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Abstract

Publishing data about individuals without revealing sensitive information about them is an important problem. In recent
years, a new definition of privacy callddanonymity has gained popularity. In/aanonymized dataset, each record is
indistinguishable from at leadt — 1 other records with respect to certain “identifying” attributes.

In this paper we show using two simple attacks thatanonymized dataset has some subtle, but severe privacy problems.
First, an attacker can discover the values of sensitive attributes when there is little diversity in those sensitive attributes. This
kind of attack is a known problem [60]. Second, attackers often have background knowledge, and we sh@mahgtnity
does not guarantee privacy against attackers using background knowledge. We give a detailed analysis of these two attacks
and we propose a novel and powerful privacy criterion calletiversity that can defend against such attacks. In addition to
building a formal foundation fof-diversity, we show in an experimental evaluation thaiversity is practical and can be
implemented efficiently.

1. Introduction

Many organizations are increasingly publishing microdata — tables that contain unaggregated information about individ-
uals. These tables can include medical, voter registration, census, and customer data. Microdata is a valuable source of
information for the allocation of public funds, medical research, and trend analysis. However, if individuals can be uniquely
identified in the microdata, then their private information (such as their medical condition) would be disclosed, and this is
unacceptable.

To avoid the identification of records in microdata, uniquely identifying information like names and social security num-
bers are removed from the table. However, this first sanitization still does not ensure the privacy of individuals in the data. A
recent study estimated that 87% of the population of the United States can be uniquely identified using the seemingly innocu-
ous attributes gender, date of birth, and 5-digit zip code [67]. In fact, those three attributes were used to link Massachusetts
voter registration records (which included the name, gender, zip code, and date of birth) to supposedly anonymized medical
data from GIG (which included gender, zip code, date of birth and diagnosis). This “linking attack” managed to uniquely
identify the medical records of the governor of Massachusetts in the medical data [68].

Sets of attributes (like gender, date of birth, and zip code in the example above) that can be linked with external data to
uniquely identify individuals in the population are callg@dasi-identifiers To counter linking attacks using quasi-identifiers,
Samarati and Sweeney proposed a definition of privacy catadonymity[62, 68]. A table satisfieg-anonymity if every
record in the table is indistinguishable from at Iefast 1 other records with respect to every set of quasi-identifier attributes;
such a table is calledkaanonymougable. Hence, for every combination of values of the quasi-identifiers ik-#r®nymous
table, there are at leastrecords that share those values. This ensures that individuals cannot be uniquely identified by linking
attacks.

An Example. Figure 1 shows medical records from a fictitious hospital located in upstate New York. Note that the table
contains no uniquely identifying attributes like name, social security number, etc. In this example, we divide the attributes

1Group Insurance Company (GIC) is responsible for purchasing health insurance for Massachusetts state employees.



Non-Sensitive Sensitive Non-Sensitive Sensitive
Zip Code Age| Nationality Condition Zip Code Age | Nationality Condition
1 13053 | 28 Russian Heart Disease 1 130** | < 30 * Heart Disease
2 13068 | 29 | American || Heart Disease 2 130** | < 30 * Heart Disease
3 || 13068 | 21 | Japanese| Viral Infection 3 || 130** | <30 * Viral Infection
4 13053 | 23 | American || Viral Infection 4 130** | < 30 * Viral Infection
5 14853 | 50 Indian Cancer 5 1485* | > 40 * Cancer
6 14853 | 55 Russian Heart Disease 6 1485* | > 40 * Heart Disease
7 14850 | 47 | American || Viral Infection 7 1485* | > 40 * Viral Infection
8 14850 | 49 | American || Viral Infection 8 1485* | > 40 * Viral Infection
9 13053 | 31 | American Cancer 9 130** 3% * Cancer
10 | 13053 | 37 Indian Cancer 10 | 130** 3% * Cancer
11 | 13068 | 36 | Japanese Cancer 11 || 130** 3k * Cancer
12 || 13068 | 35 | American Cancer 12 || 130** 3% * Cancer
Figure 1. Inpatient Microdata Figure 2. 4-anonymous Inpatient Microdata

into two groups: theensitiveattributes (consisting only of medical condition) and tlo&-sensitivattributes (zip code, age,

and nationality). An attribute is marked sensitive if an adversary must not be allowed to discover the value of that attribute for
any individual in the dataset. Attributes not marked sensitive are non-sensitive. Furthermore, let the collection of attributes
{zip code, age, nationalifybe the quasi-identifier for this dataset. Figure 2 shows a 4-anonymous table derived from the
table in Figure 1 (here “*" denotes a suppressed value so, for example, “zip cbtBy* means that the zip code is in the
range[14850 — 14859] and “age=3*" means the age is in the rang@— 39]). Note that in the 4-anonymous table, each tuple

has the same values for the quasi-identifier as at least three other tuples in the table.

Because of its conceptual simplicity;anonymity has been widely discussed as a viable definition of privacy in data
publishing, and due to algorithmic advances in creatirFgnonymous versions of a dataset [3, 12, 51, 57, 62, 68,k74],
anonymity has grown in popularity. However, ddeanonymity really guarantee privacy? In the next section, we will show
that the answer to this question is interestingty We give examples of two simple, yet subtle attacks dnamonymous
dataset that allow an attacker to identify individual records. Defending against these attacks requires a stronger notion of
privacy that we call-diversity, the focus of this paper. But we are jumping ahead in our story. Let us first show the two
attacks to give the intuition behind the problems witanonymity.

1.1. Attacks Onk-Anonymity

In this section we present two attacks, titmmogeneity attacknd thebackground knowledge attacknd we show how
they can be used to compromisé-anonymous dataset.

Homogeneity Attack: Alice and Bob are antagonistic neighbors. One day Bob falls ill and is taken by ambulance to
the hospital. Having seen the ambulance, Alice sets out to discover what disease Bob is suffering from. Alice discovers the
4-anonymous table of current inpatient records published by the hospital (Figure 2), and so she knows that one of the records
in this table contains Bob’s data. Since Alice is Bob’s neighbor, she knows that Bob is a 31-year-old American male who
lives in the zip code 13053 (the quiet town of Dryden). Therefore, Alice knows that Bob’s record number is 9, 10, 11, or 12.
Now, all of those patients have the same medical condition (cancer), and so Alice concludes that Bob has cancer.

Observation 1. k-Anonymity can create groups that leak information due to lack of diversity in the sensitive attribute.

Such a situation is not uncommon. As a back-of-the-envelope calculation, suppose we have a dataset containing 60,000
distinct tuples where the sensitive attribute can take three distinct values and is not correlated with the non-sensitive attributes.
A 5-anonymization of this table will have around 12,000 gréupsd, on average, 1 out of every 81 groups will have no
diversity (the values for the sensitive attribute will all be the same). Thus we should expect about 148 groups with no
diversity. Therefore, information about 740 people would be compromised by a homogeneity attack. This suggests that in
addition tok-anonymity, the sanitized table should also ensure “diversity” — all tuples that share the same values of their
guasi-identifiers should have diverse values for their sensitive attributes.

20ur experiments on real data sets show that data is often very skewed and a 5-anonymous table might not have so many groups



The possibility of a homogeneity attack has been previously discussed in the literature (e.g., [60]). One solution to the
homogeneity problem, as presented by Ohrn et al. [60], turns out to be a specific instance of our general prifciple of
diversity (see Section 4). For reasons that will become clear in Section 4, we refer to that methtd@g-diversity. By
examining privacy from a different perspective, we prove additional privacy-preserving properties of érdiognsity. We
also present other privacy definitions that satisfy the principledifersity that have greater flexibility.

The next observation is that an adversary could use “background” knowledge to discover sensitive information.
Background Knowledge Attack: Alice has a pen-friend named Umeko who is admitted to the same hospital as Bob,
and whose patient records also appear in the table shown in Figure 2. Alice knows that Umeko is a 21 year-old Japanese

female who currently lives in zip code 13068. Based on this information, Alice learns that Umeko’s information is contained

in record number 1,2,3, or 4. Without additional information, Alice is not sure whether Umeko caught a virus or has heart
disease. However, it is well-known that Japanese have an extremely low incidence of heart disease. Therefore Alice concludes
with near certainty that Umeko has a viral infection.

Observation 2. k-Anonymity does not protect against attacks based on background knowledge.

We have demonstrated (using the homogeneity and background knowledge attackk)ahahgmous table may disclose
sensitive information. Since both of these attacks are plausible in real life, we need a stronger definition of privacy that takes
into account diversity and background knowledge. This paper addresses this very issue.

1.2. Contributions and Paper Outline

In the previous section, we showed tihahnonymity is susceptible to homogeneity and background knowledge attacks;
thus a stronger definition of privacy is needed. In the remainder of the paper, we derive our solution. We start by introducing
an ideal notion of privacy calleBayes-optimafor the case that both data publisher and the adversary have knowledge of
the complete joint distribution of the sensitive and nonsensitive attributes (Section 3). Unfortunately in practice, the data
publisher is unlikely to possess all this information, and in addition, the adversary may have more specific background
knowledge than the data publisher. Hence, while Bayes-optimal privacy sounds great in theory, it is unlikely that it can be
guaranteed in practice. To address this problem, we show that the notion of Bayes-optimal privacy naturally leads to a novel
practical criterion that we call-diversity. ¢-Diversity provides privacy even when the data publisher does not know what
kind of knowledge is possessed by the adversary. The main idea bietinelrsity is the requirement that the values of the
sensitive attributes are well-represented in each group (Section 4).

We show that existing algorithms fdranonymity can be adapted to computdiverse tables (Section 5), and in an
experimental evaluation we show thatliversity is practical and can be implemented efficiently (Section 6). We discuss
related work in Section 7, and we conclude in Section 8. Before jumping into the contributions of this paper, we introduce
the notation needed to formally discuss data privacy in the next section.

2. Model and Notation

In this section we will introduce some basic notation that will be used in the remainder of the paper. We will also discuss
how a table can be anonymized and what kind of background knowledge an adversary may possess.

Basic Notation. Let T' = {t1,to,...,t,} be a table with attributesl;, ..., A,,. We assume thdl is a subset of
some larger populatio where each tuple; € T represents an individual from the population. For exampl&; i§ a
medical dataset thef could be the population of the Caribbean island, San LorenzoAlggnote the set of all attributes
{A1,As,..., A, } andt[A;] denote the value of attributg; for tuplet. If C = {C1,Cy,...,C,} C A then we use the
notationt[C] to denote the tuplé&[C4], .. ., t[C}]), which is the projection of onto the attributes if.

In privacy-preserving data publishing, there exist several important subsets éf sensitive attributas an attribute
whose value for any particular individual must be kept secret from people who have no direct access to the original data.
Let S denote the set of all sensitive attributes. An example of a sensitive attridviedisal Conditionfrom Figure 1. The
association between individuals aktkdical Conditionshould be kept secret; thus we should not disclose which particular
patients have cancer, but it is permissible to disclose the information that there exist cancer patients in the hospital. We
assume that the data publisher knows which attributes are sensitive. To simplify the discussion, for much of this paper we
will also assume that there is only one sensitive attribute; the extension of our results to multiple sensitive attributes is not
difficult and is handled in Section 4.3. All attributes that are not sensitive are cadleskensitivattributes. Let\" denote the
set of nonsensitive attributes. We are now ready to formally define the notion of a quasi-identifier.



Definition 2.1 (Quasi-identifier) A set of nonsensitive attributé€)., ..., Q. } of a table is called ajuasi-identifieif these
attributes can be linked with external data to uniquely identify at least one individual in the general pop€@lation

One example of a quasi-identifier is a primary key like social security number. Another example is{iBesdéer, Age,
Zip Codé in the GIC dataset that was used to identify the governor of Massachusetts as described in the introduction. Let
us denote the set of all quasi-identifiers@§¥. We are now ready to formally defikeanonymity.

Definition 2.2 (k-Anonymity). A table T satisfiesk-anonymity if for every tuplé € T there existt — 1 other tuples
tiystigs - ti_, € T suchthat[C] =1¢;,[C] =t,[C] =---=t;,_,[C]forall C € OT.

The Anonymized TableT™. Since the quasi-identifiers might uniquely identify tuple§irthe tablel" is not published;
it is subjected to aanonymization procedui@nd the resulting tabl&™ is published instead.

There has been a lot of research on techniques for anonymization (see Section 7 for a discussion of related work). These
technigues can be broadly classified igemeralizatiortechniques [3, 51generalization with tuple suppressitechniques
[12, 63], anddata swapping and randomizatidechniques [1, 40]. In this paper we limit our discussion only to generalization
techniques.

Definition 2.3 (Domain Generalization)A domainD* = {P;, P, ...} is a generalizatior(partition) of a domainD if
UP; = D andP; N P; = () whenevei # j. Forz € D we let¢p+ (z) denote the elemerit € D* that containse.

Note that we can create a partial ordes: on domains by requirind < D* if and only if D* is a generalization of
D. Given a tablel’ = {t1,...,t,} with the set of nonsensitive attributd$ and a generalizatio®}, of domair(\V), we
can construct a tabl€* = {¢7,...,t; } by replacing the value of[N] with the generalized valugp; (¢;[N]) to get a new
tuplet?. The tuplet; is called ageneralizationof the tuplet; and we use the notatioi = t¥ to mean t; generalizes
t;". Extending the notation to table§; = T* means T* is a generalization of . Typically, ordered attributes are
partitioned into intervals, and categorical attributes are partitioned according to a user-defined hierarchy (for example, cities
are generalized to counties, counties to states, and states to regions).

Example 1 (Continued).The table in Figure 2 is a generalization of the table in Figure 1. We generalized diptGede
attribute by partitioning it into two sets: “1485*” (representing all zip codes whose first four digits are 1485) and “130**”
(representing all zip codes whose first three digits are 130). Then we partithoyesithto three groups: < 307, “3*”
(representing all ages between 30 and 39), and0”. Finally, we partitioned\ationalityinto just one set “*” representing
all nationalities.

The Adversary’s Background Knowledge.Since the background knowledge attack was due to the adversary’s additional
knowledge about the table, let us briefly discuss the type of background knowledge that we are modeling.

First, the adversary has access to the published #abknd she knows that* is a generalization of some base talble
The adversary also knows the domain of each attribufg. of

Second, the adversary may know that some individuals are in the table. This knowledge is often easy to acquire. For
example, GIC published medical data about all Massachusetts state employees. If the adversary Alice knows that her neighbor
Bob is a Massachusetts state employee then Alice is almost certain that Bob’s information is contained in that table. In this
case, we assume that Alice knows all of Bob’s nonsensitive attributes. In addition, the adversary could have knowledge about
the sensitive attributes of specific individuals in the population and/or the table. For example, the adversary Alice might
know that neighbor Bob does not have pneumonia since Bob does not show any of the symptoms of pneumonia. We call such
knowledge “instance-level background knowledge,” since it is associated with specific instances in the table. In addition,
Alice may know complete information about some people in the table other than Bob (for example, Alice’s data may be in
the table).

Third, the adversary could have partial knowledge about the distribution of sensitive and nonsensitive attributes in the
population. We call this “demographic background knowledge.” For example, the adversary may know
P (t[Conditior] = “cancer’| {[Age] > 40) and may use it to make additional inferences about records in the table.

Now armed with the right notation, let us start looking into principles and definitions of privacy that leak little information.

3. Bayes-Optimal Privacy

In this section we analyze an ideal notion of privacy. We calldyes-Optimal Privacgince it involves modeling back-
ground knowledge as a probability distribution over the attributes and uses Bayesian inference techniques to reason about



privacy. We introduce tools for reasoning about privacy (Section 3.1), use them to discuss theoretical principles of privacy
(Section 3.2), and then point out the difficulties that need to be overcome to arrive at a practical definition of privacy (Section
3.3).

3.1. Changes in Belief Due to Data Publishing

For simplicity of discussion, we combine all the nonsensitive attributes into a single, multi-dimensional quasi-identifier
attribute@ whose values are generalized to create the anonymizedfabiemm the base tablg". Since Bayes-optimal
privacy is only used to motivate a practical definition, we make the following two simplifying assumptions: first, we assume
thatT is a simple random sample from some larger populafida sample of size drawn without replacement is called a
simple random sampléevery sample of size is equally likely); second, we assume that there is a single sensitive attribute.
We would like to emphasize that both these assumptions will be dropped in Section 4 when we introduce a practical definition
of privacy.

Recall that in our attack model, the adversary Alice has partial knowledge of the distribution of the sensitive and non-
sensitive attributes. Let us assume a worst case scenario where Alice knows the complete joint disfrdfufiemd.s (i.e.,
she knows their frequency in the populati@Qh Consider any individual Bob that Alice knows is in the table. She knows
that Bob corresponds to a recard T that has been generalized to a rectirdh the published tabl&*. She also knows
the value of Bob'’s non-sensitive attributes (i.e., she knowstfiit= ¢). Alice’s goal is to use her background knowledge
to discover Bob’s sensitive information — the valuet#f]. We gauge her success using two quantities: Alipeisr belief,
and hemosterior belief

Alice’s prior belief, o, ), that Bob's sensitive attribute isgiven that his nonsensitive attributegigs just her background
knowledge:

After Alice observes the tablgé™, her belief about Bob's sensitive attribute changes. This new bélief, ), is her
posterior belief

Blg.ory = Py (8] = 8| HQ = g A I € T* t 5 1)

Given f andT™, we can derive a formula fo#, , 7-~) which will help us formulate our new privacy definition in Section 4.
The main idea behind the derivation is to find a set of equally likely disjoint random worlds (like in [11]) such that a
conditional probabilityP(A|B) is the number of worlds satisfying the conditighA B divided by the number of worlds
satisfying the conditiorB.

Theorem 3.1. Let T* be a published table which is obtained by performing generalizations on a #gblet X be an
individual with X [Q] = ¢ who appears in the tabl& (and alsoT™); let ¢* be the generalized value ofin T*; let s be a
possible value of the sensitive attribute; 1gf. ., be the number of tuples € T wheret*[Q] = ¢* andt*[S] = s’; and

let f(s' | ¢*) be the conditional probability of the sensitive attribute beihgonditioned on the fact that the nonsensitive
attribute @ is somey’ which can be generalized tg. Then the observed belief th&t]S] = s is given by:

f(slq)
_ "M(a*,8) F(slq") 1
5(q,s,T*) - f(s']q ( )
> sres Mat,s') F(s'1q%)

Proof. For ease of reference, we review the notation used in this proof in Figure 3.

To help us model the adversary’s uncertainty about the value of Bob’s sensitive attribute after seeing the anonymized table
T, we will construct a set aandom worldssuch thafl™ could have come from any one of these random worlds with equal
probability. In all of these worlds, Bob (oX, as we will call him in this proof) appears ifi*. In any two different random
worlds, either some individual in the population has a different value for the sensitive attribute, or a different set of individuals
appear inl™*. Since the random worlds are equally likely and mutually exclusive, the required conditional probability is the
fraction of the total number of worlds in whick[S] = s (as in [11]).

Constructing the set of random worlds

Formally, a random world is a pair), Z,,) wherey : Q — S is an assignment of sensitive values for each individual
w € QandZ, is a simple random sample afindividuals from$2. We are interested in only those assignmentsghich are
consistent with the adversary’s background knowledge. In particular, the adversary knows th&sire difie distribution of



Notation | Description

T Un-anonymized table

T* The anonymized table

Q Domain of the quasi-identifier attribute

Q* Generalized domain of the quasi-identifier attribute
S Domain of the sensitive attribute

Q Population of individuals

X Bob, the individual in the populatiaft with X[Q] = ¢ and who is known to be iff’
N, Number of individualaw in the populatior2 such thatw[Q] = ¢
Number of individualaw in the populatiorf2 such thatw[Q] = ¢ andw][S] = s
(¢+,s) | Number of individualsw in the populatior2 such thatw[S] = s andw[Q*] = ¢*
n Number of tuples in the anonymized talilé
n.s) | Number of tupleg* in the anonymized tablé* such that*[S] = s andt*[Q*] = ¢*

Figure 3. Notation used in the Proof of Theorem 3.1

sensitive and nonsensitive attributes; in other words, for egr), the adversary knowd', ;) — the number of individuals
with nonsensitive attribute who have sensitive value Therefore for everyyq, s), 1 should assign the valueto exactly
N4,y out of the N, individuals who have the nonsensitive valpeNote that in any two distinct assignments, ¢, there
is some individualv such that); (w) # ¥q(w); i.e.,w is assigned to different values 8f Moreover, given only knowledge
of the distribution of sensitive and nonsensitive attributes, the adversary has no preference for anyafdhsvoking the
principle of indifference, considers eag¢tto be equally likely.

The second component of a random worldis. Z,, is a sizen simple random sample from the populatian By the
definition of a simple random sample, edchis equally likely. Since the samplg, is picked independent of the assignment
1, each random worléy, Z,,) is equally likely.

Each(v, Z,,) describes a tabl&(,, ;) containingn tuples withQ and S as attributes. We are interested in only those
random worlds where appears irl,, ;) and wherel,,  y —* T*. We can rephrase this condition as follows. We say
that a random worldvy, Z,,) is compatiblewith the published tabl&™* containingX, written as(«, Z,,) - (T*, X), if the
following two conditions hold:

e X € Z,,whereX is the individual withX [Q] = ¢ who is known to be in the table; and
o for every(q*, s) pair there arey,. ) individualsw in Z,, such thatv[Q] is generalized tg* and such that)(w) = s.

The set of compatible random worlds completely characterizes the set of worlds which give rise to the anonymized table
T* containingX. It is clear that these worlds are equally likely. Also any two compatible random worlds are mutually
exclusive because either some individual in the population is assigned a different vaduer fiivre sample of individual&,

is different.

Calculating the conditional probability £, s 7+):

To calculate the conditional probability,, s r~), we need to find the fraction of the total number of compatible random
worlds in whichX is assigned the sensitive valseLet 75 = {(¢, Z,,) F (T*, X)} be the set of random worlds which are
compatible with™ containingX. Let7% , = {(, Zn) F (T*, X)]| ¢(X) = s} be the set of random worlds compatible

with T* where X is assigned the sensitive valsieThen,

T
6 8, T*) = ,:
(g ) 1T

Note that7 . and7/ , , are disjoint sets of random worlds — in all the worldsTir, ), X is assigned the sensitive

values; and in all the world inZ* X is assigned the sensitive valsg Thus

(X,s2)’
T =D [T )]

s'es

Sl)’

We now proceed to calculate the cardinalityqu(}s) for eachs. First we will compute the number of assignmentsuch
thaty(X) = s and then for eackh we will compute the number of sampl&s such thai(y, Z,,) F (T*, X). The number of



assignments compatible with the background knowledge such thgX') = s can be calculated as follow is assigned
the sensitive value. SinceX[Q] = ¢, out of the remainingV, — 1 individuals having the nonsensitive valgeN(, .y — 1
of them are assigned For every other sensitive valug¢, N, .y out of the N, — 1 individuals are assigned. For every
q' # q and everys’, someN . .., out of the N, individuals having the nonsensitive valyeare assigned’. The number of
these assignments is

(N - 1) Nq/!
(N(‘Lé) - 1) H N(q, /) H N(q’,s’)!
s’eS
N(q7s) Nq/'

= : 2
Ng q/l;[@ S'I;IS Ng.s»!
For each mapping such that)(X) = s, we count the number dof,,’s such thaty, Z,,) - (T*, X) as follows. Letg* be
the generalized value of = X[Q]. X's record will appear as;, = (¢*, s) in the tableT*. Apart fromt%,, T* contains
n(e+,s) — 1 other tuples of the fornig*, s). Hence, apart frond’, Z,, should contaim,,. ;) — 1 other individualsv with
Y(w) = s andw[Q] = ¢’ whereq’ generalizes t@*. For all other(¢*’, s") such thay*' # ¢* or s’ # s, Z,, should contain
n(g+ sy iNdividualsw’ wherey(w’) = s” andg*’ is the generalized value afiQ]. The number ofZ,,’s is given by

<N(q*78) - ].) H (N(q*/,s/)>
n(q*’s) -1 ’I’L(q*/,s/)

(g*,8")€(Q* xS)\{(g*,5)}

_ Ng* s H <N(q*’,s’)) (3)

N(q*as) (¢*',8")EQ* xS n(q*lvsl)

The cardinality of7, (X 5 is therefore the product of Equations 2 and 3 and can be expressed as

T, = Ng.s) No'! "qs <N<q*’7s’))
Nq 7EQ SH N(QI»S/) N(‘I »8) (q*',s")EQ* xS

n(q*/,s/)

N(‘LS) (N(q*/ s’)>
= Ng*,s) X ’
T Nigr.o) N 11 1‘[ N(q o) 11

q EQ q*',s")EQ* xS (q*/ﬁ/)

x &

The expressiod is the same for alt’ € S. Hence, the expression for the observed belief is

8 170 )]
5, T* S =
(@ ) Zs 'es ‘ (X, 9/)|

Ng.s)
T(q*,5) Ngr B

Nig.s")

Zé Esn(q ‘5)N( * 5!y

Using the substitutiong(q, s) = N, /N andf(q*,s) = N4+ /N, we get the required expression.

f(a.8)
"(q*,s) .f(qqms>

f(a,s")
ES’ES N(g*,s") f(qq*,s’)
f(slq)
™Ma*9) 7(sla")
f(s'lq)
>sres Ma.s) f(s’|qq*)

Note that in the special case wh8rand(@ are independent, The expression for the observed belief simplifies to

ﬂ(q,&T*) =




f(slq)
Blasrs = ™(a %) TCsla")
q,s,T* — f(s’
Zs/ES N(g*,s") f(i/”qq*))

f(s)
N(q*,5) F(s)

—

I(s
Dsres Mat.s") 7
n(q*:s)

ZS/GS N(g*,s")
O

Armed with a way of calculating Alice’s belief about Bob’s private data after she hasiSedet us now examine some
principles for building definitions of privacy.

3.2. Privacy Principles

Given the adversary’s background knowledge, a published Tabheight leak private information in two important ways:
positive disclosurandnegative disclosure

Definition 3.1 (Positive disclosure)Publishing the tablg™ that was derived fronT’ results in apositive disclosuréf the
adversary can correctly identify the value of a sensitive attribute with high probability; i.e., gi¥er @, there is a positive
disclosure iff, s 7+) > 1 — ¢ and there exists € T" such that[Q] = ¢ andt[S] = s.

Definition 3.2 (Negative disclosure)Publishing the tablg™ that was derived frorfi’ results in anegative disclosur# the
adversary can correctly eliminate some possible values of the sensitive attribute (with high probability); i.e., giveran
there is a negative disclosurefif, , r+) < € and there exists ac 7' such that[Q] = ¢ butt[S] # s.

The homogeneity attack in Section 1.1 where Alice determined that Bob has cancer is an example of a positive disclosure.
Similarly, in the example from Section 1.1, even without background knowledge Alice can deduce that Umeko does not have
cancer. This is an example of a negative disclosure.

Note that not all positive disclosures are disastrous. If the prior belief wasithat > 1 — 4, the adversary would not
have learned anything new. Similarly, negative disclosures are not always bad: discovering that Bob does not have Ebola
might not be very serious because the prior belief of this event was small. Hence, the ideal definition of privacy can be based
on the following principle:

Principle 1 (Uninformative Principle) The published table should provide the adversary with little additional information
beyond the background knowledge. In other words, there should not be a large difference between the prior and posterior
beliefs.

The uninformative principle can be instantiated in several ways, for example witlpthe; )-privacy breach definition
[41].

Definition 3.3 ((p1, p2)-privacy). Given a tablel™ and two constantp; and p,, we say that dp1, p2)-privacy breach has
occurred when eitheti(, o) < p1 A Bigs,7+) > p2 Or Whena g o) > 1 —p1 A B s < 1— p2. Ifa(p1, p2)-privacy
breach has not occurred, then talif& satisfiesp;, p2)-privacy.

An alternative privacy definition based on the uninformative principle would bound the maximum difference between
Q(q,s) @Nd B, s 7+) Using any of the functions commonly used to measure the difference between probability distributions.
Any privacy definition that is based on the uninformative principle, and instantiated either( by @ )-privacy breach
definition or by bounding the difference betweep, ) and 3, 7+) is a Bayes-optimal privacy definition. The specific
choice of definition depends on the application.

Note that any Bayes-optimal privacy definition captures diversity in addition to background knowledge. To see how it
captures diversity, suppose that all the tuples whose nonsensitive attpilnatee been generalized o have the same value
s for their sensitive attribute. Themn,. ., = 0 for all s # s and hence the value of the observed befigf, 1) becomes 1
in Equation 1. This will be flagged as a breach whenever the prior belief is not close to 1.



3.3. Limitations of the Bayes-Optimal Privacy

For the purposes of our discussion, we are more interested in the properties of Bayes-optimal privacy rather than its exact
instantiation. In particular, Bayes-optimal privacy has several drawbacks that make it hard to use in practice.

Insufficient Knowledge. The data publisher is unlikely to know the full distributighof sensitive and nonsensitive
attributes over the general populati@rfrom whichT is a sample.

The Adversary’'s Knowledge is Unknown. It is also unlikely that the adversary has knowledge of the complete joint
distribution between the non-sensitive and sensitive attributes. However, the data publisher does not know how much the
adversary knows. For example, in the background knowledge attack in Section 1.1, Alice knew that Japanese have a low
incidence of heart disease, but the data publisher did not know that Alice knew this piece of information.

Instance-Level Knowledge.The theoretical definition does not protect against knowledge that cannot be modeled proba-
bilistically. For example, suppose Bob’s son tells Alice that Bob does not have diabetes. The theoretical definition of privacy
will not be able to protect against such adversaries.

Multiple Adversaries. There will likely be multiple adversaries with different levels of knowledge, each of which is
consistent with the full joint distribution. Suppose Bob has a disease that is (a) very likely among people in the age group
[30-50], but (b) is very rare for people of that age group who are doctors. An adversary who only knows the interaction
of age and illness will think that it is very likely for Bob to have that disease. However, an adversary who also knows that
Bob is a doctor is more likely to think that Bob does not have that disease. Thus, although additional knowledge can yield
better inferences on average, there are specific instances where it does not. Thus the data publisher must take into account a
possible levels of background knowledge.

In the next section, we present a privacy definition that eliminates these drawbacks.

4. (-Diversity: A Practical Privacy Definition

In this section we discuss how to overcome the difficulties outlined at the end of the previous section. We derive the
¢-diversity principle (Section 4.1), show how to instantiate it with specific definitions of privacy (Section 4.2), outline how
to handle multiple sensitive attributes (Section 4.3), and discuss/faiversity addresses the issues raised in the previous
section (Section 4.4).

4.1. Ther-Diversity Principle

In this subsection we will derive the principle éfdiversity in two ways. First, we will derive it in an ideal theoretical
setting where it can be shown that the adversary’s background knowledge will not lead to a privacy breach. Then we will re-
derive the/-diversity principle from a more practical starting point and show that even under less-than-ideal circumstances,
¢-diversity can still defend against background knowledge that is unknown to the data publisher. Although the arguments in
this subsection can be made precise, we will keep our discussion at an intuitive level for the sake of clarity.

Let us re-examine the expression for computing the adversary’s observed belief (Theorem 3.1):

f(slq)
q*.5) Tlslq"

)
G'a) (4)

ﬁ(q,sﬁT*)
Dsres Mats) F(s'Ta™)

For the moment, let us consider an ideal setting where if two objects have “similar” nonsensitive attributes then their
sensitive attributes have similar probabilistic behavior. More formally, given a similarity medSurgthenve > 0, 36
such that ifd(q1, ¢2) < ¢ thenmax, |f(s|g1) — f(s|g2)| < e. This similarity assumption is implicit in ak-Nearest Neighbor
classifiers.

Now let us define a*-block to be the set of tuples ifi™* whose nonsensitive attribute values generalize*tolf all
tuples in ag*-block are “similar” based on their nonsensitive attributes, theng) ~ f(s|g*) for thoseq that appear in the
q*-block, and because of (approximate) cancellations, Equation 4 could be approximated arbitrarily well by Equation 5:

* n(q*vs)
L T = = 5
(¢,5,T%) S s ) (5)

Thus given enough data and a good partitioning, background knowledge cancels out and has no effect on the inferences
that can be made from the table! The only inferences that can be made are those that depend solely, on thethe



frequencies of eackl € S for eachg*-block. Therefore to prevent privacy breaches, we need to ensure forgvbigck

that the? most frequent values & have roughly the same frequencies. This guaranteettad™) < 1/(¢ + ¢) for some
smalle > 0 and for alls € S and ensures that Alice will be uncertain about Bob’s true medical condition. This is the essence
of /-diversity.

All of those arguments relied on the following three assumptions: tuples with similar non-sensitive attributes values have
similar sensitive attributes values, there is a good partitioning of the data, and there is a large amount of data so that many
“similar” tuples fall into each partition. Let us re-examine privacy breaches when these assumptions do not hold.

Recall that Theorem 3.1 allows us to calculate the observed belief of the adversary. Consider the case of positive
disclosures; i.e., Alice wants to determine that Bob Ha% = s with very high probability. From Theorem 3.1, this can
happen only when:

f(s']a) f(slq)
Mgy S el
The condition in Equation (6) could occur due to a combination of two factors: (i) a lack of diversity in the sensitive attributes

in the ¢*-block, and/or (ii) strong background knowledge. Let us discuss these in turn.
Lack of Diversity. Lack of diversity in the sensitive attribute manifests itself as follows:

Js, Vs’ # s,

(6)

Vs # S, N(grs') < N(g*,s) (7)

In this case, almost all tuples have the same valfer the sensitive attribut&, and thusg, , r-) ~ 1. Note that this
condition can be easily checked since it only involves counting the valudsirothe published tabl&™*. We can ensure
diversity by requiring thaall the possible values € domain(S) occur in theg*-block with roughly equal proportions.
This, however, is likely to cause significant loss of informationddfnain(S) is large then the*-blocks will necessarily
be large and so the data will be partitioned into a small numbet-tiocks. Another way to ensure diversity and to guard
against Equation 7 is to require thag’ablock has at leagt > 2 different sensitive values such that theost frequent values
(in the g*-block) have roughly the same frequency. We say that su¢htdock iswell-represented by sensitive values

Strong Background Knowledge. The other factor that could lead to a positive disclosure (Equation 6) is strong back-
ground knowledge. Even thoughga-block may have “well-represented” sensitive values, Alice may still be able to use
her background knowledge to eliminate sensitive values when the following is true:

i)
¥ e

This equation states that Bob with quasi-identifigd)] = ¢ is much less likely to have sensitive valdethan any other
individual in theg*-block. For example, Alice may know that Bob never travels, and thus he is extremely unlikely to have
Ebola. Itis not possible for a data publisher to reveal some information about the data while still guarding against attacks
employing arbitrary amounts of background knowledge (since the revealed information may be precisely what the adversary
needs to recreate the entire table). However, the data publisher can still guard against many attacks even without having
access to Alice’s background knowledge. In our model, Alice might know the distribfitins) over the sensitive and non-
sensitive attributes, in addition to the conditional distributjdn|q). The most damaging type of such information has the

form f(s|q) =~ 0, e.g., “men do not have breast cancer”, or the form of Equation 8, e.g., “Japanese have a very low incidence
of heart disease”. Note thatpriori information of the formf(s|q) = 1 is not as harmful since this positive disclosure is
independent of the published taldl&. Alice can also eliminate sensitive values with instance-level knowledge such as “Bob
does not have diabetes”.

In spite of such background knowledge, if there &fwell represented” sensitive values inj&block, then Alice needs
¢ — 1 damaging pieces of background knowledge to elimifiatel possible sensitive values and infer a positive disclosure!
Thus, by setting the parametérthe data publisher can determine how much protection is provided against background
knowledge — even if this background knowledge is unknown to the publisher.

Note that Alice may know pieces of instance-level background knowledge of the form “individuatloes not have
diseas&’™” (for i = 1...¢), where eachX; is a different individual. However, we have been talking only about eliminating
sensitive values for a single individual. It has been shown [55] that for a specific individual Bob, the worst case disclosure
occurs whenX; = Bob in all the/ pieces of information Alice possesses.

Moreover, when inferring information about Bob, knowing the exact sensitive values of some other individuals in the
table is less damaging than statements of the form “Bob does not have cancer”. This is because knowing the sensitive value

~0 (8)
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Non-Sensitive Sensitive
Zip Code Age | Nationality Condition
1 1305* | <40 * Heart Disease
4 1305* | <40 * Viral Infection
9 1305* | <40 * Cancer
10 || 1305* | <40 * Cancer
5 1485* | > 40 * Cancer
6 1485* | > 40 * Heart Disease
7 1485* | > 40 * Viral Infection
8 1485* | > 40 * Viral Infection
2 1306* | <40 * Heart Disease
3 1306* | <40 * Viral Infection
11 || 1306* | <40 * Cancer
12 || 1306* | <40 * Cancer

Figure 4. 3-Diverselnpatient Microdata

for some other individual only eliminates from consideration one tuple that may have corresponded to Bob while the latter
statement eliminatest leastone tuple.
Putting these two arguments together, we arrive at the following principle.

Principle 2 (¢-Diversity Principle) A ¢*-block is/-diverse if contains at leagt“well-represented” values for the sensitive
attribute S. A table is/-diverse if every*-block is/-diverse.

Returning to our example, consider the inpatient records shown in Figure 1. We present a 3-diverse version of the table
in Figure 4. Comparing it with the 4-anonymous table in Figure 2 we see that the attacks against the 4-anonymous table are
prevented by the 3-diverse table. For example, Alice cannot infer from the 3-diverse table that Bob (a 31 year old American
from zip code 13053) has cancer. Even though Umeko (a 21 year old Japanese from zip code 13068) is extremely unlikely
to have heart disease, Alice is still unsure whether Umeko has a viral infection or cancer.

The ¢-diversity principle advocates ensurifigwell represented” values for the sensitive attribute in evgrplock, but
does not clearly state what “well represented” means. Note that we called it a “principle” instead of a definition — we will
use it to give two concrete instantiations of thdiversity principle and discuss their relative trade-offs.

4.2.¢-Diversity: Instantiations

In this section we will give two instantiations of tifediversity principle: entropy-diversity and recursivé-diversity.
After presenting the basic definitions, we’'ll extend them to cases where some positive disclosure is allowed.

The first instantiation of thé-diversity principle, and the simplest one to describe, uses the information-theoretic notion
of entropy:

Definition 4.1 (Entropy¢-Diversity [60]). A table isEntropy¢-Diverseif for everyq*-block

- Zp(q*,s) log(p(q*,s’)) > log(g)
sES
wherep, o) = % is the fraction of tuples in the*-block with sensitive attribute value equaldo
s'es e

As a consequence of this condition, everyblock has at least distinct values for the sensitive attribute. Using this
definition, Figure 4 is actuallg.8-diverse.

Entropy/-diversity was first proposed by Ohrn et al. [60] as a way of defending against the homogeneity problem (without
considering the role of background knowledge). Note that entfagiyersity captures the notion of well-represented groups
due to the fact that entropy increases as frequencies become more uniform. We can also capture the role of background
knowledge more explicitly with an alternate definition.
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Letsi, ..., s, be the possible values of the sensitive attribtii@ a ¢*-block. Assume that we sort the counmtg ),

.-y N(g*,s,,) IN descending order and name the elements of the resulting sequence, r,,. One way to think about
¢-diversity is the following: the adversary needs to eliminate at |éastl possible values of' in order to infer a positive
disclosure. This means that, for example, in a 2-diverse table, none of the sensitive values should appear too frequently. We
say that ay*-block is (c, 2)-diverse ifr; < ¢(ra + -+ - + r,,,) for some user-specified constantFor ¢ > 2, we say that a
q*-block satisfiegecursive(c, ¢)-diversityif we can eliminate one possible sensitive value in¢hélock and still have a
(¢, £—1)-diverse block. This recursive definition can be succinctly stated as follows:

Definition 4.2 (Recursive(c, £)-Diversity). In a giveng*-block, letr; denote the number of times tié most frequent
sensitive value appears in that-block. Given a constant, the ¢*-block satisfiesecursive(c, ¢)-diversityif r1 < ¢(ry +
rer1 + - + ). AtableT™ satisfies recursivée, £)-diversity if everyy*-block satisfies recursivediversity. We say that
1-diversity is always satisfied.

Now, both entropy and recursivediversity may be too restrictive. To see why, let us first look at entriogiversity.

Since —xz log(x) is a concave function, it can be shown that if we splig*ablock into two sub-blocks;; andg; then
entropy(g*) > min(entropy(g}), entropy(g;)). This implies that in order for entrogfydiversity to be possible, the entropy

of the entire table must be at ledsg(¢). This might not be the case, especially if one value of the sensitive attribute is very
common — for example, if 90% of the patients have “heart problems” as the value for the “Medical Condition” attribute.

This is also a problem with recursivediversity. It is easy to see that if 90% of the patients have “heart problems” as
the value for the “Medical Condition” attribute then there will be at least gitblock where “heart problems” will have
frequency of at least 90%. Therefore if we choese 9 in Definition 4.2, no generalization of the base table will satisfy
recursive(c, £)-diversity.

One the other hand, some positive disclosures may be acceptable. For example, a clinic might be allowed to disclose that
a patient has a “heart problem” because it is well known that most patients who visit the clinic have heart problems. It may
also be allowed to disclose that “Medical Condition” = “Healthy” if this is not considered an invasion of privacy.

At this point one may be tempted to remove tuples with nonsensitive “Medical Condition” values, publish them unaltered,
and then create afidiverse version of the remaining dataset. In some cases this is acceptable. However, there are three
important issues why the above suggestion may not be acceptable: the anonymity of the unaltered tuples, the privacy of the
remaining tuples, and the utility of the resulting published data.

First, publishing unaltered tuples gives an adversary the ability to link them to external data and identify the corresponding
individuals. This may be considered a privacy breach [20], since it is reasonable for individuals to object to being identified
as respondents in a survey. To avoid this one could publistamonymous version of tuples with nonsensitive “Medical
Condition” values and &diverse version of the rest of the table.

Second, separating individuals with nonsensitive medical conditions from the rest can impact the individsasiiire
medical conditions. As an extreme case, suppose “Medical Condition” can only take two values: “Healthy” and “Sick”.
There is no way to achievdiversity on the table of patients that are sick; if Alice knows Bob is in the table and Bob is not
listed as a healthy patient, he must then be sick. More generally, separating records with sensitive values from records with
nonsensitive values reduces the possible choices for the security parGmeter

A third issue with partitioning the data into two tables is related to the utility of the data for a researcher. Since each of
the tables is smaller than the whole dataset, to satisiponymity and/-diversity the tables might have to be generalized
more than if a single table had been anonymized. For instance, consider a table reporting the “Gender” and “Medical
Condition” of 2,000 individuals, where the attribute “Medical Condition” can take three values: “Healthy”, “Cancer”, and
“Hepatitis”. In this table there are 1,000 males and 1,000 females. 700 of the 1,000 males are “Healthy” and the other 300
have “Hepatitis”. 700 of the 1,000 females are “Healthy” while the other 300 have “Cancer”. If the disclosure of “Medical
Condition” = “Healthy” is not considered an invasion of privacy, then this table satifigersity (and thus requires no
further generalizations). In contrast, if we were to publish the “Healthy” patients separately, we would need to suppress the
gender information of the unhealthy individuals in order to achiedéversity on the table containing the unhealthy patients.

Additionally, if the data is separated then the two resulting tables are likely to have different schemas. For example, one
table may be generalized so that “Age” appears as an interval of length 5 (i.e. [30-34]) and only the first 4 digits of “Zip
Code” are given, while the second table may give the full “Zip Code” but may generalize “Age” to intervals of length 10.
Learning from such data is not as straightforward as learning from a single table.

Thus an alternate approach is needed to handle the case when some of the values in the domain of the sensitive attribute
need not be kept private. To capture this notion that some positive disclosure is accepta@bhe tbe set of those sensitive
values for which positive disclosure is allowed. We dalh don't-careset. Note that we are not worried about those values
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being too frequent. Let, be the most frequent sensitive value in tHeblock that isnotin Y and letr, be the associated
frequency. Then the*-block satisfied-diversity if we can eliminate thé — 2 most frequent values & not includingr,

without makings, too frequent in the resulting set. This is the same as saying that after we remove the sensitive values with
countsry, ..., r,—1, then the resultig¢ — y + 1)-diverse. This brings us to the following definition.

Definition 4.3. (Positive Disclosure-Recursivéc, £)-Diversity). LetY C S be a don’t-care set. In a giveyt-block, let the
most frequent sensitive value notinbe they®" most frequent sensitive value. ketdenote the frequency of thig most
frequent sensitive value in thly-block. Such a*-block satisfiepd-recursivgc, £)-diversityif one of the following hold:

m
e y</{—1landr,<c) rj

j=L

y—1 m
ey>(—1landr,<c ) rj+c > 1

j=f—1 j=y+1

We denote the summations on the right hand side of the both conditieng pys,, ).

Now, note that ifr, = 0 then theg*-block only has sensitive values that can be disclosed and so both conditions in
Definition 4.3 are trivially satisfied. Second, note that if 1 then the second condition clearly reduces to just the condition
y > { — 1 because, < r,_;. The second condition states that even thougtf thed. most frequent values can be disclosed,
we still do not want, to be too frequent if — 2 of them have been eliminated (i.e., we want the result to be 2-diverse).

To see this definition in action, suppose there are two values for “Medical Conditiealthyandnot healthy If healthy
is a don't-care value, thefe, 2)-diversity states that the number of sick patients iri-dolock is less tham times the number
of healthy patients or, equivalently, at most; patients in ag*-block are sick. Thus it = 0.03 then at mos8% of the
patients in any;*-block are not healthy, and if= 1 then at most half the patients in ag{+block are not healthy.

Entropy/-diversity can also be extended to handle don't-care sets. The description of efittivpysity with don't-care
sets is a bit more involved, so before we present it, we shall briefly touch upon the subject of negative disclosure.

Until now we have treated negative disclosure as relatively unimportant compared to positive disclosure. However, nega-
tive disclosure may also be importantJif is the set of values for the sensitive attribute for which negative disclosure is not
allowed then, given a user-specified constant. 100, we require that eache W appear in at leagh-percent of the tuples
in everyg*-block, resulting in the following definition. This is incorporated irtdiversity definitions in a straightforward
way:

Definition 4.4. (Negative/Positive Disclosure-Recursivé, cq, £)-Diversity). Let W be the set of sensitive values for
which negative disclosure is not allowed. A table satisfig-recursivec, , co, £)-diversityif it satisfies pd-recursivecy, ¢)-
diversity and if every € W occurs in at least, percent of the tuples in evegy-block.

We now conclude this subsection with a definition of entrégjiversity that uses don't-care sets. The extension of
entropy¢-diversity is more complicated than for recursiésgiversity, but the motivation is similar. Lef be a sensitive
attribute. Suppose we havega-block ¢4 where the values of aresy, so, ..., s, with corresponding counts,, ..., p,

(note that unlike before, we don’t require the counts to be sortedpthasshorthand for,, ,,)). Furthermore, suppose
belongs to the don’t-care set so that we can safely disclose the vatuerloén it equals;; . If in this hypotheticaly*-block,
90% of the tuples have sensitive valsig then this block has a low entropy. Now considef*ablock g with sensitive
valuessy, s, . .., s, With countsp, pa, ps, . . ., b, (Wherep) > p;). The blockgp is just like g4 except that there are more
tuples with the don’t-care valug.

Intuitively, sinces; is a don't-care valuegp cannot pose more of a disclosure risk that Thus if we were free to
adjust the value,, we should expect that disclosure risk does not decrease when we degreasbdisclosure risk does
not increase when we incregsge Treatingp, as a variable, let'®ower it from its initial setting ing 4 to the unique valug*
that would maximize the entropy of the-block. The original disclosure risk @fs cannot be any higher than the disclosure
risk at the optimum valug*. We will compute the entropy at this optimum valpe and set the disclosure risk gf; to
be this value. In the more general case (with more than one don't-care value), we determine what is the maximum entropy
we would get if we lowered the counts corresponding to don't-care values from their initial values. We call this maximum
entropy value thadjusted entropyand it will serve as the disclosure risk of the-block: if the adjusted entropy is larger
thanlog ¢ then the block is considerdediverse.

Before we formalize this, we should note that this type of argument will also yield our original definition for recursive
¢-diversity in the presence of don't-care sets. One can easily check thatisfthe count of the most frequent sensitive
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value (not in the don't care set) anyq, .. ., ¢, are the counts of don't-care values that appear more frequently, the recursive
¢-diversity procedure for don't-care sets lowers the valies. . , ¢,. to set them equal tg”, and then checks if the resulting
block satisfies ordinary recursivediversity.

To formalize the notion of adjusted entropy, we need the following notation. For nonnegative ¥alues x,, such that
> x; = 1, denote the entropy as:

H(zy,...,2n) = —inlogxi
i=1

with the understanding thétlog 0 = 0. For arbitrary nonnegative numbers, . . . , z,,, denote thenormalized entropgs:

~ iz Z;
H(zy,. ) ==Y ———log | = 9)
i=1 ) x; 2
j=1 j=1

First, we define adjusted entropy, and then show how to compute it.

Definition 4.5 (Adjusted Entropy) Let S be a sensitive attribute with don't-care valugs, ..., y, and sensitive values
s1,...,5m. Letga be ag*-block where the don't-care valugs have countsy; and the sensitive values have countgp;.
Theadjusted entropgf g4 is defined as:

sup H(x1, .y Try D1y Pm) (10)
0<z;<¢;; i=1,...,r

The maximizing values of the; in Definition 4.5 are closely related to the function

k
> ¢iloge;
M(eyy ... cx) = =1

k
> Ci
=1

which we call thdog-entropic meawnf ¢, . . ., ¢;, (because it is the weighted average of their logarithingle show that there
exists a unique vectde, ¢, . . ., ¢,) that maximizes Equation 10 and we can characterize it with the following theorem:

Theorem 4.1. There is a unique vectdks, cs, . . ., ¢,) such that the assignmeint = ¢; maximizes Equation 10. Further-
more, letd = max({¢; | ¢; = ¢;} U{0}). If ¢; < O thenc; = ¢;. If ¢; > 0 thenlog ¢; is the log-entropic mean of the set
{p1,.--,pm} U{d: | ¢: = ¢;}, and@ is the minimum value for which this condition can be satisfied.

The proof of this theorem is rather technical and can be found in Appendix A. This theorem tells us that some coordinates
will achieve their upper boung; (i.e., they will not be lowered from their initial values). We call thesefthedcoordinates.

The rest of the coordinates, called ttieangeablecoordinates, will be adjusted down until their logarithms equal the log-
entropic mean of the fixed coordinates and the counts of the sensitive values (in particular, it means ibahé value of

an unchangeable coordinate, theg¢; must be larger than that log-entropic mean). The theorem also tells us that there is a
cutoff valued such that all coordinates with with upper bound will be changeable and the rest will be fixed. Finally, the
theorem also tells us that we should choose the minimum cutoff value for which this is possible.

The computation of adjusted entropy is shown in Algorithm 1. We illustrate the algorithm with a sample run-through.
Suppose there are four don’t-care valugsy-, y3, andy, with counts 11, 10, 3, and 2, respectively; and suppose there
are two sensitive values and sy with counts3 and4, respectively. Initially we compute the log-entropic mearspfnd
s2, which is 1.263. Nowy, has the smallest count among don’t-care valueslagg, = 0.693 which is less than the
log-entropic mean. We conclude that is a fixed value, and we compute the log-entropic meafwyefs, s2}, which is
1.136. Now,ys; has the next smallest count among don'’t-care values. The Walug is 1.099, which is less than the new
log-entropic mean. Thugs is also fixed and we compute the log-entropic meafwaf ys, s1, s2} which is 1.127. The next
value we consider ig.. Now log y» = 2.30 which is greater than the log-entropic mean. Thugndy; are the changeable

3Note that the log-entropic mean is the logarithm of a weighted geometric mean @f, tivaich itself belongs to a general class of means called the
entropic mean§l7].
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Algorithm 1 : AdjustedEntropygs, - .., ¢r, D1, - - Pm)
Require: ¢; > 0,p; > 0

1: foralli=1,...,rdo

2 m— P

3: end for

4: fixed — {p1,...,pm}

5: changeable «— {x1,...,2,}

6: m — M (fixed)

7: while log(min(changeable)) < m do
8: 1= argminj:mj €changeable Lj

9: fixed = fixed U{z;}

.
o

changeable = changeable \{z; }
m «— M (fixed)

: end while

: for all z; € changeable do

x; — e

: end for

creturn H(xy,...,ZeP1s-- . Pm)

R S o
o uhrwN PR

values and the cutoff described by Theorem 4.1 must be 3 (the valug9f Thus the adjusted entropy should be the
normalized entropy ofe!-127 1127 43 44, 51, 82}

Clearly the definition of adjusted entropy is consistent with entidiversity when there are no don’t-care values. Thus
to verify correctness of the algorithm, we just need to prove Theorem 4.1. The interested reader may find the proof in
Appendix A.

4.3. Multiple Sensitive Attributes

Multiple sensitive attributes present some additional challenges. Suppaisdl are two sensitive attributes, and con-
sider theg*-block with the following tuples{(¢*, s1,v1), (¢*, s1,v2), (¢*, s2,v3), (¢*, s3,v3)}. This¢*-block is 3-diverse
(actually recursive (2,3)-diverse) with respectStgignoring V) and 3-diverse with respect 16 (ignoring S). However, if
we know that Bob is in this block and his value f®iis nots; then his value for attribut&” cannot bes; or vy, and therefore
must bevs. One piece of information destroyed his privacy. Thus we seeathétblock that is/-diverse in each sensitive
attribute separately may still violate the principle &fliversity:

Intuitively, the problem occurred because within tffeblock, V' was not well-represented for each valueSofHad we
treatedS as part of the quasi-identifier when checking for diversityirfand vice versa), we would have ensured that the
¢-diversity principle held for the entire table. Formally,

Definition 4.6 (Multi-Attribute ¢-Diversity). LetT" be a table with nonsensitive attributés, ..., @Q,,, and sensitive at-
tributes Sy, ..., S,.,. We say thaf is ¢-diverse if for alli = 1...maq, the tableT is ¢-diverse wherp; is treated as the sole
sensitive attribute andlQ1, ..., @, S1,-- . Si—1, Si+1,- - -, Sm, } IS treated as the quasi-identifier.

As the number of sensitive attributes grows, it is not hard to see that we will necessarily need larger ard-lalaeks
to ensure diversity. This problem may be ameliorated through tuple suppression, generalization on the sensitive attributes,
and publishing marginals (rather than the full table) containing different sensitive attributes. This is a subject for future work.

4 .4. Discussion

Recall that we started our journey into Section 4 motivated by the weaknesses of Bayes-optimal privacy. Let us now revisit
these issues one by one.

o /-Diversity no longer requires knowledge of the full distribution of the sensitive and nonsensitive attributes.

e /-Diversity does not even require the data publisher to have as much information as the adversary. The garameter
protects against more knowledgeable adversaries; the larger the vdlub®more information is needed to rule out
possible values of the sensitive attribute.
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¢ Instance-level knowledge (Bob’s son tells Alice that Bob does not have diabetes) is automatically covered. It is treated
as just another way of ruling out possible values of the sensitive attribute.

o Different adversaries can have different background knowledge leading to different inferéRgestsity simultane-
ously protects against all of them without the need for checking which inferences can be made with which levels of
background knowledge.

Overall, we believe that-diversity is practical, easy to understand, and addresses the shortcomiigaafymity with
respect to the background knowledge and homogeneity attacks. Let us now see whether we can give efficient algorithms to
implement/-diversity. We will see that, unlike Bayes-optimal privaéydiversity possesses a property calladnotonicity
We define this concept in Section 5, and we show how this property can be used to efficiently gedextse tables.

5. Implementing Privacy-Preserving Data Publishing

In this section we discuss how to build algorithms for privacy-preserving data publishing using domain generalization.
Let us first review the search space for privacy-preserving data publishing using domain generalization [12, 51]. For ease of
explanation, we will combine all the nonsensitive attributes into a single multi-dimensional attpibbta attributer), there
is a user-defined generalization lattice. Formally, we define a generalization lattice to be a set of domains partially ordered
by a generalization relatior (as described in Section 2). The bottom element of this lattidkeiisain(Q) and the top
element is the domain where each dimensioa$ generalized to a single value. Given a base tdhleach domairDy,
in the lattice defines an anonymized taBle which is constructed by replacing each tuple T by the tuplet*, such that
the valuet*[Q] € Dy, is the generalization of the valdf)] € domain(Q). An algorithm for data publishing should find a
point on the lattice such that the corresponding generalized Tahbeeserves privacy and retains as much utility as possible.

In the literature, the utility of a generalized table is usually defined as a distance metric on the lattice — the closer the lattice
point is to the bottom, the larger the utility of the corresponding tdbsleHence, finding a a suitable anonymized tabfeis
essentially a lattice search problem. There has been work on search strategiaadorymous tables that explore the lattice
top-down [12] or bottom-up [51].

In general, searching the entire lattice is computationally intractable. However, lattice searches can be made efficient if
there is a stopping condition of the form: I preserves privacy then every generalizatiorf6falso preserves privacy
[51, 63]. This is called thenonotonicity propertyand it has been used extensively in frequent itemset mining algorithms
[8]. k-Anonymity satisfies the monotonicity property, and it is this property which guarantees the correctness of all efficient
algorithms [12, 51]. Thus, if we show thétdiversity also possesses the monotonicity property, then we can re-use these
efficient lattice search algorithms to find thaliverse table with optimal utility. The same cannot be said of Bayes-optimal
privacy; the following theorem gives a computational reason why Bayes-optimal privacy does not lend itself to efficient
algorithmic implementations.

Theorem 5.1. Bayes-optimal privacy does not satisfy the monotonicity property.

Proof. We shall prove this theorem for the — p- version of the Bayes-optimal privacy definition (see Definition 3.3 and
[41]); the proof can easily be extended to other instantiations. Wa set0.31 andp, = 0.58 and we will create an example
where the prior belief, ) < p1 but the observed belief i$, ; 7+) > p2.

First consider Figure 5 which shows a base tableith two values forQ) and two values fof.

q1 g2
S1 f(ql, 81) =.15 f(QQ, 81) = .25
N(gy.s1) = 1 N(gs,s1) = 39

S9 f(ql, 82) =.35 f(QQ, 82) =.25
N qr,s0) = 1 Ngz,s0) = 15

Figure 5. Table T

Based on this information, we can compute the prior and observed beliefs fofitable

® Xqy,s1) = '3’6(‘117317T) =.5
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® Q(gy,s5) = '77ﬁ(tI1,82’T) =5
® X(gy,s1) = '5’ﬁ(112,817T) =.7
® Xgy,s9) = ‘5’6(1127327T) =.3

Clearly, publishingl” does not breach privacy. However, suppose we generdlizgdgeneralizing botly; andgs to ¢*, as
in Figure 6:

q*
s1 | flgr,s1) =4
n(q*751) = 36
s2 | flg*,s2)=.6
n(q*’sz) =16

Figure 6. Table T*

If Bob has nonsensitive valug, then as beforey,, ,,) = .3 < p1. However,

362 L 135
36-22 +16-% ~ 13.5+9.34

ﬂ(QhShT*) = > .59 > po

Thus while publishindl” would not cause a privacy breach, publishifigwould. This counterexample proves that Bayes-
optimal privacy is hot monotonic. O

This seemingly counterintuitive result has a simple explanation. Note that there are many more withe$Q] = g¢-
than there are with[Q] = ¢;. This causes the probabilistic behavior of #teblock in T* to be heavily influenced by
the tuples with/[QQ] = s, and so it “pulls” the value o, <, 7+) = B(g,,s,,7+) ClOSEr t0f(4, s, 1) (this can be verified
with Equation 1 for observed belief). Since the prior betigf, ., ) doesn't change and sineg,, ,,) andag, ,,) are very
different, we get a privacy breach from publishifig but not from publishing’".

Theorem 5.2(Monotonicity of entropy/-diversity). Entropy ¢-diversity satisfies the monotonicity property: if a tatilé
satisfies entropy-diversity, then any generalizatiéhi** of T* also satisfies entropérdiversity.

Theorem 5.2 follows from the fact that entropy is a concave function. Thus ifthdocksqs, . . ., ¢ from tableT™ are
merged to form the*-block ¢** of table7T™*, then theentropy (¢**) > min;(entropy(q})).

Theorem 5.3 (Monotonicity of npd recursive-diversity) The npd recursivecy, co, £)-diversity criterion satisfies the
monotonicity property: if a tabld™ satisfies npd recursivér , co, £)-diversity, then any generalizatidh** of T also
satisfies npd recursivig:, ¢z, £)-diversity.

Proof. We shall prove this for the case whéré* is derived froml™ by merging twog*-blocks; the general case follows by
induction. Letg; andg; be theg*-blocks of 7™ that are merged to form thg-block ¢** of table7™**. The frequencies of
the sensitive values i is the sum of the corresponding frequenciegjimandg; .

First, let us consider negative disclosures. If every sensitive vatiél” occurs in at least. percent of the tuples ig
andg;, then surelys should also occur in at leastg percent of the tuples in thg™*.

Next let us consider positive disclosures. kebe the set of sensitive values for which positive disclosure is allowed. Let
sy be the most frequent sensitive valugyiri that does not appear . Lets,, ands,, be the most frequent sensitive values
in ¢; andg;, respectively, which are not ii. Clearly ifr,, r,, andr,, are the respective counts, then

Ty STy, T Ty,
We also know that the*-blocksq} andg}-block are(c,, ¢)-diverse (by hypothesis). Hence
Ty, < 1 tailgy (sy,)

Ty, < C1 taﬂqg(syb)
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We are done if we prove that, < ¢, tail,-(s,). Sinces,, is at least as frequent ag in ¢’ (and similarly fors,,) then by
the definition oftail,-, we have
tailgx (sy) > tailg: (sy,)

tailgs (s,) > tailgs (sy,)
tailg (s,) = tailg: (sy) + tailg: (sy)

Hence
Ty STy, T Ty,
< ctailgs (sy,) + taily, (Sys))
< cq(tailgs (sy) + tailgs (sy))
= ¢ tailg(sy)
and so they*-block ¢** is npd(cy, ¢a, £)-diverse. O

We can also show that entropydiversity with don’t-care sets satisfies the monotonicity property and is therefore amenable
to efficient algorithms. We will first need the following two results which will let us concludefi(at+) > min(H (), H(7)).

Lemma5.1. Letay,...,a, be nonnegative numbers that add up to 1. #set .. . , b,, be nonnegative numbers that add up to
1. Then for any € [0, 1],

H(tay + (1 — )by, ... tan + (1 —t)b,) = — Z ta; + (1 — t)b;]log[ta; + (1 — t)b;]
Z 72527(11' loga,; — (1 71&)2[)7 logbl
1=1 =1

= tH(ay,...,an)+ (1 —t)H(by,..., by)

> min (H’(al, .. ,an),ﬁ(bl, . ,bn))
with the understanding thaétlog 0 = 0.
Proof. This follows immediately from the fact thatz log « is concave. O
Corollary 5.1. Letay,...,a, be nonnegative numbers (at least one of which is nonzero) ang,let , b,, be nonnegative

numbers (at least one of which is nonzero). Then

Fl(al—|—b1,a2—|—bg,...,an—|—bn) 2min(ﬁ(al,...,an),ﬁ(bl,...,bn))

Proof. Let A = i a; andB = i b;. By definition, H (a1, ..., an) = H(a1/A, ... ,an/A), H(by,... b,) =

i=1 i=1
H(b,/B,...,by/B)andH(ay + by,...,an + by) = H((ay + b1)/(A+ B), ..., (an + b,)/(A + B)). Furthermore, let
t=A/(A+ B). Then(a; + b;)/(A+ B) = t(a;/A) + (1 — t)(b;/B). Applying Lemma 5.1 we get

H(ay+b1,...,an+by) = H((a1+b)/(A+B),...,(an+by)/(A+ B))
min(f[(al/A, Lan/A), H(bi/B,. bn/B))

= min (ﬁ(al,...,a,L),ﬁ(b1,~--,bn))

vV

O

Theorem 5.4. (Monotonicity of Entropy ¢-diversity with don’t-care sets) Entropy/-diversity with don't-care sets satisfies
the monotone property: given a don't-care $&tif a table7™ satisfies entropy-diversity then any generalizatiagi** of 7*
also satisfies entropérdiversity.
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Adults Lands End

Attribute Domain | Generalizations| Ht. Attribute Domain | Generalizations | Ht.
size type size type

1| Age 74 ranges-5,10,20| 4 1 | Zipcode 31953 | Round each digit| 5
2 | Gender 2 Suppression 1 2 | Orderdate| 320 Taxonomy tree 3
3 | Race 5 Suppression 1 3 | Gender 2 Suppression 1
4 | Marital Status 7 Taxonomy tree | 2 4 | Style 1509 Suppression 1
5 | Education 16 Taxonomy tree | 3 5 | Price 346 Round each digit| 4
6 | Native Country 41 Taxonomy tree | 2 6 | Quantity 1 Suppression 1
7 | Work Class 7 Taxonomy tree | 2 7 | Shipment 2 Suppression 1
8 | Salary class 2 Sensitive att. 8 | Cost 147 Sensitive att.
9 | Occupation 14 Sensitive att.

Figure 7. Description of Adults and Lands End Databases

Proof. The proof of monotonicity is an easy consequence of the following resuft:ahdg, areq*-blocks, and ifgs is the
q*-block formed by merging,; andg, then the adjusted entropy @f is greater than or equal to the minimum of the adjusted
entropies of;; andgs. Therefore, this is what we aim to prove.

Let ¢; andgs be ¢* blocks. Letsy,...,s, be the sensitive values that appeaginand¢, and letaq, ..., a, be their
counts ing; andb, ..., b, be their counts i.. Leta} be the values used to compute the adjusted entropy fandbd} be
the values used to compute adjusted entropyfoiNote that for all;, a; > a} andb; > bf. Furthermorey; > af orb; > b

only if s, is a don't-care value (by construction). When we mergandg- the new counts arg:; + b;). By Corollary 5.1:

H(a + b5, a5+ b5,...,a% +b*) > min (ﬁ(a;, cah), H(b, .,b;))

Now a; + b; > af + by anda; +b; > af + b} only if s; is a don’t care value. Since the adjusted entropy is the maximum
entropy we can achieve by lowering the counts associated with the don't-care values, this means that the adjusted entropy for
the group with counts; + b; is at leastH (af + b}, a5 + b3, ..., a’ + b). Thus the adjusted entropy of the merged group is
larger than or equal to the minimum adjusted entropy;aindgs.. O

Thus to create an algorithm fdrdiversity, we can take an algorithm féranonymity that performs a lattice search and
we make the following change: every time a talfle is tested fork-anonymity, we check fof-diversity instead. Since
(-diversity is a property that is local to eagh-block and since all-diversity tests are solely based on the counts of the
sensitive values, this test can be performed very efficiently.

We emphasize that this is only one way of generaftiftfiverse tables and it is motivated by the structural similarities
betweenk-anonymity and-diversity. Alternatively, one can post-procesk-anonymous table and suppress groups that are
not ¢-diverse or suppress tuples in groups until all groupstadizerse; one can directly modify /&zanonymity algorithm
that uses suppression into édiversity algorithm; or one can devise a completely new algorithm.

6. Experiments

In our experiments, we used an implementation of Incognito, as described in [51], for genératiogymous tables.

We modified this implementation so that it produéediverse tables as well. Incognito is implemented in Java and uses the
database manager IBM DB2 v8.1 to store its data. All experiments were run under Linux (Fedora Core 3) on a machine with
a 3 GHz Intel Pentium 4 processor and 1 GB RAM.

We ran our experiments on the Adult Database from the UCI Machine Learning Repository [61] and the Lands End
Database. The Adult Database contains 45,222 tuples from US Census data and the Lands End Database contains 4,591,58
tuples of point-of-sale information. We removed tuples with missing values and adopted the same domain generalizations as
[51]. Figure 7 provides a brief description of the data including the attributes we used, the number of distinct values for each
attribute, the type of generalization that was used (for non-sensitive attributes), and the height of the generalization hierarchy
for each attribute.

Homogeneity Attack. In Figures 8 and 9, we illustrate ti®mogeneityattacks onk-anonymized datasets using the Lands
End and Adult databases. For the Lands End Database, we t{@pedde, Order Date, Gender, Style, Prjcas the quasi-
identifier. We partitioned th€ostattribute into 147 buckets by rounding to the nearest 100 and used this as the sensitive
attribute. For the Adults database, we u$&de, Gender, Race, Marital Status, Educali@s the quasi-identifier arShlary
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Adults Lands End

k Affected Avg. Gps. | Avg. Tuples k Affected Avg. Gps. | Avg. Tuples

[Total tables | Affected Affected /Total tables | Affected Affected
2 8/8 7.38 558.00 2 2/3 12.3 2537.6
5 11/12 3.58 381.58 5 2/3 12.3 2537.6
10 10/12 1.75 300.42 10 2/2 18.5 3806.5
15 718 2.12 317.25 15 2/2 18.5 3806.5
20 8/10 1.20 228.20 20 1/2 2.5 1750
30 7110 0.90 215.40 30 1/2 2.5 1750
50 5/5 1.00 202.80 50 1/3 0.6 1156

Figure 8. Effect of Homogeneity Attack on the Databases
Adults Lands End

k Affected Avg. Gps. | Avg. Tuples k Affected Avg. Gps. | Avg. Tuples

/Total tables| Affected Affected /Total tables | Affected Affected
2 8/8 20.50 13574.5 2 2/3 13.0 2825.33
5 12/12 12.67 13328.3 5 2/3 13.0 2825.33
10 12/12 7.83 10796.5 10 2/2 195 4238.00
15 8/8 8.88 12009.4 15 2/2 195 4238.00
20 10/10 7.10 11041.0 20 1/2 3.0 2119.00
30 10/10 5.50 11177.0 30 1/2 3.0 2119.00
50 5/5 5.80 8002.0 50 1/3 1.0 1412.66

Figure 9. Effect of 95% Homogeneity Attack on the Databases

Classas the sensitive attribute. For valueskof 2, 5,10, 15, 20, 30, 50, we then generated dllanonymous tables that were
minimal with respect to the generalization lattice (i.e. no table at a lower level of generalizatidrnamasymous).

Figure 8 shows an analysis of groupskiranonymous tables that are completely homogeneous, and Figure 9 shows an
analysis of groups ik-anonymous tables that are “nearly” homogeneous (i.e., the most frequent sensitiveinadugroup
appears in at lea$tb% of the tuples in the group). Both cases should be avoided since an adversary would believe, with
near certainty, that an individual in a homogeneous or nearly homogeneous group has the sensitivihabappears most
frequently. Note that the minority (i.es 5%) of the individuals in nearly homogeneous groups whose sensitive values
are nots are also affected even though the best inference about them (that they) hawerong. As a concrete example,
consider the case when= AIDS. An individual that values privacy would not want to be associated wit¥ith near
certainty regardless of whether the true value. is

In the four tables shown in Figures 8 and 9, the first column indicates the valud b& second column shows the number
of minimal k-anonymous tables that have groups that are completely homogeneous (Figure 8) or 95% homogenous (Figure
9). The third column shows the average number of such groups per mikier@nymous table. The fourth column shows
the average number of tuples per minimaknonymous table that were affected by the two homogeneity attacks. As we can
see from Figures 8 and 9, the homogeneity attack is a real concern, affecting a very large fraction of both datasets. Even for
relatively large values af (such as 30 and 50), many tables still had nearly homogeneous groups.

Note that the average number of affected groups, average number of affected tuples, etc., are not strictly decreasing
functions ofk. In particular, tables with small values of affected tuples are sometimes close to each other in the lattice of
k-anonymous tables and may be generalized to the same tableiwihereases (thus reducing the total number of “safe”
tables).

Performance. In our next set of experiments, we compare the running times of entrdpyersity andk-anonymity. The
results are shown in Figures 10 and 11. For the Adult Database, w&uasegationas the sensitive attribute, and for Lands
End we usedost We varied the quasi-identifier size from 3 attributes up to 8 attributes; a quasi-identifier ptsizsisted

of the first; attributes of its dataset as listed in Figure 7. We measured the time taken to retitanathymous tables and
compared it to the time taken to return@tliverse tables. In both datasets, the running times-fanonymity and-diversity

were similar. Sometimes the running time fediversity was faster, which happened when the algorithm pruned parts of the
generalization lattice earlier than it did fbranonymity.

Utility. The next set of experiments compare the utility of anonymized tables whickranenymous, entropg-diverse,

or recursive(3, /)-diverse. We use the Adults Database in all the experiments with sensitive attfibet@ation. For
the purposes of comparison, we ¢et= ¢ and experimented with the following values 6f{and hencek): 2, 4, 6, 8,
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Figure 12. Adults Database. Q = {age, gender, race }

10. The sensitive attribut®ccupation takes onlyl4 values. Hence, there is no table which can be more than 14-diverse

for any reasonable definition of diversity. Since some of the values appeared very infrequently, we found that there is no
generalization of the Adults Database that is recurgivé)-diverse for/ = 12. We also found that the marginal distribution

of the sensitive attribute is entropy 10.57-diverse. This means that no generalization of the Adults Database can be more than
entropy 10.57-diverse unless the entire data set is suppressed.

The utility of a dataset is difficult to quantify. As a result, we used four different metrics to gauge the utility of the gener-
alized tables — generalization height, average group size, discernibility, and KL-divergence. The first metric, generalization
height [51, 62], is the height of an anonymized table in the generalization lattice; intuitively, it is the number of general-
ization steps that were performed. The second metric is the average sizegdflitoeks generated by the anonymization
algorithm. The third metric is thdiscernibilitymetric [12]. The discernibility metric measures the number of tuples that are
indistinguishable from each other. Each tuple it &@lock B; incurs a costB;| and each tuple that is completely suppressed
incurs a costD| (whereD is the original dataset). Since we did not perform any tuple suppression, the discernibility metric
is equivalent to the sum of the squares of the sizes oftHaocks.

Neither generalization height, nor average group size, nor discernibility take the data distribution into account. For this
reason we also use the KL-divergence, which is described next. In many data mining tasks, we would like to use the published
table to estimate the joint distribution of the attributes. Now, given a tAhléth categorical attributed, ..., A,,, we can
view the data as ani.i.d. sample frommandimensional distributio’. We can estimate thig with the empirical distribution
F, whereF(xl, ..., Tm,) Is the fraction of tupleg in the table such thatA; = z4,...,t.4,, = z,,. When a generalized
version of the table is published, the estimate changés tby taking into account the generalizations used to construct the
anonymized tabl&™* (and making the uniformity assumption for all generalized tuples sharing the same attribute values). If

the tuplet = (x1,...,z.,) is generalized to* = («%,..., %), thenF*(xy,. .., x,,) is given by
-~ t* e T*}
Frany.am) = e ST
(@1, s m) |T*| x area(t*)
where,area(z], ..., z5) = H [{z; € A; | x; is generalized ta:} }|

i=1

To quantify the difference between the two distributidghand 7%, we use Kullback-Leibler divergence (KL-divergence)
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Figure 14. Adults Database. Q = {age, gender, race, marital _status, education }

which is defined as

Z F(x)log F(X)

XEAI X ... XAm, F*(X)

where0 log 0 is defined to b&. The KL-divergence is non-negative and is 0 only when the two estimates are identical.

In Figures 12, 13, 14, and 15, we show the minimum generalization height, average group size, and discernibility of
k-anonymous, entrop§rdiverse, and recursiv@, ¢)-diverse tables fof = k = 2,4, 6,8, 10, while Figures 16 and 17 show
our results for KL-divergence. For each graphs in Figures 12, 13, 14, 15, and 16, we performed the anonymizations on a 5%
subsample of the original data, while Figure 17 shows results for anonymization of the entire data set.

Before explaining why it was necessary to subsample the data, we should first note that in general, the graphs show that
ensuring diversity in the sensitive attribute does not require many more generalization steps thandoymity (note that
an /-diverse table is automaticalfranonymous); the minimum generalization heights for identical valuésamfd/ were
usually identical. Nevertheless, we found that generalization height was not an ideal utility metric because tables with small
generalization heights can still have very large group sizes. For example, using full-domain generalization on the Adult
Database with the quasi-identifi€Age, Gender, Race, Marital Status, Educatiowe found minimal (with respect to the
generalization lattice) 4-anonymous tables that had average group sizes larger than 1,000 tuples. The large groups were
caused by data skew. For example, there were only 114 tuples with age between 81 and 90, while there were 12,291 tuples
with age between 31 and 40. So if age groups of length 5 (i.e. [1-5], [6-10], [11-15], etc) were generalized to age groups of
length 10 (i.e. [1-10], [11-20], etc), we would end up with very laggeblocks?

Thus, to better understand the loss of utility due to domain generalization, we chose to study a subsample of the Adults
Database with a lesser data skew in the Age attribute. It turned out that a 5% Bernoulli subsample of the Adult Database
suited our requirements — most of the Age values appeared in around 20 tuples each, while only a few values appeared in less
than 10 tuples each. The second and third graphs in each of Figures 12, 13, 14, and 15 show the minimum average group size
and the discernibility metric cost, respectively,lednonymous and-diverse tables fok, ¢ = 2,4,6,8,10. Smaller values
for utility metrics represent higher utility. We found that the bieahonymous and-diverse tables often (but not always) had
comparable utility. It is interesting to note that recurdi8ef)-diversity permits tables which have better utility than entropy
¢-diversity. Recursivec, £)-diversity is generally less restrictive than entrapgliversity, because the extra parameter,

4Generalization hierarchies that are aware of data skew may yield higher quality anonymizations. This is a promising avenue for future work because
some recent algorithms [12] can handle certain dynamic generalization hierarchies.
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Figure 16. Comparing KL-Divergence to  k-Anonymous and /¢-Diverse versions of a sample of the
Adults Database. From left to right, @ = {Age, Gender, Rage {Age, Gender, Marital Status, Racand {Age,
Education, Gender, Marital Status, Rgceespectively.

allows us to control how much skew is acceptable iqi*&lock. Since there is still some residual skew even in our 5%
subsample, the entropy definition performs worse than the recursive definition.

In Figures 16 and 17 we compakeanonymous and-diverse tables using the KL-divergence utility metric. Figure 16
shows our results for a 5% subsample of the table and Figure 17 shows our results on the whole Adults Database. In
each of the graphs, we wish to publish a table from which the joint distribdfion.S can be estimated. In all the cases
S = Occupation. @ is the multi-dimensional attributéAge, Gender, Race}, { Age, Gender, Marital_Status, Race}
and{ Age, Education, Gender, M arital_Status, Race}, respectively.

Each of the graphs shows a base-line (the bar named “Base”) that corresponds to the KL-divergence for the table where all
the attributes ir) were completely suppressed (thus the resulting table had only one attribute — the sensitive attribute). This
table represents the least useful anonymized table that can be published. The rest of the bars correspond to the KL-divergence
to the besk-anonymous, entropé+diverse, and recursiv@, ¢)-diverse tables, respectively for= ¢ = 2,4, 6, 8, 10.

In the experiments run on the full Adults Dataset, we see that the KL-divergence to thedpestse table (entropy or
recursive) is very close to the KL-divergence to the leahonymous table, fok = ¢ = 2,4,6. As expected, for larger
values of?, the utility of /-diverse tables is lower. The best tables for the entropy and recursive variants of the definition often
have similar utility. When a sample of Adults Database table was used, some of the sensitive values with small counts were
eliminated. Hence, fof = 8, 10, the best tables were very close to the baseline /Fe6, the recursive definition performs
better than the entropy definition since recurgi®e’)-diversity allows for more skew in the sensitive attribute.

7. Related Work

There has a been a lot of research on individual data privacy in both the computer science and the statistics literature. While
a comprehensive treatment is outside the scope of this paper, we provide an overview of the area by discussing representative
work. Most of the work can be broadly classified depending on whether or not the data collector is trusted. We first discuss
the trusted data collector scenario, of which our work is an example, in Section 7.1. We then discuss the untrusted data
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collector scenario in Section 7.2.
7.1. Trusted Data Collector

In many scenarios, the individuals providing the data trust the data collector not to breach their privacy. Examples of such
data collectors are the Census Bureau, hospitals, health insurance providers, etc. However, these data collectors want to shar
data with third parties for enhancing research. It is required that such sharing does not breach the privacy of the individuals.
Methods used by the data collectors can be broadly classified into four classes (each of which is discussed below):

e Publish public-use microdata (e.g., the approach taken in this paper).

o Allow third parties to query the data, and only allow queries which do not lead to disclosures (like in statistical data-
bases).

e Share data only with authorized third parties.

e Do not share data but provide support for collaborative computations which disclose no information beyond the final
answer.

7.1.1 Publishing Public-use Microdata

This paper proposes new privacy definitions for the modgluddlishing public-use microdatahe Census Bureau provides

data as public-use microdata (PUMS). They use a variety of sanitization techniques to ensure privacy and utility in the
dataset. Hence, there is a huge amount of research on data sanitization in the statistics community. Here again, there are
many techniques which provide some utility guarantees but do not give theoretical guarantees for privacy.

Census data literature focuses on identifying and protecting the privacy of sensitive entries in contingency tables — tables
of counts which represent the complete cross-classification of the data ([43, 25, 26, 27, 37, 36, 65]). A nonzero table entry is
considered sensitive if it is smaller than a fixed threshold which is usually chosen in an ad-hoc manner. Two main approaches
have been proposed for protecting the privacy of sensitive agdita swappinganddata suppressianThe data swapping
approach involves moving data entries from one cell in the contingency table to another so that the table remains consistent
with a set of published marginals [29, 32, 40]. In the data suppression approach [25, 24], cells with low counts are simply
deleted. Due to data dependencies caused by marginal totals that may have been previously published, additional related cel
counts may also need to be suppressed. An alternate approach is to detesafigty eangeor protection intervaffor each
cell [35], and to publish only those marginals which ensure that the feasibility intervals (i.e. upper and lower bounds on the
values a cell may take) contain the protection intervals for all cell entries.

Computer science research has also tried to solve the privacy preserving data publishing problem. Sweeney [68] showed
that publishing data sets for which the identifying attributes (keys) have been removed is not safe and may result in privacy
breaches. In fact, the paper shows a real life privacy breach using health insurance records and voter registration data. To
better protect the data, [68] advocates the use of a technique &adlednymity [63] which ensures that every individual is
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hidden in a group of size at leastwith respect to the non-sensitive attributes. The problefafonymization is NP-hard
[57]; approximation algorithms for produciriganonymous tables have been proposed [3].

Prior to this, there had been a lot of study in creating efficient algorithms-foronymity by using generalization and
tuple suppression techniques. Samarati et al. [63] proposed a technique, using binary search, for /easuniygity
through full-domain generalization techniques. Bayardo et al. [12] modebatbnymization as an optimization problem
between privacy and utility, and proposed an algorithm similar to a frequent itemset mining algorithm. Lefevre et al. [51]
extended the approach of full-domain generalization and proposed an algorithm for returning dtamatidymous tables.

It also used techniques very similar to frequent itemset mining. Zhong et al. [74] showed how to corkparteraymous

table without the requirement of a trusted data collector. Ohrn et al. [60] used boolean reasoning to study the effect of locally
suppressing attributes on a per-tuple basis. They introduced a notion reddit'de anonymizatioto counter the effects of
homogeneity in the sensitive attribute. One of the instantiations of relative anonymization corresponds to the definition which
we named entropy-diversity. In a preliminary version of this paper, Machanavajjhala et al. [54] first introditdactrsity

which, unlikek-anonymity, was aware of the distribution of values of the sensitive attributes and of the effects of background
knowledge.

Condensation based approach to engusmonymity [2] treat the data as points in a high-dimensional space and the
technique tries to condengenearby points into a single point.

Chawla et al. [20] proposes a formal definition of privacy for published data based on the ndtiendihg in a crowd
Here privacy of an individual is said to be protected if an adversary cannot isolate a record having attributes similar (according
to a suitably chosen distance metric) to those of a given individual without being sufficiently close (according to the distance
metric) to several other individuals; these other individuals are the crowd. The authors propose several perturbation and
histogram-based techniques for data sanitization prior to publication. The formalization of the notion of privacy presents
a theoretical framework for studying the privacy-utility trade-offs of the proposed data sanitization techniques. However,
due to the heavy reliance on an inter-tuple distance measure of privacy, the proposed definition of privacy fails to capture
scenarios where identification of even a single sensitive attribute may constitute a privacy breach. Also note that this privacy
definition does not guarantee diversity of the sensitive attributes.

Miklau et al. [59] characterize the set of views that can be published while keeping some query answer secret. Privacy
here is defined in the information-theoretic sense of perfect privacy. They show that to ensure perfect privacy, the views that
are published should not be related to the data used to compute the secret query. This shows that perfect privacy is too strict
as most useful views, like those involving aggregation, are disallowed.

Finally there has been some work on publishing XML documents and ensuring access control on these documents [58, 73].
Miklau et al. [58] use cryptographic techniques to ensure that only authorized users can access the published document. Yang
et al. [73] propose publishing partial documents which hide sensitive data. The challenge here is that the adversary might
have background knowledge which induces dependencies between branches, and this needs to be taken into account whils
deciding which partial document to publish.

7.1.2 Statistical Databases

The third scenario in the trusted data collector model is hostougeay answering servicd his is addressed by the statistical
database literature. In this model, the database answers only aggregate queries (COUNT, SUM, AVG, MIN, MAX) over a
specified subset of the tuples in the database. The goal of a statistical database is to answer the queries in such a way tha
there are no positive or negative disclosures. Techniques for statistical database query answering can be broadly classifiec
into three categories — query restriction, query auditing, data and output perturbation. Though the literature proposes a
large number of techniques for ensuring privacy, only a few of the techniques are provably private against attacks except in
restricted cases. Adam et al. [1] provide a very good literature survey.

The techniques in thquery restrictioncategory specify the set of queries that should not be answered to ensure that
privacy is not breached. None of the answers to legal queries are perturbed. All of these techniques focus on the case where
a query specifies an aggregate function and a set of taplager which the aggregation is done. Tipgery set size control
technique [43, 64] specifies that only those queries which access aftl¢astk and at mostC| < L — k tuples should be
answered. Herg is a parameter and is the size of the database. However, it was shown that snooping tools called trackers
[31] can be used to learn values of sensitive attributes. The query set overlap control technique [34] disallows queries which
have a large intersection with the previous queries.

Query auditingin statistical databases has been studied in detail. The query monitoring approach [34, 21] is an online
version of the problem where ti{e + 1)** query is answered or not depending on the firgtieries asked. The decision is
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based only on the queries and not on the answers to those queries. Pure SUM queries and pure MAX queries can be auditec
efficiently but the mixed SUM/MAX problem is NP-hard. In the offline auditing problem [22, 21], the queries are presented

all at once and the problem is to choose the maximum number of queries that can be answered. Kleinberg et al. [49] considers
auditing SUM queries over boolean attributes and shows that it is co-NP hard to decide whether a set of queries uniquely
determines one of the data elements. More recently, Kenthapadi et al. [48] studied the problem of simulatable auditing.
This is a variant of the query monitoring approach where the decision to disallow a query can depend on the answers to the
previous queries as well. The main challenge in this model is that if a query answer is denied, information could be disclosed.
Hence, the solutions proposed are such that any decision (to allow or deny a query) that is made by the database can also b
simulated by the adversary.

Data perturbationtechniques maintain a perturbed version of the database and answer queries on the perturbed data.
However, most of these techniques suffer from the problem of bias [56]; i.e., the expected value of the query answers
computed using the perturbed data is different from the actual query answers computed using the original data. Fixed data
perturbation techniques [69] perturb the data by adding zero-mean random noise to every data item. Such techniques have the
worst problems with bias. The randomized response scheme proposed in [71] avoids this bias problem for COUNT queries
on categorical attributes. Yet another technique is to replace the data with synthetic data drawn from the same empirical
distribution.

Output perturbationtechniques evaluate the query on the original data but return a perturbed version of the answer.
Techniques here include returning answers over a sample of the database [30], rounding the answers to a multiple of a
prespecified base[28], and adding random noise to the outputs [15]. More recently, Dinur et al. [33] proved that in order
to protect against an adversary who is allowed to ask arbitrarily many queries to a database, the random noise added to the
answers should be at lea3t./n), n being the number of tuples in the database. On the positive side, they also showed
a technique that provably protects against a bounded adversary who is allowed to agkmonly polylog(n) queries by
using additive perturbation of the magnitudé,/7 (n)). Building on this result, Blum et al. [18] proposed a framework for
practical privacy called the SuLQ framework, where the number of queries an adversary is allowed to ask is sub-linear in the
number of tuples in the database.

7.1.3 Sharing with Authorized Parties

Hippocratic databases [7] are a proposed design principle for building database systems which regilatenthef private
data with third parties Such a solution requires both the individuals who provide data and the databases that collect it to
specify privacy policies describing tipeirposes for which the data can be used and theipients who can see parts
of the data. The policies are specified using a policy specification language like APPEL [52], which satisfies the P3P standard
[53]. A Hippocratic database also needs other functionality, like support for maintaining audit trails [5], query rewriting for
disclosure limitation [50], and support for data retention.

Snodgrass et al. [66] proposes schemes for auditing the operations of a database such that any tampering with the audit
logs can be detected. Such a solution can guard against the database’s manipulation of the audit logs, thus giving assuranc
of eventual post-breach detection.

7.1.4 Private Collaborative Computation

Private collaborative computatiohas been very well studied in the form of secure multiparty computation [44, 16, 19].
The problem of secure multiparty computation deals witparties computing a common function on private inputs. Such

a protocol should not disclose to the participants any information other than what is disclosed by the answer itself. Most of
the early work focused on building solutions for general functions by expressing a function as a boolean circuit. However,
general solutions are perceived to be communication inefficient (of the order of the square of the number of parties involved
for each gate in the boolean circuit being evaluated).

Thus there has been a lot of research proposing solutions to secure multiparty computations for specific functions. Du [38]
proposes various specific (secure) two-party computations problems. The commodity server model [13, 14] has been used
for privately computing the scalar product of two vectors [39]. In the commodity server model, the two (or more) parties
involved in the multiparty computation protocol employ the services of an untrusted third party to provide some randomness
[13] or to help with some computation [39]. It is assumed that this untrusted third party does not collude with the players
involved in the multiparty computation. Most of these techniques employ randomization to guarantee privacy.

Agrawal et al. [6] employ commutative encryption techniques for information sharing across private database. Their
techniques can be used to calculate the intersection and equijoin of two databases while disclosing only the sizes of each
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database. Clifton et al. [23] describes methods to implement basic operations like secure sum, secure set union, secure se
intersection, and secure scalar product using both encryption and additive randomization in the secure multiparty computation
setting. These primitives are used in various application scenarios to build multiparty protocols for private association rule
mining in horizontally partitioned data [46], private association rule mining in vertically partitioned data [70], and private
EM clustering.

One drawback which permeates the above literature is that there is no clear characterization of how much information is
disclosed by the output of the protocol about the sensitive inputs.

7.2. Untrusted Data Collector

In the case where the data collector is not trusted, and the private information of the individuals should be kept secret
from the data collector. Though this is not the model dealt with in this paper, definitions of privacy can be common across
the trusted and the untrusted data collector model. The individuals provide randomized versions of their data to the data
collector who then uses it for data mining. Warner [72] proposed one of the first techniques for randomizing categorical
answers to survey questionnaires. Recent work in the privacy preserving data mining literature also fits this model. Agrawal
et al. [9] propose randomization techniques that can be employed by individuals to mask their sensitive information while
allowing the data collector to build good decision trees on the data. This work, however, does not give theoretical guarantees
for privacy. Subsequent work propose metrics for quantifying the information lost and the privacy guaranteed by privacy-
preserving data mining techniques. One privacy metric [4] is based on the conditional differential entropy between the
original and perturbed data. However, this privacy metric measures average-case behavior, so that a perturbed distribution
can leave a lot of uncertainty about the original values in most of the domain, leave very little uncertainty in a small part of
the domain (therefore causing a privacy breach), and yet still be considered satisfactory based on its conditional differential
entropy. Evfimievski et al. [41, 42] propose randomization techniques for privacy-preserving association rule mining and
give theoretical guarantees for privacy. They define a privacy breach to be the event that the posterior probability (of certain
properties of the data) given the randomized data is far from the prior probability. These techniques deal with categorical
attributes only. Extensions to continuous data that allow the data collector to run OLAP-style queries on the data have also
been proposed ([10]).

On the negative side, [47] shows that randomizing the data, especially by adding zero mean random variables, does not
necessarily preserve privacy. The techniques provided in the paper exploit spectral properties of random matrices to remove
the noise and recover the original data. Thus the data collector could breach privacy. [45] show that the correlation between
attributes is the key factor behind the attacks proposed in [47]. The paper goes on to propose two technigues based on
Principle Component Analysis (PCA) and the Bayes Estimate (BE) to reconstruct the original data from the randomized
data. On a positive note, the paper shows that randomization schemes where the correlations in the noise are “similar” to the
correlations in the data can protect against these attacks.

8. Conclusions and Future Work

In this paper we have shown theoretically and experimentally thataonymized dataset permits strong attacks due
to lack of diversity in the sensitive attributes. We have introduéeliversity, a framework that gives stronger privacy
guarantees. We have also demonstrated #uitersity andk-anonymity have enough similarity in their structure tkat
anonymity algorithms can be modified to work witltiversity.

There are several avenues for future work. First, we want to extend our initial ideas for handling multiple sensitive
attributes, and we want to develop methods for continuous sensitive attributes. Second, although privacy and utility are duals
of each other, privacy has received much more attention than the utility of a published table. As a result, the concept of utility
is not well-understood.
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A. Correctness of Entropy ¢-diversity with Don’t-care Sets

In this section we will prove Theorem 4.1. Recall that we defined normalized entropy as:

H(xy,...,2n) = — Z nxi log nxi (11)
=1 ) 2
j=1 j=1
First, we note that as a function of, . . . , z,,, the normalized entropﬁ(a:l, ..., x,) is concave. However, if we fix some of

the variables, theil is neither concave nor convex in the other variables. As an example, coffigider H (,100). We

see thatf (400) = .5004, f(800) = .3488, andf(600) = .4101. Thusf(600) = f(3 -400+ 3 -800) < % f(400) + 1 £(800)
showing that the normalized entropy is not concave. Howe\(&h) = .6829, f(125) = .6870, and f(100) = .6931 Thus
f(100) = f(%-75+ % -125) > 1f(75) + 3 f(125) and so it is not convex either. Therefore we cannot use convexity
arguments to prove unigueness in Theorem 4.1.

We begln by looking at the first-order partial derivatives #f and finding the general unconstrained maximum of
H(scl, ey Try D1, - - -, Dm) Where thep; are constants. Defingz, ..., z,) = H(scl, e s Tpy Pl Dm). THENf(zq, ..., x,)
equals:

- Z T i m 10g T i m - Z b m IOg T b m
J= J= = J=

j=1 j=1 =1 j=1

Simple manipulation shows that:

T m m

T
f(xl,...,xT):—Z—mlogxi Z — logp; + log Zx]+2pj
112%"‘2% 712*%"‘21%
Using the fact that the first derlvatlve mﬂog zisl+ logzx:
0 1+ logxs slogaxg i log x;
f - ogfI zslogx 2‘1'2 zilogx i
5‘x5 Zl,+zp r m its r m
j:lj j:lj 2T+ 2P > T+ P
j=1 j=1 j=1 j=1
i ilO i 1
Jrz pilogp = _
=1 L m i+
(Z m.] + Z p]) ]gl ’ jglpj
Jj=1 Jj=
x; log x; - 1 .
log zg xrslogxg 7,;9 Z; biiogpi
= - Zr: i 2 2 2
T _"_ T m T m T m
j=1 ! J*lpj (Zm +ij> (ij—i_sz) <Z$J+ij>
Jj=1 Jj=1 Jj=1 Jj= Jj=1 Jj=
(Z Ti+ ) pi> log 1 > wilog; > pilogp;
__N\i=l i=1 + Ls 108 Ls + i7s + i=1
= 2 2 2 2
<Z$J+Zpg> <Z%+ij> <Z$J+ZPJ> (ij+ng>
j=1 Jj=1 Jj=1 j=1 Jj=1 j=1 j=1 Jj=1
> (wilogw; — x;logxs) + 3 (pilogpi — pilogxs)
i#s i=1
_ i (12)
<Z T+ ) pj)
j=1 j=1
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and so we see thétf /dz; = 0 when

> xilogx; + > pilogp;
logzy = i#s =1 (13)

m

YT+ D pj

j#s j=1
We will denote the value of the right hand side of Equation 13*hyFrom Equation 12 it is easy to see tlgt/0z; < 0
whenlog(zs) > ¢* (whenz, > e“) anddf/dxs > 0 whenlog(z,) < ¢* (whenz, < e“*). Combining this with

the fact thatf is continuous at:;, = 0 (to rule out a maximum at:, = 0), we get that givem, ..., p,, and for fixed
Z1,...,Ts_1,Ts11,- -, T, there is a unique value af; that maximized7. This brings us to the first theorem:
Theorem A.1l. Letpy,...,p, be constants and lety, ..., x5 1, %511, ..,z be fixed. Thelﬁ(pl,...,pm,:cl, cey Ty)

(when treated as a function of) is maximized when

> wilogx; + ) pilogp;
=1

logzs =c" = G -
> T+ P
j#s j=1

Furthermore, the maximum is unique afdis decreasing forz; > e“* and increasing forr; < e“*.

Qorollary Al. Letp,...,p, beconstantsandlet,,...,zs_1,2s11,-.., 2, befixed. Leths > 0. Then
H(p1,...,pm,x1,-..,x,) (When treated as a function of) is maximized subject to the constraint < ¢, when

> zilogw; + > pilogp;
IOgIS = min 10g¢87 7 1:11 :min(logQS?]\/[(xla'"a‘rs—hxs-‘rl?"'71:7'7p17"'7pm,))
> rj+ Z Py

J#s Jj=1

Proof. If x5 cannot obtain the optimal value specified in Theorem A.1, it must be begause:*. Since@]%[/axS > 0 for
s < e“*, the maximum constrained value must occur at= ¢,. O

Our next step is to find the unconstrained maximuniladverz, . .., z,. A necessary condition for the maximum is that
all first partial derivatives are 0. From Equation 13 we have:

m m

ij“'zpj logz, = inloga:i+2pi10gpq‘,

j#s Jj=1 i#s =1

T m r U
Zl‘j +Zp] ]ogq;s = Z$110g$1+zp110gp1
i=1 =1 i=1 =1

and since the right hand side is independent, @nd since the equality is true for anyit follows that fors # ¢:

T T
Za:j —|—ij logxs, = Za:j —|—ij log x4 (14)
Jj=1 J Jj=1 J

=1 =1

T, = Xy (15)

Thus there is only one critical point and at the critical paipt= z5 = - - - = x,.. To find out what this value is, we go back
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to Equation 13 and replace thg by their common value:

(r—Dzxlogx + > p;logp;

i=1

logz = —
(r=Nz+ 3 p;
j=1
m m
(r—Dzxlogx + ij logz = (r—1)zlogz + Zpi log p;
j=1 i=1
m
> pilogp;
=1
r = - m
> D
j=1
and we see that this is the log-entropic mean ofithe
Theorem A.2. f(z1,...,2.) = H(p1,...,Pm,Z1,--.,2,) achieves its unique maximum whieg x; = logzs = -+ =
'En pi log p;
logx, = &=—— = c*.
2 P
j=1

Proof. We have already shown that this is the unique point where all first partial derivatives are 0 at this point. We still have
to show that it is that it is a global maximum. First note that a maximum cannot occur when anyrgfate0 (this follows
directly from Theorem A.1).

Now suppose the poir{e®*, ..., e ) is not a unique global maximum. Then there exist positive numpers, ..., &,
(not all equal toc*) such thatf(&1,82,...,&) > f(e™,...,e™). Let L = min{p1,...,pm,&1,-..,&-} and letU =
max{p1,...,Pm,&1,-.-,& }. Consider the compact hypercube= {(z1,...,2.) : Vi € {1,...,r},U > 2z; > L}. C
is compact,f is continuous, and’ achieves its maximum o@. Hence, there exists a poif#y,...,0,) € C such that
f(O1,...,0,) =sup f(2) > f(&,..., &) > f(e°F, ..., e“*) and that not alb; are equal ta*.

ec

Now, thed; cannot satisfy Equation 13 (with the replaced by thé);) for all i because otherwise we will have a sec-
ond point where all the partial derivatives are 0 (a contradiction). Without loss of generality, suppdees not satisfy
Equation 13. By Theorem A.1, there exist$"asuch thatlog 6* is a weighted average of tHegp; andlogé, so that
min(py, ..., Pm,01,...,0;) < 6* < max(pi,...,Pm,01,...,0-). Thisimplies tha{6*, 0, ...,0,) € C. Furthermore, by
Theorem A.1,f(60*,0s,...,6,) > f(61,...,0,), which contradicts the fact that(0,, ..., 0,) is maximal onC. Therefore
there do not exist any nonnegative real numligrss, . . ., & be nonnegative real numbers (not all equattpsuch that

f(é-lvf?a"'vfr) > f(ec*,u.,ec*).
O

Now that we know what the unconstrained maximum looks like, we are ready to characterize the constrained maximum.
We will need the following simple results about weighted averages:

Lemma A.l. Letey, ..., ¢, be nonnegative numbers and tet, .. ., w, be nonnegative numbers such that; > 0 for
somei. Letd andv be any positive numbers.

1. if d equals the weighted average of the(i.e.,d = (>, c;w;)/(>_, w;)) then includingd in that weighted average
does not change its value (i.€.= (vd + Y, ciw;) /(v + >, wi) = (D, cowq) /(D wi))

Cifd > (32, cwi) /(32 wi) thend > (vd + 3, cowi) /(v + 32, wi) > (32, cwi) /(D2 wi)
Cifd < (32; ciwi) /(32 wi) thend < (vd + 3, cowi) /(v + 32, wi) < (32, cwi) /(D2 wi)
cifd>d andd > (Y, c;w;)/ (X, wi) thend > (vd' + Y, ciw;) /(v + Y, w;)

Cifd > (vd 4+ X, cows) /(v + 0, wi) thend > (X, cw) /(S w;)

a A W0 DN
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Proof. First we show (i).

U+27wz U+Ziwi 'U‘i’zbwz N Ziwi
To prove (i), letd* = (3, c;w;)/ (>, w;) then

vd + ), ciw; _ vd+dziwi_d(v+ziwi) d_ZiCiwi

vd+dY ,w, _ vd+ Y cw,  vd 4wy Y cw;
v+ w; vt wi vt D W Do Wi

and (iii) is proven the same way. (iv) is an easy consequence of (ii). To prove (v), multigly by) . w;) and cancetiv
from both sides. O

Now we can prove the correctness of Algorithm 1 by proving Theorem 4.1, which we now restate.
Theorem A.3. Letpy,...,pm, b1, - -, - be positive numbers. Then the following are true:

1. Thereisaunique vectgey, co, . . ., ¢.) such that the assignment = ¢; maximizesﬁ(a:l, ey Xpy D1, - - ., Pm) SUbjECE
to the constraint® < x; < ¢;.

2. Letd = max({¢; | ¢c; = ¢:} U{0}). If ¢; < @ thenc; = ¢;. If ¢; > 6 thenlog ¢; is the log-entropic mean of the set
{p1,---,pm}U{d: | ¢; = ¢;}, and@ is the minimum value for which this condition can be satisfied.

Proof. First we must show that a maximum exists, and this follows from the factAhat continuous and that the set

{(z1,...,2,) | Vi,0 < z; < ¢;} is compact. Note that uniqueness of the maximum follows from the minimality condition
for 6 in (ii). Therefore if we prove (ii) then (i) follows.
Let (&1, ...,&-) be a point at which the maximum occurs. As a result of Corollary A.1sferl, ..., r we must have
loggs = Inin(log d)a M(gla s agsflv £s+1a s agrapla s 7pm)) (16)

Now letW = {i: & < ¢;} andV = {i: & = ¢;}. We claim that:

> &ilog&i+ > pilogp 3 &logés + 3 pilogpi
=1

VseW, logé, = 2° = _ €V = (17)
&G+ IRIEDIN
s j=1 JEV j=1

The first equality follows from Equation 16 and the second follows from Theorem A.2 for the unconstrained maximum of
H as a function of:, for s € W.

Now we are ready to prove that there exists a cutoff vél@e{¢., ..., ¢,,0} such thatp; < 0 implies thatj € V (i.e.
x; = ¢;) andg; > 0 impliesj € W (i.e. z; is the log-entropic mean of the and thex, for s € V). If eitherV or W is
empty then this is trivially true. Otherwise, assume by way of contradiction that there is no cutoff so that we carsfind an
such thatp, > ¢, butt € W ands € V. This implies that

10g€s = log(bs > 1Og¢t > logft = M(gla--'7€t—17£t+17"'7£7‘7p17"' apm))

and by Lemma A.1, parts (iv) and then (v), we have:

Ings > M(gly-~-a§7‘ap1a'~-7p'rn))

and
loggs > M(£17'"768717&54»17"'767’71717'"apm))

However, this violates the condition on optimality described in Equation 16, which is a contradiction, and so there exists a
cutoff 6.
All that remains to be shown is that for the optimal solutiénis the minimum value= {¢1, ..., ¢,} such thatp; > 6
impliesj € W (i.e. x; is the log-entropic mean of the and thex, for s € V). Suppose it is not minimal. Then there exists
al € {¢1,...,¢,,0twith ¢ < 0, asetV’ = {i| ¢; <60} and a vectowy, ... ,w,) such that when € V' thenw; = ¢;
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and wheni ¢ V'’ thenw; is the log-entropic mean of thg and thew, for s € V. Now clearlyV’ C V so whenevew, = ¢;
then¢; = ¢;. However, if we fixz; = ¢; for i € V'’ then the unconstrained maximum Efover the variablegx; | i ¢ V'}
occurs precisely when; = w;, by Theorem A.2, becausg equals the log-entropic mean of thgand thew, for s € V’
. Since the variables; for s € V' will be fixed for any choice of cutoff (remember that by definitiof > '), and the
unconstrained maximum over the rest of the variables is unique and achievable, théwectar, w,) that is determined by
the minimal cutoffd’ is indeed the unique constrained maximum we are looking for. O
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