Detection and Resolution of Anomalies
in Firewall Policy Rules

Muhammad Abedin, Syeda Nessa, Latifur Khan,
and Bhavani Thuraisingham

Department Of Computer Science
The University of Texas at Dallas
{maa056000, skn051000, lkhan, bxt043000}@utdallas.edu

Abstract. A firewall is a system acting as an interface of a network to
one or more external networks. It implements the security policy of the
network by deciding which packets to let through based on rules defined
by the network administrator. Any error in defining the rules may com-
promise the system security by letting unwanted traffic pass or blocking
desired traffic. Manual definition of rules often results in a set that con-
tains conflicting, redundant or overshadowed rules, resulting in anomalies
in the policy. Manually detecting and resolving these anomalies is a crit-
ical but tedious and error prone task. Existing research on this problem
have been focused on the analysis and detection of the anomalies in fire-
wall policy. Previous works define the possible relations between rules
and also define anomalies in terms of the relations and present algo-
rithms to detect the anomalies by analyzing the rules. In this paper, we
discuss some necessary modifications to the existing definitions of the re-
lations. We present a new algorithm that will simultaneously detect and
resolve any anomaly present in the policy rules by necessary reorder and
split operations to generate a new anomaly free rule set. We also present
proof of correctness of the algorithm. Then we present an algorithm to
merge rules where possible in order to reduce the number of rules and
hence increase efficiency of the firewall.

Keywords: Packet Filters, Network Security, Firewalls, Anomalies,
Security Policy.

1 Introduction

A firewall is a system that acts as an interface of a network to one or more
external networks and regulates the network traffic passing through it. The fire-
wall decides which packets to allow to go through or to drop based on a set of
“rules” defined by the administrator. These rules have to be defined and main-
tained with utmost care, as any slight mistake in defining the rules may allow
unwanted traffic to be able to enter or leave the network, or deny passage to
quite legitimate traffic. Unfortunately, the process of manual definition of the
rules and trying to detect mistakes in the rule set by inspection is very prone to
errors and consumes a lot of time. Thus, research in the direction of detecting

E. Damiani and P. Liu (Eds.): Data and Applications Security 2006, LNCS 4127, pp. 15-Z9] 2006.
© IFIP International Federation for Information Processing 2006

16 M. Abedin et al.

anomalies in firewall rules have gained momentum of recent. Our work focuses on
automating the process of detecting and resolving the anomalies in the rule set.

Firewall rules are usually in the form of a criteria and an action to take if
any packet matches the criteria. Actions are usually accept and reject. A packet
arriving at a firewall is tested with each rule sequentially. Whenever it matches
with the criteria of a rule, the action specified in the rule is executed, and the
rest of the rules are skipped. For this reason, firewall rules are order sensitive.
When a packet matches with more than one rules, the first such rule is executed.
Thus, if the set of packets matched by two rules are not disjoint, they will create
anomalies. For instance, the set of packets matching a rule may be a superset of
those matched by a subsequent rule. In this case, all the packets that the second
rule could have matched will be matched and handled by the first one and the
second rule will never be executed. More complicated anomalies may arise when
the sets of packets matched by two rules are overlapped.

If no rule matches the packet, then the default action of the firewall is taken.
Usually such packets are dropped silently so that nothing unwanted can enter or
exit the network. In this paper, we assume that the default action of the firewall
system is to reject and develop our algorithms accordingly.

Of recent, research work on detecting and resolving anomalies in firewall policy
rules have gained momentum. Mayer et al. present tools for analyzing firewalls
n [I3]. In [8], Eronen et al. propose the approach of representing the rules as
a knowledge base, and present a tool based on Constraint Logic Programming
to allow the user to write higher level operations and queries. Works focusing
on automating the process of detecting anomalies in policy include [12] where
Hazelhurst describes an algorithm to represent the rules as a Binary Decision
Diagram and presents a set of algorithms to analyze the rules. Eppstein et al.
give an efficient algorithm for determining whether a rule set contains conflicts
in [7]. Al-Shaer et al. define the possible relations between firewall rules in [I]
2, 4], and then define anomalies that can occur in a rule set in terms of these
definitions. They also give an algorithm to detect these anomalies, and present
policy advisor tools using these definitions and algorithm. They extend their
work to distributed firewall systems in [3, [B]. A work that focuses on detecting
and resolving anomalies in firewall policy rules is [I1], where they propose a
scheme for resolving conflicts by adding resolve filters. However, this algorithm
requires the support of prioritized rules, which is not always available in firewalls.
Also their treatment of the criterion values only as prefixes makes their work
specific. In [9], Fu et al. define high level security requirements, and develop
mechanisms to detect and resolve conflicts among IPSec policies. Golnabi et al.
describe a Data Mining approach to the anomaly resolution in [10].

Majority of current research focus on the analysis and detection of anomalies
in rules. Those that do address the resolution of anomalies require special fea-
tures or provisions from the firewall, or focus on specific areas. In this paper,
we base our work on the research of Al-Shaer et. al. in [I], 2 B] whose analysis
is applicable to all rule based firewalls in general. However, their work is lim-
ited to the detection of anomalies. We also show that one of their definitions is

Detection and Resolution of Anomalies in Firewall Policy Rules 17

redundant, and the set of definitions do not cover all possibilities. In our work,
we remove the redundant definition, and modify one definition to cover all the
possible relations between rules. We also describe the anomalies in terms of the
modified definitions. Then we present a set of algorithms to simultaneously de-
tect and resolve these anomalies to produce an anomaly-free rule set. We also
present an algorithm to merge rules whenever possible. Reports are also pro-
duced by the algorithms describing the anomalies that were found, how they
were resolved and which rules were merged.

The organization of the paper is as follows. In Sect. [2, we discuss the basic
concepts of firewall systems, representation of rules in firewalls, possible rela-
tions between rules, and possible anomalies between rules in a firewall policy
definition. In Sect. Bl we first present our algorithm for detecting and resolving
anomalies and its proof of correctness. Then we provide an illustrative example
showing how the algorithm works. After that we present our algorithm to merge
rules and provide an example of its application. Finally, in Sect. @], we present
the conclusions drawn from our work and propose some directions for future
work.

2 Firewall Concepts

In this section, we first discuss the basic concepts of firewall systems and their
policy definition. We present our modified definitions of the relationships between
the rules in a firewall policy, and then present the anomalies as described in [IJ.

2.1 Representation of Rules

A rule is defined as a set of criteria and an action to perform when a packet
matches the criteria. The criteria of a rule consist of the elements direction,
protocol, source IP, source port, destination IP and destination port. Therefore
a complete rule may be defined by the ordered tuple (direction, protocol, source
IP, source port, destination IP, destination port, action). Each attribute can be
defined as a range of values, which can be represented and analyzed as sets.

2.2 Relation Between Two Rules

The relation between two rules essentially mean the relation between the set
of packets they match. Thus the action field does not come into play when
considering the relation between two rules. As the values of the other attributes
of firewall rules can be represented as sets, we can consider a rule to be a set of
sets, and we can compare two rules using the set relations described in Fig. [I1
Two rules can be exactly equal if every criteria in the rules match exactly, one
rule can be the subset of the other if each criterion of one rule is a subset of
or equal to the other rule’s criteria, or they can be overlapped if the rules are
not disjoint and at least one of the criteria are overlapped. In the last case, a
rule would match a portion of the packets matched by the other but not every

18 M. Abedin et al.

Fig. 1. (a) Sets A and B are disjoint, AN B = ¢; (b) Sets A and B are equal, A = B;
(c) Set B is a subset of set A, B C A; (d) Sets A and B are overlapped, AN B # ¢,
but AZ Band B¢Z A

packet, and the other rule would also match a portion of the packets matched
by the first rule, but not all.

Al-Shaer et al. discuss these possible relations in [I] and they define the rela-
tions completely disjoint, exactly matched, inclusively matched, partially disjoint
and correlated. We propose some modifications to the relations defined in [IJ.
First we note that it is not needed to distinguish between completely disjoint
and partially disjoint rules as two rules will match entirely different set of pack-
ets if they differ in even only in one field. Further, we observe that the formal
definition of correlated rules does not include the possibility of overlapped field
in which the fields are neither disjoint nor subset of one or the other. We propose
the following modified set of relations between the rules.

Disjoint. Two rules r and s are disjoint, denoted as rRps, if they have at least
one criterion for which they have completely disjoint values. Formally,
rRps if Ja € attr[r.a N s.a = @]

Exactly Matching. Two rules r and s are ezactly matched, denoted by rRgass,
if each criterion of the rules match exactly. Formally,
rRems if Va € attrir.a = s.a

Inclusively Matching. A rule r is a subset, or inclusively matched of another
rule s, denoted by rR)ss, if there exists at least one criterion for which r’s
value is a subset of s’s value and for the rest of the attributes r’s value is
equal to s’s value. Formally,
rRivs if Jocater [@ # G A Vaea [rx C 5.2] AVyeqe [y = 5.9]]

Correlated. Two rules r and s are correlated, denoted by rR¢s, if r and s are
not disjoint, but neither is the subset of the other. Formally,
rRes if (r Rps) A (r Rears) A (s Rrur)

2.3 Possible Anomalies Between Two Rules

In [I], Al-Shaer et al. give formal definitions of the possible anomalies between
rules in terms of the relations defined in [I]. Of these anomalies, we consider
generalization not to be an anomaly, as it is used in practice to specially handle
a specific group of addresses within a larger group, and as such we omit it from
our consideration. Here, we define the anomalies in terms of the relations in

Sect.

Detection and Resolution of Anomalies in Firewall Policy Rules 19

Shadowing Anomaly. A rule r is shadowed by another rule s if s precedes r in
the policy, and s can match all the packets matched by r. The effect is that r
is never activated. Formally, rule r is shadowed by s if s precedes r, rRgass,
and r.action # s.action, or s precedes 1, rftrars, and r.action # s.action.

Correlation Anomaly. Two rules r and s are correlated if they have different
filtering actions and the r matches some packets that match s and the s
matches some packets that r matches. Formally rules » and s have a corre-
lation anomaly if rR¢s, r.action # s.action

Redundancy Anomaly. A redundant rule r performs the same action on the
same packets as another rule s such that if r is removed the security pol-
icy will not be affected. Formally rule r is redundant of rule s if s pre-
cedes r, rRgys, and r.action = s.action, or s precedes r, rRyyrs, and
r.action = s.action; whereas rule s is redundant to rule r if s precedes
r, sRypr, r.action = s.action and At where s precedes t and t precedes 7,
s{Rrm, R }t, raction # t.action

3 Anomaly Resolution Algorithms

This section describes the algorithms to detect and resolve the anomalies present
in a set of firewall rules as defined in the previous section. The algorithm is in
two parts. The first part analyzes the rules and generates a set of disjoint firewall
rules that do not contain any anomaly. The second part analyzes the set of rules
and tries to merge the rules in order to reduce the number of rules thus generated
without introducing any new anomaly.

3.1 Algorithms for Finding and Resolving Anomalies

In this section, we present our algorithm to detect and resolve anomalies. In this
algorithm, we resolve the anomalies as follows: in case of shadowing anomaly,
when rules are exactly matched, we keep the one with the reject action. When the
rules are inclusively matched, we reorder the rules to bring the subset rule before
the superset rule. In case of correlation anomaly, we break down the rules into
disjoint parts and insert them into the list. Of the part that is common to the
correlated rules, we keep the one with the reject action. In case of redundancy
anomaly, we remove the redundant rule.

In our algorithm, we maintain two global lists of firewall rules, old rules list
and new rules list. The old rules list will contain the rules as they are in the
original firewall configuration, and the new rules list will contain the output of
the algorithm, a set of firewall rules without any anomaly. The approach taken
here is incremental, we take each rule in the old rules list and insert it into
new rules list in such a way that new rules list remains free from anomalies.

Algorithm RESOLVE-ANOMALIES controls the whole process. After initializing
the global lists in lines [1l and 2] it takes each rule from the old rules list and
invokes algorithm INSERT on it in lines Bl to @l Then, it scans the new rules list
to resolve any redundancy anomalies that might remain in the list in lines

20 M. Abedin et al.

to [[d by looking for and removing any rule that is a subset of a subsequent rule
with same action.

Algorithm. RESOLVE-ANOMALIES: Resolve anomalies in firewall rules file

1. old rules list + read rules from config file
2. new rules list «— empty list
3. for all r € old rules list do
INSERT(r, new rules list)
. for all r € new rules list do
for all s € new rules list after r do
if » C s then
if r.action = s.action then
Remove r from new rules list
break

SOwNoe T

Algorithm INSERT inserts a rule into the new rules list in such a way that the
list remains anomaly free. If the list is empty, the rule is unconditionally inserted
in line Pl Otherwise, INSERT tests the rule with all the rules in new rules list
using the RESOLVE algorithm in the for loop in line Bl If the rule conflicts with
any rule in the list, RESOLVE will handle it and return true, breaking the loop.
So, at line [I0} if insert flag is true, it means that RESOLVE has already han-
dled the rule. Otherwise, the rule is disjoint or superset with all the rules in
new rules list and it is inserted at the end of the list in line [[11

Algorithm. INSERT(r,new rules list): Insert the rule r into new rules list

1. if new rules list is empty then
2 insert r into new rules list
3. else
4 inserted «— false
) FOR ALL s € new rules list do
6. if r and s are not disjoint then
7 inserted < RESOLVE(r, s)
8 if inserted = true then
9 break
10 if inserted = false then
11. Insert r into new rules list
The algorithm RESOLVE is used to detect and resolve anomalies between two
non-disjoint rules. This algorithm is used by the INSERT algorithm. The first
rule passed to RESOLVE, r, is the rule being inserted, and the second parameter,
s is a rule already in the new rules list. In comparing them, following are the
possibilities:

1. r and s are equal. If they are equal, and their actions are same, then any one
can be discarded. If the actions are different, then the one with the reject
action is retained. This case is handled in lines [I] to [6l

Detection and Resolution of Anomalies in Firewall Policy Rules 21

2. 17 is a subset of s. In this case, we simply insert r before s regardless of the
action. This case is handled in lines [1 to

3. 7 is a superset of s. In this case, r may match with rules further down the
list, so it is allowed to be checked further. No operation is performed in this
case. This case is handled in lines [I0 to [Tl

4. r and s are correlated. In this case, we need to break up the correlated rules
into disjoint rules. This case is handled in lines [[2] to First the set of
attributes in which the two rules differ is determined in line I3, and then
SPLIT is invoked for each of the differing attributes in the for loop in line [[4l
After SPLIT returns, r and s contain the common part of the rules, which is
then inserted.

Algorithm. RESOLVE(r, s): Resolve anomalies between two rules r and s

1. if r = s then

2 if r.action # s.action then

3 set s.action to REJECT and report anomaly

4 else

5. report removal of r

6 return true

7. if r C s then

8 insert r before s into new rules list and report reordering
9. return true

10. if s C r then

11. return false

12. Remove s from new rules list

13. Find set of attributes a = {z|r.z # s.z}

14. for all a; € a do

15. SPLIT(r, S, a;)

16. if r.action # s.action then

17. s.action — REJECT

18. INSERT(s, new rules list)

19. return true

Algorithm SPLIT, is used to split two non-disjoint rules. It is passed the two
rules and the attribute on which the rules differ. It first extracts the parts of
the rules that are disjoint to the two rules and invokes the INSERT algorithm on
them. Then it computes the common part of the two rules. Let r and s be two
rules and let a be the attribute for which SPLIT is invoked. As can be readily
seen from the examples in Fig. 2l(a) and[2(b), the common part will always start
with max(r.a.start, s.a.start) and end with min(r.a.end, s.a.end). The disjoint
part before the common part begins with min(r.a.start, s.a.start) and ends with
max(r.a.start, s.a.start) — 1, and the disjoint part after the common part starts
with min(r.a.end, s.a.end)+1 and ends with max(r.a.end, s.a.end). As these two
parts are disjoint with r and s, but we do not know their relation with the other
rules in new rules list, they are inserted into the new rules list by invoking

22 M. Abedin et al.

INSERT procedure. The common part of the two rules is computed in lines
and [I[4l The disjoint part before the common part is computed and inserted in
lines Bl to B The disjoint part after the common part is computed and inserted
in lines @ to

I.c r.a

s.a s.a

rastart sastat raend s.a.end sastart rastat saend raend
(a) (b)
Fig. 2. (a) r.a.start < s.a.start & r.a.end < s.a.end, so the ranges can be broken into
[r.a.start, s.a.start — 1], [s.a.start,r.a.end] and [r.a.end + 1, s.a.end]. (b) r.a.start >
s.a.start & r.a.end > s.a.end, so the ranges can be broken into [s.a.start, r.a.start —1],
[r.a.start, s.a.end] and [s.a.end + 1,7.a.end)].

Algorithm. SpLIT(7,s,a): Split overlapping rules r and s based on attribute a

left < min(r.a.start, s.a.start)
right < max(r.a.end, s.a.end)
common start «+ max(r.a.start, s.a.start)
common end «— min(r.a.end, s.a.end)
if r.a.start > s.a.start then
INSERT({(left,common start—1), rest of s’s attributes), new rules list)
else if r.a.start < s.a.start then
INSERT({(left, common start—1), rest of r’s attributes), new rules list)
9. if r.a.end > s.a.end then

PO NSO W

10. INSERT({(common end+ 1, right), rest of r’s attributes), new rules list)
11. else if r.a.end < s.a.end then
12. INSERT({(common end+ 1, right), rest of s’s attributes), new rules list)

13. 7 < {(common start,common end), rest of r’s attributes)
14. s « ((common start,common end), rest of s’s attributes)

After completion of the RESOLVE-ANOMALIES algorithm, new rules list will
contain the list of firewall rules that are free from all the anomalies in consider-
ation.

3.2 Proof of Correctness

To prove the correctness of our algorithm, we first present and prove the following
theorem.

Theorem 1. A set of rules R[1...n] is free from shadowing, correlation and
redundancy anomalies if for 1 < i < j < n, exactly one of the following three
conditions hold:

Detection and Resolution of Anomalies in Firewall Policy Rules 23

1. R[i|RpR[j]

2. R[i|RimR[j] and R[i].action # R|[j].action

3. R[i]RramR[j] and R[i].action = R[j].action only if there exists some k
such that i < k < j and R[i|Ripm R[k] and R[i].action # R[k].action

Proof. Shadowing anomaly cannot exist in the list as for R[i] cannot be a subset
of R[j] if ¢ > j. Correlation anomaly cannot exist in the list as the only relations
allowed in the list are ®p and Rjps. The absence of redundancy anomaly is
ensured by conditions 2 and 3. O

We show by using loop invariants [6] that after the completion of Algorithm
RESOLVE-ANOMALIES, new rules list will maintain these properties and so it
will be anomaly free. The loop invariant is:

At the start of each iteration of the for loop in line B] of Algorithm
RESOLVE-ANOMALIES, for 1 < i < j < m, exactly one of the following
holds:

1. new rules list[i|Rpnew rules list[j]

2. new rules list[i|Rrpnew rules list[j]
where m is the size of new rules list.

Initialization. Before the first iteration, the new rules list is initialized to
empty and the invariant holds trivially.

Maintenance. Let r be the rule being inserted in an iteration. When INSERT
is invoked on r, the following cases are possible:

1. new rules list is empty. Then r is inserted into new rules list, and the
iteration is complete, with the invariant holding trivially.

2. r is disjoint with every rule in new rules list. In this case, r is inserted
at the end of the list. The iteration is complete, and the loop invariant
holds.

3. r is not disjoint with rule s € new rules list. Then the procedure RE-
SOLVE is invoked with r and s, which checks the following possibilities:
(a) rREns. In this case, if their actions are same, r is redundant and

need not be inserted. If their actions are different, then r and s are
conflicting rules, and we simply change the action of s to reject,
without inserting r. In both cases, the iteration completes without
inserting anything, so the loop invariant holds.

(b) *Rrars. In this case, r is inserted before s in new rules list . The
iteration is complete, and the loop invariant holds.

(¢) sRrprr. In this case, RESOLVE returns false so that the loop in line
in INSERT can continue until either the end of new rules list has
been reached, or for some subsequent rule ¢ has been found that is
not disjoint with r and call to RESOLVE(r, t) has returned true. In
the first case, all the rules after s in new rules list are disjoint with
r, so r can be appended to new rules list without violating the loop
invariant. In the second case, the call to RESOLVE(r, t) has handled
r without violating the loop invariant, so in both cases the invariant
holds.

24 M. Abedin et al.

(d) rRes. In this case, first s is removed from new rules list as r and s
are going to be broken into disjoint rules. Then, algorithm SPLIT is
invoked for each attribute for which r and s differ. SPLIT breaks up
the attribute’s value into the part common to the rules and the parts
unique to the rules. The unique parts are by definition disjoint, so
they are inserted into the list by calling INSERT. After breaking up all
the non-matching attributes, r and s are exactly matched. If they are
of different action, then s.action is set to reject, otherwise s already
contains the common action. Then s is inserted into new rules list
by INSERT procedure. This completes the iteration, and ensures that
the loop invariant holds.

Termination. The loop terminates when all the rules in old rules list has been
inserted into nmew rules list, and as the loop invariant holds for each it-
eration, we have that conditions of the loop invariant hold for the entire
new rules list.

Thus, at the end of the for loop in line 3 of Algorithm RESOLVE-ANOMALIES,
each element of the new rules list is either disjoint with or subset of the sub-
sequent elements. The for loop at line [l scans and removes any redundancy
anomalies present in the new rules list. If any rule r in new rules list is subset
of any subsequent rule s in new rules list with the same action, r is removed
as it is redundant. So at the end of this loop, new rules list will maintain the
three properties stated in Theorem [, and so new rules list will be free from
shadowing, correlation and redundancy anomalies.

3.3 Cost Analysis

The cost of running the algorithm depends on the nature of the rules in the
input. If a rule is disjoint or superset with the other rules of the new rules list
then the rule is inserted into the list without further invoking procedure INSERT.
In this case the for loop in line Bl of Algorithm INSERT has to traverse the whole
new rules list. If a rule is subset of any rule in the new rules list, then the rule
is inserted just before the superset rule and the loop terminates immediately.
So in the worst case the whole new rules list may have to be traversed. A rule
is discarded if it is equal to any rule in the new rules list, and in the worst
case the whole new rules list may have to be traversed. If a rule is correlated
with a rule in the new rules list then they will be divided into a set of mutually
disjoint rules. In the worst case the number of rules thus generated will be up
to twice the number of attributes plus one, and these rules will be inserted
into the new rules list by invoking INSERT recursively. RESOLVE-ANOMALIES
invokes INSERT once for each rule in new rules list in the for loop in line 3] and
removes the redundancy anomalies in the for loop in line[Bl The running time of
RESOLVE-ANOMALIES is dominated by the number of times INSERT is invoked,
which depends on the number of correlated rules. In the worst case, if all rules
are correlated, the running time may deteriorate to exponential order.

Detection and Resolution of Anomalies in Firewall Policy Rules 25

3.4 Illustrative Example

Let us consider the following set of firewall rules for analysis with the algorithm.

— =

A e BRI o e

(IN, TCP, 129.110.96.117, ANY, ANY, 80, REJECT)

(IN, TCP, 129.110.96.¥, ANY, ANY, 80, ACCEPT)

(IN, TCP, ANY, ANY, 129.110.96.80, 80, ACCEPT)

(IN, TCP, 129.110.96.%, ANY, 129.110.96.80, 80, REJECT)
(OUT, TCP, 129.110.96.80, 22, ANY, ANY, REJECT)

(IN, TCP, 129.110.96.117, ANY, 129.110.96.80, 22, REJECT)
(IN, UDP, 129.110.96.117, ANY, 129.110.96.%, 22, REJECT)
(IN, UDP, 129.110.96.117, ANY, 129.110.96.80, 22, REJECT)
(IN, UDP, 129.110.96.117, ANY, 129.110.96.117, 22, ACCEPT)
(IN, UDP, 129.110.96.117, ANY, 129.110.96.117, 22, REJECT)
(OUT, UDP, ANY, ANY, ANY, ANY, REJECT)

Step-1. As the new rules list is empty, rule-1 is inserted as it is.
Step-2. When rule-2 is inserted, new rules list contains only one rule, the one

that was inserted in the previous step. We have, r = (IN, TCP, 129.110.96.%*,
ANY, ANY, 80, ACCEPT) and s = (IN, TCP, 129.110.96.117, ANY, ANY,
80, REJECT). Here, s C r, so r is inserted into new rules list after s.

Step-3. In this step, r = (IN, TCP, ANY, ANY, 129.110.96.80, 80, ACCEPT).

In the first iteration, s = (IN,TCP,129.110.96.117,ANY,ANY ,80,REJECT).
Clearly these two rules are correlated, with s.srcip C r.srcip and r.destip C
s.destip. Therefore these rules must be broken down. After splitting the rules
into disjoint parts, we have the following rules in new rules list:

1. (IN, TCP, 129.110.96.1-116, ANY, 129.110.96.80, 80, ACCEPT)
(IN, TCP, 129.110.96.118-254, ANY, 129.110.96.80, 80, ACCEPT)
(IN, TCP, 129.110.96.117, ANY, 129.110.96.1-79, 80, REJECT)
(IN, TCP, 129.110.96.117, ANY, 129.110.96.81-254, 80, REJECT)
(IN, TCP, 129.110.96.117, ANY, 129.110.96.80, 80, REJECT)
(IN, TCP, 129.110.96.*%, ANY, ANY, 80, ACCEPT)

S U W

After completion of the first for loop in line B] in the algorithm RESOLVE-
ANOMALIES, the new rules list will hold the following rules:

—_

i e IR o

(IN, TCP, 129.110.96.1-116, ANY, 129.110.96.80, 80, ACCEPT)
(IN, TCP, 129.110.96.118-254, ANY, 129.110.96.80, 80, ACCEPT)
(IN, TCP, 129.110.96.117, ANY, 129.110.96.1-79, 80, REJECT)
(IN, TCP, 129.110.96.117, ANY, 129.110.96.81-254, 80, REJECT)
(IN, TCP, 129.110.96.117, ANY, 129.110.96.80, 80, REJECT)
(IN, TCP, 129.110.96.*%, ANY, 129.110.96.80, 80, REJECT)

(IN, TCP, 129.110.96.*%, ANY, ANY, 80, ACCEPT)

(OUT, TCP, 129.110.96.80, 22, ANY, ANY, REJECT)

(IN, TCP, 129.110.96.117, ANY 129.110.96.80, 22, REJECT)
(IN, UDP, 129.110.96.117, ANY, 129.110.96.80, 22, REJECT)
(IN, UDP, 129.110.96.117, ANY, 129.110.96.117, 22, REJECT)

26 M. Abedin et al.

12. (IN, UDP, 129.110.96.117, ANY, 129.110.96.*, 22, REJECT)
13. (OUT, UDP, ANY, ANY, ANY, ANY, REJECT)

The next step is to scan this list to find and resolve the redundancy anomalies.
In this list, rule-1 is a subset of rule-6, but as the rules have different action,
rule-1 is retained. Similarly, rule-2, which is also a subset of rule-6 with differing
action, is also retained. Rules 3 and 4 are subsets of rule-7, but are retained as
they have different action than rule-7. Rule-5 is a subset of rule-6, and as they
have the same action, rule-5 is removed. After removing these rules, the list is
free from all the anomalies.

3.5 Algorithms for Merging Rules

After the completion of the anomaly resolution algorithm, there are no correlated
rules in the list. In this list, we can merge rules having attributes with consecutive
ranges with the same action. To accomplish this, we construct a tree using
Algorithm TREEINSERT. Each node of the tree represents an attribute. The
edges leading out of the nodes represent values of the attribute. Each edge in
the tree represents a particular range of value for the attribute of the source
node, and it points to a node for the next attribute in the rule represented
by the path. For example, the root node of the tree represents the attribute
Direction, and there can be two edges out of the root representing IN and OUT.
We consider a firewall rule to be represented by the ordered tuple as mentioned
in Sect. 2.l So, the edge representing the value IN coming out of the root node
would point to a node for Protocol. The leaf nodes always represent the attribute
Action. A complete path from the root to a leaf corresponds to one firewall rule
in the policy. For example, the leftmost path in the tree in Fig. [B(a) represents
the firewall rule (IN, TCP, 202.80.169.29-63, 483, 129.110.96.64-127, 100-110,
ACCEPT).

Algorithm TREEINSERT, takes as input a rule and a node of the tree. It checks
if the value of the rule for the attribute represented by the node matches any
of the values of the edges out of the node. If it matches any edge of the node,
then it recursively invokes TREEINSERT on the node pointed by the edge with
the rule. Otherwise it creates a new edge and adds it to the list of edges of the
node.

Algorithm. TREEINSERT(n, r): Inserts rule r into the node n of the rule tree

1. for all edge e; € n.edges do

2 if r.(n.attribute) = e;.range then

3. TREEINSERT (e;.vertex, r)

4. return

5. v « new Vertex(next attribute after n.attribute, NULL)

6. Insert new edge (r.(n.attribute), r.(n.attribute),v) in n.edges
7. TREEINSERT (v, r)

We use Algorithm MERGE on the tree to merge those edges of the tree that
has consecutive values of attributes, and has exactly matching subtrees. It first

Detection and Resolution of Anomalies in Firewall Policy Rules 27

calls itself recursively on each of its children in line 2] to ensure that their sub-
trees are already merged. Then, it takes each edge and matches its range with all
the other edges to see if they can be merged. Whether two edges can be merged
depends on two criteria. First, their ranges must be contiguous i.e. the range of
one starts immediately after the end of the other. Second, the subtrees of the
nodes pointed to by the edges must match exactly. This criterion ensures that
all the attributes after this attribute are same for all the rules below this node. If
these two criteria are met, they are merged into one edge in place of the original
two edges. After merging the possible rules, the number of rules defined in the
firewall policy is reduced and it helps to increase the efficiency of firewall policy
management. The example given in Fig. Bl illustrate how the merge procedure
works.

Algorithm. MERGE(n): Merges edges of node n representing a continuous range

1. for all edge e € n.edges do

2 MERGE(e.node)

3. for all edge e € n.edges do

4. for all edge €’ # e € n.edges do

5 if e’s and e’’s ranges are contiguous and Subtree(e)=Subtree(e’) then
6 Merge e.range and €’.range into e.range

7 Remove €’ from n.edges

3.6 Illustrative Example of the Merge Algorithm

To illustrate the merging algorithm, we start with the following set of non-
anomalous rules. We deliberately chose a set of rules with the same action since
rules with different action will never be merged.

. (IN, TCP, 202.80.169.29-63, 483, 129.110.96.64-127, 100-110, ACCEPT)

. (IN, TCP, 202.80.169.29-63, 483, 129.110.96.64-127, 111-127, ACCEPT)

. (IN, TCP, 202.80.169.29-63, 483, 129.110.96.128-164, 100-127, ACCEPT)

. (IN, TCP, 202.80.169.29-63, 484, 129.110.96.64-99, 100-127, ACCEPT)

. (IN, TCP, 202.80.169.29-63, 484, 129.110.96.100-164, 100-127, ACCEPT)

. (IN, TCP, 202.80.169.64-110, 483-484, 129.110.96.64-164, 100-127,ACCEPT)

S UL W N

From this rules list we generate the tree as in Fig Bl(a) by the TREEINSERT
algorithm. On this tree, the Merge procedure is run. The Merge algorithm tra-
verses the tree in post order. Thus, the first node to be processed is node 14.
As it has only one child, it returns without any operation. The next node in
order is 15, which also has only one child. The next node to be processed is node
9. The attribute represented by node 9 is destination port. The ranges of its
two children, 100-110 and 111-127 are consecutive, and also their subtrees are
the same. Thus, these two edges are merged to obtain one edge with the range
100-127.

28 M. Abedin et al.

IN
IN
2. Protocol
2. Protocol

646
6. &rc Pot

4 8re Port

4

[3.Destip | [s Destip | [7oestip | [sDestip |

128110 9

129,104 12911048649 .
5 - 129110 36 64-184 12911048 64164 i sero0qgs 1291108664168

6.64-127,
123110 56,128-164

|9_ Dest port | ho. Dest port| |11. Dest pon‘ ’12. Dest p0n| hs. Dest porq hW Dast pnn‘ ﬁZ Dest pnn| hz Dest pnn|
1004%\ 100‘12? WOOLZT 100‘12? 100‘12? 100127 1001127 1000127
11y 27 k 100127
[14. action] 15, acton | [16. Action] [17 action] [rs. #ction] [1s. ction [17. aetion | [1. action] fts. action |
AC(JEPT ACJEPT ACCIEPT ACCIEPT ACCEPT ACCEPT ACCEPT AGJEPT (b)AC EPT AGCEPT

Fig. 3. (a) Tree generated from the example rules list by the Treelnsert algorithm.
(b) Intermediate state of the tree: node 7’s children are going to be merged next.

Of the nodes that are going to be processed now, nodes 16 and 10 are
each of one child only, so they do not require any further processing. How-
ever, node 6, representing destination IP address, has two children, and their IP
address ranges, 129.110.96.64-127 and 129.110.96.128-164, are consecutive. Also,
the subtrees from the nodes 9 and 10 are also the same. Hence, they are merged
to become one edge with range value of 129.110.96.128-164.

So far, we have eliminated three nodes, 15, 16 and 10. Of the next nodes
to be processed, nodes 17, 11, 18 and 12 has only one child, and hence incur
no processing. At node 7, as shown in Fig B(b), the represented attribute is
destination IP address, and the ranges of its children are 129.110.96.64-99 and
129.110.96.100-164. The ranges being consecutive, they are merged into one edge
of range 129.110.96.64-164, eliminating node 12 and 18.

After the MERGE algorithm is complete on the entire tree, we are left with
the single rule (IN, TCP, 202.80.169.29-110, 483-484, 129.110.96.64-164, 100-127,
ACCEPT) .

4 Conclusion and Future Works

Resolution of anomalies from firewall policy rules is vital to the network’s security
as anomalies can introduce unwarranted and hard to find security holes. Our
work presents an automated process for detecting and resolving such anomalies.
The anomaly resolution algorithm and the merging algorithm should produce
a compact yet anomaly free rule set that would be easier to understand and

Detection and Resolution of Anomalies in Firewall Policy Rules 29

maintain. This algorithms can also be integrated into policy advisor and editing
tools. The paper also establishes the complete definition and analysis of the
relations between rules.

In future, this analysis can be extended to distributed firewalls. Also, we
propose to use data mining techniques to analyze the log files of the firewall and
discover other kinds of anomalies. These techniques should be applied only after
the rules have been made free from anomaly by applying the algorithms in this
paper. That way it would be ensured that not only syntactic but also semantic
mistakes in the rules will be captured. Research in this direction has already
started.

References

[1] E. Al-Shaer and H. Hamed. Design and implementation of firewall policy advisor
tools. Technical Report CTI-techrep0801, School of Computer Science Telecom-
munications and Information Systems, DePaul University, August 2002.

[2] E. Al-Shaer and H. Hamed. Firewall policy advisor for anomaly detection and
rule editing. In IEEE/IFIP Integrated Management Conference (IM’2003), March
2003.

[3] E. Al-Shaer and H. Hamed. Discovery of policy anomalies in distributed firewalls.
In Proc. 23rd Conf. IEEE Communications Soc. (INFOCOM 2004), Vol. 23, No.
1, pages 2605-2616, March 2004.

[4] E. Al-Shaer and H. Hamed. Taxonomy of conflicts in network security policies.
IEEE Communications Magazine, 44(3), March 2006.

[5] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan. Conflict classification and
analysis of distributed firewall policies. IEEE Journal on Selected Areas in Com-
munications (JSAC), 23(10), October 2005.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, Cambridge, MA, U.S.A, 2nd edition, 2001.

[7] D. Eppstein and S. Muthukrishnan. Internet packet filter management and rect-
angle geometry. In Proceedings of the 12th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2001), pages 827-835, January 2001.

[8] P. Eronen and J. Zitting. An expert system for analyzing firewall rules. In
Proceedings of the 6th Nordic Workshop on Secure IT Systems (NordSec 2001),
pages 100-107, November 2001.

[9] Z. Fu, S. F. Wu, H. Huang, K. Loh, F. Gong, I. Baldine, and C. Xu. IPSec/VPN
security policy: Correctness, conflict detection, and resolution. In Proceedings of
Policy2001 Workshop, January 2001.

[10] K. Golnabi, R. K. Min, L. Khan, and E. Al-Shaer. Analysis of firewall policy rules
using data mining techniques. In IEEE/IFIP Network Operations and Manage-
ment Symposium (NOMS 2006), April 2006.

[11] A. Hari, S. Suri, and G. M. Parulkar. Detecting and resolving packet filter con-
flicts. In INFOCOM (3), pages 1203-1212, March 2000.

[12] S. Hazelhurst. Algorithms for analysing firewall and router access lists. Technical
Report TR-WitsCS-1999-5, Department of Computer Science, University of the
Witwatersrand, South Africa, July 1999.

[13] A. Mayer, A. Wool, and E. Ziskind. Fang: A firewall analysis engine. In Proceed-
ings, IEEE Symposium on Security and Privacy, pages 177-187. IEEE CS Press,
May 2000.

	Introduction
	Firewall Concepts
	Representation of Rules
	Relation Between Two Rules
	Possible Anomalies Between Two Rules

	Anomaly Resolution Algorithms
	Algorithms for Finding and Resolving Anomalies
	Proof of Correctness
	Cost Analysis
	Illustrative Example
	Algorithms for Merging Rules
	Illustrative Example of the Merge Algorithm

	Conclusion and Future Works

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

