 8.1, an explicit expression for this local recalculation is
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provided. The notation p represents the synchronization (outer) iteration number.

For notational convenience, we define zi to be the collection of subsystem input trajec-

tories in group i ∈ I i.e., zi = [uti−1+1,uti−1+2, . . . ,uti ]. Likewise, zi = [uti−1+1, . . . ,uti ]. With

slight abuse of notation, we define

Πqi
i (ζj) = [uqi

ti−1+1, . . . ,u
qi

(j−1), ζj ,u
qi

(j+1), . . . ,u
qi
ti

] (8.2)

for each subsystem j ∈ Ji. Note in the definition of Πqi
i (ζj) that the input trajectories corre-

sponding to each subsystem s ∈ Ji, s 6= j are held constant at uqi
s . The input trajectory for

subsystem j ∈ Ji is ζj .

8.2.1 Asynchronous computation of open-loop policies

The asynchronous FC-MPC optimization problem for subsystem j ∈ Ji, Fa
j , is written as

ζqi
j (k) ∈ arg min

ζj

M∑
r=1

wrΦr

(
zp−1

1 , . . . ,zp−1
i−1 ,Πqi−1

i (ζj),z
p−1
i+1 , . . . ,zp−1

I ;µ(k)
)

(8.3a)

subject to

ui(t|k) ≤ Ωi, k ≤ t ≤ k + N − 1 (8.3b)

ui(t|k) = 0, k + N ≤ t (8.3c)

in which Φi(·) is obtained by eliminating the subsystem states from the cost function φi(·) (see

Section 4.3, p. 39). In the asynchronous FC-MPC optimization problem for subsystem j ∈ Ji,

the input trajectories corresponding to each subsystem l /∈ Ji are held constant at up−1
l .
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Let Uj = Ωj × . . . × Ωj ∈ RmjN , j ∈ IM . For φj(·) defined in Equation (4.5), p. 34, and

Φj(·) obtained by eliminating the CM states xj from Equation (4.5) using the subsystem CM

(Equation (4.1), p. 27), the FC-MPC optimization problem for subsystem j ∈ Ji, Fa
j , is

ζ
qi

j ∈ arg min
ζj

1
2
uj

′Rjuj +

rj(k) +
M∑

s=1,s 6=j

Hjsvs


′

uj + constant (8.4a)

subject to

uj ∈ Uj (8.4b)

in which

vs =


uqi−1

s if s ∈ Ji, s 6= j,

up−1
s if s /∈ Ji.

Rj = wjRj + wjEjj
′QjEjj +

M∑
l 6=j

wlElj
′QlElj

Hjs =
M∑
l=1

wlElj
′QlEls

rj(k) = wjEjj
′Qjfjxj(k) +

M∑
l 6=j

wlElj
′Qlflxl(k)

The definitions of Ejs, fj , Qj and Rj , ∀ j, s ∈ IM are available in Section 4.5, p. 42. The terminal

penalty for systems with stable decentralized modes is determined using Theorem 4.1, p. 49.

If unstable decentralized modes are present, an additional terminal state constraint Uui
′xi(k +

N |k) = 0 is required (in Equation (8.4)) to ensure closed-loop stability (see Section 4.6.2, p. 50).

Closed-loop stability follows using Theorem 4.2, p. 53. The following algorithm is employed



175

for asynchronous optimization FC-MPC.

Algorithm 8.1 (aFC-MPC). Given u0
i , Qi ≥ 0, Ri > 0, i ∈ IM

µ(k), pmax(k) ≥ 0, p← 1, ε > 0

Jj , q
max
j (k) ≥ 0, qj ← 1, j = 1, 2, . . . , I

κj , ρs ← Γε, j = 1, 2, . . . , I, s ∈ IM ,Γ� 1

w0
j = u0

j , ∀ j ∈ IM

while ρs > ε for some s ∈ IM and p ≤ pmax(k)

do ∀ i = 1, 2, . . . , I

Inner iterations.

while κj > ε for some j ∈ Ji and qi ≤ qmax
i (k)

do ∀ j ∈ Ji

(i1) ζ
qi

j ∈ arg Fa
i (Equation (8.4))

1(i2) w qi
j ← wiζ

qi

j + (1− wi) wqi−1
j

(i3) κj ← ‖wqi
j −wqi−1

j ‖

(i4) Transmit wqi
j to each subsystem l ∈ Ji, l 6= j

end (do)

qi ← qi + 1

end (while)

end (do)

Synchronization (outer) iterations.

do ∀ i = 1, 2, . . . , I

do ∀ j ∈ Ji

1In general, any strict convex combination (possibly different from wi) may be used.
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(o1) up
j ← γiw

qi
j + (1− γi) up−1

j

(o2) ρj ← ‖up
j − up−1

j ‖

(o3) Transmit up
j to each interconnected subsystem l ∈ IM , l 6= j

end (do)

end (do)

p← p + 1

qj ← 1, w0
j ← up

j , ∀ j ∈ IM

end (while)

The state trajectory for subsystem j ∈ Ji at inner iteration number qi is xqi
j ← xqi

j (zp−1
1 , . . . ,zqi

j ,

. . . , zp−1
I ;µ(k)). At each outer iterate p, the state trajectory for subsystem l ∈ IM is obtained as

xp
l ← xp

l

(
up

1,u
p
2, . . . ,u

p
M ;µ(k)

)
. By definition, wqi

i = [wqi
i
′, 0, 0, . . .]′, i ∈ IM , qi ∈ I+.

8.2.2 Geometry of asynchronous FC-MPC

An example consisting of three subsystems is considered. MPCs 1 and 2 (for subsystems 1,

2) are assigned to J1 while MPC 3 (subsystem 3) is assigned to J2. We choose q1 = 3 and

q2 = 1. The cost function for the three subsystems are Φ1,Φ2 and Φ3 respectively. The decision

variables for the three subsystems are u1, u2 and u3. For the purpose of illustration, we project

all relevant points on the u1 − u2 plane. Initially, the decision variables are assumed to have

values (u0
1, u

0
2, u

0
3) = (2, 2, 0) (see Figure 8.2). MPCs 1 and 2 perform q1 = 3 inner iterations (see

steps (i1)-(i4) in Algorithm 8.1) assuming u3 remains at its initial value u0
3 = 0. The progress of

the inner iterations is shown in Figure 8.2. During this time, MPC 3 performs an inner iteration

(q2 = 1) assuming (u1, u2) = (u0
1, u

0
2) = (2, 2).
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Figure 8.2: Progress of inner iterations performed by MPCs 1 and 2. Decision variable u3

assumed to be at u0
3. Point 3in is obtained after three inner iterations for J1. p represents the

Pareto optimal solution.

The first outer iteration is performed (steps (o1)-(o3) in Algorithm 8.1) next. In Fig-

ure 8.3, point 1 represents the result of the first synchronization iterate. The sequence of syn-

chronization iterates is shown in Figure 8.4. Convergence to p, the Pareto optimal solution, is

achieved after 4 synchronization iterates.

8.2.3 Properties

Lemma 8.3. Consider any Ji, i = 1, 2, . . . , I. Let z̃qi
i = [wqi

ti−1+1, . . . ,w
qi
ti

]. The sequence of cost

functions

{Φ(zp−1
1 , . . . ,zp−1

(i−1), z̃
qi
i ,zp−1

(i+1), . . . ,z
p−1
I ;µ(k))}

generated by Algorithm 8.1 is a nonincreasing function of the inner iteration number qi.
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Figure 8.3: The first synchronization (outer) iterate. Point 1 represents the value of the decision
variables after the first synchronization iterate.
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Figure 8.4: The sequence of synchronization (outer) iterations. Convergence to p is achieved
after 4 synchronization iterates.
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Proof. For any l ∈ Ji, we have from Algorithm 8.1 that uqi

l = wlζ
qi
i + (1− wl)w

qi−1
l . Hence,

Φ(zp−1
1 , . . . ,zp−1

(i−1), z̃
qi
i ,zp−1

(i+1), . . . ,z
p−1
I ;µ(k))

= Φ(up−1
1 , . . . ,up−1

ti−1
,wqi

ti−1+1, . . . ,w
qi
ti

,up−1
ti+1, . . . ,u

p−1
M ;µ(k))

= Φ
(

w1(u
p−1
1 ,up−1

2 , . . . ,up−1
M ) + . . .

+ wti−1+1(u
p−1
1 , . . . , ζqi

ti−1+1,w
qi−1
ti−1+2, . . . ,w

qi−1
ti

,up−1
ti+1, . . . ,u

p−1
M ) + . . .

. . . + wti(u
p−1
1 , . . . ,wqi−1

ti−1+1, . . . , ζ
qi
ti

,up−1
ti+1, . . . ,u

p−1
M ) + . . .

. . . + wM (up−1
1 ,up−1

2 , . . . ,up−1
M );µ(k)

)

(8.5a)

Using convexity of Φ(·), gives

≤
ti−1∑
l=1

wlΦ(up−1
1 , . . . ,up−1

M ;µ(k))

+
ti∑

l=ti−1+1

wlΦ(up−1
1 , . . . ,up−1

ti−1
,wqi−1

ti−1+1, . . . , ζ
qi

l , . . . ,wqi−1
ti

,up−1
ti+1, . . . ,u

p−1
M ;µ(k))

+
M∑

l=ti+1

wlΦ(up−1
1 , . . . ,up−1

M ;µ(k))

(8.5b)

From (i1) in Algorithm 8.1, we have

≤ Φ(zp−1
1 , . . . ,zp−1

(i−1), z̃
qi−1
i ,zp−1

(i+1), . . . ,z
p−1
I ;µ(k)) (8.5c)
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Proceeding backwards to qi = 0, and since w0
j = up−1

i , i ∈ Ji, we have

≤ Φ(zp−1
1 , . . . ,zp−1

(i−1),z
p−1
i ,zp−1

(i+1), . . . ,z
p−1
I ;µ(k)) (8.5d)

Lemma 8.4. The sequence of cost functions {Φ(zp
1, . . . ,z

p
i , . . . ,z

p
I ;µ(k))} generated by Algorithm 8.1

is a nonincreasing function of the synchronization (outer) iteration number p.

Proof. We have,

Φ(up
1,u

p
2, . . . ,u

p
M ;µ(k))

= Φ
(

γ1u
q1
1 + (1− γ1)u

p−1
1 , . . . . . . , γ2u

q2
t1+1 + (1− γ2)u

p−1
t1+1,

. . . , γIu
qI
tI+1 + (1− γI)u

p−1
tI+1, . . . , γIu

qI
M + (1− γI)u

p−1
M ;µ(k)

) (8.6a)

= Φ
(

γ1(u
q1
1 , . . . ,uq1

t1
,up−1

t1+1, . . . ,u
p−1
M )

+ γ2(u
p−1
1 , . . . ,up−1

t1
,uq2

t1+1, . . . ,u
q2
t2

,up−1
t2+1 . . . , up−1

M ) + . . .

. . . + γI(u
p−1
1 , . . . ,up−1

tI−1,u
qI
tI−1+1 . . . , uqI

M );µ(k)
) (8.6b)

≤ γ1Φ(uq1
1 , . . . ,uq1

t1
,up−1

t1+1, . . . ,u
p−1
M ;µ(k))

+ γ2Φ(up−1
1 , . . . ,up−1

t1
,uq2

t1+1, . . . ,u
q2
t2

,up−1
t2+1 . . . , up−1

M ;µ(k)) + . . .

. . . + γIΦ(up−1
1 , . . . ,up−1

tI−1,u
qI
tI−1+1 . . . , uqI

M ;µ(k))

(8.6c)

≤
I∑

r=1

γrΦ(zp−1
1 , . . . ,zp−1

r−1,z
qr
r ,zp−1

r+1, . . . ,z
p−1
I ;µ(k)) (from convexity of Φ(·)) (8.6d)

≤ Φ(zp−1
1 , . . . . . . , zp−1

I ;µ(k)) (using Equation (8.5d)) (8.6e)
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From the definition of φj(·), j ∈ IM , we have Rj > 0, ∀ j ∈ IM . Therefore, Φj(·)

in Equation (8.4) is strictly convex. Convexity of each Ωj , j ∈ IM implies that the Cartesian

product Ω = Ω1 × Ω2 × . . .ΩM is also convex. From Lemma 8.1, the solution (u∗1, . . . ,u
∗
M ) to

the centralized optimization problem

min
(u1,u2,...,uM )

Φ(u1,u2, . . . ,uM ;µ(k)) (8.7a)

ui(t|k) ∈ Ωi, k ≤ t ≤ k + N − 1 (8.7b)

ui(t|k) = 0, k + N ≤ t (8.7c)

∀ i ∈ IM

exists and is unique.

Lemma 8.5. Consider Φ(·) positive definite quadratic and Ωi,∀ i ∈ IM is nonempty, convex and com-

pact. Let the solution to Algorithm 8.1 after p synchronization iterates be (up
1, . . . ,u

p
M ) with an associ-

ated cost function value Φ(up
1, . . . ,u

p
M ;µ(k)), in which up

i = [up
i
′, 0, 0, . . .]′. Denote the unique solu-

tion to Equation (8.7) by (u∗1,u
∗
2, . . . ,u

∗
M ), in which u∗i = [u∗i

′, 0, 0, . . .]′, and let Φ(u∗1, . . . ,u
∗
M ;µ(k))

represent the optimal cost function value. The solution obtained at convergence of Algorithm 8.1 satis-

fies

lim
p→∞

Φ(up
1,u

p
2, . . . ,u

p
M ;µ(k)) = Φ(u∗1,u

∗
2, . . . ,u

∗
M ;µ(k)) and

lim
p→∞

(up
1,u

p
2, . . . ,u

p
M ) = (u∗1,u

∗
2, . . . ,u

∗
M )
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Proof. By the assumptions on Φ(·), we have that the curvature norm ‖∇2Φ(·)‖ is bounded

above (by K, say) on Ω1 × Ω2 × . . . × ΩM . Suppose for contradiction that there is some other

point (u∞1 ,u∞2 , . . . ,u∞M ) 6= (u∗1,u
∗
2, . . . ,u

∗
M ) that is an accumulation point of the sequence

{(up
1,u

p
2, . . . ,u

p
M )}. That is, we have a subsequence S such that limp∈S(up

1,u
p
2, . . . ,u

p
M ) =

(u∞1 ,u∞2 , . . . ,u∞M ). For the full sequence, we have from Lemma 8.4 that

Φ(zp
1,z

p
2, . . . ,z

p
I ;µ(k)) ≤

I∑
r=1

γrΦ(zp−1
1 , . . . ,zp−1

r−1,z
qr
r ,zp−1

r+1, . . . ,z
p−1
I ;µ(k))

≤ Φ(zp−1
1 ,zp−1

2 , . . . ,zp−1
I );µ(k)) (8.8)

In the limit as p→∞ in Equation (8.8),

Φ(z∞1 ,z∞2 , . . . ,z∞I ;µ(k)) ≤
I∑

r=1

γrΦ(z∞1 , . . . ,z∞r−1,z
qr
r ,z∞r+1, . . . ,z

∞
I ;µ(k))

≤ Φ(z∞1 ,z∞2 , . . . ,z∞I ;µ(k)) (8.9)

From Equation (8.5) in Lemma 8.3 and taking limits as p→∞, we have for each r = 1, 2, . . . , I

Φ(z∞1 , . . . ,z∞r−1,z
qr
r ,z∞r+1, . . . ,z

∞
I ;µ(k)) ≤ Φ(z∞1 ,z∞2 , . . . ,z∞I ;µ(k)) (8.10)

Using Equations (8.9) and (8.10), we have

Φ(zq1
1 ,z∞2 , . . . ,z∞I ;µ(k)) = Φ(z∞1 ,zq2

2 , . . . ,z∞I ;µ(k)) = . . . . . . = Φ(z∞1 ,z∞2 , . . . ,zqI
I ;µ(k))

= Φ(z∞1 ,z∞2 , . . . ,z∞I ;µ(k)) (8.11)
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In fact, from Equation (8.5) in Lemma 8.3, we can argue in the limit p→∞ that

Φ(ζq1
1 ,uq1−1

2 , . . . ,uq1−1
t1

,u∞t1+1, . . . ,u
∞
M ;µ(k))

= Φ(uq1−1
1 , ζq1

2 , . . . ,uq1−1
t1

,u∞t1+1, . . . ,u
∞
M ;µ(k)) = . . . . . .

= . . . = Φ(z∞1 , . . . ,z∞i−1,u
qi−1
ti−1+1, . . . , ζ

qi
j , . . . ,uqi−1

ti
,z∞i+1, . . . ,z

∞
I ;µ(k)) = . . .

= . . . = Φ(z∞1 , . . . ,z∞I−1,u
qI
tI−1+1, . . . , ζ

qI ;µ(k))

= Φ(u∞1 ,u∞2 , . . . ,u∞M ;µ(k)) (8.12)

Because (u∞1 ,u∞2 , . . . ,u∞M ) is nonoptimal, and using first-order optimality conditions, at least

one of the following conditions hold:

∇ujΦ(u∞1 ,u∞2 , . . . ,u∞M ;µ(k))′(u∗j − u∞j ) < 0, j ∈ IM (8.13)

Suppose WLOG that Equation (8.13) is true for j = s, s ∈ IM . We thus have by Taylor’s

theorem that

Φ(u∞1 , . . . ,u∞s−1,u
∞
s + α(u∗s − u∞s ),u∞s+1, . . . ,u

∞
M ;µ(k))

= Φ(u∞1 ,u∞2 , . . . ,u∞M ;µ(k)) + α∇usΦ(u∞1 ,u∞2 , . . . ,u∞M )′(u∗s − u∞s )

+
1
2
α2(u∗s − u∞s )′∇2

us
Φ(u∞1 ,u∞2 , . . . ,u∞M )′(u∗s − u∞s ), (8.14)
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By choosing the minimizing α, we can identify a point ũs with 2

Φ(u∞1 , . . . ,u∞s−1, ũs,u
∞
s+1, . . . ,u

∞
M ;µ(k))

= Φ(u∞1 ,u∞2 , . . . ,u∞M ;µ(k))−
|∇usΦ(u∞1 ,u∞2 , . . . ,u∞M ;µ(k))′(u∗s − u∞s )|2

2(u∗s − u∞s )′∇2
u1

Φ(u∞1 ,u∞2 , . . . ,u∞M ;µ(k))(u∗s − u∞s )

≤ Φ(u∞1 ,u∞2 , . . . ,u∞M ;µ(k))− 1
2K

|∇u1Φ(u∞1 ,u∞2 , . . . ,u∞M ;µ(k)′(u∗s − u∞s )|2

‖u∗s − u∞s ‖2

= Φ(u∞1 ,u∞2 , . . . ,u∞M ;µ(k))− ε, (8.15)

for an obvious definition of ε > 0. Hence, for any p we have

Φ(up
1, . . . ,u

p
s−1, ζ

p+1
s ,up

s+1, . . . ,u
p
M ;µ(k))

≤ Φ(up
1, . . . ,u

p
s−1, ũs,u

p
s+1, . . . ,u

p
M ;µ(k))

= Φ(u∞1 , . . . ,u∞s−1, ũs,u
∞
s+1, . . . ,u

∞
M ;µ(k)) + O

 M∑
r=1,r 6=s

‖u∞r − up
r‖


≤ Φ(u∞1 ,u∞2 , . . . ,u∞M ;µ(k)) + O

 M∑
r=1,r 6=s

‖u∞r − up
r‖

− ε. (8.16)

By taking the limits of both sides over p ∈ S , p→∞, we obtain 0 ≤ −ε, a contradiction.

For the final statement of the proof, we note that the iterates are confined to the level

set

S0 = {(u1, . . . ,uM ) |Φ(u1, . . . ,uM ;µ(k)) ≤ Φ(u0
1, . . . ,u

0
M ;µ(k))}

The iterates are, therefore, guaranteed to have an accumulation point. By the first part of the

theorem all such accumulation points are optimal. Hence (from the statement of the lemma),

the only limit point is (u∗1,u
∗
2, . . . ,u

∗
M ), and from Lemma 8.2 it is in fact the limit.

2I would like to thank Professor Stephen J. Wright for showing me this construction.



185

8.2.4 Closed-loop properties

At time k, let Algorithm 8.1 be terminated after p(k) = σ > 0 synchronization iterates. Let

uσ
i (µ(k)) = [uσ

i (µ(k), 0)′, . . . , uσ
i (µ(k), N − 1)′, 0, 0, . . .]′, i ∈ IM (8.17)

represent the solution to Algorithm 8.1 after σ synchronization iterates. The input injected into

subsystem i ∈ IM under asynchronous optimization based FC-MPC is uσ
i (µ(k), 0).

For open-loop stable systems, the initialization procedure described in Section 4.6.1

may be used to initialize Algorithm 8.1. Closed-loop stability under intermediate termination

of Algorithm 8.1 at any synchronization (outer) iterate can be established under the conditions

specified in Theorem 4.1. For systems with unstable decentralized modes, the initialization

procedure described in Section 4.6.2 may be used to initialize Algorithm 8.1. Closed-loop

stability follows under the conditions described in Theorem 4.2. The proof for closed-loop

stability in either case is identical to the corresponding proof for closed-loop stability presented

in Chapter 4 (proofs for Theorems 4.1 and 4.2).

8.2.5 Example: Two reactor chain with nonadiabatic flash

We revisit two reactor-flash example described in Section 4.7.2. We assume that MPCs 1 and 2

for the CSTRs have a smaller (worst case) computational time requirement than MPC 3. Two

cases for asynchronous optimization based FC-MPC (aFC-MPC) are considered. In the first

case, q1 = 2, q2 = 1 and in the second case q1 = 5, q2 = 1. A setpoint change is made to Hm.

The performance of aFC-MPC is evaluated and compared against (synchronous) FC-MPC and
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centralized MPC. The setpoint tracking performance using the different MPCs is shown in

Figures 8.5 and 8.6. The closed-loop control costs are given in Table 8.1.
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Figure 8.5: Setpoint tracking for levels in the two CSTRs.

From the closed-loop control costs, aFC-MPC (q1 = 2, q2 = 1) gives a 40% improvement

in performance compared to FC-MPC (1 iterate). For aFC-MPC with q1 = 5 and q2 = 1, a 66%

improvement in performance is obtained over synchronous FC-MPC terminated after 1 iterate.
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Figure 8.6: Manipulated feed flowrates for setpoint tracking of levels.

Table 8.1: Setpoint tracking performance of centralized MPC, FC-MPC and asynchronous FC-
MPC.

Λcost × 10−2 ∆Λcost%
Centralized MPC 2.41 −−

FC-MPC (1 iterate) 3.15 30.7
aFC-MPC (q1 = 2, q2 = 1) 2.85 18.2
aFC-MPC (q1 = 5, q2 = 1) 2.65 10.3

8.3 Conclusions

An algorithm for asynchronous optimization based distributed MPC was described in this

chapter. Asynchronous optimization avoids the need for synchronized clock keeping at each

iterate by allowing MPCs with disparate computational time requirements to function at their
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respective rates. In this framework, MPCs with similar computational time requirements are

grouped together. Consider MPC i ∈ IM in group Jα. At each inner iterate qi, MPC i calculates

its input trajectory assuming the input trajectories of MPCs j ∈ Jα, j 6= i are at uqi−1
j , j ∈ Jα;

the input trajectories corresponding to MPCs in other groups are assumed to be at values

obtained at the last synchronization iterate p−1 i.e., up−1
s , s /∈ Jα. MPC i ∈ Jα transmits uqi

i to

each MPC j ∈ Jα, j 6= i and receives uqi
j from MPC j ∈ Jα, j 6= i. No information is exchanged

with MPCs outside the group. Periodically, all MPCs i ∈ IM exchange input trajectories and

calculate up
i , i ∈ IM at synchronization iterate p. It was shown that the asynchronous FC-

MPC algorithm can be terminated at any synchronization iterate without affecting feasibility

or nominal closed-loop stability. At convergence of the asynchronous FC-MPC algorithm,

the optimal centralized MPC performance is achieved. The synchronous FC-MPC framework

described in earlier chapters can be derived as a special case of Algorithm 8.1. For synchronous

FC-MPC, all MPCs are assumed to belong to group Jα. By setting γα = 1, γj = 0, ∀ j 6= α, we

revert to the synchronous FC-MPC algorithm (Algorithm 4.1, p. 43) described in Chapter 4.
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Chapter 9

Distributed constrained LQR

In Chapter 4, a terminal penalty distributed MPC framework with nominal stability and per-

formance properties was described. Since terminal penalty FC-MPC is reliant on a suboptimal

parameterization of the postulated control trajectories, it cannot achieve infinite horizon opti-

mal performance for finite N , even at convergence. In this chapter, through a simple reformu-

lation of the FC-MPC optimization problem in Chapter 4, a distributed MPC formulation that

achieves infinite horizon optimal performance at convergence is described. A terminal state

constraint constraint distributed MPC framework is also described.

9.1 Notation and preliminaries

The matrices (Acm, Bcm, Ccm) represent the A,B, C matrices respectively of the CM for the

entire plant (see Equation (4.2), p. 28). Let xcm denote the state vector for the plant CM. It is

assumed that (Acm, Bcm) is stabilizable and (Acm, Ccm) is detectable.



190

Let I denote the set of integers. The notation I+ is used to represent the set of strictly

positive integers. The closed ball Bε(x) is defined as

Bε(x) = { z | ‖z − x‖ ≤ ε}

The open ball Bo
ε(x) is defined as

Bε(x) = { z | ‖z − x‖ < ε}

The notation µ represents the set of subsystem states [x1, x2, . . . , xM ]. By definition, xcm =

[x1
′, x2

′, . . . , xM
′]′. Let X ⊆ Rn be a nonempty set. Define the operation µ ∈ X to represent

[x1
′, x2

′, . . . , xM
′]′ ∈ X. The control horizon is represented by N .

Lemma 9.1 (Minimum principle for constrained, convex optimization). Let X be a convex set

and let f be a convex function over X . A necessary and sufficient condition for x∗ to be a global

minimum of f over X is

∇f(x∗)′(x− x∗) ≥ 0, ∀ x ∈ X

A proof is given in (Bertsekas, 1999, p. 194)

Lemma 9.2. Let

A =

A
As

 ∈ R(n+ns)×(n+ns) B =

B
Bs

 ∈ R(n+ns)×m
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in which, As is stable, A ∈ Rn×n and B ∈ Rn×m. The pair (A, B) is stabilizable if and only if (A,B)

is stabilizable.

A proof is given in Appendix 9.6.1.

Assumption 9.1. All interaction models are stable i.e., for each i, j ∈ IM , |λmax(Aij)| < 1, ∀j 6= i.

9.2 Infinite horizon distributed MPC

Cost function. The stage cost at stage t ≥ k along the prediction horizon and the cost function

φi(·) for subsystem i are given by Equations (4.3) and (4.5) respectively in Chapter 4.

9.2.1 The benchmark controller : centralized constrained LQR

For any system, centralized constrained LQR (CLQR) achieves infinite horizon optimal per-

formance. The CLQR optimization problem is

P0: Centralized constrained LQR

min
x,u

φ (x,u;µ(k)) =
∑

i

wiφi (xi,ui;xi(k)) (9.1a)

subject to x(t + 1) = Ax(t) + Bu(t), (9.1b)

ui(l|k) ∈ Ωi, k ≤ l, (9.1c)

∀ i ∈ IM

where wi > 0, i ∈ IM and
M∑
i=1

wi = 1

The problem with CLQR is the infinite number of decision variables and constraints in the op-

timization problem (Equation (9.1)). To avoid dealing with an intractable, infinite dimensional
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optimization problem, we typically choose a suitably long control horizon N such that the

system state at the end of the control horizon is inside a positively invariant set where the op-

timal unconstrained (LQR) control law is feasible and therefore, optimal. A suitable terminal

penalty is calculated using this optimal unconstrained feedback law and the terminal set con-

straint remains implicit through the choice of N . The infinite dimensional optimization prob-

lem can, therefore, be replaced by an equivalent finite dimensional optimization problem. Im-

plementable algorithms for CLQR have been described in Chmielewski and Manousiouthakis

(1996); Scokaert and Rawlings (1998); Sznaier and Damborg (1990).

9.2.2 Distributed constrained LQR (DCLQR) .

We consider, in the spirit of the work of Chmielewski and Manousiouthakis (1996); Scokaert

and Rawlings (1998); Sznaier and Damborg (1990), distributed constrained LQR, which achieves

infinite horizon optimal performance at convergence. The central issue remains the same; to

deal with infinite number of decision variables and constraints, we require a parameteriza-

tion that allows us to replace the intractable, infinite dimensional distributed constrained LQR

optimization problem with an equivalent finite dimensional one.

Several choices exist for parameterizing the input in a neighborhood of the origin. In

special cases where the different subsystems interact weakly, one may be able to use decen-

tralized feedback laws to stabilize the system in a neighborhood of the origin. Stabilization

may be achieved either by employing a dual mode controller philosophy (see Michalska and

Mayne (1993)), in which the decentralized feedback controllers take charge once the MPCs

drive the system to a desired neighborhood of the origin (Dunbar, 2006) or by using the de-

centralized feedback control law to calculate an appropriate stabilizing terminal penalty, if it
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exists. For many systems, decentralized feedback may not be sufficient to stabilize the system,

even in a neighborhood of the origin. In fact, a set of stabilizing decentralized feedback gains

may not even exist. Furthermore, the performance with a set of decentralized feedback laws

is always suboptimal when the subsystems are interacting. In Chapter 4, the input trajectories

were parameterized using ui(k + j|k) = 0, N ≤ j, i ∈ IM . This terminal penalty distributed

MPC formulation is stabilizing for any number of iterates and converges to the solution of a

modified infinite horizon centralized control problem. Terminal penalty FC-MPC (Chapter 4),

however, achieves infinite horizon optimal performance only in the limit N →∞.

An alternative terminal feedback law that allows us to achieve infinite horizon optimal

performance at convergence is the unconstrained centralized feedback law. The idea here is to

force the collection of subsystem-based MPCs to drive the system state to a neighborhood of

the origin in which the unconstrained, optimal plant CM feedback law is feasible. From Gilbert

and Tan (1991), we know that such a neighborhood of the origin is well defined and can be

computed offline.

Following the description in Gilbert and Tan (1991), we useO∞(Acm, Ccm) to denote the

maximal output admissible set for the plant CM (Acm, Bcm, Ccm). Convexity of each Ωi,∀ i ∈

IM implies that Ω = Ω1 × Ω2 × . . . × ΩM is convex. Hence, O∞(·) is convex (Gilbert and Tan,

1991, Theorem 2.1). Let Ωi, i ∈ IM be a polytope given by

Ωi ,

{
ui

∣∣∣∣Diui ≤ di, di > 0
}

Determination of O∞(·), in this case, involves the solution to a set of linear programs.
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Consider the plant CM (Â, B̂, Ĉ) = (T−1AcmT, T−1Bcm, CcmT ) in observability canon-

ical form, in which

Â =

Ao 0

A12 Ao

 , Ĉ =
[
Co 0

]
(9.2)

and Ao ∈ Rno×no , Ao ∈ Rn−no×n−no denote the observable and unobservable modes, respec-

tively. Since (Acm, Ccm) is detectable, and using Lemma 5.1, Ao is stable. The maximal ad-

missible set O∞(Â, Ĉ) = O∞(Ao, Co) × Rn−no . Also, O∞(Acm, Ccm) = TO∞(Â, Ĉ) (Gilbert

and Tan, 1991). Because (Acm, Ccm) is detectable only (and not observable), O∞(Acm, Ccm) is a

cylinder with infinite extent along directions in the unobservable subspace.

Let Kcm denote the optimal, linear quadratic regulator (LQR) gain and let Πcm denote

the solution to the corresponding discrete steady-state Riccati equation for the plant CM i.e.,

Πcm = Q+ Acm
′ΠcmAcm −Acm

′ΠcmBcm(R+ Bcm
′ΠcmBcm)−1Bcm

′ΠcmAcm (9.3a)

Kcm = −(R+ Bcm
′ΠcmBcm)−1Bcm

′ΠcmAcm (9.3b)

in which Q = diag(w1Q1, w2Q2, . . . , wMQM ) and R = diag(w1R1, w2R2, . . . , wMRM ). Condi-

tions for existence of a solution to Equation (9.3) are well known (Bitmead and Gevers, 1991;

Bitmead, Gevers, Petersen, and Kaye, 1985; Chan, Goodwin, and Sin, 1984; de Souza, Gevers,
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and Goodwin, 1986). Both Kcm and Πcm are partitioned subsystem-wise and written as

Kcm =



K11 K12 . . . K1M

K21 K22 . . . K2M

...
. . . . . .

...

KM1 KM2 . . . KMM


Πcm =



Π11 Π12 . . . Π1M

Π21 Π22 . . . Π2M

...
. . . . . .

...

ΠM1 ΠM2 . . . ΠMM


(9.4)

Lyapunov stability of (Acm + BcmKcm) and 0 ∈ int(Ω) implies 0 ∈ int(O∞) (Gilbert and Tan,

1991, Theorem 2.1).

Optimization. Define for each subsystem i ∈ IM

Φ
(
up−1

1 , . . . ,up−1
i−1 ,ui,u

p−1
i+1 , . . . ,up−1

M ;µ(k)
)

=
M∑

r=1

wrΦr

(
up−1

1 , . . . ,up−1
i−1 ,ui,u

p−1
i+1 , . . . ,up−1

M ;xr(k)
)

The DCLQR optimization problem for subsystem i is

min
ui

Φ
(
up−1

1 , . . . ,up−1
i−1 ,ui,u

p−1
i+1 , . . . ,up−1

M ;µ(k)
)

(9.5a)

subject to

ui(t|k) ∈ Ωi, k ≤ t ≤ k + N − 1 (9.5b)

ui(t|k) = Kiixi(t|k) +
∑
j 6=i

Kijxj(t|k), k + N ≤ t (9.5c)
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To indicate explicitly, the N dependence of the finite input trajectory for each subsys-

tem, we write

ui(k;N) =
[
ui(k|k)′, ui(k + 1|k)′, . . . , ui(k + N − 1|k)′

] ′, ∀ i ∈ IM (9.6)

The finite state trajectory for subsystem i, generated by the collection of input trajec-

tories u1(k;N), . . . ,uM (k;N) is denoted by xi(u1(k;N), . . . ,uM (k;N);µ(k)). For notational

simplicity, we write xi(k;N)← xi(u1(k;N),u2(k;N) . . . , uM (k;N);µ(k)). Define

Qi = diag
(

wiQi(1), . . . , wiQi(N − 1),Πii

)
Ri = diag

(
wiRi(0), wiRi(1), . . . , wiRi(N − 1)

) Tij = diag
(

0, . . . , 0,Πij

)

Assumption 9.2. For each i ∈ IM , Qi(1) = . . . = Qi(N −1) = Qi ≥ 0, Ri(0) = . . . = Ri(N −1) =

Ri > 0, (Ai, Q
1/2
i ) detectable.

The symbol Ψ(·) represents the cost function expressed in terms of the finite horizon

input trajectories u1(k;N), . . . ,uM (k;N). For notational simplicity, we drop the functional de-

pendence of ui and use Ψ(u1,u2, . . . ,uM ;µ(k)) to represent Ψ(u1(k;N), . . . ,uM (k;N);µ(k)).

If the terminal control law specified in Equation (9.5c) is feasible, we have

Ψ(u1, . . . ,uM ;µ(k)) = Φ(u1, . . . ,uM ;µ(k)).

An explicit expression for Ψ(·) for φi(·), i ∈ IM defined in Equation (4.5), p. 34 will be provided

in Section 9.2.4.

Assumption 9.3. (Aii, Cii), i ∈ IM is observable.
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Assumption 9.4. (Aii, Bii), i ∈ IM is controllable.

Let

Gji(N) =
[
AN−1

ji Bji AN−2
ji Bji . . . Bji

]
gji(N) = AN

jixji(k)

GGGi(N) =



G1i

G2i

...

GMi


gggi(µ(k);N) =



g1i

g2i

...

gMi


∀ i, j ∈ IM

For each subsystem i ∈ IM , define

ξi(k;N) =



x1i(k + N |k)

x2i(k + N |k)

...

xMi(k + N |k)


= GGGi(N)ui(k;N) + gggi(µ(k);N) (9.7)

Thus, ξi(k; 0) = [x1i(k)′, x2i(k)′, . . . , xMi(k)′]′. DefineO i
∞, i ∈ IM , closed and convex such that

O1
∞ × · · · × OM

∞ ⊆ O∞(Acm, Ccm). Each O i
∞, i ∈ IM is a projection of O∞(Acm, Ccm) on the

space of ξi, and has infinite extent along the directions that correspond to the unobservable

modes of (Acm, Ccm).
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9.2.3 Initialization

For convenience, we use O∞ to mean O∞(Acm, Ccm). To initialize the DCLQR algorithm at

k = 0, it is necessary to calculate a set of subsystem input trajectories that steers the final

predicted system state inside O∞. Several formulations to compute such a set of input trajec-

tories exist. A subsystem-based procedure for initialization is used here. Each MPC solves a

quadratic program (QP) to calculate initial input trajectories. The collection of subsystems’ in-

put trajectories drives the final predicted system state (at the end of the control horizon) inside

O∞.

To initialize the DCLQR algorithm, each MPC i ∈ IM solves the following QP

u0
i (k;N) = argLN

i (µ(k)) (9.8a)

in which

LN
i (µ(k)) = min

zi(k;N)
‖zi(k;N)‖2

subject to

GGGi(N)zi(k;N) + gggi(µ(k);N) ∈ O i
∞ (9.8b)

zi(k + j|k) ∈ Ωi, j = 0, 1, . . . , N − 1 (9.8c)

∀ i ∈ IM
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where zi(k;N) = [zi(k|k)′, zi(k +1|k)′, . . . , zi(k +N −1|k)′]′. At time k +1, the input trajectory

used for initialization is given by

u 0
i (k + 1) =

u
p(k)
i (k + 1|k)′, . . . , up(k)

i (k + N − 1|k)′,

 M∑
j=1

Kijx
p(k)
j (k + N |k)


′
′

, ∀ i ∈ IM

(9.9)

The trajectory u0
i (·), i ∈ IM in Equation (9.9) is a shifted version of u

p(k)
i (k;N). For the nominal

case, each subsystem-based MPC needs to solve the initialization QP (Equation (9.8)) only once

at k = 0.

Define

Ui = Ωi × . . .× Ωi ∈ RmiN

Remark 9.1. The constrained stabilizable set X is defined as the set of subsystem states x1, . . .

, xM that can be steered to the origin by applying an admissible set of subsystems’ input tra-

jectories u1,u2, . . . ,uM . Let ξi(·; 0) = [x1i
′, x2i

′, . . . , xMi
′]′. Define

Si = {ξi(·; 0) | ∃ ui ∈ Ui such that ξi(·;N) ∈ O i
∞}, steerable set

The set S1×. . .×SM denotes the set of ξ1, . . . , ξM for which the initialization QP (Equation (9.8))

is feasible for each i ∈ IM .
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9.2.4 Method 1. DCLQR with set constraint

One approach to ensure feasibility of the terminal control law is to explicitly enforce the ter-

minal set constraint GGGi(N)ui(k;N) + gggi(N) ∈ O i
∞ for each subsystem i ∈ IM . It is assumed

that ξi(0; 0) ∈ Si, i ∈ IM The initialization QP (Equation (9.8)) is feasible for each i ∈ IM .

The DCLQR optimization problem of Equation (9.5) can be rewritten as an equivalent finite

dimensional optimization problem given by

SN
i , min

ui(k;N)
Ψ(up−1

1 , . . . ,up−1
i−1 ,ui,u

p−1
i+1 , . . . ,up−1

M ;µ(k)) =
1
2
ui(k;N)′Riui(k;N)

+

rrri(µ(k)) +
∑
j 6=i

Hiju
p−1
j (k;N)


′

ui(k;N) + constant (9.10a)

subject to

ui(k;N) ∈ Ui, (9.10b)

GGGi(N)ui(k;N) + gggi(N) ∈ O i
∞ (9.10c)

in which

Ri =
(
Ri + Eii

′QiEii

)
+

M∑
j 6=i

Eji
′QjEji +

M∑
j=1

Eji
′
∑
l 6=j

TjlEli

Hij =
M∑
l=1

Eli
′QlElj +

M∑
l=1

Eli
′
∑
s 6=l

TlsEsj

rrri(µ(k)) = Eii
′Qifixi(k) +

M∑
j 6=i

Eji
′Qjfjxj(k) +

M∑
j=1

Eji
′
∑
l 6=j

Tjlflxl(k)
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Eii =



Bi 0 . . . . . . 0

AiBi Bi 0 . . . 0

...
...

...
...

...

AN−1
i Bi . . . . . . . . . Bi


Eij =



Wij 0 . . . . . . 0

AiWij Wij 0 . . . 0

...
...

...
...

...

AN−1
i Wij . . . . . . . . . Wij


fi =



Ai

A2
i

...

...

AN
i



∀ i, j ∈ IM , j 6= i

Remark 9.2. From the definition of φi(·), i ∈ IM (Equation (4.5))), Qi ≥ 0 and Ri > 0. The

optimization problem of Equation (9.10), therefore, minimizes a strictly convex function over

a compact set. From Lemma 8.1 (p. 171), a solution to the optimization problem of Equa-

tion (9.10) exists and is unique.

Noting that [ξ1
′, . . . , ξM

′]′ = Uxcm, in which U is a unitary matrix, we define

DC = {µ | ξi ∈ Si, i ∈ IM} domain of controller

The set DC is positively invariant for the nominal closed-loop system. An algorithm for

DCLQR with the set constraint enforced explicitly is described below.

Algorithm 9.1 (DCLQR (set constraint)). Given : N ∈ I+, [ξ1(0; 0)′, . . . , ξM (0; 0)′]′ ∈ DC

u0
i , Qi ≥ 0, Ri > 0, ∀ i ∈ IM , pmax(k) ≥ 0 and ε > 0

p← 1, κi ← Γε,Γ� 1

while κi > ε for some i ∈ IM and p ≤ pmax(k)

do ∀ i ∈ IM

u
∗(p)
i (k;N) ∈ argSN

i (Equation (9.10))
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up
i (k;N)← wiu

∗(p)
i (k;N) + (1− wi) up−1

i (k;N)

κi ← ‖up
i (k;N)− up−1

i (k;N)‖

Transmit up
i (k;N) to each interconnected subsystem j ∈ IM , j 6= i

end (do)

p← p + 1

end (while)

In Algorithm 9.1, the state trajectory for subsystem i ∈ IM at iterate p is obtained as

xp
i ← xp

i

(
up

1,u
p
2, . . . ,u

p
M ;µ(k)

)
. At times k > 0, Algorithm 9.1 is initialized using Equa-

tion (9.9). It follows from the definition of DC and Algorithm 9.1 that feasibility of the ini-

tialization QP (Equation (9.8)) for each i ∈ IM at k = 0 ensures nominal feasibility for the

optimization problem of Equation (9.10), ∀ i ∈ IM at all times k > 0 and all p(k) > 0.

Properties

Lemma 9.3. Given the DCLQR formulation SN
i , ∀ i ∈ IM (see Equation (9.10)), the sequence of cost

functions Φ(up
1,u

p
2, . . . , . . . , up

M ;µ(k)) generated by Algorithm 9.1 is nonincreasing with iteration

number p.

The proof is identical to the proof for Lemma 4.4. See p. 44.

From the definition of φi(·), we have Ri > 0. Hence, Ri > 0,∀ i ∈ IM . It follows that Ψi(·)

is strictly convex. Using convexity of Ω = Ω1 × Ω2 × . . . × ΩM and Lemma 8.1, the solution

(u∗1, . . . ,u
∗
M ) to the optimization problem

min
(u1,...,uM )∈U1×...×UM

Ψ(u1, . . . ,uM ;µ(k)) (9.11)
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exists and is unique.

Lemma 9.4. Consider Ψ(·) positive definite quadratic and Ωi, i ∈ IM convex. Let the solution to Algo-

rithm 9.2.4 after p iterates be (up
1,u

p
2, . . . ,u

p
M ) with the cost function value Ψ(up

1,u
p
2, . . . ,u

p
M ;µ(k)).

Denote the unique solution for the optimization problem of Equation (9.11) by (u∗1,u
∗
2, . . . ,u

∗
M ), and

let Ψ(u∗1,u
∗
2, . . . ,u

∗
M ;µ(k)) represent the corresponding cost function value. The solution obtained at

convergence of Algorithm 9.1 satisfies

lim
p→∞

Ψ(up
1,u

p
2, . . . ,u

p
M ;µ(k)) = Ψ(u∗1,u

∗
2, . . . ,u

∗
M ;µ(k))

lim
p→∞

(up
1,u

p
2, . . . ,u

p
M ) = (u∗1,u

∗
2, . . . ,u

∗
M )

A proof is provided in Appendix 9.6.2.

From Lemma 9.4 and the principle of optimality (Bellman, 1957), we have

lim
p→∞

(up
1,u

p
2, . . . ,u

p
M ) = (u∗1,u

∗
2, . . . ,u

∗
M )
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9.2.5 Method 2. DCLQR without explicit set constraint

For this case, the DCLQR optimization problem is defined as

PN
i , min

ui(k;N)
Ψ(up−1

1 , . . . ,up−1
i−1 ,ui,u

p−1
i+1 , . . . ,up−1

M ;µ(k)) =
1
2
ui(k;N)′Riui(k;N)

+

rrri(µ(k)) +
∑
j 6=i

Hiju
p−1
j (k;N)


′

ui(k;N) + constant (9.12a)

subject to

ui ∈ Ui (9.12b)

Two approaches for DCLQR without explicitly enforcing the terminal set constraint exist. In

the first approach, the value of N is altered online. An initial horizon length N0 is selected such

that the initialization QP (Equation (9.8)) is feasible for all i ∈ IM . At each iterate p, feasibility

of the terminal set constraint ξp
i (k;N) = GGGi(N)u∗(p)

i (k;N) + gggi(µ(k);N) ∈ O i
∞, i ∈ IM is

verified. If for some i ∈ IM , the terminal set constraint above is violated, N is increased and

the input trajectories for each subsystem i ∈ IM are recomputed using the new value of N . An

algorithm for DCLQR that is based on this approach is presented in Appendix 9.6.3.

Rather than increase N online, a different approach is adopted here. The idea is to

restrict the set of permissible initial states to a positively invariant set in which the terminal set

constraint is feasible for each subsystem i ∈ IM . This positively invariant set depends on the

choice of N . Define

S = {µ | ∃ui ∈ Ui 3GGGi(N)ui + gggi(µ;N) ∈ O i
∞, ∀ i ∈ IM} steerable set (9.13)
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Let µ+ = [x+
1 , . . . , x+

M ], in which x+
i = Aixi + Biu

p
i (µ, 0) +

∑
j 6=i u

p
j (µ, 0) and up

i (µ, 0) is the

control law for subsystem i ∈ IM (see Section 9.2.6). Define

DC = {µ |µ+ ∈ DC , µ ∈ S} domain of controller (9.14)

To construct DC , one may employ standard techniques available in the literature for backward

construction of polytopic invariant sets under state and control constraints (Blanchini, 1999;

Gutman and Cwikel, 1987; Keerthi and Gilbert, 1987). A brief exposition of the idea is provided

below. Let X0 = S. Define

X−1 = {µ |µ ∈ S and∃up
i (µ, 0) ∈ Ωi, i ∈ IM 3 µ+ ∈ X0}

For any l > 0, we have

X−(l+1) = {µ |µ ∈ S and∃up
i (µ, 0) ∈ Ωi, i ∈ IM 3 µ+ ∈ X−l}

The maximal stabilizable (positively invariant) set is given by X−∞ = ∪∞l=0 Xl. It is well known

that X−∞ is finitely determined if and only if X−(l) = X−(l−1) for some l ∈ I+. In this case, we

have X−∞ = X−l. The following algorithm is used for DCLQR (without explicitly enforcing

the terminal set constraint).

Algorithm 9.2 (DCLQR (without terminal set constraint)). Given : N ∈ I+, µ(0) ∈ DC

u0
i , Qi ≥ 0, Ri > 0, ∀ i ∈ IM , pmax(k) ≥ 0 and ε > 0

p← 1, κi ← Γε,Γ� 1

while κi > ε for some i ∈ IM and p ≤ pmax(k)
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do ∀ i ∈ IM

u
∗(p)
i (k;N) ∈ argPN

i (Equation (9.12)

up
i (µ(k);N)← wiu

∗(p)
i (k;N) + (1− wi) up−1

i (µ(k);N)

κi ← ‖up
i (µ(k);N)− up−1

i (µ(k);N)‖

Transmit up
i to each interconnected subsystem j ∈ IM , j 6= i

end (do)

p← p + 1

end (while)

Let ηp
i (k;N) = GGGi(N)up

i (k;N) + gggi(µ(k);N), ∀ i ∈ IM . Since η0
i ∈ O i

∞ (using the

initialization procedure, Section 9.2.3), we have, using convexity of O i
∞ that if ξp

i (k;N) ∈ O i
∞,

then ηp
i (k;N) ∈ O i

∞. Let η = [η1
′, η2

′, . . . , ηM
′]′. From the definitions of xcm, η and the unitary

transformation U, xp
cm(k + N |k) = Uηp(k;N). Since the 2-norm is unitary invariant (Horn and

Johnson, 1985, p. 292), ‖xp
cm(k + N |k)‖ = ‖Uηp(k;N)‖ = ‖ηp(k;N)‖. Hence, xp

cm(k + N |k) ∈

O 1
∞ × · · · × OM

∞ ⊆ O∞.

9.2.6 Closed-loop properties of DCLQR

DCLQR control law. At time k, let the DCLQR algorithm (Algorithm 9.1 or 9.2) be termi-

nated after p(k) = q iterates. Furthermore, let

uq
i (µ(k);N) = [uq

i (µ(k), 0), uq
i (µ(k), 1), . . . , uq

i (µ(k), N − 1)], ∀ i ∈ IM (9.15)

denote the input trajectories obtained by terminating the DCLQR algorithm (Algorithm 9.1

or 9.2) after q iterates. The control law under DCLQR is obtained through a receding hori-
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zon implementation of optimal control. The input injected into subsystem i, at time k, is

uq
i (µ(k), 0).

Let Jp(k)(µ(k)) denote the value of the cooperation-based cost function at time k and

p(k) iterates. We have,

Jp(k)(µ(k)) = Ψ(up(k)
1 , . . . ,u

p(k)
M ;µ(k))

= Φ(up(k)
1 , . . . ,u

p(k)
M ;µ(k))

=
M∑
i=1

wiφi

(
x

p(k)
i ,u

p(k)
i ;xi(k)

)
=

M∑
i=1

wi

∞∑
j=0

Li

(
x

p(k)
i (k + j|k), up(k)

i (k + j|k)
)

Theorem 9.1. Consider the DCLQR framework employing either Algorithm 9.1 or Algorithm 9.2. Let

Assumptions 9.1, 9.2 and 9.4 be satisfied. The origin is an asymptotically stable equilibrium point for

the nominal closed-loop system xi(k+1) = Aixi(k)+Biu
p(k)
i (µ(k), 0)+

∑M
j 6=i Wiju

p(k)
j (µ(k), 0), i ∈

IM , for all µ(0) ∈ DC and all p(k) = 1, 2, . . . , pmax(k).

Proof. Invariance of Bκi(0) and asymptotic stability of the resulting closed loop system can

be proved using the discrete version of La Salle’s invariance and asymptotic stability theo-

rems (LaSalle, 1976). A useful reference for the stability of ordinary difference equations is

the paper by Hurt (1967). At discrete time k + 1, using the definition of the set of shifted

subsystems’ input trajectories (Equation (9.9)), and invoking Lemma 9.3, we have

0 ≤ Jp(k+1)(µ(k + 1)) ≤ J0(µ(k + 1)) = Jp(k)(µ(k))−
M∑
i=1

wiLi(xi(k), up(k)
i (k)) (9.16)

∀ p(k) ≥ 0 and all k ≥ 0



208

Since Ri > 0, u
p(k)
i (µ(k)) → 0, ∀ i ∈ IM as k → ∞. Detectability of (Ai, Q

1/2
i ) implies xi(k) →

0, ∀ i ∈ IM in the limit k →∞.

Lemma 9.5. Let µ(0) ∈ DC and Qi, Ri > 0, ∀ i ∈ IM . There exists a finite time T ∗ ≥ 0, for the

nominal closed-loop system under the DCLQR control law such that xcm(T ∗) ∈ O∞.

A proof is given in Appendix 9.6.4

9.3 Terminal state constraint FC-MPC

A terminal state constraint FC-MPC framework is now described. The terminal state con-

straint employed by each MPC forces the decentralized states at the end of the control horizon

to be at the origin. Let Assumptions 9.1 and 9.4 be satisfied. Closed-loop stability is achieved

through the use of a terminal decentralized state constraint and a suitable terminal penalty for

the evolution of the interaction model states.

Let Ãi = diag(Âi, Aii), in which Âi = diag(Ai1, . . . , Ai(i−1), Ai(i+1), . . . , AiM ). There

exists a unitary transformation Ji satisfying Ãi = JiAiJi. Assumption 9.1 implies Âi is a stable

matrix. Let Q̃i = JiQiJi and let Q̂i be a square, principal submatrix of Q̃i consisting of the first

ni − nii rows and columns of Q̃i. Since Q̃i ≥ 0, Q̂i ≥ 0. Invariance of detectability under a

similarity transformation (Lemma 5.1, p. 90) and stability of Âi gives (Âi, Q̂i) is detectable. Let

Ŝi be the solution to the Lyapunov equation Âi
′ŜiÂi− Ŝi = −Q̂i. Define S̃i = diag(Ŝi, 0nii) and

let Si = JiS̃iJi. The state and input penalties over the control horizon are now defined.
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Assumption 9.5. Let Assumption 9.2 hold and let

Qi = diag
(

Qi(1), . . . , Qi(N − 1), Si

)
Ri = diag

(
Ri(0), Ri(1), . . . , Ri(N − 1)

), i ∈ IM

Consider a control horizon N . The terminal state constraint FC-MPC optimization

problem, with φi(·) defined in Equation (4.5), can be written as

Pc
i : Terminal state constraint FC-MPC

min
ui(k;N)

1
2
ui(k;N)′Riui(k;N) +

rrri(µ(k)) +
∑
j 6=i

Hiju
p−1
j (k;N)


′

ui(k;N) (9.17a)

subject to

ui(t|k) ∈ Ωi, k ≤ t ≤ k + N − 1 (9.17b)

xii(k + N |k) = 0 (9.17c)

Ri = wi

(
Ri + Eii

′QiEii

)
+

M∑
j 6=i

wjEji
′QjEji

Hij =
M∑
l=1

wlEli
′QlElj

rrri(µ(k)) = wiEii
′Qifixi(k) +

M∑
j 6=i

wjEji
′Qjfjxj(k)

An algorithm for terminal state constraint FC-MPC is described below.

Algorithm 9.3 (Terminal state constraint FC-MPC). Given :

u0
i , xi(k), Qi, Ri, ∀ i ∈ IM , pmax(k) ≥ 0 and ε > 0
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p← 1, κi ← Γε,Γ� 1

while κi > ε for some i ∈ IM and p ≤ pmax(k)

do ∀ i ∈ IM

u
∗(p)
i ∈ argPc

i (9.17)

up
i ← wiu

∗(p)
i + (1− wi) up−1

i

κi ← ‖up
i − up−1

i ‖

Transmit up
i to each interconnected subsystem j ∈ IM , j 6= i

end (do)

xp
i ← xp

i

(
up

1,u
p
2, . . . ,u

p
M ;µ(k)

)
, ∀ i ∈ IM

p← p + 1

end (while)

Remark 9.3. To initialize terminal state constraint FC-MPC, each MPC solves a QP to determine

a feasible initial trajectory. The initialization QP solved by each subsystem is similar to Equa-

tion (9.8) with the terminal set constraint in Equation (9.8b) replaced by the terminal point

constraint xii(N) = CN (Aii, Bii)ui + AN
ii xii = 0. Define

Si = {xii | ∃ui ∈ Ui such that xii(N) = 0} steerable set

For xii ∈ Si, i ∈ IM , the initialization QP is feasible. Let

DRi = Rni1 × · · · × Si × · · ·RniM , i ∈ IM domain of regulator
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The domain of the controller is given by

DC = {µ |µ+ ∈ DC , xi ∈ DRi , i ∈ IM} domain of controller

The set DC is positively invariant. For µ(0) ∈ DC , convexity of Ωi and Algorithm 9.3 guarantee

feasibility of Pc
i for all i ∈ IM and all p(k) > 0, k ≥ 0.

Remark 9.4. At time k, let Algorithm 9.3 be terminated after p(k) iterates. For each subsystem

i ∈ IM the input injected is u
p(k)
i (µ(k), 0). The domain of attraction for the nominal closed-loop

system is the set DC .

Remark 9.5. For each subsystem i ∈ IM , let Assumptions 9.1, 9.4 and 9.5 hold. The nominal

closed-loop system xi(k + 1) = Aixi(k) + Biu
p(k)
i (µ(k), 0) +

∑M
j 6=i Wiju

p(k)
j (µ(k), 0), i ∈ IM , is

exponentially stable for all µ(0) ∈ DC and all p(k) > 0.

Remark 9.6. For both nonsingular and singular Acm, there exists a finite time T after which the

closed-loop system evolves in a closed and bounded (hence compact) subset of Rn.

9.4 Examples

9.4.1 Distillation column of Ogunnaike and Ray (1994)

We revisit the distillation column of (Ogunnaike and Ray, 1994, p. 813) described in Sec-

tion 4.7.1, p. 54. Regulator parameters and constraints are given in Table 9.1. Here, we evaluate

the performance of terminal penalty FC-MPC (FC-MPC (tp)) and terminal control FC-MPC

(FC-MPC (tc)). The performance of either formulation is compared against centralized con-

strained LQR (CLQR) (Scokaert and Rawlings, 1998; Sznaier and Damborg, 1990). The closed-
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loop performance of CLQR, FC-MPC (tp) and FC-MPC(tc) when the temperature setpoints for

trays 21 and 7 are altered by −0.5◦C and 0.5◦C respectively is shown in Figures 9.1 and 9.2.

The terminal control formulation of Section 9.2.4 is used. For terminal control FC-MPC, an ini-

tial control horizon N0 = 15 is used. The initialization QP for MPC 2 is infeasible for this value

of N0. Subsequently, N0 is increased and feasible initialization trajectories for both MPCs are

obtained for N0 = 19.

Table 9.1: Distillation column model of Ogunnaike and Ray (1994). Bound constraints on
inputs L and V . Regulator parameters for MPCs.

-0.8 ≤ V ≤ 0.8
-0.8 ≤ L ≤ 0.8

Qy1 = 50 Qy2 = 50
R1 = 1 R2 = 1
ε1 = 10−2 ε2 = 10−2

A closed-loop performance comparison for the different MPCs is given in Table 9.2.

Both FC-MPC (tp, 5 iterates) and FC-MPC (tc, 5 iterates) perform poorly in comparison to

CLQR. FC-MPC (tc) incurs a lower control cost compared to FC-MPC (tp) however. If FC-

MPC (tc) and FC-MPC (tp) are terminated after 20 iterates, the performance loss (relative to

CLQR performance) incurred under FC-MPC (tp) is nearly 50% greater than FC-MPC (tc).

Table 9.2: Closed-loop performance comparison of CLQR, FC-MPC (tp) and FC-MPC (tc).
Λcost ∆Λcost%

CLQR 9.74 −−
FC-MPC (tp, 5 iterates) 32.51 234
FC-MPC (tc, 5 iterates) 25 156.4

FC-MPC (tp, 20 iterates) 13.13 34.8
FC-MPC (tc, 20 iterates) 11.4 17
FC-MPC (tp, 50 iterates) 9.83 0.9
FC-MPC (tc, 50 iterates) 9.77 0.36
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Figure 9.1: Setpoint tracking performance of CLQR, FC-MPC (tc) and FC-MPC (tp). Tray
temperatures of the distillation column.

9.4.2 Unstable three subsystem network

We consider the plant consisting of three unstable subsystems, described in Section 4.7.3. Input

constraints and controller parameters are given in Table 9.3. For each MPC, a control horizon

N = 10 is used. The performance of terminal state constraint FC-MPC (FC-MPC (tsc)) and
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Figure 9.2: Setpoint tracking performance of CLQR, FC-MPC (tc) and FC-MPC (tp). Inputs (V
and L) for the distillation column.

terminal penalty FC-MPC are compared against CLQR. Since each subsystem has an unstable

decentralized mode, a terminal state constraint that forces the unstable mode to the origin at

the end of the control horizon is necessary for terminal penalty FC-MPC (see Theorem 4.2,

p. 53). For terminal constraint FC-MPC, all the decentralized modes are forced to be at the
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origin at the end of the control horizon.

Table 9.3: Three subsystems, each with an unstable decentralized pole. Input constraints and
regulator parameters.

-1 ≤ u1 ≤ 1
-0.17 ≤ u2 ≤ 0.17
-0.2 ≤ u3 ≤ 0.2
-0.1 ≤ u4 ≤ 0.1
-0.6 ≤ u5 ≤ 0.6

Qy1 = 25 Qy2 = 25 Qy3 = 25
R1 = 1 R2 = 1 R3 = 1
ε1 = 10−6 ε2 = 10−6 ε3 = 10−6

A setpoint change of 0.5 and −0.5 is made to outputs y1 and y5 respectively. The per-

formance of FC-MPC (tsc, 1 iterate), FC-MPC (tp, 1 iterate) and CLQR is shown in Figures 9.3

and 9.4. A closed-loop performance comparison for the different MPCs is given in Table 9.4.

The performance loss (compared to CLQR) with FC-MPC (tsc) terminated after just 1 iterate

is ∼ 17%. If 5 iterates per sampling interval are possible, the performance loss drops to about

2%.

Table 9.4: Closed-loop performance comparison of CLQR, FC-MPC (tp) and FC-MPC (tsc).
Λcost ∆Λcost%

CLQR 0.43 −−
FC-MPC (tp, 1 iterate) 0.46 8.4
FC-MPC (tsc, 1 iterate) 0.5 16.7
FC-MPC (tp, 5 iterates) 0.426 0.2
FC-MPC (tsc, 5 iterates) 0.432 1.57

9.5 Discussion and conclusions

For DCLQR without an explicit terminal set constraint and with N increased online, the com-

putational overhead is in the determination of an N that drives the system state to O∞. The

efficiency of this terminal control FC-MPC algorithm depends on the choice of N0; a judicious
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Figure 9.3: Three subsystem example. Each subsystem has an unstable decentralized pole.
Performance comparison of CLQR, FC-MPC (tsc) and FC-MPC (tp). Outputs y4 and y5.

choice of N0 and an effective heuristic for increasing N improves algorithmic efficiency. As rec-

ommended in Scokaert and Rawlings (1998), one possible choice is to increase N geometrically.

The quantities Πcm, Kcm andO∞ are determined using a centralized calculation. Computation

of Πcm, Kcm and O∞ is performed offline however. The quantities Πcm and Kcm need to be re-
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Figure 9.4: Three subsystem example. Each subsystem has an unstable decentralized pole.
Performance comparison of CLQR, FC-MPC (tsc) and FC-MPC (tp). Inputs u2 and u5.

calculated only if the regulator parameters are altered and/or the system model changes. The

computation of Kcm and Πcm can be parallelized using techniques available in the literature

for parallel solution of the discrete Riccati equation (Lainiotis, 1975; Lainiotis et al., 1996). The

set O∞ needs to be recomputed everytime a setpoint change is planned and/or the system
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model, constraints are altered. The overhead associated with determination of a suitable N

that ensures feasibility of the unconstrained feedback law and computation of O∞ are issues

not confined to distributed MPC. They are key concerns in centralized MPC as well.

In certain special cases, stabilizing (suboptimal) decentralized feedback laws may exist

for each subsystem in a neighborhood of the origin. Such situations typically arise when the

interactions among the subsystems are sufficiently weak (Sandell-Jr. et al., 1978). This class of

problems can be treated as a special case. Let Kd = diag(Kd1 , . . . , KdM
) in which ui = Kdi

xi is

the local feedback law for subsystem i ∈ IM for xi ∈ Λi and Λi is closed, convex and encloses

the origin. The terminal penalty Πcm is obtained as the solution to the Lyapunov solution

(Acm −BcmKd)′Πcm(Acm −BcmKd)−Πcm = −(Q+ Kd
′RKd)

Substituting Kd = Kcm in the equation above, we recover Equation (9.3a).

The main difference between Algorithm 9.2 and Algorithm 9.4 is that in the former

case, we circumvent the need to search online for a suitable N that steers ξi(·;N) insideO i
∞ by

restricting the allowable initial states to a suitable positively invariant set. This restriction also

simplifies the algorithm significantly. The main disadvantage of explicitly including the termi-

nal set constraint in the FC-MPC optimization (Algorithm 9.1) is that the resulting controller

response may be excessively aggressive, especially for small N .
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9.6 Appendix

9.6.1 Proof for Lemma 9.2

Proof. From the Hautus lemma for stabilizability of the pair (A,B) (Sontag, 1998), we have

(A,B) is stabilizable if and only if

rank
[
λI −A B

]
= n, ∀ |λ| ≥ 1 (9.18)

(A, B) stabilizable =⇒ (A,B) stabilizable. Consider |λ| ≥ 1. We have,

λI −A 0 B

0 λI −As Bs



has n+ns independent rows. Therefore, [λI−A, 0, B] has n independent rows, which implies

[λI −A, B] has n independent rows. Hence, (A,B) is stabilizable.

(A,B) stabilizable =⇒ (A, B) stabilizable. Consider |λ| ≥ 1. We have [λI − A, B] has n

independent rows, which implies [λI − A, 0, B] has n independent rows. Since As is stable,

λI −As has ns independent rows. Due to the position of the zeros,

λI −A 0 B

0 λI −As Bs



has n + ns independent rows i.e., (A, B) is stabilizable.
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9.6.2 Proof for Lemma 9.4

Proof. Since the level set

S0 = {(u1,u2, . . . ,uM ) | Ψ(u1, . . . ,uM ;µ(k)) ≤ Ψ(u0
1, . . . ,u

0
M ;µ(k))}

is closed and bounded (hence compact), a limit point for Algorithm 9.1 exists. We know

that (u∗1, . . . ,u
∗
M ) is the unique solution for the centralized MPC optimization problem (Equa-

tion (9.11)). Let Ψ∗ = Ψ(u∗1, . . . ,u
∗
M ;µ(k)). Assume that the sequence (up

1,u
p
2, . . . ,u

p
M ), gener-

ated by Algorithm 9.1, converges to a feasible subset of the nonoptimal level set

S∞ = {(u1,u2, . . . ,uM ) |Ψ(u1, . . . ,uM ;µ(k)) = Ψ∞ = Φ∞}

Since Ψ(·) is strictly convex and by assumption of nonoptimality Ψ∞ > Ψ∗. Let (u∞1 , . . . ,u∞M ) ∈

S∞ be generated by Algorithm 9.1 for p large. To establish convergence of Algorithm 9.1

to a point rather than a limit set, we assume the contrary and show a contradiction. Sup-

pose that Algorithm 9.1 does not converge to a point. Our assumption here implies that

there exists (v1, . . . ,vM ) ∈ S∞ generated by the subsequent iterate of Algorithm 9.1 with

(v1, . . . ,vM ) 6= (u∞1 , . . . ,u∞M ).

Consider the following optimization problem for each i ∈ IM

z∞i = arg min
ui

Ψ(u∞1 , . . . ,u∞i−1,ui,u
∞
i+1, . . . ,u

∞
M ;µ(k)) (9.19a)

ui ∈ Ui (9.19b)
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By assumption, there exists at least one i for which z∞i 6= u∞i . By definition, vi = wiz
∞
i +

(1−wi)u∞i , ∀ i ∈ IM . Since (v1, . . . ,vM ) ∈ S∞, Ψ(v1, . . . ,vM ;x(k)) = Φ∞. Using convexity of

Ψ(·), we have

Ψ∞ = Ψ(v1, . . . ,vM ;µ(k)) = Ψ(w1z
∞
1 + (1− w1)u∞1 , . . . , wMz∞M + (1− wM )u∞M ;µ(k))

< w1Ψ(z∞1 ,u∞2 , . . . ,u∞M ;x(k)) + . . .

. . . + wMΨ(u∞1 , . . . ,u∞M−1,z
∞
M ;x(k))

< w1Ψ∞ + . . . wMΨ∞

= Ψ∞ = Φ∞

in which the strict inequality follows from z∞i 6= u∞i for at least one i ∈ IM . Hence, a contra-

diction. Suppose now that (up
1,u

p
2, . . . ,u

p
M ) → (u∞1 ,u∞2 , . . . ,u∞M ) 6= (u∗1,u

∗
2, . . . ,u

∗
M ). From

uniqueness of the optimizer, Ψ(u∗1, . . . ,u
∗
M ;µ(k)) < Ψ(u∞1 , . . . ,u∞M ;µ(k)). Since (up

1, . . . ,u
p
M ),

generated using Algorithm 9.1, converges to (u∞1 , . . . ,u∞M ), we have for each i ∈ IM that

u∞i = arg min
ui

Ψ(u∞1 , . . . ,u∞i−1,ui,u
∞
i+1, . . . ,u

∞
M ;µ(k)) (9.20a)

ui ∈ Ui (9.20b)

From Lemma 9.1,

∇ujΨ(u∞1 , . . . ,u∞M ;µ(k))′(u∗j − u∞j ) ≥ 0, ∀ j ∈ IM

Define ∆uj = u∗j −u∞j . We have, from our assumption (u∞1 ,u∞2 , . . . ,u∞M ) 6= (u∗1,u
∗
2, . . . ,u

∗
M ),
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that ∆ui 6= 0 for at least one index i ∈ IM . A second order Taylor series expansion around

(u∞1 ,u∞2 , . . . ,u∞M ) gives

Ψ(u∗1,u
∗
2, . . . ,u

∗
M ;µ(k)) = Ψ(u∞1 + ∆u1,u

∞
2 + ∆u2, . . . ,u

∞
M + ∆uM ;µ(k))

= Ψ(u∞1 , . . . ,u∞M ;µ(k)) +
M∑

j=1

∇ujΨ(u∞1 , . . . ,u∞M ;µ(k))′∆uj︸ ︷︷ ︸
≥0, Lemma 9.1

+
1
2


∆u1

...

∆uM



′

∇2Ψ(u∞1 , . . . ,u∞M ;µ(k))


∆u1

...

∆uM


︸ ︷︷ ︸

≥0, since Ψ(·) p.d. quadratic

(9.21)

Using Equation (9.21) and optimality of (u∗1,u
∗
2, . . . ,u

∗
M ) gives

Ψ(u∗1, . . . ,u
∗
M ;µ(k)) = Ψ(u∞1 , . . . ,u∞M ;µ(k)) + β(∆u1, . . . ,∆uM )

≤ Ψ(u∞1 , . . . ,u∞M ;µ(k)) (9.22)

in which β(·) is a positive definite function (from Equation (9.21)). We have from Equa-

tion (9.22) that β(·) ≤ 0, which implies β(∆u1, . . . ,∆uM ) = 0.

It follows, therefore, that u∞j = u∗j , ∀ j ∈ IM . Hence, Ψ(u∗1,u
∗
2, . . . ,u

∗
M ;µ(k)) =

Ψ(u∞1 ,u∞2 , . . . ,u∞M ;µ(k)).

Alternate proof. Claim: If Ψ(up
1, . . . ,u

p
M ;µ(k)) → Ψ(u∗, . . . ,u∗M ;µ(k)), up

j → u∗j , ∀ j ∈ IM as

p→∞.
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Let L∗ be the level set

L∗ =
{

(u1,u2, . . . ,uM ) |Ψ(u1,u2, . . . ,uM ;µ(k)) ≤ Ψ(u∗1,u
∗
2, . . . ,u

∗
M ;µ(k))

}
(9.23)

Optimality of Ψ(u∗1, . . . ,u
∗
M ;µ(k)) and strict convexity of Ψ(·) gives L∗ = {(u∗1,u∗2, . . . ,u∗M )}.

Define Lp to be the level set

Lp =
{

(u1,u2, . . . ,uM ) |Ψ(u1,u2, . . . ,uM ;µ(k)) ≤ Ψ(up
1,u

p
2, . . . ,u

p
M ;µ(k))

}

By construction, (up
1,u

p
2, . . . ,u

p
M ) ∈ Lp. Since Ψ(·) is a nonincreasing function of the iteration

number p (Lemma 9.3), and is bounded below (hence convergent), we have

Lp+1 ⊆ Lp ⊆ Lp−1 ⊆ ........ ⊆ L0 ⊆ S0

In the limit as p→∞, and since Ψ(u∗1,u
∗
2, . . . ,u

∗
M ;µ(k)) = Ψ(u∞1 ,u∞2 , . . . ,u∞M ;µ(k)) (from the

first part of the lemma), we can write

L∞ = {(u1,u2, . . . ,uM ) |Ψ(u1,u2, . . . ,uM ;µ(k)) ≤ Ψ(u∞1 ,u∞2 . . . . ,u∞M ;µ(k))}

= {(u1,u2, . . . ,uM ) |Ψ(u1,u2, . . . ,uM ;µ(k)) ≤ Ψ(u∗1,u
∗
2, . . . ,u

∗
M ;µ(k))}

= L∗ (9.24)

It follows by construction of the level sets that (u∞1 ,u∞2 , . . . ,u∞M ) ∈ L∞. Using the definition of

L∗ (Equation (9.23)) and from Equation (9.24), we have (u∞1 ,u∞2 , . . . ,u∞M ) = (u∗1,u
∗
2, . . . ,u

∗
M ),

which proves the second part of the lemma.
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9.6.3 DCLQR with N increased online (without terminal set constraint)

A subsystem-based algorithm to ensure feasibility of the terminal control law without explic-

itly enforcing the terminal set constraint, and in which N is increased online, is described

below.

Algorithm 9.4 (DCLQR (without set constraint)).

Given: xi(k), Qi ≥ 0, Ri > 0, ∀ i ∈ IM

pmax(k) ≥ 0, ε > 0 and p← 1

1. Choose a finite horizon N0. N ← N0.

2. for i ∈ IM

Compute u0
i (k;N) ∈ argLN

i (µ(k))

Construct u0
i (k) (Remark 9.7)

Transmit u0
i (k) to each subsystem j ∈ IM , j 6= i.

end (for)

3. ρi ← Γε,Γ� 1

4. while ρi > ε for some i ∈ IM and p ≤ pmax

(a) do ∀ i ∈ IM

u
∗(p)
i (k;N) ∈ argPN

i , (see Equation (9.12))

Calculate ξp
i (k;N) = GGGi(N)u∗(p)

i (k;N) + gggi(µ(k);N)

if ξp
i (k;N) /∈ O i

∞

(i) Increase N

(ii) Extract up−1
i (k;N) from up−1

i (k), ∀ i ∈ IM

(iii) Goto step 4.
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end (if)

Calculate x
∗(p)
i ← xi(u

p−1
1 , . . . ,u

∗(p)
i , . . . ,up−1

M ;xi(k))

end (do)

(b) for each i ∈ IM

up
i (k;N) = wiu

∗(p)
i (k;N) + (1− wi) up−1

i (k;N)

xp
i (k;N) = wix

∗(p)
i (k;N) + (1− wi) xp−1

i (k;N)

ρi = ‖up
i (k;N)− up−1

i (k;N)‖

Transmit up
i to each subsystem j ∈ IM , j 6= i.

Construct up
i (k) (Remark 9.7).

end (for)

p← p + 1

end (while)

In the nominal case, Step 2 in Algorithm 9.4 has to be solved only once at k = 0. The

shifted input trajectories (Equation (9.9)) are feasible for all k > 0. Also, the initialization in

Step 2 is used for µ(k) /∈ O∞. If µ(k) ∈ O∞, Remark 9.7 can be used directly to generate

u0
i (k), ∀ i ∈ IM .

Remark 9.7. For a collection of finite input trajectories u1(k;N), . . . ,uM (k;N) such that xcm(k+

N |k) = [x1(k + N |k)′, x2(k + N |k)′, . . . , xM (k + N |k)′]′ ∈ O∞, the corresponding collection

of infinite subsystem input trajectories u1,u2, . . . ,uM can be constructed using the positive

invariance of O∞ for the system xcm(k + 1) = (Acm + BcmKcm)xcm(k) (Gilbert and Tan, 1991).
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The infinite input trajectory for subsystem i, ui(k), is obtained as

ui(k) =
[
ui(k;N)′, ui(k + N |k)′, ui(k + N + 1|k)′, . . . . . .

]
, ∀ i ∈ IM (9.25)

in which ui(k + N + j|k) = Vi
′ [Kcm(Acm + BcmKcm)jxcm(k + N |k)

]
, 0 ≤ j. The matrix

Vi = [0, . . . , Imi , . . .]
′ is defined such that ui = Vi

′u. The corresponding infinite horizon cost

function value is given by Φ(u1,u2, . . . ,uM ;µ(k)). By construction, the infinite horizon cost

function value is also equal to Ψ(u1(k;N),u2(k;N), . . . ,uM (k;N);µ(k)). For implementation,

a maximum allowable value of N i.e., Nmax is selected a priori and the infinite horizon input

trajectories ui, i ∈ IM are constructed up to this value Nmax.

Properties

For Algorithm 9.4, monotonicity of the cost function with iteration number and optimality at

convergence can be established using arguments identical to those used in Lemmas 9.3 and 9.4

respectively.

Lemma 9.6. Consider the DCLQR framework employing Algorithm 9.4. Let Assumptions 9.1 and 9.4

hold. For each subsystem i ∈ IM there exists a finite N ← N(µ(k)) ∈ I+ such that ξp
i (k;N) ∈ O i

∞

(Step 4(a), Algorithm 9.4).

Proof. From Lemma 9.2, the pair (Ai,Bi), in which Ai = diag(A1i, . . . , AMi), Bi = [B1i
′, . . . ,

BMi
′]′ is stabilizable. Assume @ N ← N(µ(k)) ∈ I+, N finite such that

ξp
i (k;N) = GGGi(N)u∗(p)

i (k;N) + gggi(µ(k);N) ∈ O i
∞.
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There exists, therefore, κi ∈ I+ such that ‖ξp
i (k;N)‖ > κi, ∀N ∈ I+.

At time k = 0, let µ(0) ∈ XN0 , N0 ∈ I+ such that the initialization QP (Equation (9.8) is

feasible for all i ∈ IM . The cost function

Φ(u0
1, . . . ,u

0
M ;µ(0)) = Ψ(u0

1(0;N0), . . . ,uM (0;N0);µ(0)) = Φ0

is, therefore, finite. Since ‖ξi(0;N)‖ > δ, ∀N , there exists N∗ ∈ I+ such that

Ψ(u0
1(0;N∗), . . . ,u

∗(1)
i (0;N∗), . . . ,uM (0;N∗);µ(0)) > Ψ0, ∀ i ∈ IM .

The relationship above contradicts optimality of u
∗(1)
i (·) for each i ∈ IM . Hence, there exists

N ∈ I+, N finite such that ξ1
i (0;N) ∈ O i

∞, ∀ i ∈ IM . Subsequently, Ψ(u0
1(0;N), . . . ,u∗(1)

i (0;N),

. . . , uM (0;N);µ(0)) is finite. From Lemma 9.3, Ψ(u1
1(0;N), . . . ,u1

M (0;N);µ(0)) is finite, and

by convexity η1
i (0;N) = GGGi(N)up

i (k;N) + gggi(µ(k);N) ∈ O i
∞. Repeating the sequence of

arguments presented above establishes the existence of an N for each iterate p such that

ηp
i (0;N) ∈ O i

∞, ∀ i ∈ IM . At times k > 0, either the shifted input trajectory (nominal case) or

the QP (Equation (9.8)) is used for initialization. In either case, it can be established that for

µ(k) ∈ XNk
, Nk ∈ I+, Φ(u0

1, . . . ,u
0
M ;µ(k)) = Ψ(u0

1(k;Nk), . . . ,u0
M (k;Nk);µ(k)) is finite. The

remainder of the proof follows the arguments presented above.
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9.6.4 Proof for Lemma 9.5

Proof. Suppose xcm(k) /∈ O∞ for all k ∈ I+. Because 0 ∈ int(O∞), there exists some κ ∈ I+

such that
∑

i ‖xi(k)‖2 > κ for all k. From Equation (9.16),

∆Φ(k + 1) = Φ(up(k+1)
1 , . . . ,u

p(k+1)
M ;µ(k + 1))− Φ(up(k)

1 , . . . ,u
p(k)
M ;µ(k))

= Jp(k+1)(µ(k + 1))− Jp(k)(µ(k))

≤ −
M∑
i=1

wiLi(xi(k), up(k)
i (k))

≤ −
M∑
i=1

wiLi(xi(k), 0)

≤ −ρ, ∀ k ∈ I+ (9.26)

in which ρ = κ min i∈IM
wiλmin(Qi) > 0. Summing over times k = 0, 1, 2, . . . , T gives

Φ(up(T )
1 , . . . ,u

p(T )
M ;µ(T )) ≤ Φ(up(0)

1 , . . . ,u
p(0)
M ;µ(0))− Tρ

≤ Φ(u0
1, . . . ,u

0
M ;µ(0))− Tρ (using Lemma 9.3)

Since Φ(u0
1, . . . ,u

0
M ;µ(0)) is finite (initialization), here exists T0 ∈ I+ such that

Φ(u0
1, . . . ,u

0
M ;µ(0))− T0ρ = 0.

For T > T0, we have Φ(up(T )
1 , . . . ,u

p(T )
M ;µ(T )) < 0, which contradicts Φ(·) ≥ 0, thereby estab-

lishing the lemma.
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Chapter 10

Distributed MPC Strategies with

Application to Power System

Automatic Generation Control 1

Most interconnected power systems rely on automatic generation control (AGC) for control-

ling system frequency and tie-line interchange (Wood and Wollenberg, 1996). These objectives

are achieved by regulating the real power output of generators throughout the system. To cope

with the expansive nature of power systems, a distributed control structure has been adopted

for AGC. Also, various limits must be taken into account, including restrictions on the amount

and rate of generator power deviation. AGC therefore provides a very relevant example for

illustrating the performance of distributed MPC in a power system setting.

Flexible AC transmission system (FACTS) devices allow control of the real power flow

over selected paths through a transmission network (Hingorani and Gyugyi, 2000). As trans-

1Portions of this chapter appear in Venkat, Hiskens, Rawlings, and Wright (2006a) and in Venkat, Hiskens,
Rawlings, and Wright (2006d).
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mission systems become more heavily loaded, such controllability offers economic benefits

(Krogh and Kokotovic, 1984) . However FACTS controls must be coordinated with each other,

and with other power system controls, including AGC. Distributed MPC offers an effective

means of achieving such coordination, whilst alleviating the organizational and computational

burden associated with centralized control.

This chapter is organized as follows. In Section 10.1, a brief description of the different

modeling frameworks suitable for power networks is presented. In Section 10.2, a description

of the different MPC based systemwide control frameworks is provided. A simple example

that illustrates the unreliability of communication-based MPC is presented. An implementable

algorithm for terminal penalty-based distributed MPC is described in Section 10.3. Properties

of this distributed MPC algorithm and closed-loop properties of the resulting distributed con-

troller are established subsequently. Three examples are presented to assess the performance

of the terminal penalty-based distributed MPC framework. Two useful extensions of the pro-

posed distributed MPC framework are described in Section 10.6. An algorithm for terminal

control-based distributed MPC is described in Section 10.6.3. Two examples are presented to

illustrate the efficacy of the terminal control-based distributed MPC framework. Conclusions

of this study are provided in Section 10.7.

10.1 Models

Distributed MPC relies on decomposing the overall system model into appropriate subsystem

models. A system comprised of M interconnected subsystems will be used to establish these

concepts.
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Centralized model. The overall system model is represented as a discrete LTI model of the

form

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

in which k denotes discrete time and

A =



A11 A12 . . . A1M

...
...

. . .
...

Ai1 Ai2 . . . AiM

...
...

. . .
...

AM1 AM2 . . . AMM


B =



B11 B12 . . . B1M

...
...

. . .
...

Bi1 Bi2 . . . BiM

...
...

. . .
...

BM1 BM2 . . . BMM



C =



C11 0 . . . 0

0 C22 . . . 0

...
...

. . .
...

0 . . . . . . CMM


u =

[
u1
′ u2

′ . . . uM
′

]
′ ∈ Rm

x =
[
x1
′ x2

′ . . . xM
′

]
′ ∈ Rn y =

[
y1
′ y2

′ . . . yM
′

]
′ ∈ Rz.

For each subsystem i ∈ IM , (ui, xi, yi) represents the subsystem input, state and output re-

spectively. The centralized model pair (A,B) is assumed to be stabilizable and (A,C) is de-

tectable 2.
2In the applications considered here, local measurements are typically a subset of subsystem states. The struc-

ture selected for the C matrix reflects this observation. A general C matrix may be used, but impacts possible
choices for distributed estimation techniques (Venkat, Hiskens, Rawlings, and Wright, 2006b).
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Decentralized model. In the decentralized modeling framework, it is assumed that the in-

teraction between the subsystems is negligible. Subsequently, the effect of the external subsys-

tems on the local subsystem is ignored in this modeling framework. The decentralized model

for subsystem i ∈ IM is

xi(k + 1) = Aiixi(k) + Biiui(k)

yi(k) = Ciixi(k)

Partitioned model (PM). The PM for subsystem i combines the effect of the local subsystem

variables and the effect of the states and inputs of the interconnected subsystems. The PM for

subsystem i is obtained by considering the relevant partition of the centralized model and can

be explicitly written as

xi(k + 1) = Aiixi(k) + Biiui(k) +
∑
j 6=i

(Aijxj(k) + Bijuj(k)) (10.1a)

yi(k) = Ciixi(k) (10.1b)

10.2 MPC frameworks for systemwide control

The set of admissible controls for subsystem i, Ωi ⊆ Rmi is assumed to be a nonempty, com-

pact, convex set with the origin in its interior. The set of admissible controls for the whole

plant Ω is defined to be the Cartesian product of the admissible control sets Ωi,∀ i ∈ IM . The

stage cost at stage t ≥ k along the prediction horizon and the cost function φi(·) for subsystem

i ∈ IM are defined in Equations (4.3) and (4.5) with each xi now denoting the states in the PM
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(Equation (10.1) for subsystem i ∈ IM . For any system, the constrained stabilizable set (also

termed Null controllable domain) X is the set of all initial states x ⊆ Rn that can be steered

to the origin by applying a sequence of admissible controls (see (Sznaier and Damborg, 1990,

Definition 2)). It is assumed throughout that the initial system state vector x(0) ∈ X , in which

X denotes the constrained stabilizable set for the overall system. A feasible solution to the

corresponding optimization problem, therefore, exists.

Four MPC based systemwide control frameworks are described below. The difference

between the optimization problems described here and those in Section 4.3, p. 32 is in the

modeling framework used (see Section 10.1). In each MPC framework, the controller is defined

by implementing the first input in the solution to the corresponding optimization problem.

Centralized MPC. In the centralized MPC framework, the MPC for the overall system solves

the following optimization problem

min
x,u

φ (x,u;x(k)) =
∑

i

wiφi (xi,ui;xi(k))

subject to

x(l + 1|k) = Ax(l|k) + Bu(l|k), k ≤ l

ui(l|k) ∈ Ωi, k ≤ l, i ∈ IM

where wi > 0,
∑

wi = 1.
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For any system, centralized MPC achieves the best attainable performance (Pareto op-

timal) as the effect of interconnections among subsystems are accounted for exactly. Further-

more, any conflicts among controller objectives are resolved optimally.

Decentralized MPC. In the decentralized MPC framework, the following optimization prob-

lem is solved by each controller

min
xi,ui

φi (xi,ui;xi(k))

subject to

xi(l + 1|k) = Aiixi(l|k) + Biiui(l|k), k ≤ l

ui(l|k) ∈ Ωi, k ≤ l

Each decentralized MPC solves an optimization problem to minimize its (local) cost

function. The effects of the interconnected subsystems are assumed to be negligible and are

ignored. In many situations, however, the above assumption is not valid and leads to reduced

control performance.

Communication-based MPC. For communication-based MPC 3, the optimal state-input tra-

jectory (xp
i ,u

p
i ) for subsystem i, i ∈ IM at iterate p is obtained as the solution to the optimiza-

3Similar strategies have been proposed by Camponogara et al. (2002); Jia and Krogh (2001)
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tion problem

min
xi,ui

φi (xi,ui;xi(k))

subject to

xi(l + 1|k) = Aiixi(l|k) + Biiui(l|k) +
∑
j 6=i

[Aijx
p−1
j (l|k) + Biju

p−1
j (l|k)], k ≤ l

ui(l|k) ∈ Ωi, k ≤ l

As described in Section 4.3, each communication-based MPC utilizes the objective function for

that subsystem only. For each subsystem i at iteration p, only that subsystem input sequence

ui is optimized and updated. The other subsystems’ inputs remain at up−1
j , ∀ j ∈ IM , j 6= i. If

the communication-based iterates converge, then at convergence, the Nash equilibrium (NE)

is achieved.

Instability under communication-based MPC. Figure 10.1 illustrates nonconvergence of

communication-based MPC for a two subsystem case. For initial values of inputs at the ori-

gin and in the absence of input constraints, the sequence of communication-based iterates

diverges to infinity. For a compact feasible region (the box in Figure 10.1), the sequence of

communication-based iterates is trapped at the boundary of the feasible region (Point 5). For

this system, the NE is at point n.

Feasible cooperation-based MPC (FC-MPC). To arrive at a reliable distributed MPC frame-

work, we need to ensure that the subsystems’ MPCs cooperate, rather than compete, with each

other in achieving systemwide objectives. The local controller objective φi(·) is replaced by an
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Figure 10.1: A Nash equilibrium exists. Communication-based iterates do not converge to the
Nash equilibrium however.

objective that measures the systemwide impact of local control actions. The simplest choice

for such an objective is a strict convex combination of the controller objectives i .e., φ(·) =∑
i wiφi(·), wi > 0,

∑
i wi = 1.

For notational convenience, we drop the k dependence of xi(k),ui(k), i ∈ IM . It is

shown in Appendix 10.8.1 that each xi can be expressed as

xi = Eiiui + fiixi(k) +
∑
j 6=i

[Eijuj + fijxj(k)]. (10.4)

We consider open-loop stable systems here. Extensions of the distributed MPC method-

ology to handle large, open-loop unstable systems are described in Sections 10.6.2 and 10.6.3.
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For open-loop stable systems, the FC-MPC optimization problem for subsystem i, de-

noted Fi, is defined as

Fi , min
ui

M∑
r=1

wrΦr

(
up−1

1 , . . . ,up−1
i−1 ,ui,u

p−1
i+1 , . . . ,up−1

M ;xr(k)
)

(10.5a)

subject to

ui(t|k) ∈ Ωi, k ≤ t ≤ k + N − 1 (10.5b)

ui(t|k) = 0, k + N ≤ t (10.5c)

The infinite horizon input trajectory ui is obtained by augmenting ui with the input sequence

ui(t|k) = 0, k+N ≤ t. The infinite horizon state trajectory xi is derived from xi by propagating

the terminal state xi(k + N |k) using Equation (10.1) and ui(t|k) = 0, k + N ≤ t,∀ i ∈ IM . The

cost function Φi(·) is obtained by eliminating the state trajectory xi from Equation (4.5) using

Equation (10.4) and the input, state parameterization described above. The solution to the

optimization problem Fi is denoted by u
∗(p)
i . By definition,

u
∗(p)
i = [u∗(p)

i (k|k)′, u∗(p)
i (k + 1|k)′, . . . . . .]′ and

u
∗(p)
i = [u∗(p)

i (k|k)′, u∗(p)
i (k + 1|k)′, . . . , u∗(p)

i (k + N − 1|k)′]′
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10.3 Terminal penalty FC-MPC

10.3.1 Optimization

For φi(·) defined in Equation (4.5), the FC-MPC optimization problem (Equation (10.5)), for

each subsystem i ∈ IM , can be written as

Fi , min
ui

1
2
ui
′Riui +

rrri(x(k)) +
∑
j 6=i

Hiju
p−1
j


′

ui (10.6a)

subject to

ui(t|k) ∈ Ωi, k ≤ t ≤ k + N − 1 (10.6b)

in which

Ri = Ri +
M∑

j=1

Eji
′QjEji +

M∑
j=1

Eji
′
∑
l 6=j

TjlEli

Qi = diag
(

wiQi(1), . . . , wiQi(N − 1), Pii

)
Tij = diag

(
0, . . . , 0, Pij

)
Ri = diag

(
wiRi(0), wiRi(1), . . . , wiRi(N − 1)

)
rrri(x(k)) =

M∑
j=1

Eji
′ Qj gj(x(k)) +

M∑
j=1

Eji
′
∑
l 6=j

Tjlgl(x(k))

Hij =
M∑
l=1

Eli
′QlElj +

M∑
l=1

Eli
′
∑
s 6=l

TlsEsj gi(x(k)) =
M∑

j=1

fijxj(k)
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and

P =



P11 P12 . . . . . . P1M

P21 P22 . . . . . . P2M

...
...

. . . . . .
...

PM1 PM2 . . . . . . PMM


(10.7)

is a suitable terminal penalty matrix. Restricting attention (for now) to open-loop stable sys-

tems simplifies the choice of P . For each i ∈ IM , let Qi(0) = Qi(1) = . . . = Qi(N − 1) = Qi.

The terminal penalty P can be obtained as the solution to the centralized Lyapunov equation

A′ P A− P = −Q (10.8)

in which Q = diag(w1Q1, w2Q2, . . . , wMQM ). The centralized Lyapunov equation (Equa-

tion (10.8)) is solved offline. The solution to Equation (10.8), P , has to be recomputed if the

subsystems’ models and/or cost functions are altered.

10.3.2 Algorithm and properties

Algorithm 4.1 (p. 43) solving the optimization problem of Equation (10.6) is used for FC-MPC.

The state trajectory for subsystem i generated by the input trajectories u1,u2, . . . ,uM and

initial state z is represented as xi(u1,u2, . . . ,uM ; z). At each iterate p in Algorithm 4.1, the

state trajectory for subsystem i ∈ IM can be calculated as xp
i (u

p
1,u

p
2, . . . ,u

p
M ;x(k)). The infi-

nite horizon input and state trajectories (xp
i ,u

p
i ) can be obtained following the discussion in
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Section 10.2. Denote the cooperation-based cost function after p iterates by

Φ(up
1,u

p
2, . . . ,u

p
M ;x(k)) =

M∑
r=1

wrΦr

(
up

1,u
p
2, . . . ,u

p
M ;xr(k)

)
.

Properties for Algorithm 4.1 established in Section 4.5 apply here (with each µ(k) replaced by

x(k)).

10.3.3 Distributed MPC control law

At time k, let the FC-MPC algorithm (Algorithm 4.1) be terminated after p(k) iterates, with

u
p(k)
i (x(k)) =

[
u

p(k)
i (x(k), 0)′, up(k)

i (x(k), 1)′, . . .
]
′, (10.9)

∀ i ∈ IM

representing the solution to Algorithm 4.1 after p(k) cooperation-based iterates. The dis-

tributed MPC control law is obtained through a receding horizon implementation of optimal

control whereby the input applied to subsystem i is u
p(k)
i (x(k), 0).

10.3.4 Feasibility of FC-MPC optimizations

Since x(0) ∈ X , there exists a set of feasible, open-loop input trajectories (u1,u2, . . . ,uM ) such

that xi(k) → 0, ∀ i ∈ IM and k sufficiently large. Convexity of Ωi,∀ i ∈ IM and Algorithm 4.1

guarantee that given a feasible input sequence at time k = 0, a feasible input sequence exists

for all future times. One trivial choice for a feasible input sequence at k = 0 is ui(k + l|k) =

0, l ≥ 0, ∀ i ∈ IM . This choice follows from our assumption that each Ωi is nonempty and

0 ∈ int(Ωi). Existence of a feasible input sequence for each subsystem i at k = 0 ensures that
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the FC-MPC optimization problem (Equations (10.5) and (10.6)) has a solution for each i ∈ IM

and all k ≥ 0.

10.3.5 Initialization

At discrete time k + 1, define ∀ i ∈ IM

u0
i (·) ′ =

[
u

p(k)
i (x(k), 1)′, up(k)

i (x(k), 2)′, . . . , up(k)
i (x(k), N − 1)′, 0, 0, . . .

]
(10.10)

It follows that u0
1(k+1),u0

2(k+1), . . . ,u0
M (k+1) constitute feasible subsystem input trajectories

with an associated cost function Φ
(
u0

1(k + 1),u0
2(k + 1), . . . ,u0

M (k + 1);x(k + 1)
)
.

10.3.6 Nominal closed-loop stability

Given the set of initial subsystem states xi(0), ∀ i ∈ IM . Define J̃N (x(0)) to be the value

of the cooperation-based cost function with the set of zero input trajectories ui(k + j|k) =

0, j ≥ 0,∀ i ∈ IM . At time k, let J0
N (x(k)) represent the value of the cooperation-based cost

function with the input trajectory initialization described in Equation (10.10). For notational

convenience we drop the function dependence of the generated state trajectories and write

xi ≡ xi(u1,u2, . . . ,uM ; z), ∀ i ∈ IM . The value of the cooperation-based cost function after

p(k) iterates is denoted by J
p(k)
N (x(k)). Thus,

J
p(k)
N (x(k)) =

M∑
i=1

wiφi

(
x

p(k)
i ,u

p(k)
i ;x(k)

)
(10.11a)

=
M∑
i=1

wi

∞∑
j=0

Li

(
x

p(k)
i (k + j|k), up(k)

i (k + j|k)
)

(10.11b)
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At k = 0, we have using Lemma 4.4, p. 44 (with µ(k) replaced by x(k)) that

J
p(0)
N (x(0)) ≤ J0

N (x(0)) = J̃N (x(0)).

It follows from Equation (10.10) and Lemma 4.4 that

0 ≤ J
p(k)
N (x(k)) ≤ J0

N (x(k)) = J
p(k−1)
N (x(k − 1))−

M∑
i=1

wiLi(xi(k − 1), up(k−1)
i (k − 1)), ∀ k > 0

(10.12)

Using the above relationship recursively from time k to time 0 gives

J
p(k)
N (x(k)) ≤ J̃N (x(0))−

k−1∑
j=0

M∑
i=1

wiLi(xi(j), u
p(j)
i (j)) ≤ J̃N (x(0)), (10.13)

From Equation (10.11), we have 1
2λmin(Q)‖x(k)‖2 ≤ J

p(k)
N (x(k)). Using Equation (10.13), gives

J
p(k)
N (x(k)) ≤ J̃N (x(0)) = 1

2x(0)′Px(0) ≤ 1
2λmax(P )‖x(0)‖2. From the previous two cost re-

lationships, we obtain ‖x(k)‖ ≤
√

λmax(P )
λmin(Q) ‖x(0)‖, which shows that the closed-loop system is

Lyapunov stable (Vidyasagar, 1993, p. 265). In fact, using the cost convergence relationship

(Equation (10.12)) the closed-loop system is also attractive, which proves asymptotic stability

under the distributed MPC control law.

Lemmas 4.4 and 4.5 can be used to establish the following (stronger) exponential closed-

loop stability result.

Theorem 10.1. Given Algorithm 4.1 using the distributed MPC optimization problem of Equation

(10.6) with N ≥ 1. In Algorithm 4.1, let 0 < pmax(k) ≤ p∗ <∞, ∀k ≥ 0. If A is stable, P is obtained
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from Equation (10.8), and

Qi(0) = Qi(1) = . . . = Qi(N − 1) = Qi > 0

Ri(0) = Ri(1) = · · · = Ri(N − 1) = Ri > 0

∀ i ∈ IM

then the origin is an exponentially stable equilibrium for the closed-loop system

x(k + 1) = Ax(k) + Bu(x(k))

in which

u(x(k)) =
[
u

p(k)
1 (x(k), 0)′, . . . , up(k)

M (x(k), 0)′
]
′

for all x(k) ∈ Rn and all p(k) = 1, 2, . . . , pmax(k).

A proof is given in Appendix 10.8.1.

Remark 10.1. If (A,Q
1
2 ) is detectable, then the weaker requirement Qi ≥ 0, Ri > 0, ∀ i ∈ IM is

sufficient to ensure exponential stability of the closed-loop system under the distributed MPC

control law.

10.4 Power system terminology and control area model

For the purposes of AGC, power systems are decomposed into control areas, with tie-lines

providing interconnections between areas (Wood and Wollenberg, 1996). Each area typically

consists of numerous generators and loads. It is common, though, for all generators in an area
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to be lumped as a single equivalent generator, and likewise for loads. That model is adopted

in all subsequent examples. Some basic power systems terminology is provided in Table 10.1.

The notation ∆ is used to indicate a deviation from steady state. For example, ∆ω represents

a deviation in the angular frequency from its nominal operating value (60 Hz.).

Table 10.1: Basic power systems terminology.
ω : angular frequency of rotating mass
δ : phase angle of rotating mass

Ma : Angular momentum
D : percent change in load

percent change in frequency
Pmech : mechanical power
PL : nonfrequency sensitive load
TCH : charging time constant (prime mover)
Pv : steam valve position
Pref : load reference setpoint
Rf : percent change in frequency

percent change in unit output
TG : governor time constant
P ij

tie : tie-line power flow between areas i and j
Tij : tie-line (between areas i and j) stiffness coefficient
Kij : FACTS device coefficient (regulating impedance between areas i and j)

Consider any control area i ∈ IM , interconnected to control area j, j 6= i through a tie

line. A simplified model for such a control area i is given in (10.14).

Area i

d∆ωi

dt
+

1
Ma

i

Di∆ωi +
1

Ma
i

∆P ij
tie −

1
Ma

i

∆Pmechi
= − 1

Ma
i

∆PLi (10.14a)

d∆Pmechi

dt
+

1
TCHi

∆Pmechi
− 1

TCHi

∆Pvi = 0 (10.14b)

d∆Pvi

dt
+

1
TGi

∆Pvi −
1

TGi

∆Prefi
+

1

Rf
i TGi

∆ωi = 0 (10.14c)
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tie-line power flow between areas i and j

d∆P ij
tie

dt
= Tij (∆ωi −∆ωj) (10.14d)

∆P ji
tie = −∆P ij

tie (10.14e)

10.5 Examples

Performance comparison The cumulative stage cost Λ is used as an index for comparing the

performance of different MPC frameworks. Define

Λ =
1
t

t−1∑
k=0

M∑
i=1

Li (xi(k), ui(k)) . (10.15)

where t is the simulation horizon.

10.5.1 Two area power system network

An example with two control areas interconnected through a tie line is considered. The con-

troller parameters and constraints are given in Table 10.2. A control horizon N = 15 is used

for each MPC. The controlled variable (CV) for area 1 is the frequency deviation ∆ω1 and the

CV for area 2 is the deviation in the tie-line power flow between the two control areas ∆P 12
tie .

From the control area model (Equation (10.14)), if ∆ω1 → 0 and ∆P 12
tie → 0 then ∆ω2 → 0.

For a 25% load increase in area 2, the load disturbance rejection performance of the FC-

MPC formulation is evaluated and compared against the performance of centralized MPC

(cent-MPC), communication-based MPC (comm-MPC) and standard automatic generation

control (AGC) with anti-reset windup. The load reference setpoint in each area is constrained
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between±0.3. In practice, a large load change, such as the one considered above, would result

in curtailment of AGC and initiation of emergency control measures such as load shedding.

The purpose of this exaggerated load disturbance is to illustrate the influence of input con-

straints on the different control frameworks.

The relative performance of standard AGC, cent-MPC and FC-MPC (terminated after

1 iterate) rejecting the load disturbance in area 2 is depicted in Figure 10.2. The closed-loop

trajectory of the FC-MPC controller, obtained by terminating Algorithm 4.1 after 1 iterate, is al-

most indistinguishable from the closed-loop trajectory of cent-MPC. Standard AGC performs

nearly as well as cent-MPC and FC-MPC in driving the local frequency changes to zero. Un-

der standard AGC, however, the system takes in excess of 400 seconds to drive the deviational

tie-line power flow to zero. With the cent-MPC or the FC-MPC framework, the tie-line power

flow disturbance is rejected in about 100 seconds. A closed-loop performance comparison of

the different control frameworks is given in Table 10.3. The comm-MPC framework stabilizes

the system but incurs a control cost that is nearly 18% greater than that incurred by FC-MPC (1

iterate). If 5 iterates per sampling interval are allowed, the performance of FC-MPC is almost

identical to that of cent-MPC.

Notice from Figure 10.2 that the initial response of AGC is to increase generation in

both areas. This causes a large deviation in the tie-line power flow. On the other hand under

comm-MPC and FC-MPC, MPC-1 initially reduces area 1 generation and MPC-2 orders a large

increase in area 2 generation (the area where the load disturbance occurred). This strategy

enables a much more rapid restoration of tie-line power flow.
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Table 10.2: Model parameters and input constraints for the two area power network model
(Example 10.5.1).

D1 = 2 D2 = 2.75
Rf

1 = 0.03 Rf
2 = 0.07

Ma
1 = 3.5 Ma

2 = 4.0
TCH1= 50 TCH2 = 10
TG1 = 40 TG2 = 25
Q1 = diag(1000, 0, 0) Q2 = diag(0, 0, 0, 1000)
R1 = 1 R2 = 1
T12 = 7.54 ∆samp = 0.1 sec

-0.3≤∆Pref1≤0.3
-0.3≤∆Pref2≤0.3
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Figure 10.2: Performance of different control frameworks rejecting a load disturbance in
area 2. Change in frequency ∆ω1, tie-line power flow ∆P 12

tie and load reference setpoints
∆Pref1 ,∆Pref2 .

10.5.2 Four area power system network

We revisit the four area power system described in Chapter 3, Section 3.2. The relative perfor-

mance of cent-MPC, comm-MPC and FC-MPC is analyzed for a 25% load increase in area 2 and
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Table 10.3: Performance of different control formulations w.r.t. cent-MPC, ∆Λ% =
Λconfig−Λcent

Λcent
×

100.
Λ ∆Λ%

standard AGC 39.26 189
comm-MPC 15.82 18.26

FC-MPC (1 iterate) 13.42 0.26
FC-MPC (5 iterates) ∼ 13.38 ∼ 0

cent-MPC 13.38 –

a simultaneous 25% load drop in area 3. This load disturbance occurs at 5 sec. For each MPC,

we choose a prediction horizon of N = 20. In the comm-MPC and FC-MPC formulations, the

load reference setpoint (∆Prefi
) in each area is manipulated to reject the load disturbance and

drive the change in local frequencies (∆ωi) and tie-line power flows (∆P ij
tie) to zero. In the

cent-MPC framework, a single MPC manipulates all four ∆Prefi
. The load reference setpoint

for each area is constrained between ±0.5.
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Figure 10.3: Performance of different control frameworks rejecting a load disturbance in areas
2 and 3. Change in frequency ∆ω2, tie-line power flow ∆P 23

tie and load reference setpoints
∆Pref2 ,∆Pref3 .
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Table 10.4: Performance of different MPC frameworks relative to cent-MPC, ∆Λ% =
Λconfig−Λcent

Λcent
× 100.

Λ× 10−2 ∆Λ%
cent-MPC 7.6 –

comm-MPC ↑ ∞ ↑ ∞
FC-MPC (1 iterate) 9.6 26
FC-MPC (5 iterates) 7.87 3.7

The performance of cent-MPC, comm-MPC and FC-MPC (1 iterate) are shown in Fig-

ure 10.3. Only ∆ω2 and ∆P 23
tie are shown as the frequency and tie-line power flow deviations

in the other areas display similar qualitative behavior. Likewise, only ∆Pref2 and ∆Pref3 are

shown as other load reference setpoints behave similarly. The control costs are given in Ta-

ble 10.4. As seen in Section 3.2, the power system network is unstable under comm-MPC.

The closed-loop performance of the FC-MPC formulation, terminated after just 1 iterate, is

within 26% of cent-MPC performance. If the FC-MPC algorithm is terminated after 5 iter-

ates, the performance of FC-MPC is within 4% of cent-MPC performance. By allowing the

cooperation-based iterative process to converge, the closed-loop performance of FC-MPC can

be driven to within any pre-specified tolerance of cent-MPC performance.

10.5.3 Two area power system with FACTS device

In this example, we revisit the two area network considered in Section 10.5.1. In this case

though, a FACTS device is employed by area 1 to manipulate the effective impedance of the

tie line and control power flow between the two interconnected control areas. The control

area model follows from Equation (10.14). In order to incorporate the FACTS device, Equa-
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tion (10.14a) in area 1 is replaced by

d∆δ12

dt
= (∆ω1 −∆ω2)

d∆ω1

dt
= − 1

Ma
1

D1∆ω1 −
1

Ma
1

T12∆δ12 +
1

Ma
1

K12∆X12 +
1

Ma
1

∆Pmech1 −
1

Ma
1

∆PL1

and in area 2 by

d∆ω2

dt
= − 1

Ma
2

D2∆ω2 +
1

Ma
2

T12∆δ12 −
1

Ma
2

K12∆X12 +
1

Ma
2

∆Pmech2 −
1

Ma
2

∆PL2

where ∆X12 is the impedence deviation induced by the FACTS device. The tie-line power

flow deviation becomes

∆P 12
tie = −∆P 21

tie = T12∆δ12 −K12∆X12

Notice that if ∆X12 = 0, the model reverts to Equation (10.14). Controller parameters and con-

straints are given in Table 10.5. The MPC for area 1 manipulates ∆Pref1 and ∆X12 to drive ∆ω1

and the relative phase difference ∆δ12 = ∆δ1 −∆δ2 to zero. The MPC for area 2 manipulates

∆Pref2 to drive ∆ω2 to zero.

The relative performance of cent-MPC, comm-MPC and FC-MPC rejecting a simulta-

neous 25% increase in the load of areas 1 and 2 is investigated. The closed-loop performance

of the different MPC frameworks is shown in Figure 10.4. The associated control costs are

given in Table 10.6. The performance of FC-MPC (1 iterate) is within 28% of cent-MPC per-

formance. The performance of comm-MPC, on the other hand, is highly oscillatory and sig-

nificantly worse than that of FC-MPC (1 iterate). While comm-MPC is stabilizing, the system
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Table 10.5: Model parameters and input constraints for the two area power network model.
FACTS device operated by area 1.

D1 = 3 D2 = 0.275
Rf

1 = 0.03 Rf
2 = 0.07

Ma
1 = 4 Ma

2 = 40
TCH1= 5 TCH2 = 10
TG1 = 4 TG2 = 25
T12 = 2.54 K12 = 1.95
Q1 = diag(100, 0, 0, 100) Q2 = diag(100, 0, 0)
R1 = 1 R2 = 1
N = 15 ∆samp= 1 sec

-0.3≤∆Pref1≤0.3
-0.1≤∆X12≤0.1
-0.3≤∆Pref2≤0.3

Table 10.6: Performance of different MPC frameworks relative to cent-MPC, ∆Λ% =
Λconfig−Λcent

Λcent
× 100.

Λ× 10−2 ∆Λ%
cent-MPC 3.06 –

comm-MPC 9.53 211
FC-MPC (1 iterate) 3.92 28
FC-MPC (5 iterates) 3.13 2.3

takes nearly 400 sec to reject the load disturbance. With FC-MPC (1 iterate), the load distur-

bance is rejected in less than 80 sec. If 5 iterates per sampling interval are possible, the FC-MPC

framework achieves performance that is within 2.5% of cent-MPC performance.

10.6 Extensions

10.6.1 Penalty and constraints on the rate of change of input

We consider the stage cost defined in Equation (4.15) (p. 68). To convert to the stage cost of

Equation (4.15) to the standard form (Equation (4.3)), we augment xi(k) with the subsystem

input ui(k − 1) obtained at time k − 1 (Muske and Rawlings, 1993). The stage cost can be
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Figure 10.4: Performance of different control frameworks rejecting a load disturbance in area
2. Change in relative phase difference ∆δ12, frequency ∆ω2, tie-line impedence ∆X12 due to
the FACTS device and load reference setpoint ∆Pref2 .

re-written as

Li(zi(k), ui(k)) =
1
2

[
zi(k)′Q̃izi(k) + ui(k)′R̃iui(k) + 2zi(k)′M̃iui(k)

]
(10.16)

in which

zi(k) =

 xi(k)

ui(k − 1)

 Q̃i =

Qi

Si



R̃i = Ri + Si M̃i =

 0

−Si


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The augmented PM for subsystem i ∈ IM is

zi(k + 1) = Ãiizi(k) + B̃iiui(k) +
∑
j 6=i

[
Ãijzj(k) + B̃ijuj(k)

]
(10.17)

in which

Ãij =

Aij 0

0 0

 , ∀ i, j ∈ IM

B̃ii =

Bii

I

 , B̃ij =

Bij

0

 , ∀ i, j ∈ IM , j 6= i

The cost function for subsystem i is defined as

φi(zi,ui;x(k)) =
∞∑

j=k

Li(zi(j|k), ui(j|k)) (10.18)

The constraints on the rate of change of input for each subsystem i ∈ IM can, therefore,

be expressed as

∆u min
i ≤ Di ui ≤∆u max

i (10.19a)
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in which

∆u min
i =



∆umin
i − ui(k − 1)

∆umin
i

...

∆umin
i


∆u max

i =



∆umax
i − ui(k − 1)

∆umax
i

...

∆umax
i


(10.19b)

Di =



I

−I I

−I I

. . .

−I I


(10.19c)

Following the model manipulation described in Appendix 10.8.1, with each (Aij , Bij)

pair replaced by the corresponding (Ãij , B̃ij) pair (from the augmented PM in Equation (10.17)),

gives

zi = Eiiui + fiizi(k) +
∑
j 6=i

[Eijuj + fijzj(k)], ∀ i ∈ IM (10.20)

in which zi = [zi(k + 1|k)′, . . . , zi(k + N |k)′]′. Similar to Section 10.2, the augmented state zi in

Equation (10.18) can be eliminated using Equation(10.20). The cost function φi(·) can therefore

be re-written as a function Φi(u1, . . . ,uM ; z(k)) where z = [z1
′, z2

′, . . . , zM
′]′. For φi(·) defined
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in Equation (10.18), the FC-MPC optimization problem for subsystem i is

u
∗(p)
i ∈ arg min

ui

1
2
ui
′Riui +

rrri(z(k)) +
M∑
j 6=i

Hiju
p−1
j


′

ui (10.21a)

subject to

ui(j|k) ∈ Ωi, k ≤ j ≤ k + N − 1 (10.21b)

∆u min
i ≤ Di ui ≤∆u max

i (10.21c)

in which

Ri =
(
Ri + Eii

′QiEii + 2Eii
′Mi

)
+

M∑
j 6=i

Eji
′QjEji +

M∑
j=1

Eji
′
∑
l 6=j

TjlEli

Hij =
M∑
l=1

Eli
′QlElj + Mi

′Eij + Eji
′Mj +

M∑
l=1

Eli
′
∑
s 6=l

TlsEsj

rrri(z(k)) =
(
Eii

′Qigi(z(k)) + Mi
′gi(z(k)) + pppizi(k)

)
+

M∑
j 6=i

Eji
′Qjgj(z(k)) +

M∑
j=1

Eji
′
∑
l 6=j

Tjlgl(z(k))

Qi = diag
(

wiQ̃i(1), . . . , wiQ̃i(N − 1), P̃ii

)
Tij = diag

(
0, . . . , 0, P̃ij

)
Ri = diag

(
wiR̃i(0), wiR̃i(1), . . . , wiR̃i(N − 1)

)
pppi
′ =

[
wiM̃i 0 . . . 0

]



256

Mi =



0 wiM̃i

0 wiM̃i

0
. . .

. . . wiM̃i

0 0 . . . . . . 0



The terminal penalty P̃ is obtained as the solution to the centralized Lyapunov equation

(Equation (10.8)) with each Aij , Qi replaced by Ãij , Q̃i respectively ∀ i, j ∈ IM .

10.6.2 Unstable systems

In the development of the proposed distributed MPC framework, it was convenient to assume

that the system is open-loop stable. That assumption can be relaxed however. For any real

matrix A ∈ Rn×n the Schur decomposition (Golub and Van Loan, 1996, p. 341) is defined as

A =
[
Us Uu

]As A12

0 Au


U ′

s

U ′
u

 (10.22)

in which U =
[
Us Uu

]
is a real and orthogonal n × n matrix, the eigenvalues of As are

strictly inside the unit circle, and the eigenvalues of Au are on or outside the unit circle. Let

Uu
′ = [Uu1

′, Uu2
′, . . . , UuM

′].

Define Ti′ = [0, 0, . . . , I] such that xi(k + N |k) = Ti′xi(k). To ensure closed-loop stabil-

ity while dealing with open-loop unstable systems, a terminal state constraint that forces the

unstable modes to be at the origin at the end of the control horizon is necessary. The control

horizon must satisfy N ≥ α, in which α is the number of unstable modes.
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For each subsystem i ∈ IM at time k, the terminal state constraint can be written as

Uu
′x(k + N |k) =

∑
i

Uui
′xi(k + N |k)

=
∑

i

(TiUui)
′xi(k)

= 0

(10.23)

From Equations (10.23) and (10.4), the terminal state constraint can be re-written as a coupled

input constraint of the form

J1u1 + J2u2 + . . . + JMuM = −c(x(k)) (10.24a)

in which

Ji =
M∑

j=1

(
TjUuj

) ′Eji c(x(k)) =
M∑

j=1

(
TjUuj

) ′gj(x(k)) (10.24b)

∀ i ∈ IM

Using the definitions in Equation (10.6), the FC-MPC optimization problem for each i ∈ IM is

Funstb
i , min

ui

1
2
ui
′Riui +

rrri(x(k)) +
∑
j 6=i

Hiju
p−1
j


′

ui (10.25a)

subject to

ui(t|k) ∈ Ωi, k ≤ t ≤ k + N − 1 (10.25b)

Jiui +
M∑
j 6=i

Jju
p−1
j = −c(x(k)) (10.25c)
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The optimization problem of Equation (10.25) is solved within the framework of Al-

gorithm 4.1. To initialize Algorithm 4.1, a simple quadratic program is solved to compute

subsystem input trajectories that satisfy the constraints in Equation (10.25) for each subsys-

tem. To ensure feasibility of the end constraint (Equation (10.25c)), it is assumed that the

initial state x(0) ∈ XN , the N-step stabilizable set for the system. Since XN ⊆ X , the system is

constrained stabilizable. It follows from Algorithm 4.1, Section 10.3.3 and Section 10.3.5 that

XN is a positively invariant set for the nominal closed-loop system, which ensures that the

optimization problem (Equation (10.25)) is feasible for each subsystem i ∈ IM for all k ≥ 0 and

any p(k) > 0. It can be shown that all iterates generated by Algorithm 4.1 are systemwide fea-

sible, the cooperation-based cost function Φ(up
1,u

p
2, . . . ,u

p
M ;x(k)) is a nonincreasing function

of the iteration number p, and the sequence of cooperation-based iterates is convergent 4. An

important distinction, which arises due to the presence of the coupled input constraint (Equa-

tion (10.25c)), is that the limit points of Algorithm 4.1 (now solving optimization problem of

Equation (10.25) instead) are no longer necessarily optimal (see Section 4.9.2 for examples).

The distributed MPC control law based on any intermediate iterate is feasible and closed-loop

stable, but may not achieve optimal (centralized) performance at convergence of the iterates.

10.6.3 Terminal control FC-MPC

The distributed LQR framework presented in Chapter 9 is used for terminal control FC-MPC.

The modeling framework described in Section 10.1 is employed. The motivation for terminal

control FC-MPC is to achieve infinite horizon optimal (centralized, constrained LQR) perfor-

mance at convergence using finite values of N . For brevity, we omit details of this framework

4The proof is identical to that presented for Lemma 4.4 (p. 44) and is, therefore, omitted.
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here. An algorithm for terminal control FC-MPC employing the modeling framework of Sec-

tion 10.1 is presented in Venkat, Hiskens, Rawlings, and Wright (2006c). Two examples for

terminal control FC-MPC are provided below.

Two area power system with FACTS device

We revisit the two area power system considered in Section 10.5.3. A 28% load increase af-

fects area 1 at time 10 sec and simultaneously, an identical load disturbance affects area 2. The

controller parameters are R1 = diag(1, 1), R2 = 1, Q1 = diag(10, 0, 0, 10), Q2 = diag(10, 0, 0),

∆samp = 2 sec. The controlled variables (CVs) for the MPC in area 1 are ∆ω1 and ∆δ12. The

CV for the MPC in area 2 is ∆ω2. In this case, we evaluate the load disturbance rejection per-

formance of terminal control FC-MPC (FC-MPC (tc)) and compare it against the performance

of terminal penalty FC-MPC (FC-MPC (tp)) and centralized constrained LQR (CLQR).

The relative performance of FC-MPC(tc), FC-MPC(tp) and CLQR rejecting the described

load disturbance is shown in Figure 10.5. For terminal control FC-MPC employing Algo-

rithm 9.4, an initial control horizon length (N0) of 20 is selected. This choice of N is sufficient

to steer the dummy state vectors ζi(·),∀ i ∈ IM to O∞ throughout the period where the ef-

fect of the load disturbance persists. The terminal penalty FC-MPC employs Algorithm 4.1

(Section 10.3) .

Due to an increase in load in both control areas, the MPCs (in areas 1 and 2) order an in-

crease in generation. In Figure 10.5, the transient tie-line power flow and frequency deviations

under FC-MPC (tc, 1 iterate) are almost identical to the infinite horizon optimal CLQR perfor-

mance. The incurred control costs are given in Table 10.7. FC-MPC (tc, 1 iterate) achieves a

performance improvement of about ∼ 16% compared to FC-MPC (tp, 1 iterate). If 5 iterates
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Figure 10.5: Comparison of load disturbance rejection performance of terminal control FC-
MPC, terminal penalty FC-MPC and CLQR. Change in frequency ∆ω1, tie-line power flow
∆P 12

tie , load reference setpoints ∆Pref1 and ∆Pref2 .

per sampling interval are permissible, the disturbance rejection performance of FC-MPC (tc, 5

iterates) is within 0.5% of CLQR performance. The performance loss incurred under FC-MPC

(tp, 5 iterates), relative to CLQR performance, is about 13%, which is significantly higher than

the performance loss incurred with FC-MPC (tc, 5 iterates).

Table 10.7: Performance of different control formulations relative to centralized constrained
LQR (CLQR), ∆Λ% =

Λconfig−Λcent
Λcent

× 100.
Λ× 10−3 ∆Λ%

CLQR 1.77
FC-MPC (tp, 1 iterate) 2.21 25
FC-MPC (tc, 1 iterate) 1.93 9.2

FC-MPC (tp, 5 iterates) 2 12.9
FC-MPC (tc, 5 iterates) 1.774 < 0.2
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Unstable four area power network

Consider the four area power network described in Section 10.5.2. In this case though, Ma
4 =

40 to force the system to be open-loop unstable. The regulator parameters are specified in

Table 10.8. The sampling interval ∆samp = 2 sec. At time 10 sec, the load in area 2 increases by

15% and simultaneously, the load in area 3 decreases by 15%. The load disturbance rejection

performance of terminal control FC-MPC (FC-MPC(tc)) is investigated and compared to the

performance of the benchmark CLQR.

Figure 10.6 depicts the disturbance rejection performance of FC-MPC (tc) and CLQR.

Only quantities relating to area 2 are shown as variables in other areas displayed similar qual-

itative behavior. The associated control costs are given in Table 10.9. For terminal control FC-

MPC terminated after 1 iterate, the load disturbance rejection performance is within 13% of

CLQR performance. If 5 iterates per sampling interval are possible, the incurred performance

loss drops to < 1.5%.

Table 10.8: Regulator parameters for unstable four area power network.
Q1 = diag(50, 0, 0) R1 = 1

Q2 = diag(50, 0, 0, 50) R2 = 1
Q3 = diag(50, 0, 0, 50) R3 = 1
Q4 = diag(50, 0, 0, 50) R4 = 1

Table 10.9: Performance of terminal control FC-MPC relative to centralized constrained LQR
(CLQR), ∆Λ% =

Λconfig−Λcent
Λcent

× 100.
Λ× 10−2 ∆Λ%

CLQR 4.91
FC-MPC (tc, 1 iterate) 5.52 12.4
FC-MPC (tc, 5 iterates) 4.97 1.2



262

-0.01

-0.005

0

0.005

0.01

0 10 20 30 40 50 60 70 80
Time (sec)

∆ω2

setpoint
CLQR

FC-MPC (tc, 1 iterate)
FC-MPC (tc, 5 iterates) -0.15

-0.1

-0.05

0

0 10 20 30 40 50 60 70 80
Time (sec)

∆P 23
tie

setpoint
CLQR

FC-MPC (tc, 1 iterate)
FC-MPC (tc, 5 iterates)

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80
Time (sec)

∆Pref2

CLQR
FC-MPC (tc, 1 iterate)

FC-MPC (tc, 5 iterates)

Figure 10.6: Performance of FC-MPC (tc) and CLQR, rejecting a load disturbance in areas 2
and 3. Change in local frequency ∆ω2, tie-line power flow ∆P 23

tie and load reference setpoint
∆Pref2 .

10.7 Discussion and conclusions

Centralized MPC is not well suited for control of large-scale, geographically expansive sys-

tems such as power systems. However, performance benefits obtained with centralized MPC

can be realized through distributed MPC strategies. Distributed MPC strategies for power sys-

tems rely on decomposition of the overall system into interconnected subsystems, and iterative

optimization and exchange of information between these subsystems. An MPC optimization

problem is solved within each subsystem, using local measurements and the latest available

external information (from the previous iterate). Feasible cooperation-based MPC (FC-MPC)

precludes the possibility of parochial controller behavior by forcing the MPCs to cooperate

towards attaining systemwide objectives. A terminal penalty version of FC-MPC was initially
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established. The solution obtained at convergence of the FC-MPC algorithm is identical to the

centralized MPC solution (and therefore, Pareto optimal). In addition, the FC-MPC algorithm

can be terminated prior to convergence without compromising feasibility or closed-loop sta-

bility of the resulting distributed controller. This feature allows the practitioner to terminate

the algorithm at the end of the sampling interval, even if convergence is not achieved. A ter-

minal control FC-MPC framework, which achieves infinite horizon optimal performance at

convergence, has also been considered. For small values of N , the performance of terminal

control FC-MPC is superior to that of terminal penalty FC-MPC.

Examples were presented to illustrate the applicability and effectiveness of the pro-

posed distributed MPC framework for automatic generation control (AGC). First, a two area

network was considered. Both communication-based MPC and cooperation-based MPC out-

performed AGC due to their ability to handle process constraints. The controller defined by

terminating Algorithm 4.1 after 5 iterates achieves performance that is almost identical to cen-

tralized MPC. Next, the performance of the different MPC frameworks are evaluated for a four

area network. For this case, communication-based MPC leads to closed-loop instability. FC-

MPC (1 iterate) stabilizes the system and achieves performance that is within 26% of central-

ized MPC performance. The two area network considered earlier, with an additional FACTS

device to control tie line impedence, is examined subsequently. Communication-based MPC

stabilizes the system but gives unacceptable closed-loop performance. The FC-MPC frame-

work is shown to allow coordination of FACTS controls with AGC. The controller defined by

terminating Algorithm 4.1 after just 1 iterate gives an ∼ 190% improvement in performance

compared to communication-based MPC. For this case, therefore, the cooperative aspect of FC-

MPC was very important for achieving acceptable response. Next, the two area network with
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FACTS device was used to compare the performance of terminal penalty FC-MPC and ter-

minal control FC-MPC. As expected, terminal control FC-MPC outperforms terminal penalty

FC-MPC for short horizon lengths. Finally, the performance of terminal control FC-MPC is

evaluated on an unstable four area network. FC-MPC (tc, 5 iterates) achieves performance

that is within 1.5% of the centralized constrained LQR performance.

10.8 Appendix

10.8.1 Model Manipulation

To ensure strict feasibility of the FC-MPC algorithm, it is convenient to eliminate the states xi,

i ∈ IM using the PM (10.1). Propagating the model for each subsystem through the control

horizon N gives

xi = Eiiui + f iixi(k) +
∑
j 6=i

[Eijuj + gijxj + f ijxj(k)]

∀ i ∈ IM (10.26)
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in which

Eij =



Bij 0 . . . . . . 0

AiiBij Bij 0 . . . 0

...
...

...
. . .

...

AN−1
ii Bij . . . . . . . . . Bij


f ij =



Aij

AiiAij

...

AN−1
ii Aij



gij =



0 0 . . . . . . 0

Aij 0 0 . . . 0

...
...

. . . . . .
...

AN−2
ii Aij AN−3

ii Aij . . . . . . 0


.

Combining the models in (10.26), ∀ i = 1, 2, . . . ,M , gives the following system of equations

Ax̃ = Eũ + Gx(k) (10.27)

in which

G =



f11 f12 . . . f1M

f21 f22 . . . f2M

. . . . . . . . . . . .

fM1 . . . . . . fMM


E =



E11 E12 . . . E1M

E21 E22 . . . E2M

. . . . . . . . . . . .

EM1 . . . . . . EMM


(10.28)
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A =



I −g12 . . . −g1M

−g21 I . . . −g2M

. . . . . . . . . . . .

−gM1 . . . . . . I


x̃ =



x1

x2

...

xM


ũ =



u1

u2

...

uM


(10.29)

Since the system is LTI, a solution to the system (10.27) exists for each permissible RHS. Matrix

A is therefore invertible and consequently, we can write for each i ∈ IM

xi = Eiiui + fiixi(k) +
∑
j 6=i

[Eijuj + fijxj(k)]. (10.30)

in which Eij and fij , ∀ j = 1, 2, . . . ,M denote the appropriate partitions of A−1E and A−1G

respectively.

Lemma 10.1. Let the input constraints in Equation (10.6) be specified in terms of a collection of linear

inequalities. Consider the closed ball Bε(0), in which ε > 0 is chosen such that the input constraints in

each FC-MPC optimization problem (Equation (10.6)) are inactive for all x ∈ Bε(0). The distributed

MPC control law defined by the FC-MPC formulation of Theorem 10.1 is a Lipschitz continuous func-

tion of x for all x ∈ Bε(0).

The proof is identical to the proof for Lemma 4.7 (p. 79) with each µ replaced by x.

Proof of Theorem 10.1. Since Q > 0 and A is stable, P > 0 (Sontag, 1998). The constrained

stabilizable setX for the system is Rn. To prove exponential stability, we use the value function

J
p(k)
N (x(k)) as a candidate Lyapunov function. We need to show (Vidyasagar, 1993, p. 267) that
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there exists constants a, b, c > 0 such that

a‖x(k)‖2 ≤ Jp
N (x(k)) ≤ b‖x(k)‖2 (10.31a)

∆Jp
N (x(k)) ≤ −c‖x(k)‖2 (10.31b)

in which ∆J
p(k)
N (x(k)) = J

p(k+1)
N (x(k + 1))− J

p(k)
N (x(k)).

Let ε > 0 be chosen such that the input constraints remain inactive for x ∈ Bε(0). Such

an ε exists because the origin is Lyapunov stable and 0 ∈ int(Ω1 × . . .ΩM ). Since Ωi,∀ i ∈ IM

is compact, there exists σ > 0 such that ‖ui‖ ≤ σ. For any x satisfying ‖x‖ > ε, ‖ui‖ <

σ
ε ‖x‖, ∀i ∈ IM . For x ∈ Bε(0), we have from Lemma 10.1 that u

p(k)
i (x) is a Lipschitz continuous

function of x. There exists, therefore, a constant ρ > 0 such that ‖up(k)
i (x)‖ ≤ ρ‖x‖, ∀ 0 <

p(k) ≤ p∗. Define Ku = max (σ
ε , ρ)2, in which Ku > 0 and independent of x. The above

definition gives ‖up(k)
i (x, j)‖ ≤

√
Ku‖x‖, ∀ i ∈ IM and all 0 < p ≤ p∗. For j ≥ 0, define

u(x(k), j) = [up(k)
1 (x(k), j)′, . . . , up(k)

M (x(k), j)′]′. By definition, u(x(k), k) ≡ u(x(k)). We have

‖u(x(k), j)‖ =

√√√√ M∑
i=1

‖up(k)
i (x(k), j)‖2 ≤

√
KuM‖x(k)‖.

Similarly, define x(k + j|k) = [xp(k)
1 (k + j|k)′, . . . , xp(k)

M (k + j|k)′]′, ∀ j ≥ 0. By definition

x(k|k) ≡ x(k). Since A is stable, there exists c > 0 such that ‖Aj‖ ≤ cλj (Horn and Johnson,
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1985, Corollary 5.6.13, p. 199), in which λmax(A) ≤ λ < 1. Hence,

‖x(k + j|k)‖ ≤ ‖Aj‖‖x(k)‖+
j−1∑
l=0

‖Aj−1−l‖‖B‖‖u(x(k), l)‖

≤ cλj‖x(k)‖+
j−1∑
l=0

cλj−1−l‖B‖‖u(x(k), l)‖

≤ c

(
1 +

‖B‖
1− λ

√
MKu

)
‖x(k)‖, ∀ j > 0,

(since
j∑

l=0

λl ≤
∞∑
l=0

λl =
1

1− λ
, ∀ j ≥ 0).

LetR = diag(w1R1, w2R2, . . . , wMRM ) and Γ =
[
c
(
1 + ‖B‖

1−λ

√
MKu

)]2
.

J
p(k)
N (x(k)) =

1
2

M∑
i=1

wi

∞∑
j=0

[
‖xp(k)

i (k + j|k)‖2Qi
+ ‖up(k)

i (x(k), j)‖2Ri

]

=
1
2

N−1∑
j=0

[
x(k + j|k)′Qx(k + j|k) + u(x(k), j)′Ru(x(k), j)

]
+

1
2
x(k + N |k)′Px(k + N |k)

≤ 1
2

[N−1∑
j=0

(
λmax(Q)‖x(k + j|k)‖2 + λmax(R)‖u(x(k), j)‖2

)
+ λmax(P )‖x(k + N |k)‖2

]
≤ 1

2
[Nλmax(Q)Γ + Nλmax(R)KuM + λmax(P )Γ] ‖x(k)‖2

≤ b‖x(k)‖2
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in which 0 < 1
2 [Nλmax(Q)Γ + Nλmax(R)KuM + λmax(P )Γ] ≤ b. Also, 1

2λmin(Q)‖x(k)‖2 ≤

J
p(k)
N (x(k)) Furthermore,

J
p(k+1)
N (x(k + 1))− J

p(k)
N (x(k)) ≤ J0

N (x(k + 1))− J
p(k)
N (x(k))

= −
M∑
i=1

wiLi

(
xi(k), up(k)

i (x(k), 0)
)

≤ −
M∑
i=1

wiLi (xi(k), 0)

= −1
2
x(k)′Qx(k)

≤ −1
2
λmin(Q)‖x(k)‖2 (10.32)

which proves the theorem.
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Chapter 11

Asynchronous feedback for distributed

MPC.

In previous chapters, it was assumed that all subsystems are sampled at an uniform rate. In

many situations, time constants and subsequently sampling rates for different subsystems may

vary significantly. Furthermore, measurements for certain subsystems may be sampled slower

than others. Low measurement sampling rates may be due to technological limitations and/or

cost of measurement. It is well known that control at the slowest sampling rate may result in

significant loss in achievable control performance. In this chapter, an asynchronous feedback

distributed MPC framework that allows subsystems’ MPCs to operate at different sampling

rates is described. The goal of asynchronous feedback is to enable faster sampled MPCs to

inject their control actions into the plant while slower sampled MPCs compute their desired

control action. For simplicity, we restrict our analysis here to systems with two sampling rates.

This chapter is organized as follows. Modeling aspects and notation for asynchronous

feedback FC-MPC is described in Section 11.1. In Section 11.2, we tackle the problem of asyn-
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chronous feedback in FC-MPC. Algorithms are described for both fast sampled MPCs and

slow sampled MPCs. The asynchronous feedback control law is defined in Section 11.3. Some

implementation issues are considered subsequently and an illustrative case study is presented.

Nominal closed-loop stability for the asynchronous feedback distributed MPC control law is

established in Section 11.4. An example is presented in Section 11.5 to demonstrate the ben-

efits of employing asynchronous feedback distributed MPC. Finally, the contributions of this

chapter are summarized in Section 11.6.

11.1 Models and groups

Consider the following LTI continuous time model for each subsystem i ∈ IM

dxii

dt
= Ac

iixii + Bc
iiui (11.1a)

dxij

dt
= Ac

ijxii + Bc
ijuj , ∀ j ∈ IM , j 6= i (11.1b)

yi = Ciixii +
∑
j 6=i

Cijxij (11.1c)

in which t is continuous time. Let I represent the set of integers and define I+ to be the set of

positive integers. Each subsystem i ∈ IM is assumed to belong to either the group of MPCs

sampled at the fast rate, Jfast, or the group of MPCs sampled at the slow rate, Jslow. Let

the sampling rate for each subsystem i ∈ Jfast be tf . The sampling rate for each subsystem

i ∈ Jslow is T , where T = σtf , σ ∈ I+. Let Jfast, Jslow consist of M1, M2 MPCs, respectively,

with M1 + M2 = M . Let (WLOG) Jfast = {1, 2, . . . ,M1} and Jslow = {M1 + 1,M1 + 2, . . . ,M}.

A discrete time realization of the continuous time subsystem model (Equation (11.1)) for sub-



272

system i ∈ IM , at the (faster) sampling rate tf is (Kailath, 1980)

xii((s + 1)tf ) = Aiix(stf ) + Biiui(stf ) (11.2a)

xij((s + 1)tf ) = Aijx(stf ) + Bijui(stf ), ∀ j ∈ IM , j 6= i (11.2b)

yi(stf ) = Ciixii(stf ) +
∑
j 6=i

Cijxij(stf ) (11.2c)

in which

Aij = exp[Aijtf ] B =
∫ tf

0
exp[Aij(tf − τ)]Bij dτ, ∀ j ∈ IM

The composite model (CM) (Ai, Bi, {Wij}, Ci) for subsystem i ∈ IM is given by Equation (4.1)

(p. 27). The overall plant CM is obtained by collecting these individual subsystem CMs and is

given by Equation (4.2) (p. 28).

During each sampling interval [(β−1)tf , βtf ), β ∈ I+, MPCs in Jfast perform optimiza-

tions in parallel (one for each MPC) and exchange input trajectories. Each such optimization

and exchange of information between MPCs in Jfast is termed an inner iterate. Let qf ∈ I+

inner iterates be performed during each sampling interval (duration tf ) for MPCs in Jfast.

During each [kT, (k + 1)T ), k ≥ 0, k ∈ I, each MPC i ∈ Jslow performs an optimization,

and at time (k + 1)T , transmits calculated input trajectories to all MPCs j ∈ IM , j 6= i. At

(k + 1)T , each MPC i ∈ Jslow also receives latest input trajectories from MPCs in Jfast. Infor-

mation transfer across the groups occurs only during synchronization i.e., at each kT . Each

synchronization between MPCs in the two groups is also called an outer iterate and occurs

periodically at the rate T (sampling rate of Jslow).
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Interaction model information requirement. To enable asynchronous feedback, we make

the following assumption:

Assumption 11.1. Each MPC i ∈ Jfast has explicit knowledge of the set of interaction models

(Aji, Bji), j ∈ Jslow.

The interaction model (Aji, Bji) in Assumption 11.1 describes the effect of control ac-

tion initiated by MPC i ∈ Jfast on subsystem j ∈ Jslow. Assumption 11.1 allows MPC i ∈ Jfast

to assess the impact of its control moves on subsystem j ∈ Jslow without requiring any infor-

mation exchange between the two groups during the sampling interval [kT, (k + 1)T ). The

advantage of this approach will be highlighted in the sequel.

At time kT , define

ui(kT ) = [ui(kT |kT )′, ui(kT + tf |kT )′, ui(kT + 2tf |kT )′, . . . . . .]′

to be the predicted input trajectory for subsystem i. For notational simplicity, we write k ← kT

and α ← αtf , ∀ α ∈ I+, k ∈ I (see Figure 11.1) . At time kT + αtf , the predicted input for

subsystem i at time kT + (α + s)tf , s ≥ 0, s ∈ I is written as ui([k, α], s). The predicted input

trajectory for i ∈ Jfast at time kT + δtf , δ ∈ I+ is defined as

ui([k, δ]) = [ui([k, δ], 0)′, ui([k, δ], 1)′, ui([k, δ], 2)′, . . . . . .]′

The corresponding shifted input trajectory at time kT + (δ + s)tf is denoted as

ui([k, δ], s) = [ui([k, δ], s)′, ui([k, δ], s + 1)′, . . . . . .]′.
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Assumption 11.2. A zero-order hold (ZOH) is employed for each MPC i ∈ IM .

From Assumption 11.2, we have for each i ∈ Jslow that

ui([k, 0]) = ui([k, 0], 1) = . . . = ui([k, 0], σ − 1), ∀ k ≥ 0.

kT + tf

time

[k, α][k, α− 1][k, 1] [k, σ − 1]

kT + (α− 1)tf kT + αtf kT + (σ − 1)tf

kT

[k, 0] [k, σ] = [k + 1, 0]

kT + σtf = (k + 1)T

notation

Figure 11.1: Time scales for asynchronous feedback distributed MPC.

For subsystem i, let xi([k, 0]; [k−1, 0]) denote an estimate of the subsystem state at time

kT using measurements up to and including time (k − 1)T . If the measurement at time kT is

available, the estimate is represented as xi([k, 0]) ≡ xi([k, 0]; [k, 0]). Similarly, the estimate of

the states of subsystem i at time kT + αtf given measurements up to and including time kT +

βtf , β ≤ α is denoted as xi([k, α]; [k, β]). Define µfast = [x1, . . . , xM1 ], µslow = [xM1+1, . . . , xM ]

to be the set of subsystem states in Jfast and Jslow respectively. The notation µ([k, α]; [β1, β2]) =

[µfast([k, α]; [k, β1]), µslow([k, α]; [k, β2])]. For convenience, we write µ([k, 0]) ≡ µ([k, 0]; [0, 0]).

At time t, let uinj
i (t) denote the input injected into subsystem i ∈ IM . The input injected into

the plant u(t) = vec(uinj
1 (t), uinj

2 (t), . . . , uinj
M (t)).
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Define πfast = [u1, . . . ,uM1 ] and πslow = [uM1+1, . . . ,uM ]. By definition

Φ(πa
fast, π

b
slow;µ(·)) = Φ([ua

1, . . . ,u
a
M1

], [ub
M1+1, . . . ,u

b
M ];µ(·))

For each subsystem i, a parameter δi > 0,
∑

i δi = 1 must be selected for the inner

iterates. One suitable choice is δi = wi, i ∈ IM , the relative weight/importance assigned to

each subsystem. To allow periodic synchronization of the two asynchronous groups of MPCs,

parameters γf , γs must be chosen for each group such that γf , γs > 0, γf + γs = 1. One simple

choice for γf , γs is

γf =

∑
i∈Jfast

wi∑
i wi

=
∑

i∈Jfast

wi, γs =

∑
i∈Jslow

wi∑
i wi

=
∑

i∈Jslow

wi

11.2 FC-MPC optimization for asynchronous feedback

At time kT , let the set of initial subsystem states be µ([k, 0]). The initial input trajectory

for subsystem i ∈ IM , uk
i ([k, 0]), is relayed to all subsystems’ MPCs. The calculation of

this initial input trajectory will be described in the sequel. The predicted state trajectory

for subsystem i ∈ IM due to the set of input trajectories uk
1([k, 0]), . . . ,uk

M ([k, 0]) and sys-

tem state µ([k, 0]) is x̂i(µ([k, 0]))← xi(uk
1([k, 0]), . . . ,uk

M ([k, 0]);µ([k, 0])), where x̂i(µ([k, 0])) =

[x̂i([k, 0]; [k, 0])′, x̂i([k, 1]; [k, 0])′, x̂i([k, 2]; [k, 0])′, . . .]′. This predicted subsystem state trajectory

x̂i(µ([k, 0]) is broadcast all subsystems’ MPCs. A forecast of the initial system state trajectory

is known, therefore, to all MPCs i ∈ IM . During a sampling interval, each MPC computes an

optimal input trajectory originating from the predicted system state at the end of the current

sampling interval.
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Slow MPCs (group Jslow). Consider the sampling interval [kT, (k + 1)T ), where (k + 1)T ≡

kT + σtf . Each MPC i ∈ Jslow solves the following optimization problem

z1
i ([k + 1, 0]) ∈ arg min

zi

M∑
r=1

wrΦr

(
πk

fast([k, 0], σ),
[
uk

M1+1([k, 0], σ), . . . ,zi, . . . ,u
k
M ([k, 0], σ)

]
,

; µ̂([k, σ]; [0, 0])
)

subject to

zi(l) ≤ Ωi, 0 ≤ l ≤ N − 1

zi(l) = 0, N ≤ l

in which µ̂ = [x̂1, . . . , x̂M ], zi = [zi(0)′, zi(1)′, . . .]′. Let ui = [ui(0)′, . . . , ui(N − 1)′]′, zi =

[zi(0)′, . . . , zi(N − 1)′]′. For φi(·) for each i ∈ IM given by Equation (4.5) (p. 34) and Φi(·)

obtained by eliminating the CM states xi from φi(·) using the subsystem CM (see p. 39), the

FC-MPC optimization problem for subsystem i ∈ Jslow is

z1
i ([k + 1, 0]) ∈ arg min

ui

1
2
ui
′Riui +

ri([k, σ]) +
M∑
j 6=i

Hijvj


′

uj + constant (11.3a)

subject to ui ∈ Ui, (11.3b)

in which Ui = Ωi × . . .× Ωi ∈ RmiN ,

Qi = diag(Qi(1), . . . , Qi(N − 1), Qi), Ri = diag(Ri(0), . . . , Ri(N − 1)),
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Ri = wiRi + wiEii
′QiEii +

M∑
l 6=i

wlEli
′QlEli vj = uk

j ([k, 0], σ), ∀ j ∈ IM

ωj(k, σ) = x̂j([k, σ]; [k, 0]), ∀ j ∈ IM Hij =
M∑
l=1

wlEli
′QlElj

ri([k, σ]) = wiEii
′Qifiωi(k, σ) +

M∑
l 6=i

wlEli
′Qlflωl(k, σ)

with Qj denoting an appropriately chosen terminal penalty. For stable systems, the termi-

nal penalty is calculated using Theorem 4.1 (p. 49). For systems with unstable decentralized

modes, a suitable terminal penalty is obtained using Theorem 4.2 (p. 53). The terminal de-

centralized state constraint described in Theorem 4.2 is necessary for closed-loop stability. By

definition, ui = [ui
′, 0, 0, . . .]. The following algorithm is employed by the MPCs in Jslow.

Algorithm 11.1. (Slow MPCs) Given u0
i ([0, 0]), Qi ≥ 0, Ri > 0, ∀ i ∈ Jslow, and

k, t← 0, tsim ← Γ,Γ� 0

while t ≤ tsim

do ∀ i ∈ Jslow during sampling interval t ∈
[
kT, (k + 1) T

)
Determine z1

i ([k + 1, 0]) from Equation (11.3)

uk+1
i ([k + 1, 0]) = γsz

1
i ([k + 1, 0]) + (1− γs) uk

i ([k, 0], σ)

end (do)

if t = (k + 1)T

Transmit uk+1
i ([k + 1, 0]), ∀ i ∈ Jslow to each interconnected subsystem j ∈ IM , j 6= i

end (if)

k ← k + 1

end (while)
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Fast MPCs (group Jfast). Consider the sampling interval [kT +(α−1)tf , kT +αtf ), in which

1 ≤ α ≤ σ, α ∈ I+. During this sampling interval, each MPC i ∈ Jfast solves the following

optimization problem to compute the optimal input trajectory at time kT + αtf .

ζβ
i ([k, α]) ∈ arg min

ζi

M∑
r=1

wrΦr

([
zβ−1

1 ([k, α]), . . . , ζi, . . . ,z
β−1
M1

([k, α])
]
,

πk
slow([k, 0], α) ; µ̃([k, α]; [α− 1, 0])

)
subject to ζi(l) ≤ Ωi, 0 ≤ l ≤ N − 1

ζi(l) = 0, N ≤ l

in which ζi = [ζi(0)′, ζi(1)′, . . .]′ and µ̃ denotes the set of subsystem states obtained if MPCs in

Jfast are allowed to inject their calculated inputs without accounting for asynchronous feed-

back. The set of states µ̃ is generated by setting γf = 1 in the asynchronous feedback law (see

Section 11.3.1, p. 284). Details for calculating µ̃ are given in p. 280 and p. 285. In the FC-MPC

optimization problem for subsystem i ∈ Jfast, the assumed input trajectories for subsystem

j ∈ Jslow are obtained by shifting forward to time kT + αtf , the input trajectories calculated

at time kT (synchronization iterate k). The input trajectories for subsystem j ∈ Jfast, j 6= i are

held constant at values obtained at iterate β − 1. The FC-MPC optimization for i ∈ Jslow is

ζ
β
i ([k, α]) ∈ arg min

ui

1
2
ui
′Riui +

ri([k, α]) +
M∑
j 6=i

Hijvj


′

uj + constant (11.4a)

subject to ui ∈ Ui, (11.4b)
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in which ri([k, α]) = wiEii
′Qifiωi(k, α) +

∑M
l 6=i wlEli

′Qlflωl(k, α),

vj =


zβ−1

j ([k, α]), if j ∈ Jfast,

uk
j ([k, 0], α), if j ∈ Jslow.

ωj(k, α) =


x̃j([k, α]; [k, α− 1]), if j ∈ Jfast,

x̃j([k, α]; [k, 0]), if j ∈ Jslow.

(11.5)

During the sampling interval [kT + (α − 1)tf , kT + αtf ), 1 ≤ α ≤ σ, the following

algorithm is employed by MPCs in Jfast to determine z
qf

i ([k, α]),∀ i ∈ Jfast.

Algorithm 11.2. (Fast-Inner) Given z0
i ([k, α]), qf > 0 and ε > 0

β ← 1, κi ← Γε,Γ� 1

while κi > ε for some i ∈ IM and β ≤ qf

do ∀ i ∈ Jfast

Determine ζ
β
i from Equation (11.4)

zβ
i ([k, α]) = wiζ

β
i ([k, α]) + (1− wi) zβ−1

i ([k, α])

Transmit zβ
i (·) to each interconnected subsystem j 6= i, j ∈ Jfast

κi = ‖zβ
i − zβ−1

i ‖

end (do)

β ← β + 1

end (while)
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In Equation (11.5), ωi([k, α]) is obtained as follows: For i ∈ Jfast, x̃i([k, α]; [k, α − 1]) is

calculated using the model equation

x̃i([k, α]; [k, α− 1]) = Aix̃i([k, α− 1]) + Biz
qf

i ([k, α− 1], 0) +
∑

j∈Jfast,j 6=i

Wijz
qf

j ([k, α− 1], 0)

+
∑

j∈Jslow

Wiju
k
j ([k, 0], α− 1) (11.6)

with x̃i([k, 0]) = xi(k) = x̂i([k, 0]). The subsystem state x̃i([k, α]), i ∈ Jfast is obtained when

each MPC in i ∈ Jfast is allowed to inject z
qf

i ([k, α − 1]) without correcting for asynchronous

feedback 1. At time kT + (α− 1)tf , the prior state xi([k, α− 1]; [k, α− 2]) is updated using the

new measurement yi([k, α − 1]). The updated state estimate xi([k, α − 1]) is used to calculate

x̃i([k, α− 1]). Details of this calculation are provided in Section 11.3.2.

Consider j ∈ Jslow. During sampling interval [kT, (k + 1)T ), we note that only in-

teraction model states x̃ji, i ∈ Jfast deviate from their predicted state trajectory calculated at

time kT . From Assumption 11.1, (Aji, Bji), ∀ j ∈ Jslow is known to MPC i ∈ Jfast. Hence,

x̃ji, ∀ j ∈ Jslow is updated by MPC i ∈ Jfast using the interaction model equation

x̃ji([k, α]; [k, 0]) = Ajix̃ji([k, α− 1]; [k, 0]) + Bjiz
qf

i ([k, α− 1], 0) (11.7)

with x̃ji([k, 0]) = xji([k, 0]) = x̂ji([k, 0]). At each kT + (α − 1)tf , 2 ≤ α ≤ σ, MPC i ∈

Jfast transmits calculated states x̃i([k, α]; [k, α − 1]) (Equation (11.6)) and x̃ji([k, α]; [k, 0]), j ∈

Jslow (Equation (11.7)) to all MPCs l ∈ Jfast, l 6= i. At this time, MPC i ∈ Jfast also receives

x̃l([k, α]; [k, α − 1]) and x̃jl([k, α [k, 0]), j ∈ Jslow from each l ∈ Jfast, l 6= i. The states x̃js for

1In the asynchronous feedback control law (see Section 11.3.1), this corresponds to setting γf = 1.



281

j, s ∈ Jslow remain at the values predicted at time kT i.e., x̃js([k, α]; [k, 0]) = x̂js([k, α]; [k, 0]).

Each MPC i ∈ Jfast can, therefore, reconstruct µ̃([k, α]; [α− 1, 0]).

For 2 ≤ α ≤ σ, we define z0
i ([k, α]) = z

qf

i ([k, α−1], 1), a shifted version of the final input

trajectory calculated during the sampling interval [kT + (α− 2)tf , kT + (α− 1)tf ). For α = 1,

Algorithm 11.2 is initialized as follows. During the sampling interval [(k−1)T +(σ−1)tf , kT ),

the input trajectory z
qf

i ([k, 0]) (≡ z
qf

i ([k − 1, σ])), ∀ i ∈ Jfast is calculated. The input trajectory

uk−1
i ([k − 1, 0]), i ∈ Jfast was determined at the outer iterate k − 1 at time (k − 1)T (see

Algorithms 11.3 and 11.4). We define

uk
i ([k, 0]) = γfz

qf

i ([k, 0]) + (1− γf )uk−1
i ([k − 1, 0], σ).

For the sampling interval [kT, kT +tf ), the input trajectory used for initializing Algorithm 11.2

is a shifted version of uk
i ([k, 0]) and is defined as z0

i ([k, 1]) = uk
i ([k, 0], 1), ∀ i ∈ Jfast. This

initialization strategy will prove useful to demonstrate nominal closed-loop stability under

asynchronous feedback (Section 11.4). The following algorithm is used by the MPCs in Jfast

during the sampling interval [kT, (k + 1) T ),∀ k ≥ 0.

Algorithm 11.3. (Fast-Outer)

Given k ≥ 0, k ∈ I+,z0
i ([k, 1]) = uk

i ([k, 0], 1), ∀ i ∈ Jfast, π
k
slow, α← 1.

while α ≤ σ

For sampling interval [kT + (α− 1)tf , kT + αtf )

Execute Algorithm 11.2

Γi([k, α]) = γfz
qf

i ([k, α]) + (1− γf ) uk
i ([k, 0], α), i ∈ Jfast

if α− σ < 0
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z0
i ([k, α + 1]) = z

qf

i ([k, α], 1), ∀ i ∈ Jfast

else if α− σ = 0

uk+1
i ([k + 1, 0]) = Γi([k, σ], 1), ∀ i ∈ Jfast

end (if)

end (for)

α← α + 1

end (while)

In Algorithm 11.3, no information transfer across the two groups of MPCs is required.

For all sampling intervals [kT + (α− 1)tf , kT + αtf ), 1 ≤ α ≤ σ− 1, the information exchange

occurs only among the MPCs in Jfast (see Algorithm 11.2). Let zβ
i (·) = [zβ

i (·)′, 0, 0, . . .]′ and

θfast = [z1, . . . ,zM1 ]. We have the following lemma.

Lemma 11.1. The sequence of cost functions Φ(θβ
fast, π

k
slow;µ(·)) is a nonincreasing function of the

inner iteration number β.

The proof is similar to the proof for Lemma 8.3 (p. 177), and is omitted for brevity.

Consider the sampling interval [kT + (α − 1)tf , kT + αtf ). Using Lemma 11.1 for the

nominal case gives,

Φ(θqf

fast([k, α]), πk
slow([k, 0], α);µ([k, α])) ≤ Φ(θβ

fast([k, α]), πk
slow([k, 0], α);µ([k, α]))

≤ Φ(θ0
fast([k, α]), πk

slow([k, 0], α);µ([k, α]))

= Φ(θqf

fast([k, α− 1], 1), πk
slow([k, 0], α);µ([k, α]))

= Φ(θqf

fast([k, α− 1]), πk
slow([k, 0], α− 1);µ([k, α− 1])

− Lα−1(µ([k, α− 1]), ∆̃α−1([k, α− 1])) (11.8)
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in which ∆̃s = [νqf

1 , . . . , ν
qf

M ],

Ls(µ([k, s]), ∆̃s([k, s])) =
M∑
i=1

wiLi(xi([k, s]), νqf

i ([k, s])),

ν
qf

i ([k, s]) = z
qf

i ([k, s], 0) if i ∈ Jfast and ν
qf

i ([k, s]) = uk
i ([k, 0], s) if i ∈ Jslow. Using Algo-

rithms 11.2 and 11.3, we obtain the following algorithm for MPCs in Jfast.

Algorithm 11.4. (Fast MPCs) Given u0
i ([0, 0]), Qi ≥ 0, Ri > 0, ∀ i ∈ Jfast, and

k, t← 0, tsim ← Γ,Γ� 0

while t ≤ tsim

do ∀ i ∈ Jfast during sampling interval t ∈
[
kT, (k + 1) T

)
Execute Algorithm 11.3

end (do)

if t = (k + 1)T

Transmit uk+1
i ([k + 1, 0]), ∀ i ∈ Jfast to each interconnected subsystem j ∈ IM , j 6= i

end (if)

k ← k + 1

end (while)

For initialization at time k = 0, we consider two cases. For stable systems, the zero in-

put trajectory u0
i ([0, 0]) = [0, 0, . . .], ∀ i ∈ IM can be used to initialize Algorithms 11.1 and 11.4.

Existence of a feasible input trajectory for each i ∈ IM is assured for all future times (see Sec-

tion 4.6.1, p. 48). For systems with unstable decentralized modes, the initialization procedure

described in Section 4.6.2 is used. A quadratic program (QP) (see Equation (4.14), p. 51) is
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solved by each MPC i ∈ IM to determine a feasible initial input trajectory u0
i ([0, 0]). From

Section 4.6.2 and Algorithms 11.1 to 11.4, it follows that feasibility of all the initialization QPs

at k = 0 guarantees existence of a feasible input trajectory for each i ∈ IM at all future times.

11.3 Asynchronous feedback policies in FC-MPC

11.3.1 Asynchronous feedback control law

Let Assumption 11.2 be satisfied. The control law for each MPC i ∈ Jslow is defined as,

uinj
i (t) = uk

i ([k, 0], 0), t ∈ [kT, (k + 1)T )

For each MPC i ∈ Jfast, the control law under asynchronous feedback is

uinj
i (t) =


uk

i ([k, 0], 0), t ∈ [kT, kT + tf ),

Γi([k, α], 0), t ∈ [kT + αtf , kT + (α + 1)tf ), 1 ≤ α ≤ σ − 1, α ∈ I+

in which Γi([k, α], 0) = γfz
qf

i ([k, α], 0) + (1− γf )uk
i ([k, 0], α). Notice that to generate the states

µ̃(·), we set γf = 1 at each t, and consequently, ui(t) = z
qf

i ([k, α], 0), t ∈ [kT + αtf , kT + (α +

1)tf ), i ∈ Jfast and 1 ≤ α ≤ σ, α ∈ I+. Similarly to generate the states µ̂(·), we choose γf = 0 at

each t. For i ∈ Jfast, the choice γf = 0 implies ui(t) = uk
i ([k, 0], 0), t ∈ [kT, (k + 1)T ).

11.3.2 Implementation

To implement asynchronous feedback FC-MPC, a procedure for estimating the state when

measurements become available is necessary. The measurements for MPCs in Jfast are avail-
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able every tf time instants while the measurements for MPCs in Jslow are available only every

kT time instants.

Fast MPCs. Consider the sampling interval [kT +(α−1)tf , kT +αtf ). At time kT +(α−1)tf ,

measurements yi([k, α − 1]), ∀ i ∈ Jfast become available. This new measurement at time

kT + (α − 1)tf can be used to calculate the state estimate xi([k, α − 1]), ∀ i ∈ Jfast. Using

steady-state estimators with gain Li, i ∈ IM , we have

xi([k, α− 1]) = xi([k, α− 1]; [k, α− 2])+Li (yi([k, α− 1]− Cixi([k, α− 1]; [k, α− 2])) , i ∈ Jfast

An estimate of x̃i([k, α]), i ∈ IM is required to solve the FC-MPC optimization problem (Equa-

tion (11.4)) during the sampling interval [kT + (α − 1)tf , kT + αtf ). For i ∈ Jfast, the state

estimate x̃i([k, α]; [k, α − 1]) is obtained as follows. A revised estimate (using latest measure-

ment) of x̃i([k, α − 1]) is required first. The subsystem state x̃i([k, α − 1]) is obtained if all

the MPCs in Jfast are allowed to choose γf = 1 for their respective asynchronous feedback

laws. From the definition of the asynchronous feedback control law (Section 11.3.1), we have

xi = γf x̃i + γsx̂i, i ∈ Jfast. At time kT + (α− 1)tf , x̃i([k, α− 1]; [k, α− 2]) is known. The state

estimate x̃i([k, α− 1]) is obtained using

x̃i([k, α− 1]) = x̃i([k, α− 1]; [k, α− 2]) +
1
γf

[xi([k, α− 1])− xi([k, α− 1]; [k, α− 2])] , (11.9)

∀ i ∈ Jfast. In the nominal case, Equation (11.9) reduces to x̃i([k, α− 1]) = x̃i([k, α− 1]; [k, α−

2]), i ∈ Jfast. It is known that MPCs inJslow do not deviate from their policy uk
j ([k, 0]), j ∈ Jslow

(calculated at time kT ), at least until time (k + 1)T . Also, from Algorithm 11.2, z
qf

j ([k, α −
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1]), ∀ j ∈ Jfast, j 6= i, calculated at the previous sampling interval, is known to MPC i ∈ Jfast.

The subsystem state x̃i([k, α]; [k, α− 1]), i ∈ Jfast is calculated using Equation (11.6). For MPC

i ∈ Jfast, the states x̃ji([k, α]; [k, 0]), j ∈ Jslow are obtained using Equation (11.7). The states

x̃l([k, α]; [k, α− 1]) and x̃jl([k, α]; [k, 0]), j ∈ Jslow are transmitted by all MPCs l ∈ Jfast to MPC

i ∈ Jfast. We also note that x̃js([k, α]; [k, 0] = x̂js([k, α]; [k, 0]), j, s ∈ Jslow.

Slow MPCs. At time (k+1)T , measurements yj([k+1, 0]), ∀j ∈ Jslow become available. Dur-

ing the sampling interval [kT, (k + 1)T ), MPCs in Jfast recalculate their predicted input trajec-

tories and furthermore, introduce control actions into their respective subsystems. The control

actions initiated by MPCs in Jfast during the sampling interval [kT, (k + 1)T ) are unknown to

MPCs in Jslow. To obtain an estimate of the subsystem state xj([k + 1, 0]) (≡ xj([k, σ])), j ∈

Jslow, we require an estimate of xj prior to the measurement at (k + 1)T . This prior state esti-

mate must account for all control actions introduced by MPCs i ∈ Jfast during [kT, (k + 1)T ).

Since each MPC i ∈ Jfast maintains an estimate of x̃ji, ∀j ∈ Jslow, the state x̃ji([k, σ]; [k, 0]), ∀j ∈

Jslow is known to MPC i ∈ Jfast. At time (k + 1)T , each MPC i ∈ Jfast transmits its estimate of

x̃ji([k, σ]; [k, 0]) to MPC j ∈ Jslow. Noting that x̃js([k, σ]; [k, 0]) = x̂js([k, σ]; [k, 0]), ∀ s ∈ Jslow,

the state x̃j([k, σ]; [k, 0]) can be reconstructed by each subsystem j ∈ Jslow. From the definition

of the asynchronous feedback control law, we have

xj([k, σ]; [k, 0]) = γf x̃j([k, σ]; [k, 0]) + γsx̂j([k, σ]; [k, 0]) (11.10)

The RHS of Equation (11.10) is known; xj([k, σ]; [k, 0]), ∀j ∈ Jslow can, therefore, be calculated.

Using steady-state estimators with gain Lj , j ∈ Jslow, and in the absence of any additional



287

measurements, we have

xj([k + 1, 0]) = xj([k, σ]; [k, 0]) + Lj (yj([k + 1, 0])− Cjxj([k, σ]; [k, 0])) , ∀ j ∈ Jslow

An alternative strategy to obtain xj([k, σ]; [k, 0]) is as follows: At time (k+1)T , MPCs i ∈

Jfast transmit a history of all introduced control actions within the sampling interval [kT, (k +

1)T ) to MPCs j ∈ Jslow. The state xj([k, σ]; [k, 0]) is then calculated using the recursion

xj([k, α]; [k, 0]) = Ajxj([k, α− 1]; [k, 0]) + Bju
inj
j (kT + (α− 1)tf )

+
∑

s∈Jslow,s 6=j

Wjsu
inj
s (kT + (α− 1)tf ) +

∑
l∈Jfast

Wjlu
inj
l (kT + (α− 1)tf )

in which 1 ≤ α ≤ σ.

At time (k + 1)T , the state estimate xi([k + 1, 0]), ∀ i ∈ IM is relayed to all subsystems

j ∈ IM , j 6= i. This sequence of operations is repeated during subsequent sampling intervals.

11.3.3 An illustrative case study

The procedure for asynchronous feedback is illustrated using a simple example in which

Jfast = {1, 2}, Jslow = {3} and σ = 3. The notation ′cost(AEF )′ represents the cost along

the trajectory AEF. The various sampling intervals are examined.

t ∈ [kT, kT + tf ): During this sampling interval, the input injected into each subsystem is

uinj
i (t) = uk

i ([k, 0], 0), i = 1, 2, 3
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MPCs 1 and 2 in Jfast determine z
qf

i ([k, 1]), i = 1, 2 such that

Φ(zqf

1 ([k, 1]),zqf

2 ([k, 1]),uk
3([k, 0], 1); µ̃([k, 1]; [0, 0]))

≤ Φ(uk
1([k, 0], 1),uk

2([k, 0], 1),uk
3([k, 0], 1); µ̃([k, 1]; [0, 0]))

in which x̃i([k, 1]; [k, 0]) = x̂i([k, 1]; [k, 0]) = xi([k, 1]; [k, 0]), i = 1, 2, 3. For the nominal case,

we have xi([k, 1]; [k, 0]) = xi([k, 1]), i = 1, 2, 3. The cost relationship for the nominal system is

Φ(zqf

1 ([k, 1]),zqf

2 ([k, 1]),uk
3([k, 0], 1); µ̃([k, 1]))

≤ Φ(uk
1([k, 0], 1),uk

2([k, 0], 1),uk
3([k, 0], 1); µ̃([k, 1])) (11.11)

In Figure 11.2, Equation (11.11) implies that cost(EIX) ≤ cost(BCJW ), where BCJW is the

shifted version of the initial trajectory obtained at time kT (ABCJW). During this sampling

interval, the nominal closed-loop system moves from a to b in Figure 11.2.

t ∈ [kT + tf , kT + 2tf ): The input injected into the plant during this sampling interval is

uinj
i (t) = γfz

qf

i ([k, 1], 0) + γsu
k
i ([k, 0], 1), i = 1, 2

uinj
3 (t) = uk

3([k, 0], 1)

At time kT + tf , measurements yi([k, 1]), i = 1, 2 are available. The state estimators for sub-

systems 1 and 2 use this new measurement to obtain updated estimates xi([k, 1]), i = 1, 2.

MPCs 1 and 2 use Equation (11.9) with α = 1 to obtain x̃i([k, 1]), i = 1, 2. The predicted

state x̃i([k, 2]; [k, 1]), i = 1, 2 is calculated using Equation (11.6). Interaction model (A31, B31) is
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Figure 11.2: Nominal closed-loop state trajectories for asynchronous feedback FC-MPC.

known to MPC 1; x̃31([k, 2]; [k, 0]) is calculated using Equation (11.7) with α = 1. Similarly, us-

ing the interaction model (A32, B32) (known to MPC 2), x̃32([k, 2]; [k, 0]) is calculated by MPC 2.

MPC 1 transmits x̃1([k, 2]; [k, 1]) and x̃31([k, 2]; [k, 0]) to MPC 2 and receives x̃2([k, 2]; [k, 1]) and

x̃32([k, 2]; [k, 0]) from MPC 2. Since, x̃33([k, 2]; [k, 0]) = x̂33([k, 2]; [k, 0]) and µ̂([k, 0]) is known

to all MPCs, both MPCs 1 and 2 can reconstruct µ̃([k, 2]; [1, 0]).
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During this sampling interval, MPCs 1 and 2 compute z
qf

1 ([k, 2]),zqf

2 ([k, 2]) respectively

such that

Φ(zqf

1 ([k, 2]),zqf

2 ([k, 2]),uk
3([k, 0], 2); µ̃([k, 2]; [1, 0]))

≤ Φ(zqf

1 ([k, 1], 1),zqf

2 ([k, 1], 1),uk
3([k, 0], 2); µ̃([k, 2]; [1, 0]))

For the nominal case, we have

Φ(zqf

1 ([k, 2]),zqf

2 ([k, 2]),uk
3([k, 0], 2); µ̃([k, 2]))

≤ Φ(zqf

1 ([k, 1], 1),zqf

2 ([k, 1], 1),uk
3([k, 0], 2); µ̃([k, 2])) (11.12)

In Figure 11.2, Equation (11.12) implies that cost(FHY ) ≤ cost(IX). The nominal closed-loop

path for the system during this sampling interval is from b to c.

t ∈ [kT + 2tf , (k + 1)T ): The input injected into the plant during this sampling interval is

uinj
i (t) = γfz

qf

i ([k, 2], 0) + γsu
k
i ([k, 0], 2), i = 1, 2

uinj
3 (t) = uk

3([k, 0], 2)

At time kT + 2tf , measurements yi([k, 2]), i = 1, 2 are available. The state estimators for sub-

systems 1 and 2 use these new measurements to estimate the state xi([k, 2]), i = 1, 2. An

identical procedure to the one described for the earlier sampling interval is used to determine

x̃i([k + 1, 0]; [k, 2]), i = 1, 2 and x̃3([k + 1, 0]; [k, 0]). During this sampling interval, MPCs 1 and
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2 calculate z
qf

1 ([k + 1, 0]) and z
qf

2 ([k + 1, 0]) respectively such that

Φ(zqf

1 ([k + 1, 0]),zqf

2 ([k + 1, 0]),uk
3([k, 0], 3); µ̃([k, 3]; [2, 0]))

≤ Φ(zqf

1 ([k, 2], 1),zqf

2 ([k, 2], 1),uk
3([k, 0], 3); µ̃([k, 3]; [2, 0]))

For the nominal case, the cost relationship above reduces to

Φ(zqf

1 ([k + 1, 0]),zqf

2 ([k + 1, 0]),uk
3([k, 0], 3); µ̃([k, 3]))

≤ Φ(zqf

1 ([k, 2], 1),zqf

2 ([k, 2], 1),uk
3([k, 0], 3); µ̃([k, 3])) (11.13)

In Figure 11.2, we have from Equation (11.13) that the cost(GZ) ≤ cost(HY ). During this

sampling interval, MPC 3 completes computation of z
qf

3 ([k + 1, 0]) satisfying

Φ(uk
1([k, 0], 3),uk

2([k, 0], 3),zqf

3 ([k + 1, 0]); µ̂([k, 3]; [0, 0]))

≤ Φ(uk
1([k, 0], 3),uk

2([k, 0], 3),uk
3([k, 0], 3); µ̂([k, 3]; [0, 0]))

For the nominal case, we have

Φ(uk
1([k, 0], 3),uk

2([k, 0], 3),zqf

3 ([k + 1, 0]); µ̂([k, 3]))

≤ Φ(uk
1([k, 0], 3),uk

2([k, 0], 3),uk
3([k, 0], 3); µ̂([k, 3])) (11.14)

From Equation (11.14), we have in Figure 11.2 that cost(DV ) ≤ cost(JW ). The nominal closed-

loop path during this sampling interval is from c to d.



292

At time t = (k + 1)T = kT + 3tf , an (outer) synchronization iterate is performed.

Measurements yi([k + 1, 0]), i = 1, 2, 3 are available. MPCs 1 and 2 use the corresponding

measurement yi([k+1, 0]) and prior estimate xi([k+1, 0]; [k, σ−1]) to calculate xi([k+1, 0]), i =

1, 2. To determine x3([k + 1, 0]), MPCs in Jfast transmit their calculated estimate of x̃3i([k +

1, 0]; [k, 0]), i = 1, 2 to MPC 3. The prior estimate x3([k + 1, 0]; [k, 0]) is then obtained using

Equation (11.10). Using y3([k + 1, 0]) and the estimate x3([k + 1, 0]; [k, 0]), x3([k + 1, 0]) is

calculated. MPCs 1, 2 and 3 relay their respective state estimates xi([k + 1, 0]), i = 1, 2, 3 to

each other. From Algorithms 11.1 and 11.4, we have

uk+1
i ([k + 1, 0]) = γfz

qf

i ([k + 1, 0]) + γsu
k
i ([k, 0], 3), i = 1, 2

uk+1
3 ([k + 1, 0]) = γsz

qf

3 ([k + 1, 0]) + γfuk
3([k, 0], 3)

An outline of a proof for nominal closed-loop stability under asynchronous feedback

is now provided. A formal argument is presented in Section 11.4. In Figure 11.2, we have us-

ing arguments presented above that cost(AEFGZ) ≤ cost(ABCDJW ) and cost(ABCDV ) ≤

cost(ABCJW ). From Figure 11.2, the cost to go along the initialized nominal closed-loop path

at (k + 1)T i.e., cost(def) is equal to cost(abcdef) − S(a) − S(b) − S(c) in which the notation

S(x) denote the net stage cost at point x and S(x) ≥ 0. From the definition of the asynchronous

feedback law, and using convexity we have cost(abcdef) = cost(def) + S(a) + S(b) + S(c) ≤

γfcost(AEFGZ) + γscost(ABCDV ) ≤ cost(ABCJW ). Hence,

cost(def) ≤ cost(ABCJW )− [S(a) + S(b) + S(c)]
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Nominal asymptotic stability follows.

11.4 Nominal closed-loop stability with asynchronous feedback poli-

cies

Define

wi([k, 0]) = [uk
i ([k, 0], 0)′, zqf

i ([k, 1], 0)′, . . . , zqf

i ([k, σ − 1], 0)′,zqf

i ([k + 1, 0])′]′, ∀ i ∈ Jfast

and

wi([k, 0]) = [uk
i ([k, 0], 0)′, uk

i ([k, 0], 1)′, . . . , uk
i ([k, 0], σ − 1)′,zqf

i ([k + 1, 0])′]′, ∀ i ∈ Jslow

From Assumption 11.2, we have uk
i ([k, 0], 0) = uk

i ([k, 0], 1) = . . . = uk
i ([k, 0], σ− 1), ∀ i ∈ Jslow.

Let

vi([k, 0]) = [uinj
i (kT )′, uinj

i (kT + tf )′, . . . , uinj
i (kT + (σ − 1)tf )′,uk+1

i ([k + 1, 0])′]′, ∀ i ∈ IM

in which uinj
i (kT ) = uk

i ([k, 0], 0). From the definition of the asynchronous feedback policy in

Section 11.3, and from Algorithms 11.1 and 11.3, we have

vi([k, 0]) = γfwi([k, 0]) + γsu
k
i ([k, 0]), ∀ i ∈ Jfast

and

vi([k, 0]) = γswi([k, 0]) + γfuk
i ([k, 0]), ∀ i ∈ Jslow
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With slight abuse of notation, we define

ξv
fast([k, 0]) = [v1([k, 0]), . . . ,vM1([k, 0])], ξv

slow([k, 0]) = [vM1+1([k, 0]), . . . ,vM ([k, 0])]

ξw
fast([k, 0]) = [w1([k, 0]), . . . ,wM1([k, 0])], ξw

slow([k, 0]) = [wM1+1([k, 0]), . . . ,wM ([k, 0])]

and write

Φ([v1([k, 0]), . . . ,vM1([k, 0])], [vM1+1([k, 0]), . . . ,vM ([k, 0])]; µ([k, 0]))

= Φ(ξv
fast([k, 0]), ξv

slow([k, 0]);µ([k, 0])

Using convexity of Φ(·) gives,

Φ(ξv
fast([k, 0]), ξv

slow([k, 0]);µ([k, 0]) ≤ γfΦ(ξw
fast([k, 0]), πk

slow([k, 0];µ([k, 0]))

+ γsΦ(πk
fast([k, 0]), ξw

slow([k, 0]);µ([k, 0]) (11.15)

in which πfast and πslow are defined in Section 11.1 (p. 275). Consider the sampling interval

[kT, kT + tf ). From Algorithms 11.2 to 11.4, we have for group Jfast that,

Φ(θqf

fast([k, 1]), πk
slow([k, 0], 1);µ([k, 1])) ≤ Φ(πk

fast([k, 0], 1), πk
slow([k, 0], 1);µ([k, 1]))

= Φ(πk
fast([k, 0]), πk

slow([k, 0]);µ([k, 0])

− L0(µ([k, 0]), ∆̃0([k, 0])) (11.16)
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in which θfast is defined in Section 11.2 (p. 282), ∆̃0([k, 0]) = [uk
1([k, 0], 0), . . . , uk

M ([k, 0], 0)] and

L0(µ([k, 0], ∆̃0([k, 0])) =
M∑
i=1

wiLi(xi([k, 0]), uk
i ([k, 0], 0).

For the sampling interval [kT + tf , kT + 2tf ), we have

Φ(θqf

fast([k, 2]), πk
slow([k, 0], 2);µ([k, 2])) ≤ Φ(θk

fast([k, 1], 1), πk
slow([k, 0], 2);µ([k, 2]))

= Φ(θk
fast([k, 1]), πk

slow([k, 0], 1);µ([k, 1])

− L1(µ([k, 1]), ∆̃1([k, 1]))

≤ Φ(πk
fast([k, 0]), πk

slow([k, 0]);µ([k, 0])

−
1∑

α=0

Lα(µ([k, α]), ∆̃α([k, α]))

(from Equation (11.16))

in which

∆̃1([k, 1]) = [zqf

1 ([k, 1], 0), . . . , zqf

M1
([k, 1], 0), uk

M1+1([k, 0], 1), . . . , uk
M ([k, 0], 1)].

Proceeding recursively up to and including sampling interval [kT + (σ − 1)tf , (k + 1)T ) gives

Φ(θqf

fast([k + 1, 0]), πk
slow([k, 0], σ);µ([k + 1, 0])) ≤ Φ(πk

fast([k, 0]), πk
slow([k, 0]);µ([k, 0])

−
σ−1∑
α=0

Lα(µ([k, α]), ∆̃α([k, α])) (11.17)
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in which

∆̃α([k, α]) = [zqf

1 ([k, α], 0), . . . , zqf

M1
([k, α], 0), uk

M1+1([k, 0], α), . . . , uk
M ([k, 0], α)].

Using the definition of wi([k, 0]), i ∈ Jfast gives,

Φ(ξw
fast([k, 0]), πk

slow([k, 0]);µ([k, 0])) ≤ Φ(πk
fast([k, 0]), πk

slow([k, 0]);µ([k, 0])) (11.18)

Similarly for group Jslow, we have

Φ(πk
fast([k, 0], σ), θqf

slow([k + 1, 0]);µ([k + 1, 0])) ≤ Φ(πk
fast([k, 0]), πk

slow([k, 0]);µ([k, 0])

−
σ−1∑
α=0

Lα(µ([k, α]), ∆̂α([k, α])) (11.19)

in which

∆̂α([k, α]) = [uk
1([k, 0], α), . . . , uk

M ([k, 0], α)], 0 ≤ α ≤ σ − 1

Hence,

Φ(πk
fast([k, 0]), ξw

slow([k, 0]);µ([k, 0])) ≤ Φ(πk
fast([k, 0]), πk

slow([k, 0]);µ([k, 0])) (11.20)

For the nominal case, we have from the definitions of vi and uk+1
i , i ∈ IM that,

Φ(ξv
fast([k, 0]), ξv

slow([k, 0]);µ([k, 0])) = Φ(πk+1
fast ([k + 1, 0]), πk+1

slow([k + 1, 0]);µ([k + 1, 0]))

+
σ−1∑
α=0

Lα(µ([k, α]),∆v
α([k, α])) (11.21)
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in which

∆v
α([k, α]) = [uinj

1 ([k, α]), . . . , uinj
M ([k, α])]

From Equations (11.15), (11.18), (11.20) and (11.21) we have,

0 ≤ Φ(πk+1
fast ([k + 1, 0]), πk+1

slow([k + 1, 0]);µ([k + 1, 0])) ≤ Φ(πk
fast([k, 0]), πk

slow([k, 0]);µ([k, 0]))

−
σ−1∑
α=0

Lα(µ([k, α]),∆v
α([k, α]))

(11.22)

Equation (11.22) gives nominal asymptotic stability for the closed-loop system under the pre-

scribed asynchronous feedback policy.

11.5 Example

A plant consisting of two CSTRs and a nonadiabatic flash is considered. A description of

the plant is available in Chapter 4 (Section 4.7.2, p. 58). Plant parameters and regulator con-

straints are given in Tables 11.1 and 11.2 respectively. The open-loop time constants for the

two CSTRs are much smaller than the open-loop time constant for the flash separator. A time

scale separation is present therefore. The MPCs for the two CSTRs are assigned to Jfast; the

MPC for the flash is assigned to Jslow. The sampling rate for MPCs in Jfast is 1.5 sec. The

sampling rate for Jslow is 15 sec. Thus, σ = 10. Under asynchronous feedback, MPCs 1 and 2

(for the two CSTRs) may inject 10 control moves in the time MPC 3 injects one control move.

A schematic of the plant with the group divisions is shown in Figure 11.3. For each unit, we

select wi = 1/3, i = 1, 2, 3. Hence, γf = 2/3 and γs = 1/3.
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Table 11.1: Steady-state parameters. The operational steady state corresponds to maximum
yield of B.

ρ = 0.15 Kg m−3, ρb = 10ρ αA = 3.5 αB = 1.1
αC = 0.5 k∗1 = 0.334 sec−1 k∗2 = 0.5 sec−1

Ar = 3 m2 Am = 3 m2 Ab = 30 m2

F0 = 2.667 Kg sec−1 F1 = 1.33 Kg sec−1 D = 6 Kg sec−1

Fp = 0.01D T0 = 313 K Td = 313 K
Cpr = 25 KJ (Kg K)−1 Cpb

= 2.5 KJ (Kg K)−1 Cpm = Cpr

Qr = Qm = −25KJ sec−1 Qb = 2.5 KJ sec−1 xA0 = 1
xB0 = xC0 = 0 xA1 = 1 xB1 = xC1 = 0

∆H1 = −40 KJ Kg−1 ∆H2 = −500 KJ Kg−1 E1
R = E2

R = 150K
kr = 2.5 Kg sec−1m− 1

2 km = 2.5 Kg sec−1m− 1
2 kb = 1.5 Kg sec−1m− 1

2

Table 11.2: Input constraints. The symbol ∆ represents a deviation from the corresponding
steady-state value.

−0.15 ≤ ∆F0 ≤ 0.15 −0.15 ≤ ∆Qr ≤ 0.15
−0.15 ≤ ∆F1 ≤ 0.15 −0.15 ≤ ∆Qr ≤ 0.15
−0.15 ≤ ∆D ≤ 0.15 −3 ≤ ∆Qb ≤ 3

The manipulated variables (MVs) for CSTR-1 are the feed flowrate F0 and the cooling

duty Qr. The measured variables are the level of liquid in the reactor Hr, the exit mass fractions

of A and B i.e., xAr , xBr respectively and the reactor temperature Tr. The controlled variables

(CVs) for CSTR-1 are Hr and Tr. The MVs for CSTR-2 are the feed flowrate F1 and the reactor

cooling load Qm. The measured variables are the level Hm, the mass fractions of A and B

xAm , xBm at the outlet, and the reactor temperature Tm . The CVs are Hm and Tm. For the

nonadiabatic flash, the MVs are the recycle flowrate D and the heat duty for the flash Qb. The

CVs are the holdup in the flash Hb and the temperature Tb. The measurements are Hb, Tb

and the product stream mass fractions xAb
, xBb

. For each MPC, a control horizon N = 15 is

selected. The regulator penalty for each CV is 10; the penalty for each MV is 1.

The performance of the following MPC frameworks are examined: (i) centralized MPC

operating at the slowest sampling rate (15 sec) (ii) FC-MPC (1 iterate) operating at the slowest
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Figure 11.3: Two reactor chain followed by flash separator with recycle. MPCs for CSTRs 1
and 2 are assigned to group Jfast. MPC 3 for the flash belongs to group Jslow.

sampling rate (iii) asynchronous feedback FC-MPC with qf = 1 (iv) asynchronous feedback

FC-MPC with qf = 2 (v) centralized MPC operating at the fastest sampling rate (1.5 sec). The

performance of these MPCs is investigated when a setpoint change of 10◦C is made to liquid

temperature Tb for the flash. The performance of the different MPCs is shown in Figures 11.4

and 11.5. Closed-loop control costs are given in Table 11.3.

Table 11.3: Closed-loop performance comparison of centralized MPC, FC-MPC and asyn-
chronous feedback FC-MPC (AFFC-MPC). ∆Λcost calculated w.r.t performance of Cent-MPC
(fast).

Λcost ∆Λcost%
Cent-MPC (fast) 13.3 0

Cent-MPC (slow) 32.1 141
FC-MPC (1 iterate, slow) 35.4 166

AFFC-MPC (qf = 1) 21.6 61
AFFC-MPC (qf = 2) 20.2 51

Asynchronous feedback FC-MPC with qf = 1 outperforms centralized MPC operating
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Figure 11.4: Setpoint tracking performance of centralized MPC, FC-MPC and asynchronous
feedback FC-MPC (AFFC-MPC).

at the slowest sampling rate by about 33%. If qf = 2, this performance improvement increases

to about 37%. Centralized MPC at the fastest sampling rate outperforms AFFC-MPC (qf = 2)

by nearly 50%.

11.6 Discussion and conclusions

For any system, centralized MPC at the fastest sampling rate gives the best achievable per-

formance. Implementing centralized MPC at the fastest sampling rate may not be feasible,
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Figure 11.5: Setpoint tracking performance of centralized MPC, FC-MPC and asynchronous
feedback FC-MPC (AFFC-MPC).

however, due to operational constraints such as unavailability of all process measurements at

the fastest sampling rate. In such cases, asynchronous feedback FC-MPC presents an opportu-

nity to obtain control performance that is superior to centralized MPC at the slowest sampling

rate. A framework for asynchronous feedback distributed MPC was described in this chap-

ter. A scenario with two sampling rates was considered. The subsystem sampling rates for

a large, networked system are usually determined using the dominant time constant for each

subsystem and frequency of available (local) measurements. Each MPC is assigned to either

the group of fast MPCs Jfast or the group of slow MPCs Jslow, based on the sampling rate for
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the subsystem it controls. During each sampling interval [kT + αtf , kT + (α + 1)tf ) for Jfast,

each MPC in Jfast computes an optimal input trajectory from the predicted system state at the

end of the current sampling interval. Information transfer occurs between MPCs in Jfast only.

MPCs in Jfast utilize new input trajectories received from other MPCs in Jfast and reoptimize.

Several such inner iterations may be performed by MPCs in Jfast during a sampling interval.

A control law for asynchronous feedback distributed MPC was defined. This feedback law

allows MPCs in Jfast to inject control actions into their respective subsystems without com-

promising nominal closed-loop stability. During a sampling interval for Jslow, several control

moves may be injected by MPCs in Jfast. If all MPCs are sampled at the fast sampling rate,

we set γf = 1 in Algorithm 11.3 and in the asynchronous feedback law (Section 11.3.1). In

this limit, we revert to synchronous FC-MPC (at the fast sampling rate) described in Chap-

ter 4. If all MPCs are sampled at the slow sampling rate, we set γs = 1 in Algorithm 11.1

and in the asynchronous feedback law. In this case, we revert to FC-MPC (Chapter 4) with

p(k) = 1. Another interesting situation arises when the state estimators for the slow MPCs can

function at the fastest sampling rate. In this case, Assumption 11.1 can be relaxed. Each MPC

i ∈ Jfast instead, transmits its injected control action to the state estimator for each subsystem

j ∈ IM , j 6= i.

In Chapter 7, partial cooperation FC-MPC was used to integrate the lower level flow

controllers with the higher level MPC. Asynchronous feedback FC-MPC may be used in lieu

of partial cooperation for vertical integration within a subsystem. The time scale separation

present may be exploited for implementing asynchronous feedback FC-MPC. Flow controllers

are typically sampled much faster than the higher level MPC. The flow controllers are assigned

to Jfast while the higher level MPC is assigned to Jslow. The advantages of asynchronous



303

feedback FC-MPC over partial cooperation are as follows:

• Asynchronous feedback FC-MPC guarantees nominal closed-loop stability. Partial co-

operation does not guarantee closed-loop stability and is recommended only for cases

where some of the interactions are significantly weaker than others.

• The performance with asynchronous feedback FC-MPC is generally better than the per-

formance of centralized MPC at the slowest sampling rate, especially when the time scale

separation is significant. Partial cooperation is, for most cases, suboptimal.

The main advantage of partial cooperation for vertical integration is the simplicity of the resul-

tant controller network structure. The flow controllers do not communicate with each another

under partial cooperation. In asynchronous feedback FC-MPC, the different flow controllers

are required to communicate at the fast sampling rate. This additional communication require-

ment for asynchronous feedback FC-MPC may not be desirable in some cases.
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Chapter 12

Concluding Remarks

In conclusion, the main contributions of this dissertation are summarized and suggestions for

possible future work are provided.

12.1 Contributions

The focus of this dissertation was to develop a framework for distributed MPC with guar-

anteed stability and performance properties. A summary of the main contributions of this

dissertation is provided below.

• Several distributed MPC techniques available in the literature are (pure) communication

based strategies. We showed that modeling the interaction between subsystems and

exchanging input trajectories among MPCs (communication) is insufficient to provide

even closed-loop stability. A cooperation-based distributed MPC framework was pro-

posed, in which the local objective of each subsystem-based MPC is modified to achieve

systemwide control goals.
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• Optimality conditions for the proposed cooperative distributed MPC framework were

characterized and an algorithm for distributed MPC was presented. For any feasible ini-

tialization of the distributed MPC algorithm, all iterates generated are feasible and the

resulting nominal closed-loop system is shown to be exponentially stable under inter-

mediate termination. These attributes allow the practitioner to terminate the distributed

MPC algorithm at an intermediate iterate, regardless of convergence. At convergence of

the distributed MPC algorithm, optimal, centralized MPC performance is achieved.

• Two distributed state estimation strategies were developed for estimating subsystem

states from local measurements. Exponential stability for the combined distributed es-

timator - distributed regulator assembly in the case of decaying estimate error was es-

tablished for any intermediate termination of the distributed MPC algorithm. This per-

turbed exponential stability result was established without any constraint qualification

requirements.

• A subsystem-based disturbance modeling framework was developed. Necessary and

sufficient conditions for assessing the suitability of chosen local disturbance models

were presented. A distributed target calculation algorithm that enables the calculation of

steady-state targets at the subsystem level was described. All iterates generated by the

distributed target calculation algorithm are feasible steady states. For large, networked

systems, the number of measurements is typically chosen (for robustness and redun-

dancy) to be greater than the number of manipulated variables. Selecting appropriate

controlled variables is important for achieving offset-free control. Sufficient conditions

for achieving offset-free control objectives with distributed MPC were provided. A maxi-
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mal positively invariant stabilizable set for distributed MPC, with state estimation, target

calculation and regulation, was described. This set contains all admissible system state,

disturbance, estimate error and setpoint quadruples for which the target calculation for

each subsystem is feasible, and the distributed MPC control law is stable.

• The concept of partial cooperation was introduced to achieve operational objectives

and/or vertically integrate lower level flow control MPCs with the higher level MPC

that supplies flow setpoints. The advantages of partial cooperation are the simplicity

of the resulting controller network structure and reduction in communication among

MPCs. The disadvantage of partial cooperation is that no stability guarantees are avail-

able, except in special cases.

• Simple extensions of the distributed MPC algorithm were used for distributed constrained

LQR (DCLQR) and terminal state constraint distributed MPC. Two algorithms for DCLQR

were developed. In the first algorithm, an explicit terminal set constraint was enforced

to ensure feasibility of the terminal control law. In the second algorithm, the terminal set

constraint is not enforced explicitly: rather, it remains implicit in the construction of a

positively invariant set that restricts permissible initial states. Both DCLQR algorithms

enable one to achieve infinite horizon optimal performance at convergence using finite

values of N .

• The proposed distributed MPC algorithm was augmented to allow asynchronous oper-

ation among MPCs. First, a framework that enables asynchronous MPC optimizations

and exchange of input trajectories was derived. This asynchronous optimization based

distributed MPC algorithm allows one to integrate MPCs with varying computational
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time requirements without requiring all MPCs to operate at the slowest computational

rate. Feasibility, optimality and closed-loop stability under intermediate termination

were established for this asynchronous distributed MPC algorithm. Next, a distributed

MPC framework that allows asynchronous feedback was developed. Each MPC was

assigned to either a fast group or a slow group of MPCs based on the sampling rate of

the subsystem it controls. In this setup, MPCs in the fast group are allowed to inject

their computed control actions at the faster sampling rate while MPCs in the slow group

inject their inputs at the slower sampling rate. Nominal closed-loop stability under asyn-

chronous feedback was established for any intermediate termination of the distributed

MPC algorithm. Such an arrangement allows one to achieve performance superior to

that of centralized MPC operating at the slower sampling rate.

12.2 Directions for Future Research

Some possible directions for future research are outlined below.

• Optimality properties for the FC-MPC algorithm, in the presence of constraints that cou-

ple inputs from different subsystems, need to be investigated further. For this case, as

seen in Chapter 4, the FC-MPC algorithm need not converge to the optimal, central-

ized MPC solution. An obvious characterization is the following: If the coupled input

constraints are inactive at the optimal, centralized MPC solution, the FC-MPC algorithm

converges to the optimal solution. Evidently, this characterization has limited applicabil-

ity. A more general characterization of optimality that handles situations where at least
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one coupled input constraint is active at the optimal solution is required. Specifically,

answers are sought for the following:

– Are there scenarios for which the FC-MPC algorithm with coupled input con-

straints converges to the optimal solution?

– If so, can it be determined a priori if the FC-MPC algorithm will converge to an

optimal (or suboptimal) solution?

• Reliable strategies are required for handling possible disruptions and delays in the com-

munication of input trajectories among subsystems. It is postulated that the closed-loop

system can be destabilized with incorrect input trajectory information due to informa-

tion loss or delays. This conjecture needs verification. If decentralized MPC is stable, one

may switch to decentralized MPC for stabilization and revert to cooperative distributed

MPC when the communication among subsystems is back online. Using recent devel-

opments in control over networks (Baliga and Kumar, 2005; Casavola et al., 2006; Imer

et al., 2004), it may be possible to develop more efficient and reliable strategies that han-

dle situations where the information transfer among subsystems’ MPCs is either delayed

or disrupted.

• Handling uncertainty in the controller model remains a key issue that needs to be ad-

dressed. Interaction models are typically identified using closed-loop operating data.

Typically, for small plant-model mismatch (using the identified models), the disturbance

modeling framework described in Chapter 6 is sufficient to obtain good closed-loop per-

formance. When the plant-model mismatch is more significant, robust distributed MPC
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design may be necessary. With this issue in mind, a thorough investigation into robust-

ness theory for distributed MPC needs to be undertaken. Establishing properties such

as robust feasibility and stability in the distributed MPC setting could prove to be both

useful and interesting. Construction of disturbance invariant sets (Kolmanovsky and

Gilbert, 1998; Rakovic et al., 2004) for each subsystem could prove useful to establish

robust stability.

• In Chapter 7, a partial cooperation strategy that helped reduce communication among

subsystems was described. General stability guarantees for the partial cooperation frame-

work are not available, however. In Chapters 8 and 11, communication among subsys-

tems was reduced by enabling asynchronous operation. Techniques for further reducing

communication among subsystems, without compromising closed-loop stability, should

be investigated.

• To implement cooperative distributed MPC for systems with fast sampling rates, one

may require techniques that allow a quick evaluation of the MPC optimization prob-

lem. The possibility of employing explicit MPC techniques (Bemporad and Filippi, 2003;

Bemporad et al., 2002; Pannocchia, Rawlings, and Wright, 2006; Tondel et al., 2003) for

distributed MPC should be investigated. One complication in distributed MPC is that

the input trajectories for interconnected subsystems’ MPCs are additional parameters

for each MPC optimization problem. The dimensionality of the parameter space conse-

quently, is much greater in distributed MPC.

• In Chapter 11, zero order holds were used for asynchronous feedback distributed MPC.

A first order hold may be employed instead. For the same control performance, a first or-
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der hold typically allows a larger sampling interval than a zero order hold; this feature is

attractive as it provides time for further iterations. The underlying ideas for implement-

ing first order holds in asynchronous feedback distributed MPC remain the same. The

parameters in the optimization problems may vary however. Investigating the benefits

and drawbacks of first order holds for asynchronous feedback distributed MPC could be

an interesting research problem.

• The efficacy of the proposed distributed MPC framework is contingent on the quality

of models used. While ’closed-loop identification’ is a mature and well understood

field, developing identification techniques tailored for MPC is a relatively recent research

area. Improvements in techniques for closed-loop identification for distributed MPC will

likely prove beneficial for practical implementation. Reliable integration of the algorithm

used for closed-loop identification with the algorithm for distributed MPC may have sig-

nificant impact in the process industry. The idea is to be able to re-identify the models

when the control performance drops below some pre-assigned limits due to changes in

the plant. Reliable ‘adaptive’ distributed control remains one of the sternest challenges

for the automatic control community.
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Appendix A

Example parameters and model details

A.1 Four area power system

Table A.1: Model, regulator parameters and input constraints for four area power network of
Figure 3.3.

D1 = 3 D2 =0.275
Rf

1 =0.03 Rf
2 = 0.07

Ma
1 = 4 Ma

2 = 40
TCH1= 5 TCH2 = 10
TG1 = 4 TG2 = 25
D3 = 2.0 D4 = 2.75
Rf

3 =0.04 Rf
4 = 0.03

Ma
3 = 35 Ma

4 = 10
TCH3= 20 TCH4 = 10
TG3 = 15 TG4 = 5
T12 =2.54 T23 = 1.5
T34 = 2.5 ∆samp = 1 sec

-0.5≤∆Pref1≤0.5
-0.5≤∆Pref2≤0.5
-0.5≤∆Pref3≤0.5
-0.5≤∆Pref4≤0.5

Q1 = diag(5, 0, 0) R1 = 1
Q2 = diag(5, 0, 0, 5) R2 = 1
Q3 = diag(5, 0, 0, 5) R3 = 1
Q4 = diag(5, 0, 0, 5) R4 = 1

Area States MVs CVs
1 ∆ω1,∆Pmech1 ,∆Pv1 ∆Pref1 ∆ω1

2 ∆ω2,∆Pmech2 ,∆Pv2 ,∆P 12
tie ∆Pref2 ∆ω2,∆P 12

tie

3 ∆ω3,∆Pmech3 ,∆Pv3 ,∆P 23
tie ∆Pref3 ∆ω3,∆P 23

tie

4 ∆ω4,∆Pmech4 ,∆Pv4 ,∆P 34
tie ∆Pref4 ∆ω4,∆P 34

tie
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A.2 Distillation column control

Table A.2: Distillation column model.

G11 = 32.63
(99.6s + 1)(0.35s + 1) G12 = −33.89

(98.02s + 1)(0.42s + 1)

G21 = 34.84
(110.5s + 1)(0.03s + 1) G12 = −18.85

(75.43s + 1)(0.3s + 1)T21

T7

 =

G11 G12

G32 G22


V

L


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A.3 Two reactor chain with flash separator

Table A.3: First principles model for the plant consisting of two CSTRs and a nonadiabatic
flash. Part 1.

Reactor-1:

dHr

dt
=

1
ρAr

[F0 + D − Fr]

dxAr

dt
=

1
ρArHr

[F0(xA0 − xAr) + D(xAd
− xAr)]− k1rxAr

dxBr

dt
=

1
ρArHr

[F0(xB0 − xBr) + D(xBd
− xBr)] + k1rxAr − k2rxBr

dTr

dt
=

1
ρArHr

[F0(T0 − Tr) + D(Td − Tr)]−
1
Cp

[k1rxAr∆H1 + k2rxBr∆H2] +
Qr

ρArCpHr

Reactor-2:

dHm

dt
=

1
ρAm

[Fr + F1 − Fm]

dxAm

dt
=

1
ρAmHm

[Fr(xAr − xAm) + F1(xA1 − xAm)]− k1mxAm

dxBm

dt
=

1
ρAmHm

[Fr(xBr − xBm) + F1(xB1 − xBm)] + k1mxAm − k2mxBm

dTm

dt
=

1
ρAmHm

[Fr(Tr − Tm) + F1(T0 − Tm)]− 1
Cp

[k1mxAm∆H1 + k2mxBm∆H2] +
Qm

ρAmCpHm

Nonadiabatic flash:

dHb

dt
=

1
ρbAb

[Fm − Fb −D − Fp]

dxAb

dt
=

1
ρbAbHb

[Fm(xAm − xAb
)− (D + Fp)(xAd

− xAb
)]

dxBb

dt
=

1
ρbAbHb

[Fm(xBm − xBb
)− (D + Fp)(xBd

− xBb
)]

dTb

dt
=

1
ρbAbHb

[Fm(Tm − Tb)] +
Qb

ρAbHbCpb
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Table A.4: First principles model for the plant consisting of two CSTRs and a nonadiabatic
flash. Part 2.

Fr = kr

√
Hr Fm = km

√
Hm k1r = k∗1exp

(
−E1

RTr

)
Fb = kb

√
Hb xCr = 1− xAr − xBr k2r = k∗2exp

(
−E2

RTr

)
xCm = 1− xAm − xBm xCb

= 1− xAb
− xBb

k1m = k∗1exp
(
−E1

RTm

)
xAd

=
αAxAb

Σ
xBd

=
αBxBb

Σ
k2r = k∗2exp

(
−E2

RTm

)
xCd

=
αCxCb

Σ
Σ = αAxAb

+ αBxBb
+ αCxCb

Table A.5: Steady-state parameters for Example 4.7.2. The operational steady state corre-
sponds to maximum yield of B.

ρ = ρb = 0.15 Kg m−3 αA = 3.5 αB = 1.1
αC = 0.5 k∗1 = 0.02 sec−1 k∗2 = 0.018 sec−1

Ar = 0.3 m2 Am = 3 m2 Ab = 5 m2

F0 = 2.667 Kg sec−1 F1 = 1.067 Kg sec−1 D = 30.74 Kg sec−1

Fp = 0.01D T0 = 313 K Td = 313 K
Cp = Cpb

= 25 KJ (Kg K)−1 Qr = Qm = Qb = −2.5 KJ sec−1 xA0 = 1
xB0 = xC0 = 0 xA1 = 1 xB1 = xC1 = 0

∆H1 = −40 KJ Kg−1 ∆H2 = −50 KJ Kg−1 E1
R = E2

R = 150K
kr = 2.5 Kg sec−1m− 1

2 km = 2.5 Kg sec−1m− 1
2 kb = 1.5 Kg sec−1m− 1

2

A.4 Unstable three subsystem network
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Table A.6: Nominal plant model for Example 5 (Section 4.7.3). Three subsystems, each with
an unstable decentralized pole. The symbols yI = [y1

′, y2
′]′, yII = [y3

′, y4
′]′, yIII = y5, uI =

[u1
′, u2

′]′, uII = [u3
′, u4

′]′, uIII = u5.

G11 =

 s− 0.75
(s + 10)(s− 0.01)

0.5
(s + 11)(s + 2.5)

0.32
(s + 6.5)(s + 5.85)

1
(s + 3.75)(s + 4.5)


G12 =

[
0 0
0 0

]
G13 =

 s− 5.5
(s + 2.5)(s + 3.2)

0.3
(s + 11)(s + 27)


G21 =

 s− 0.3
(s + 6.9)(s + 3.1)

0.31
(s + 41)(s + 34)

−0.19
(s + 16)(s + 5)

0.67(s− 1)
(s + 12)(s + 7)


G22 =

 s− 0.5
(s + 20)(s + 25)

0.6
(s + 14)(s + 15)

−0.33
(s + 3.0)(s + 3.1)

s− 1.5
(s + 20.2)(s− 0.05)


G23 =

[
0
0

]
G31 =

[
0 0

]
G32 =

[ 0.9
(s + 17)(s + 10.8)

−0.45
(s + 26)(s + 5.75)

]
G33 =

[
s− 3

(s + 12)(s− 0.01)

]
 yI

yII

yIII

 =

G11 G12 G13

G21 G22 G23

G31 G32 G33

 uI

uII

uIII


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