
Design Patterns for Self-Balancing Trees

Dung (“Zung”) Nguyen and Stephen B. Wong
Dept. of Computer Science

Rice University
Houston, TX 77005

dxnguyen@rice.edu, swong@rice.edu

Abstract

We describe how we lead students through the process of
specifying and implementing a design of mutable tree data
structures as an object-oriented framework. Our design entails
generalizing the visitor pattern in which the tree structure serves
as host with a varying number of states and the algorithms
operating on the tree act as visitors.

We demonstrate the capabilities of our tree framework with an
object-oriented insertion algorithm and its matching deletion
algorithm, which maintain the host tree’s height balance while
constrained to a maximum number of elements per node. We
implement our algorithms in Java and make extensive use of
anonymous inner classes. The key design elements are
commands manufactured on the fly as anonymous inner objects.
Their closures provide the appropriate context for them to operate
with little parameter passing and thus promote a declarative style
of programming with minimal flow control, reducing code
complexity.

Our framework serves to illustrate how proper abstraction
liberates us from thinking of low-level procedural details and
leads us to implementations that closely reflect the essence of the
system behavior. Our formulation is also an example of how
object-oriented design principles overlap if not encompass those
of functional and declarative programming.

Keywords

algorithm, B-Tree, closure, component software, data structure,
declarative programming, design pattern, finite state machine,
framework, functional programming, Java, inner class, lambda,
object-oriented programming, self-balancing tree

1 Introduction

Lists and trees are standard topics in a computer science
curriculum. In many applications, they are used to implement
containers whose main behaviors consist of storage, retrieval and

removal of data objects. Various forms of self-balancing trees
(SBTs) such as B-trees guarantee a O(logN) efficiency for these
computations. Current textbooks on this subject (see for example
[2]) discuss them in terms of complicated, low-level pseudo-code.
The abstract nature of the data structures and the algorithms that
manipulate them is lost in a sea of details. The problem lies in the
lack of delineation between the intrinsic structural operations of a
tree and the extrinsic, order-dependent calculations needed to
maintain its balance. The resulting morass of data manipulations
hides the underlying concepts and hampers the students’ learning.

We seek to alleviate the difficulties faced by students by offering
an object-oriented (OO) formulation of SBTs, which is much
easier to express and implement. We cover SBTs towards the end
of our second semester (CS2) course. Our CS2 course introduces
students to OO program design and the fundamental data
structures and algorithms. It emphasizes proper formulation and
abstraction of the problem domain in the programming process in
order to build programs that are robust, flexible, and extensible. It
teaches how design patterns help formulate and implement
abstractions in effective and elegant ways. By the end the course,
when the SBT material is presented, the students are already
grounded in such principles as data and behavioral abstraction and
the separation of variant (extrinsic) from invariant (intrinsic)
behaviors. They are also familiar with common design patterns
such as composite, state, visitor and command. An important
lesson they learn from designing the SBT is how to abstractly
decompose a problem by asking fundamental questions about the
system and focusing on its intrinsic requirements. Hence, a major
focus of this paper will be the thought progression involved with
the design process. This advanced topic serves to hone and
coalesce the concepts and skills practiced throughout the
semester.

Our work is based on the framework proposed in 1999 by Nguyen
and Wong [3]. Their framework decouples algorithms and data
structures using a combination of composite, state and visitor
design patterns. Later they illustrated its extensibility and
flexibility by transparently adding lazy evaluation capabilities [4].
However, their simple framework proves to be inadequate to
model self-balancing trees due to the inherent limitation of the
visitor design pattern with regards to dynamically changing
numbers of hosts. In this paper, we present enhancements to the
previous Nguyen/Wong framework that overcomes the original
limitations and produces an object-oriented SBT implementation
that closely matches the abstract view of the structure.

Our paper serves a second purpose of exemplifying how good OO
design enables one to re-focus on the fundamental nature of the
problem and create solutions that are both simple and powerful.
Effective use of polymorphism streamlines the code, facilitates

straightforward proofs of correctness and trivializes the
complexity analysis.

Section 2 explores the fundamental nature of trees with multiple
data elements per node. The result is a specification and
implementation of a minimal and complete set of behaviors that
are intrinsic to the tree structure. The number of elements in the
root node is used to represent the current state of the tree. We
design such a tree as a composite structure, which behaves as a
finite state machine whose number of states can vary dynamically
at run-time.

Section 3 describes how we generalize the visitor pattern to
decouple the extrinsic algorithms that operate on a tree from its
intrinsic structural behaviors. In our formulation, the extrinsic
algorithms act as visitors to the host tree. The standard visitor
pattern is extended to handle the arbitrary numbers of hosts
encountered in an SBT system. The tree structure and its visitors
thus form a framework with dynamically re-configurable
components.

Section 4 defines the notion of a height-balanced tree and
discusses four basic operations that transport data vertically by
one level and modify the tree structure while maintaining its
balance. These operations serve as building blocks for the
insertion and deletion algorithms.

Section 5 describes our SBT insertion algorithm and its Java
implementation. The algorithm’s intuitive heuristics will lead to a
rigorous proof of correctness. The complexity analysis will be
shown to be straightforward, simple and intuitive.

Section 6 describes our SBT deletion algorithm and its Java
implementation. As with the insertion algorithm, the deletion
algorithm’s heuristics are intuitive and lead to a rigorous proof-of-
correctness. Since both insertion and deletion rely on vertical
transportation of data, their complexity analyses are identical.

2 The Tree Structure

We consider trees, called TreeN, that can hold multiple data
elements in each node and where each node can have multiple
child trees. Without loss of generality, we limit the data elements
to be of Integer type. The first step with the students is to lead
them to a concise and precise definition of the problem, that is,
what exactly is the data structure under consideration? Recursive

data definitions are fundamental not only to good OO design but
to computing in general.

2.1 Data Definition

A TreeN can be either empty or non-empty.

x� An empty TreeN contains nothing.
x� A non-empty TreeN holds an arbitrary, positive, number of

data elements, n, and n+1 TreeN objects called “child
trees”. For 0 <= i < n, the ith and the i+1th child trees are
called the left child tree and the right child tree of the ith data
element respectively.

The above inductive definition for the tree is well represented by
the composite design pattern [1]. Since the operations on a tree
often depend on the number of data elements in the nodes, we can
model the tree as having different “states” which determine the
tree’s behavior at any given moment. The state of the tree is
defined by the number of data elements in the root node of the
tree. We can thus identify each state with an integer value. For
instance, an empty tree has state = 0, while a tree with one data
element and two child trees (commonly referred to as a “2-node
tree”) is in state = 1. Operations on the tree may cause the tree to
transition from one state to another as data elements and
associated child trees are added or removed. The tree thus
behaves as a finite state machine.

2.2 Intrinsic vs. Extrinsic Behavior

The next step with the students is to identify the intrinsic
behaviors of the system and declare them as the public methods of
the tree. For maximal decoupling and flexibility, the methods
should form a complete and minimal set of operations from which
all other possible operations on the tree can be constructed. The
intrinsic structural behaviors of the tree are those that serve
exactly two purposes:

x� Provide access to the tree’s data and structural

subcomponents, and
x� Perform constructive and destructive modifications of the

tree’s internal structure, thus enabling the tree to transition
from one state to another.

Figure 1 : UML class diagram for the tree and algorithms as visitors.

The intrinsic structural behaviors of the tree are invariant, that is
they remain fixed in all applications, and enable us to build trees
of any shape that can hold an arbitrary number of data elements
in any node. Extrinsic behaviors are those that are dependent on a
particular application of the tree and are thus variant. The variant
behaviors will be addressed in Section 3. Distinguishing and
separating intrinsic from extrinsic object behaviors is a central
theme in our approach to OO pedagogy throughout the course.

To identify the intrinsic operations of the tree, it is crucial that we
separate the operations that manipulate data elements from those
that modify the tree’s structure. Structural modification should
involve trees as atomic units and have well defined behavior for
any tree. Data operations are relegated to the construction of new
trees and to simple gettor methods. The intrinsic behaviors of a
tree can thus be classified as constructors, structural modifiers and
gettors. Delineating data manipulators from structural modifiers
eliminates the usual problem of insertions and deletions that can
only be unambiguously applied to a limited number of tree
configurations.

Figure 1 depicts the UML class diagram of TreeN together with
algorithms that act as visitors (discussed in Section 3).
Figure 2 illustrates the intrinsic structural operations of the tree
(discussed below) and Listing 1 shows the Java implementation
of TreeN.

2.3 Constructors

The purpose of a constructor is to initialize the instantiated object
to a well-defined state. Since there are two clearly distinct states
of a tree, empty and non-empty, each has an associated

constructor. The empty tree constructor, TreeN(), creates a
empty (state = 0) tree. The non-empty constructor,
TreeN(Integer n) , takes a single data element and constructs a
2-node (state = 1) leaf tree. This can be viewed as providing the
base case and inductive case construction for the system. There is
no need for construction of states > 1 as they can be created
through structural modifications of 2-node leaf trees. The set of
constructors is thus complete and minimal.

2.4 Structural Modifiers

Structural modifiers are methods with side effects that work
strictly on trees and not on data. They are also well defined for all
trees in all possible states. To span the space of all possible
structural modifications, one must fundamentally be able to
modify the tree, a 2-dimensional entity, in both its width and
height directions. In addition to constructive processes in the two
directions, a destructive process must also be provided. This only
implies that the complete and minimal set of structural modifies
must consist of three methods, none of which can be constructed
from the other two. A full proof that only three methods
constitute a complete and minimal set is beyond the scope of this
paper. An examination of the following three methods in
Figure 2 reveals that they create constructive and destructive
behavior in both the horizontal and vertical directions.

splitUpAt(int i) mutates the receiver, in state s, into a 2-node
tree (state = 1), where the i th element becomes the root data and
the left child’s root contains the 0 through i-1 elements of the
original root and the right child’s root contains the i+1 through s
elements of the original root. Splitting up on an empty tree is a
no-operation.

Figure 2 : Intrinsic structural operations on the tree.

t1

-10 0 10 -20 20

t1.splitUpAt(1)

-10

0 10 -20 20

t2

t1.spliceAt(1, t2)

-10 0 10 -20 20

t1.splitDownAt(1)

-10

0 10 -20 20

splitDownAt(int i) removes the ith element from the root of the
receiver including its corresponding left and right child trees. The
resultant new child tree is a 2-node tree where its root data is the
original i th element and where its left and right children are the
original i th element’s left and right children respectively. Splitting
down a 2-node tree results in an empty tree and is equivalent to a
deletion of a single data element. Splitting down an empty tree is
a no-operation.

spliceAt(int i, TreeN t) joins the supplied source tree t to the
receiver at index i: the ith child of the receiver is deleted and the
root node of t is “spliced” between the ith and i+1th elements of
the receiver. The children of t remain in their respective places
with regards to the original elements of t. Splicing an empty
source tree into a non-empty tree is a no-operation. Splicing a
non-empty source tree into an empty tree will mutate the empty
receiver tree into a shallow copy of the source tree.

2.5 Data Accessors

getDat(int i) and getChild(int i) are the standard “gettors” that
provide access to data and child trees without side-effect. The
root node’s data elements can be accessed via an index i, where 0
�� i < state (= node size). The root node’s child trees can be
accessed similarly but where 0 ��i ��VWDWH���6LQFH�DOO�GDWD�HOHPHQWV�
and child trees can be accessed through these methods and only
through these methods, the set of gettors is thus minimal and
complete.

The standard “settors” that set a child tree to a new tree at index i,
and that set a data element at index i, can be easily replicated
using a combination of the above methods. This is a simple and
elucidating exercise for the students.

We do not consider operations such as specific insertion and
deletion algorithms that maintain the balance of a tree as intrinsic
to the tree’s behavior. The tree is simply a structure and has no
inherent knowledge of the properties of the data it contains or the
heights of its child trees. These operations are extrinsic to the tree
structure, and as Nguyen and Wong advocated in [3], they should
be decoupled from the intrinsic structural behaviors of the tree.
The visitor pattern, with the extrinsic algorithms as visitors and
the tree structure as the host, was used to achieve this decoupling.
The ability of the tree structure to perform all possible extrinsic
operations is an intrinsic behavior of the tree and can be expressed
as a “hook” method.

2.6 Extensibility Hook

execute(ITreeNAlgo algo, Object param) is the “accept”
method for a host in the visitor design pattern [1]. It provides a
“hook” for all algorithms defined externally to the tree to operate
properly on the tree without knowing the state of the tree. The
abstraction for all such extrinsic operations is encapsulated in an
interface called ITreeNAlgo, which acts as a visitor to the tree
host.

3 The Visitors

With the intrinsic behaviors aside, the students can now
concentrate on the extrinsic, variant behaviors of the system. The
students are lead to focus on the following two key characteristics
of the system.

public class TreeN {
private Vector _children = new Vector();
private Vector _data = new Vector();

public TreeN() { }
public TreeN(Integer n) { this (new TreeN(), n, new TreeN()); }

private TreeN(Vector data, Vector children) {
_data = data; _children = children;

}

private TreeN(TreeN lTree, Object n, TreeN rTree) {

_data.add(n); _children.add(lTree); _children.add(rTree);
}
public Integer getDat(int i) { return (Integer)_data.get(i); }
public TreeN getChild(int i) { return (TreeN)_children.get(i); }

public TreeN spliceAt(int i, TreeN tree) {

int k =tree.data.size();
if (k > 0) {

if (_data.size() > 0) _children.set(i, tree.getChild(k--));
else _children.add(i, tree.getChild(k--));
for (; k >= 0, k--) {

_data.add(i, tree.getDat(k));
_children.add(i, tree.getChild(k));

}
}
return this ;

}

public TreeN splitUpAt(int i) {
if (_data.size() > 1) {

TreeN lTree, rTree;
Vector newData = new Vector(), newChildren = new Vector();
Object rootDat = _data.remove(i);
for (int k = 0; k < i; k++) {

newData.add(_data.remove(0));
newChildren.add(_children.remove(0));

}
newChildren.add(_children.remove(0));
if (newData.size() > 0)

lTree = new TreeN(newData, newChildren);
else lTree = (TreeN)newChildren.firstElement();
if (_data.size() > 0) rTree = new TreeN(_data, _children);
else rTree = (TreeN)_children.firstElement();
(_data = new Vector()).add(rootDat);
(_children = new Vector()).add(lTree);
_children.add(rTree);

}
return this ;

}

public TreeN splitDownAt(int i) {
if (_data.size() > 1) {

TreeN newChild =
new TreeN(getChild(i),_data.remove(i),getChild(i+1));
_children.remove(i);
_children.set(i, newChild);

}
else {

_data.clear();
_children.clear();

}
return this ;

}

public Object execute(ITreeNAlgo algo, Object param) {
return algo.caseAt(_data.size(), this , param);

}
}

Listing 1 : TreeN implementation

1. All extrinsic operations can be constructed solely from the

intrinsic behaviors.
2. Extrinsic behaviors can depend on the state of the tree, which

is dynamic and arbitrary.

The visitor design pattern has been proven useful for
implementing extrinsic operations [3] but is inadequate for the
problem at hand. The students’ prior grounding in the visitor
pattern enables them to easily understand its limitations and the
extensions required to overcome them.

Algorithms on a host tree often depend on its state, the size of its
root node. The ITreeNAlgo visitor interface (see
Figure 1) thus must provide a specific method for each of the
host states. Since any tree node can hold an arbitrary number of
data elements, an arbitrary number of visiting methods must be
defined. That is, the visitor must have a varying number of
visiting methods to match the host’s states. Since standard
visitors would match one method per host state, the system is
hamstrung by physical limitation that only a fixed number of
methods can be defined. This limitation can be overcome by
replacing the multiple different methods of the visitor with a
single “caseAt ” method parameterized by an integer index. The
individual hosts are now identified by an integer value, the state
number, and they can now parametrically call their respective
method in the visitor. Since the host structure provides a
complete set of public primitive behaviors, all other algorithms on
the tree can be expressed in terms of these primitive behaviors and
encapsulated as visitors.

The contractual obligations of ITreeNAlgo as a visitor and
TreeN as a host of are summarized in the following.

Visitor (implements ITreeNAlgo) must

x� provide a “visiting” method, namely

Object caseAt(int s, TreeN h, Object p) , to operate on
a host tree h that is in state s with a given input p;

x� guarantee that this visiting method has a well-defined
behavior for all values of s. This includes the possibility of
throwing an exception or of performing a no-operation.

Host (TreeN) must

x� be in some state characterized by an integer s;
x� provide

o a complete set of public methods for all intrinsic

structural and data access operations, and
o a “hook” method, namely

Object execute(ITreeNAlgo v, Object p) , to
perform any extrinsic tree algorithm v with a given
input p. v.caseAt(…) is guaranteed to be called with
the host’s current state, the host and p as arguments.
The result will be returned.

The visitor design pattern is a small-scale example of a
component-framework system. One of the benefits of the
inverted control structure of component-framework systems is
that the component (the visitor) is guaranteed to have the correct
behavior called for any given state of the framework (the host).

4 Self-Balancing Trees

As before, students are lead to a recursive definition of a balanced
tree:

x� An empty tree is balanced.
x� A non-empty tree is balanced if and only if all its child trees

are balanced and all have the same height.

Fundamentally, a tree is not constrained to any sort of ordering or
balancing—this is the bailiwick of particular insertion/deletion
algorithms. A SBT is one whose insertion and deletion
algorithms maintain the tree’s height balance. SBTs are usually
considered for trees whose elements are totally ordered. We will
thus consider trees with the following “search tree property”
(STP):

1. The root data elements, x i are in strict ascending order.
2. All data elements in the ith child tree, if it exists, are less than

x i.

Figure 3 : Height-preserving vertical data movement in the tree.

-10 0 10 -20 20

5

-10 0 10 -20 20

5

-10 0 10 -20 20 5

Split up Splice

Collapse/Splice Split-down

3. All elements in the i+1th child tree, if it exists, are greater
than x i.

4. All subtrees satisfy the STP.

As a result, there are no duplicate elements.

The need for non-trivial balancing only arises when there is an
imposed maximum on the number of data elements per node. We
call this maximum number the “order” of the tree, and we will
consider only trees with order > 1. For example, the well-known
“2-3-4 tree” is of order 3.

To help students craft algorithms for creating and maintaining a
balanced tree of a given order, we first discuss four simple
operations that, in effect, move data elements vertically by one
level, mutating the tree structure and yet preserving the tree’s
balance and order. Students will discover that vertical
transportation of data in a tree, without disturbing the height
balance, is crucial in insertion and deletion into/from balanced
trees. Understanding this process will enable them to design and
implement a relatively simple yet efficient insertion or deletion
algorithm for SBTs.

4.1 Splitting up the root node

For a tree whose root node has more than one data element, it is
evident that growing the tree upward at the root will increase the
overall tree height by one and still maintain the tree’s balance.
This can be done by a simple call to splitUpAt(…) as illustrated
in Figure 2 .

4.2 Collapsing the root node

Splicing all the children into the root (“collapsing”) will decrease
the overall tree height by one and still maintain the tree’s balance.
This can be done by repeated calls to spliceAt(…) as illustrated
in Figure 2 (consider t2 as a child tree of t1).

4.3 Lifting data upward

To move a data element up one level in a tree, without disturbing
the height balance or ordering, can be accomplished by combining
a split-up operation, splitUpAt(…) , with a splice operation,
spliceAt(…) . This process is illustrated in Figure 3 , reading
left to right. Here we wish to move the element “5”, which is
located in the set of data elements in the root of a child tree. This
child tree is at the parent’s #3 index. The desired destination for
the “5” is in the #3 data element location in the parent tree. A
split-up operation followed by a splice operation neatly moves the
5 up one level without disturbing the height balance or ordering.

4.4 Pushing data downward
Moving data down one level in the tree without disturbing its
height balance and ordering can be accomplished by combining a
split-down operation, splitDownAt(…) , with a collapse
operation (4.2). Once again, consider the example in Figure 3 ,
reading from right to left this time, where we will move the 5
back to its original position. This is easily accomplished by a
split-down operation followed by a collapse operation. Clearly,
height balance and ordering is preserved.

The above four operations serve as basic building blocks for
maintaining the invariants of the tree’s balance and ordering. The

students are now ready for the discussion of the insertion and
deletion algorithms.

5 Self-Balancing Tree Insertion

Self-balancing tree insertion of a key k into a TreeN T entails
applying the spliceAt(…) method to an appropriate subtree of T
while maintaining three invariants: the STP (search tree property),
the height balance constraint, and the order constraint.

5.1 Heuristics

It is easy to convince students that, when the tree T is not empty,
insertion of the key k must take place at a leaf because only by
traversing T all the way down to a leaf can one make the
determination whether or not k already exists in the tree. Once
we are at the appropriate leaf L, the call L.spliceAt(x, new
TreeN(k)) will insert k into L at an appropriate index x and
maintain the STP of T. However, such splicing may cause the
number of data element in the leaf node to exceed the prescribed
order by one. In this case, L is said to be in a “virtual state”
because such a state violates the order constraint, but is still a
valid operational state of the tree.

The discussion in the preceding section (4) suggests transporting
the excess data upward towards the root in order to re-attain the
normal state while maintaining the tree’s height balance and STP.
This can be accomplished by repeated application of the split-up
and splice combination described in subsection 4.3, before
reaching the root. When the data transport reaches the root, only
a split-up (4.1) is required if the root in a virtual state. This is
equivalent to a split-up followed by a no-op. We focus the
students on this vertical data transport, as it is the key to self-
balancing.

We abstract the splice and no-op into an abstract function, or in
the parlance of design patterns, a “command,” ILambda (see
Listing 2). This interface performs an arbitrary task on its
parameter when its apply(…) method is called. Consider for
example the following command:

ILambda cmd = new ILambda() {

 public Object apply(Object tree) {
return T.spliceAt(x, (TreeN)tree);

 }
};

cmd.apply(S) will splice any TreeN S to the given tree T at the
given index x. On the other hand, the anonymous ILambda
object

new ILambda() {
 public Object apply(Object tree) {
 return T;
 }
}

can serve as a no-op command.

In the above two commands, T and x are free and must be bound
in some non-local environment in order for the commands to
make sense. In Java, such bindings are made possible using inner
classes. The commands are created anonymously on-the-fly and

passed as input parameters to the process of transporting data
upward encapsulated in a ITreeNAlgo visitor called
SplitUpAndApply (see Listing 2) which can be expressed as
follows.

x� Host state d order : do nothing.
x� Host state > order : Split up the host and apply the supplied

abstract ILambda command to the host which will either
perform a no-op or a splice.

Listing 3 shows the code for our insertion algorithm that makes
use of the above SplitUpAndApply visitor and ILambda
commands. Our implementation is an adaptation of a common
technique in functional programming (for example, see [5]).
More specifically, in the case of non-empty host trees, the
insertion algorithm simply sets up a “helper” algorithm and passes
a no-op command to it since at the top level call the host is the
root.

As shown in Listing 3 , the helper algorithm and the splice
commands are created on the fly as an anonymous inner objects,
which are analogous to lambda expressions in functional
programming. They allow us to express computations in terms of
data in their closures. The use of anonymous inner classes greatly
simplifies the code by minimizing parameter passing and control
structures. This often results in program code that is declarative,
clear and concise.

5.2 Correctness

To help the students gain a deeper understanding of the algorithm,
we need to lead them through a more rigorous proof of
correctness.

Case 0 of InsertNAlgo is trivial. The correctness of the default
case hinges on the fact that the recursive call inside the helper
algorithm does indeed insert the key into the host tree and
maintains the host’s STP and height balance. We label the
anonymous helper algorithm instance insertHelper and claim
the following.

Lemma 1: Let T be a balanced non-empty TreeN of order > 1
that satisfies the STP, and suppose key is not in the root node of
T. Let x be the index at the root of T such that if the x-1th data
element exists, it is strictly less than key and if the xth data

element exists, it is strictly greater than key . Let S be the xth
child tree of T. Then, the following post-conditions hold for

S.execute(insertHelper , new ILambda() {
 public Object apply(Object tree) {
 return T.spliceAt(x, (TreeN)tree);
 }
}):

x� T contains key and preserves the STP and its height.
x� All subtrees of T satisfy the order constraint.

Proof of lemma 1: We shall prove by induction on the height of T.

x� Case height = 1: S is empty, and x = 0. Thus case 0 of

insertHelper is called and evaluates to T.spliceAt(0, new
TreeN(key)) . As a result, T contains only key at the root,
clearly satisfies the STP and preserves its height. All
subtrees of T are empty and trivially satisfy the order
constraint.

x� Suppose the lemma holds for all TreeN T of order > 1 and
of heights h that satisfy the STP and such that 1 � h � n. We
will prove the lemma holds for the case of any TreeN T of
order > 1 and of height n+1 that satisfies the STP.
a) Here, S is not empty and thus the default case of

insertHelper is called with the parameter h bound to S
and the parameter cmd bound to the anonymous object

new ILambda() {
 public Object apply(Object tree) {
 return T.spliceAt(x, (TreeN)tree);
 }
}.

The body of this case consists of the following three
computations in sequence:
o a for loop;
o a call to execute recursively insertHelper ;
o a call to execute the splitUpAndSplice algorithm.
We now examine the effects of each of the above
computations.

b) If key is in the root node of S, the for loop will find a
match for key and return. Nothing affects T, and so the
lemma holds.

c) If key is not in the root of S, by the STP, the for loop
finds the index x[0] of the child tree of S where key
must be inserted in order to maintain the STP of S.

Code Comment

public interface ILambda {
public Object apply(Object p);

}

Function abstraction representing a command. A
function knows how to perform an operation on an
input Object p and return the result as an Object.

public class SplitUpAndApply implements ITreeNAlgo {

private int _order;
public SplitUpAndApply(int order) { _order = order; }

Constructor takes the order of the tree.

public Object caseAt(int s, TreeN host, Object cmd) {
if (s <= _order) return host;

cmd is an ILambda operating on TreeN.
Case s = state <= order: do nothing (no-op).

host.splitUpAt(s/2);
return ((ILambda) cmd).apply(host);

 }
}

Default (state>order) case: split up host at its
midpoint and then apply the ILambda parameter to
host .

Listing 2 ILambda command and SplitUpAndApply visitor

Consequently, the conditions of the lemma holds with S,
S.getChild(x[0]) and x[0] in place of T, S and x,
respectively.

d) By the induction hypothesis, after the recursive call
S.getChild(x[0]) .execute(this , new ILambda() {
 public Object apply(Object tree) {
 return S.spliceAt(x[0], (TreeN)tree);
 }
}),

o S contains key and preserves the STP and height.
o All subtrees of S satisfy the order constraint.

e) As a result, the only place where S can break the order
constraint is at its root node. After the insertion of key,
the size of the root node of S can only exceed the order

by at most one. Thus, splitting up S will re-satisfy the
order constraint. The call

S.excecute(splitUpAndSplice , cmd)
splits S up at the middle and splices it to T at the index
x, if S break the order constraint. From the discussion in
subsection 4.3, such a combination of operations does
not affect the height of T and the order of the subtrees of
T. Moreover, from the very definition of x, the STP of T
is preserved.

f) Thus, the lemma holds for T of height n+1.
x� By induction, lemma 1 holds for all balanced TreeN T or

order > 1 and of heights ����WKDW�VDWLVI\�WKH�673�

Code Comment

public class InsertNAlgo implements ITreeNAlgo {

private SplitUpAndApply splitUpAndSplice;

public InsertNAlgo (int order) { splitUpAndSplice = new SplitUpAndApply(order);}

public Object caseAt(int s, final TreeN host, final Object key) {

switch (s) {

Initialize the splitUpAndSplice algorithm to split
up only those trees whose state > order .

The key to insert is the third parameter

case 0: { return host.spliceAt(0, new TreeN((Integer) key)); } The empty case simply splices a new tree into the
host to mutate it into a 2-node tree.

default : {
host.execute(new ITreeNAlgo() {

public Object caseAt(int s_help, final TreeN h, final Object cmd) {

switch (s_help) {

The default (state > 0) case simply sets up a call
to a helper algorithm, passing a no-op command.

case 0: {

return ((ILambda)cmd).apply(new TreeN((Integer)key));
}

The helper’s empty case: The parent tree has
height 1 here. The empty case means that we are
at a leaf and that the key was not found. Thus, a
new tree is instantiated and spliced into the parent.

default : {
final int [] x = {0};
for (; x[0] < s_help; x[0]++) {

int d = h.getDat(x[0]).intValue();
if (d >= ((Integer)key).intValue()) {

if (d == ((Integer)key).intValue()) return h;
else break ;

}
}

The helper’s default (state > 0) case: The tree has
height at least 1 here. Linear search for the index
of the child tree that will hold the key (the insertion
point) and preserve the STP of the tree. Could
alternatively use a binary search.

If the key is in the host tree already, do nothing,
else x[0] is the index of the child tree where the
key should be inserted, so break out of the loop.

h.getChild(x[0]).execute(this , new ILambda() {
public Object apply(Object tree) {

return h.spliceAt(x[0], (TreeN)tree);
}

});

Recur on the helper, passing it an ILambda
command to splice at the computed insertion
point. The splice command’s closure is effectively
a memento that holds the previous insertion point.

return h.execute(splitUpAndSplice, cmd);
}

}; // end switch(s_help)
}

If necessary, split this host and splice the excess
data into the parent using the supplied ILambda
command.

}, new ILambda() {
public Object apply(Object tree){

return host;
}

});

The no-op ILambda command is passed to the
first call of the helper on the root node.

return host;
}

}; // end switch(s)
}

}

Return the host to allow chaining.

Listing 3 : Self-balancing tree insertion algorithm

We are now ready to prove correctness of the insertion algorithm
InsertNAlgo .

Theorem 1: The algorithm InsertNAlgo inserts without
duplication an Integer key into a balanced host TreeN and
maintains host ’s STP and height balance.

Proof of theorem 1: We shall prove the theorem by considering
the two cases: host is empty and host is not empty.

x� When host is empty, case 0 is called: host simply mutates

to a 2-node tree containing key . Obviously, host maintains
the STP, the height balance and the order constraint.

x� When host is not empty, the default case is invoked, which
calls for host to execute the insert helper algorithm with
parameter h bound to host and the parameter cmd bound to
the no-op anonymous object

new ILambda() {
 public Object apply(Object tree) {
 return host ;
 }
}

a) As in the proof of lemma 1, if key is in the root node of
host , the for loop will find a match for key and return
from the call. Nothing affects host , and so the theorem
holds.

b) If key is not in the root node, then the recursive call to
the helper is made. It follows from lemma 1 that host
then contains key , preserves its STP and height and all
subtrees of host satisfy the order constraint.

c) The size of the root node of host can only exceed the
prescribed order by at most one. If this happens, the
application of the splitAndSplice algorithm on host
will split host up at the middle, re-establishing the order
constraint and maintaining the height balance of host .
There will be no splicing to a parent tree however, since
the supplied command is a no-op. QED

The above proof illustrates many important techniques used in
more theoretically oriented upper division courses.

5.3 Complexity Analysis

The complexity analysis for the insertion is trivial:

1. All operations at a node are worst case O(order) .
2. All the algorithm does is to recur once down to the bottom of

the tree and then return.
3. Therefore the overall complexity of the algorithm is O(log

N) where N is the number of elements in the tree since the
tree is balanced.

6 Self-Balancing Tree Deletion

Deletion of a data element is well defined only when the tree is a
leaf. Any other situation leads to ambiguous choices on the
disposal of one or more of the child trees. If the key to be deleted
is at a leaf node, a simple call to splitDownAt(…) will remove
the key from the tree. Thus, similar to the insertion case, self-
balancing tree deletion must take place at the leaf level while
maintaining three invariants: the STP (search tree property), the
height balance constraint, and the order constraint. Once again,
the students are lead to focus on the vertical transport of data.

6.1 Heuristics

Since the data element to be deleted must be ultimately located at
the leaf level, it must be moved from its original location down to
the leaf level for deletion. We must therefore find a method of
transporting data from the root to the leaves without affecting the
height of the child trees. The problem is that there is a possibility
that the data to be deleted is located in a 2-node, and data cannot
be pushed down out of a 2-node without changing the tree’s
height. To solve this problem, consider the following facts:

1. Only trees with order > 1 can push data downwards without

changing their height because data will be left in the node.
2. From fact 1, if one data element is added to all nodes in the

tree from which data is being pushed downwards, then height
preservation is guaranteed.

3. Any element x i in a node, when combined with its left and
right child trees, can be considered as the root data element
of a 2-node tree.

4. From the STP of the tree, we can always identify a
“candidate” element in the root node whose associated 2–
node tree is guaranteed to hold the desired data element to be
deleted, should it exist in the tree at all.

Recursively pushing a candidate element down from the root of
the tree will effectively add one element to all child nodes along
the path to from the root to the leaves that contains the element to
be deleted. When the data to be deleted is encountered, it will
automatically become the candidate element and continue to be
pushed down to the leaves. Thus, except at the root and the leaf,
height preservation is guaranteed during the data transport
process. At the root, a height change is possible, but that will not
affect the balance of the tree. At the leaf, the candidate element is
either the element to be deleted, upon which it will be removed, or
if it is not, just as the insertion case, this excess data will be
transported back upwards to the root. In either case, no height
change takes place.

The deletion algorithm is thus analogous to the insertion
algorithm except that it transports data from the root to the leaves
as well as from the leaves to the root. Listing 4 shows the
complete Java implementation. The deletion code is essentially
the same as the insertion code except that it identifies the state = 1
(2-node state) as a special case, plus, it pushes data downward as
well as upward.

The 2-node case is singled out because when the root is a 2-node,
data cannot be pushed downward from it, so it needs to be
collapsed before the split down process begins. This is what one
expects because the deletion process will cause the tree to shorten
after enough data elements have been removed. Essentially that
point is reached when the root runs out of data to push downward.
Having a 2-node root does not guarantee that the tree will shorten
on the next deletion however, due to the excess data being pushed
upwards from the leaves.

Just as in the insertion algorithm, for trees with states > 1, the
deletion algorithm simply sets up an anonymous helper algorithm
and passes to it an anonymous no-op splice command since the
root of the tree has no parent. The helper algorithm is very
similar to that in the insertion algorithm in that it uses an
appropriate ILambda command to splice excess data into the
parent tree.

In the helper algorithm, the 2-node case is singled out because
when a data element is split down from a leaf, it forms a 2-node
below the leaf level. This then serves as an indication that the leaf

level has been reached. It also conveniently and automatically
isolates the key to be deleted from the rest of the tree.

Code Comment

public class DeleteNAlgo implements ITreeNAlgo {

private SplitUpAndApply splitUpAndSplice;

public DeleteNAlgo (int order) { splitUpAndSplice = new SplitUpAndApply(order); }

public Object caseAt(int s, final TreeN host, final Object key) {

switch (s) {

Initialize the splitUpAndSplice algorithm to
split up only those trees whose state > order .
The key to insert is the third parameter.

case 0: { return null; } Empty case: do nothing and return.

case 1: { collapse2Node(host); } Case state = 1: collapse the 2-node and then
fall through to the default case.

default : {
return host.execute(new ITreeNAlgo() {

public Object caseAt(int s_help,final TreeN h, Object cmd) {
switch (s_help) {

Default (state>1) case: set up a call to a helper
algorithm, passing a no-op splice command.

case 0: { return null; } Helper’s empty case: key is not in the tree; do
nothing and return.

case 1: {
if (h.getDat(0).equals(key)) {

Object d = h.getDat(0);
h.splitDownAt(0);
return d;

}
else {

((ILambda)cmd).apply(h);
return null;

}
}

Helper’s state = 1 case: encountered only if the
data has been pushed down through a leaf.

If key is found, then delete it from the 2-node
using a split down.

If key is not found, splice the candidate key
back into the parent.

default : {
final int x = findX(h, s_help, ((Integer)key).intValue());
TreeN newChild =

collapse2Node(h.splitDownAt(x).getChild(x));

The helper’s default (state>1): find the
candidate key index, split h down at that point
and collapse the resultant child tree. h still
maintains its STP.

Object result = newChild.execute(this , new ILambda() {
public Object apply(Object child) {

return h.spliceAt(x, (TreeN)child);
}

});

Recur on the helper, passing it the command
(ILambda) to splice at the computed deletion
point. The splice command’s closure is
effectively a memento that holds the child
deletion point.

h.execute(splitUpAndSplice, cmd);
return result;

}
} // end switch(s_help)

}

If necessary, split this host and splice the
excess data into the parent using the supplied
ILambda command.

}, new ILambda() {
public Object apply(Object child) { return host; }

});
}

} // end switch(s)
}

The no-op ILambda command is passed to the
first call of the helper on the root node because
the root has no parent.

private TreeN collapse2Node(TreeN t) {
t.spliceAt(1,t.getChild(1));
return t.spliceAt(0,t.getChild(0));

}

Utility method to collapse a 2-node tree with its
children.

private int findX(TreeN t, int state, int k) {
for (int i = 0; i < state; i++) if (t.getDat(i).intValue() >= k) return i;
return state - 1;

}
}

Utility method for linear search for the
candidate data element. Candidate may
actually be the key. Could use a binary search.

Listing 4 : Self-balancing tree deletion algorithm

Pushing the candidate data downward is accomplished by pairing
a split down operation with a “collapse” operation as described in
Section 4. The collapsing process may create a tree in virtual
state. Once again, this is easily handled by the system, as it is still
an operational state of the tree. Since one of the data elements of
the virtual state is pushed down to the next level, when the excess
data is spliced back in during the recursion’s return, the splitting
up process will split the virtual state in two. As in the insertion
algorithm, the order constraint is maintained.

Conspicuously absent in the above algorithm are the traditional
rotation operations. Rotations occur when locally, there aren’t
enough data elements to maintain the tree height. The above
algorithm ensures the proper amount of data by always pushing
down data from the root. In addition, the collapsing and splitting
up of the nodes promotes tree fullness better than the single
element transfer in a rotation operation.

6.2 Correctness and Complexity

Let us label the anonymous helper algorithm deleteHelper .
Analogous to the insertion algorithm, we prove correctness for
DeleteNAlgo by first establishing the following lemma on
deleteHelper :

Lemma 2: Let T be a balanced non-empty TreeN of order > 1
that satisfies the STP and key be an Integer object. Let x be the
index at the root of T such that if the x-1th data element exists, it
is strictly less than key and if the x+1th data element exists, it is
strictly greater than key . Then, the following post-conditions
hold for

TreeN S = collapse2Node(T.splitDownAt(x).getChild(x));
S.execute(deleteHelper , new ILambda() {
 public Object apply(Object tree) {
 return T.spliceAt(x, (TreeN)tree);
 }
}):

x� T does not contain key and preserves the STP and its height.
x� All subtrees of T satisfy the order constraint.

The correctness of DeleteNAlgo then follows.

Theorem 2: The algorithm DeleteNAlgo removes an Integer
key from a balanced host TreeN and maintains host ’s STP and
height balance.

We leave as exercises the proofs for lemma 2 and theorem 2 since
they are essentially identical to those of lemma1 and theorem 1.

The complexity analysis once again is trivial and is identical to
the analysis of the insertion algorithm.

7 Conclusion

We have presented our tree framework and exhibited its complete
Java implementation. As Listing 3 and Listing 4 show, the
code of SBT insertion and deletion are each simple enough to
easily fit on one page without relying on non-intuitive
manipulations.

The fundamental design principle is the separation of invariant
behaviors from variant behaviors. In our framework, the tree
structure serves as the re-usable invariant component with a
complete and minimal set of intrinsic behaviors. The behaviors
are partitioned into constructors, structural modifiers and data
access. The extrinsic algorithms on the tree act as visitors and add
an open-ended number of variant behaviors to the tree.

We generalize the visitor pattern by replacing individual visiting
methods with a single parameterized method. The generalized
visitor can handle a dynamically changing number of hosts, or in
this case, a single host with dynamically changing numbers of
states, each of which may require a different visiting behavior.

The insertion and deletion process on a SBT relies on vertical data
movement that preserves the height balance of the tree. The
intrinsic structural operations of the tree were shown to easily
support this process. The insertion and deletion algorithms were
then expressed in terms of leaf manipulations, vertical data
movement and root manipulations. Their implementations closely
matched their abstract descriptions and lead directly to rigorous
proofs of correctness. The complexity analyses were simple,
straightforward and intuitive. These algorithms, when plugged
into the tree framework, transform the tree structure into a SBT.
This demonstrates the framework’s flexibility and extensibility.
The algorithms can be easily modified to support other self-
balancing tree structures such as B-trees.

Studying OO SBTs reinforces students’ understanding of abstract
decomposition, OOP, design patterns, complexity analysis, and
proof-of-correctness. The drive towards proper abstraction
unifies all the above principles. The students can focus on the
fundamental principles involved with the system without the
distractions of low-level manipulation code. Abstract concepts
such as closures, lambda expressions, itemized case analysis and
other abstract behaviors are well represented in our formulation.
Functional programming and declarative programming come in
naturally without the traditional topical boundaries that hinder
students’ learning.

Acknowledgement

The authors would like to thank Caleb Hyde for his hard work in
helping make sense of the system during its early development.

References

[1] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design

Patterns, Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.

[2] Cormen, T., Leiserson, C., Rivest, N., and Stein, C.

Introduction to Algorithms, 2nd ed., MIT Press, 2001.

[3] Nguyen, D. and Wong, S. Design Patterns for Decoupling

Data Structures and Algorithms, SIGCSE Bulletin, 31, 1,
March 1999, pp. 87-91.

[4] Nguyen, D. and Wong, S. Design Patterns for Lazy

Evaluation, SIGCSE Bulletin, 32, 1, March 2000, pp. 21-25.

[5] Felleisen, M., Findler, B., Flatt, M., Krishnamurthi, S. How

to Design Programs, MIT Press, 2001.

