Design Patterns for Self-Balancing Trees

Dung (“Zung”) Nguyen and Stephen B. Wong
Dept. of Computer Science
Rice University
Houston, TX 77005
dxnguyen@rice.edu, swong@rice.edu

Abstract

We describe how we lead students through the psoads
specifying and implementing a design of mutablee tdata
structures as an object-oriented framework. Owigte entails
generalizing the visitor pattern in which the tstmicture serves
as host with a varying number of states and theritfgns

operating on the tree act as visitors.

We demonstrate the capabilities of our tree franmmkwaith an
object-oriented insertion algorithm and its matchideletion
algorithm, which maintain the host tree’'s heightabhae while
constrained to a maximum number of elements pee.nowe
implement our algorithms in Java and make extensise of
anonymous inner classes.
commands manufactured on the fly as anonymous iobjects.
Their closures provide the appropriate contextliem to operate
with little parameter passing and thus promote @dadative style
of programming with minimal flow control, reducingode
complexity.

Our framework serves to illustrate how proper arsion
liberates us from thinking of low-level procedurdétails and
leads us to implementations that closely refleetéksence of the
system behavior. Our formulation is also an examgyfl how
object-oriented design principles overlap if not@mpass those
of functional and declarative programming.

Keywords

algorithm, B-Tree, closure, component softwareadstructure,
declarative programming, design pattern, finitetestmachine,
framework, functional programming, Java, inner glaambda,
object-oriented programming, self-balancing tree

1 Introduction

Lists and trees are standard topics in a compubtéEnse
curriculum. In many applications, they are usednplement
containers whose main behaviors consist of storageeval and

The key design elemergs a

removal of data objects. Various forms of selfan@ing trees
(SBTs) such as B-trees guarante®(#ogN) efficiency for these
computations. Current textbooks on this subjest fer example
[2]) discuss them in terms of complicated, low-lgyeeudo-code.
The abstract nature of the data structures analgwithms that
manipulate them is lost in a sea of details. Titeblem lies in the
lack of delineation between the intrinsic structuerations of a
tree and the extrinsic, order-dependent calculatioreded to
maintain its balance. The resulting morass of dsgaipulations
hides the underlying concepts and hampers thergidearning.

We seek to alleviate the difficulties faced by stuid by offering
an object-oriented (OO) formulation of SBTs, whish much
easier to express and implement. We cover SBTarttsrthe end
of our second semester (CS2) course. Our CS2edmtreduces
students to OO program design and the fundamenddh d
structures and algorithms. It emphasizes propendéation and
abstraction of the problem domain in the prograngnprocess in
order to build programs that are robust, flexibied extensible. It
teaches how design patterns help formulate and emght
abstractions in effective and elegant ways. Byethe the course,
when the SBT material is presented, the studergsaheady
grounded in such principles as data and behawadrstraction and
the separation of variant (extrinsic) from invatiafntrinsic)
behaviors. They are also familiar with common degpatterns
such as composite, state, visitor and command. indportant
lesson they learn from designing the SBT is howabstractly
decompose a problem by asking fundamental quessibast the
system and focusing on its intrinsic requiremertignce, a major
focus of this paper will be the thought progresdiorolved with
the design process. This advanced topic servelsore and
coalesce the concepts and skills practiced throutghthe
semester.

Our work is based on the framework proposed in 199Biguyen
and Wong [3]. Their framework decouples algorithamsl data
structures using a combination of composite, statd visitor
design patterns. Later they illustrated its extdliy and

flexibility by transparently adding lazy evaluatioapabilities [4].
However, their simple framework proves to be inameq to
model self-balancing trees due to the inherenttéititin of the
visitor design pattern with regards to dynamicatijanging
numbers of hosts. In this paper, we present emmeiats to the
previous Nguyen/Wong framework that overcomes thgiral

limitations and produces an object-oriented SBTlém@ntation
that closely matches the abstract view of the tirec

Our paper serves a second purpose of exemplifyogmgdood OO
design enables one to re-focus on the fundameataten of the
problem and create solutions that are both simpte Eowerful.
Effective use of polymorphism streamlines the cddejlitates

= Wector | _children visits
= Vector : _data

+ TreeM)

+ Treel(Integer

= TreeM(Treeld ITree, Object n, Treeld 1Tree) |
+ Integer : getDat(int idk) |

Treel 0000 b - - - — E=E =

==[TreeMAlgo== i
+ Objiact : casedffing i, Treal host Objact param) - - - - xﬁfﬁr: visitors

= TreeM({Vector data, Vector chaldvery |

1
Q f} helper

+ Treel : getChildint idx) FindNalzo

1
InsertNAlzo DeleteNalgo ToSringAlzo

+ Treel : splicedutiint idx, Treeld tree)
+ Treell : spltUpiit{int ide)

+ FindM &lzal) + Insert &lgofint order) + DeleteN&lgo(int order) + ToStringhleo : Singleton)

+ TreeM : sphitDownd tiint idw) T

+ Object : execute(ITreeN Alzo algo, Ohject param) |
[ahdld trees Find elernent
in tree

T T T
L 1 1
B it |

Insert element Dielete element Cornpute a string
into tres frorn tree representation of tres

Figure 1: UML class diagram for the tree and algorithms as visitors.

straightforward proofs of correctness and triviediz the
complexity analysis.

Section 2 explores the fundamental nature of tveds multiple
data elements per node. The result is a spedificaand
implementation of a minimal and complete set ofawabrs that
are intrinsic to the tree structure. The numbeelefnents in the
root node is used to represent the current statbeofree. We
design such a tree as a composite structure, wigtlaves as a
finite state machine whose number of states cay dymamically
at run-time.

Section 3 describes how we generalize the visitatem to
decouple the extrinsic algorithms that operate drea from its
intrinsic structural behaviors. In our formulatjotie extrinsic
algorithms act as visitors to the host tree. Ttamdard visitor
pattern is extended to handle the arbitrary numtodrdosts
encountered in an SBT system. The tree structudata visitors
thus form a framework with dynamically re-configbla
components.

Section 4 defines the notion of a height-balancesk tand
discusses four basic operations that transport datiécally by
one level and modify the tree structure while naiimhg its
balance. These operations serve as building bldoksthe
insertion and deletion algorithms.

Section 5 describes our SBT insertion algorithm #&sdJava
implementation. The algorithm’s intuitive heuristiwill lead to a
rigorous proof of correctness. The complexity asalywill be
shown to be straightforward, simple and intuitive.

Section 6 describes our SBT deletion algorithm #&sdJava
implementation. As with the insertion algorithnmetdeletion
algorithm’s heuristics are intuitive and lead togorous proof-of-
correctness. Since both insertion and deletiop oal vertical
transportation of data, their complexity analysesidentical.

2 The Tree Structure

We consider trees, calle@reeN, that can hold multiple data
elements in each node and where each node canrhaltiple
child trees. Without loss of generality, we lirtlie data elements

data definitions are fundamental not only to godd @esign but
to computing in general.

2.1 Data Definition
ATreeN can be either empty or non-empty.

¢ An emptylreeN contains nothing.

e A non-emptylreeN holds an arbitrary, positive, number of
data elementsn, and n+1 TreeN objects called “child
trees”. For 0 <=i < n, thei™ and thei+1" child trees are
called the left child tree and the right child trekthei™ data
element respectively.

The above inductive definition for the tree is welpresented by
the composite design pattern [1]. Since the ojmraiton a tree
often depend on the number of data elements inddes, we can
model the tree as having different “states” whigtedmine the

tree’'s behavior at any given moment. The stat¢heftree is

defined by the number of data elements in the nmote of the

tree. We can thus identify each state with angetevalue. For
instance, an empty tree has state = 0, while avitdfeone data
element and two child trees (commonly referred4@md2-node

tree”) is in state = 1. Operations on the tree cwyse the tree to
transition from one state to another as data el&smemd

associated child trees are added or removed. Tde thus

behaves as a finite state machine.

2.2 Intrinsic vs. Extrinsic Behavior

The next step with the students is to identify tinérinsic

behaviors of the system and declare them as tHecpubthods of
the tree. For maximal decoupling and flexibilithe methods
should form a complete and minimal set of operatiivam which

all other possible operations on the tree can Instoacted. The
intrinsic structural behaviors of the tree are thdbat serve
exactly two purposes:

e Provide access to the tree’'s data and structural
subcomponents, and

e Perform constructive and destructive modificatiafsthe
tree’s internal structure, thus enabling the tredransition
from one state to another.

to be ofinteger type. The first step with the students is to lead

them to a concise and precise definition of theblam, that is,

what exactlyis the data structure under consideration? Reeurs

t1 t1.splitUpAt(1) t1.splitDownAt(1)
| |
-20|-10| 0 (10| 20 -10 20| 0 [10] 20
Y Y Y Y VY Y Y Y Y Y Y
]:ﬂ ﬂ]] ﬂ]]]]]]:|:| Iﬂ -20 0|10 20

Y

1]] X

Y Y Y

[M

tf tl.spliceAt(l, t2)
a B |v 20| a | B | v |-10[0 [10]20
é Y Y Y Y é Y Yy é Y Y Y Y
Figure 2 : Intrinsic structural operations on the tree.
The intrinsic structural behaviors of the tree ianeariant, that is constructor. The empty tree constructdreeN(), creates a

they remain fixed in all applications, and enabdeta build trees
of any shape that can hold ambitrary number of data elements
in anynode. Extrinsic behaviors are those that arerttigre on a
particular application of the tree and are thagant The variant
behaviors will be addressed in Section 3. Distisigng and
separating intrinsic from extrinsic object behasiés a central
theme in our approach to OO pedagogy throughoutdhese.

To identify the intrinsic operations of the tregisi crucial that we
separate the operations that manipulate data eterfrem those
that modify the tree’s structure. Structural mimdifion should
involve trees as atomic units and have well defibetavior for
anytree. Data operations are relegated to the agi&in of new
trees and to simple gettor methods. The intribgilsaviors of a
tree can thus be classified as constructors, snalanodifiers and
gettors. Delineating data manipulators from strtadt modifiers
eliminates the usual problem of insertions andtitele that can
only be unambiguously applied to a limited numbértree
configurations.

Figure 1 depicts the UML class diagram dfeeN together with
algorithms that act as visitors (discussed in $acti3).
Figure 2 illustrates the intrinsic structural operationstioé tree
(discussed below) arldsting 1 shows the Java implementation
of TreeN.

2.3 Constructors

The purpose of a constructor is to initialize thstantiated object
to a well-defined state. Since there are two fedistinct states
of a tree, empty and non-empty, each has an assdcia

empty (state 0) tree. The non-empty constructor,
TreeN(Integer n) , takes a single data element and constructs a
2-node (state = 1) leaf tree. This can be viewsegraviding the
base case and inductive case construction fornygters. There is

no need for construction of states > 1 as they lwarcreated
through structural modifications of 2-node leafese The set of
constructors is thus complete and minimal.

2.4 Structural Modifiers

Structural modifiers are methods with side effetitat work
strictly on trees and not on data. They are alslb defined forall
trees inall possible states. To span the space of all pessibl
structural modifications, one must fundamentally &gle to
modify the tree, a 2-dimensional entity, in bote width and
height directions. In addition to constructive ggsses in the two
directions, a destructive process must also beigeedy This only
implies that the complete and minimal set of stradt modifies
must consist of three methods, none of which candmstructed
from the other two. A full proof that only threeethods
constitute a complete and minimal set is beyondstiupe of this
paper. An examination of the following three methoin
Figure 2 reveals that they create constructive and destrict
behavior inboththe horizontal and vertical directions.

splitUpAt(int i) mutates the receiver, in staeinto a 2-node
tree (state), where thé™ element becomes the root data and
the left child’s root contains the throughi-1 elements of the
original root and the right child’s root contairiei+1 throughs
elements of the original root. Splitting up on empty tree is a
no-operation.

splitDownAt(int i) removes thé" element from the root of the :
receiver including its corresponding left and rightld trees. The
resultant new child tree is a 2-node tree whereoibs data is the
original i™ element and where its left and right children tre
originali™ element’s left and right children respectivelypliing
down a 2-node tree results in an empty tree aedisvalent to a
deletion of a single data element. Splitting da@amempty tree is
a no-operation.

spliceAt(int i, TreeN t)
receiver at index: thei™
root node oft is “spliced” between thé" andi+1" elements of
the receiver. The children ofremain in their respective places
with regards to the original elements of Splicing an empty
source tree into a non-empty tree is a no-operatiSplicing a
non-empty source tree into an empty tree willtatethe empty
receiver tree into a shallow copy of the source.tre

joins the supplied source trédo the

2.5 Data Accessors

getDat(int i) andgetChild(int i) are the standard “gettors” thati

provide access to data and child trees without-sifext. The
root node’s data elements can be accessed viadariirwhere 0
< i < state (= node size). The root node’s childdrean be
accessed similarly but where<Q < state. Since all data clements

and child trees can be accessed through these asettmal only
through these methods, the set of gettors is thusmal and
complete.

The standard “settors” that set a child tree tew tree at index,

and that set a data element at indexan be easily replicated :

using a combination of the above methods. Tha $mple and
elucidating exercise for the students.

We do not consider operations such as specificrtingeand
deletion algorithms that maintain the balance tiea as intrinsic
to the tree’s behavior.
inherent knowledge of the properties of the dataittains or the
heights of its child trees. These operationseatensicto the tree
structure, and as Nguyen and Wong advocated irilj8}, should

be decoupled from thimtrinsic structural behaviors of the tree.i

The visitor pattern, with the extrinsic algorithras visitors and
the tree structure as the host, was used to acttiesdecoupling.
The ability of the tree structure to perforail possible extrinsic

operations is aintrinsic behavior of the tree and can be expresse;d

as a “hook” method.

2.6 Extensibility Hook

execute(ITreeNAlgo algo, Object param) is the “accept”
method for a host in the visitor design pattern [1f] provides a

“hook” for all algorithms defined externally to tiieee to operate

properly on the tree without knowing the state loé tree. The

abstraction for all such extrinsic operations isagsulated in an

interface calledTreeNAlgo, which acts as a visitor to the tree
host.

3 The Visitors

With the intrinsic behaviors aside, the studentsy aaow
concentrate on the extrinsic, variant behaviorthefsystem. The
students are lead to focus on the following two &bgracteristics
of the system.

child of the receiver is deleted and the:

The tree is simply a stmecand has no

public class TreeN {
private Vector _children = new Vector();
private Vector _data = new Vector();

public TreeN() {}
public TreeN(Integer n) { this (new TreeN(), n, new TreeN()); }
""" private TreeN(Vector data, Vector chiidren) {
_data = data; _children = children;

}

private TreeN(TreeN ITree, Object n, TreeN rTree) {
_data.add(n); _children.add(ITree); _children.add(rTree);

public Integer getDat(int i) { return (Integer)_data.get(i); }
public TreeN getChild(int i) { return (TreeN)_children.get(i); }
public TreeN spliceAt(int i, TreeN tree) {
int k =tree.data.size();
if (k>0){
if (_data.size() > 0) _children.set(i, tree.getChild(k--));
else _children.add(i, tree.getChild(k--));
for k>=0, k--) {
_data.add(i, tree.getDat(k));
_children.add(i, tree.getChild(k));
}
}

return this ;

public TreeN splitUpAt(int i) {
if (_data.size() > 1) {

TreeN I[Tree, rTree; '

Vector newData = new Vector(), newChildren = new Vector(); :

Object rootDat = _data.remove(i);

for (int k=0; k <i; k++) {
newData.add(_data.remove(0));
newChildren.add(_children.remove(0));

}
newChildren.add(_children.remove(0));
if (newData.size() > 0)
[Tree = new TreeN(newData, newChildren);
else ITree = (TreeN)newChildren.firstElement();
if (_data.size() > 0) rTree = new TreeN(_data, _children);
else rTree = (TreeN)_children.firstElement();
(_data = new Vector()).add(rootDat);
(_children = new Vector()).add(ITree);
_children.add(rTree);

return this ;

}

public TreeN splitDownAt(int i) {

if (_data.size() > 1) {
TreeN newChild =
new TreeN(getChild(i),_data.remove(i),getChild(i+1));
_children.remove(i);
_children.set(i, newChild);

}

else {
_data.clear();
_children.clear();

}
return this ;

public Object execute(ITreeNAlgo algo, Object param) {
return algo.caseAt(_data.size(), this , param);

Listing 1 : TreeN implementation

L ollapse/Splic L Split-dowr L

-20|-10| O [10 20 -20|-10| O

10 | 20

-20|-10| O | 5 [10 20

Y Y Y Y Y Y Y Y Y

/\

Figure 3 : Height-preserving vertical data movement in the tree.

1. All extrinsic operations can be constructed Igofeom the
intrinsic behaviors.

2. Extrinsic behaviors can depend on the statheofree, which
is dynamic and arbitrary.

The visitor design pattern has been proven usefol f
implementing extrinsic operations [3] but is inadetg for the
problem at hand. The students’ prior groundingthia visitor
pattern enables them to easily understand itsdtioits and the
extensions required to overcome them.

Algorithms on a host tree often depend on its sthesize of its
root node. The ITreeNAlgo visitor interface (see
Figure 1) thus must provide a specific method for eachhef t
host states. Since any tree node can hold arraspitumber of
data elements, an arbitrary number of visiting reéthmust be
defined. That is, the visitor must have a varymgmber of
visiting methods to match the host's states. Siatandard
visitors would match one method per host state, symtem is
hamstrung by physical limitation that only a fixedmber of
methods can be defined. This limitation can berawee by
replacing the multiple different methods of theiteis with a

single ‘caseAt” method parameterized by an integer index. The

individual hosts are now identified by an integatue, the state
number, and they can now parametrically call thespective
method in the visitor. Since the host structureviges a
complete set of public primitive behavioed|, other algorithms on
the tree can be expressed in terms of these prarbghaviors and
encapsulated as visitors.

The contractual obligations offreeNAlgo as a visitor and
TreeN as a host of are summarized in the following.

Visitor (implementdTreeNAlgo) must

e provide a “visiting” method, namely
Object caseAt(int s, TreeN h, Object p) , to operate on
a host tred that is in state with a given inpup;

e guarantee that this visiting method has a wellrofi
behavior for all values of. This includes the possibility of
throwing an exception or of performing a no-openati

NOnANGD DoaAND noa
W

Y Y Y \ Y Y Y

[

;

Host (TreeN) must

¢ bein some state characterized by an intsger
e provide

0 a complete set of public methods for attrinsic
structural and data access operations, and

0 a"“hook” method, namely
Object execute(ITreeNAlgo v, Object p) , to
perform anyextrinsic tree algorithmv with a given
input p. v.caseAt(...) is guaranteed to be called with
the host’'s current state, the host gnaés arguments.
The result will be returned.

The visitor design pattern is a small-scale exampfe a
component-framework system. One of the benefits thef
inverted control structure of component-framewoslstems is
that the component (the visitor) is guaranteedaeelthe correct
behavior called for any given state of the framdw(tine host).

4 Self-Balancing Trees

As before, students are lead to a recursive defimif a balanced
tree:

e An empty tree is balanced.
¢ A non-empty tree is balanced if and only if all isild trees
are balanced and all have the same height.

Fundamentally, a tree is not constrained to anyafasrdering or
balancing—this is the bailiwick of particular insert/deletion
algorithms. A SBT is one whose insertion and dmbet
algorithms maintain the tree’s height balance. $Bife usually
considered for trees whose elements are totallgredd We will
thus consider trees with the followingéarch tree property
(STP):

1. The root data elements,are instrict ascending order.
2. All data elements in th& child tree, if it exists, are less than
Xi.

3. All elements in thé+1" child tree, if it exists, are greater
thanx;.
4. All subtrees satisfy the STP.

As a result, there are no duplicate elements.

The need for non-trivial balancing only arises wtikeare is an
imposed maximum on the number of data elementaiqae. We
call this maximum number theofder’ of the tree, and we will
consider only trees with order > 1. For examgie, well-known
“2-3-4 tree” is of order 3.

To help students craft algorithms for creating amaintaining a
balanced tree of a given order, we first discussr fsimple
operations that, in effect, move data elementsicady by one
level, mutating the tree structure and yet presgrthe tree’s
balance and order. Students will discover thatticadr
transportation of data in a tree, without distugbithe height
balance, is crucial in insertion and deletion ifttoh balanced
trees. Understanding this process will enable theghesign and
implement a relatively simple yet efficient insertior deletion
algorithm for SBTs.

4.1 Splitting up the root node

For a tree whose root node has more than one batest, it is
evident that growing the tree upward at the rodk wcrease the
overall tree height by one and still maintain theets balance.
This can be done by a simple calls@itUpAt(...) as illustrated
in Figure 2.

4.2 Collapsing the root node

Splicing all the children into the root (“collapgii) will decrease
the overall tree height by one and still maintdie tree’s balance.
This can be done by repeated callspticeAt(...) as illustrated
in Figure 2 (considett2 as a child tree dft).

4.3 Lifting data upward

To move a data element up one level in a tree,onttlisturbing
the height balance or ordering, can be accomplislyembmbining
a split-up operationsplitUpAt(...) , with a splice operation,
spliceAt(...) . This process is illustrated fRigure 3, reading
left to right. Here we wish to move the element, “&hich is
located in the set of data elements in the roet dhfild tree. This
child tree is at the parent’s #3 index. The desdestination for
the “5” is in the #3 data element location in trergnt tree. A
split-up operation followed by a splice operatigratly moves the
5 up one level without disturbing the height batanc ordering.

4.4 Pushing data downward

Moving data down one level in the tree without aibing its
height balance and ordering can be accomplishezbimbining a
split-down operation, splitDownAt(...) , with a collapse
operation (4.2). Once again, consider the exanmpkigure 3,

reading from right to left this time, where we witiove the 5
back to its original position. This is easily aggdished by a
split-down operation followed by a collapse openati Clearly,
height balance and ordering is preserved.

The above four operations serve as basic buildilogkb for
maintaining the invariants of the tree’s balance ardering. The

students are now ready for the discussion of tlsertion and
deletion algorithms.

5 Self-Balancing Tree Insertion

Self-balancing tree insertion of a k&yinto aTreeN T entails

applying thespliceAt(...) method to an appropriate subtreelof
while maintaining three invariants: the STP (sedreh property),
the height balance constraint, and the order cainstr

5.1 Heuristics

It is easy to convince students that, when theTréenot empty,
insertion of the ke must take place at a leaf because only by
traversing T all the way down to a leaf can one make the
determination whether or nét already exists in the tree. Once
we are at the appropriate lebf the callL.spliceAt(x, new
TreeN(k)) will insert k into L at an appropriate index and
maintain the STP of. However, such splicing may cause the
number of data element in the leaf node to exckedtescribed
order by one. In this cask, is said to be in avirtual staté
because such a state violates the order consttaintis still a
valid operational state of the tree.

The discussion in the preceding section (4) suggeahsporting
the excess data upward towards the root in ordee-@ttain the
normal state while maintaining the tree’s heightbee and STP.
This can be accomplished by repeated applicatiamhefsplit-up
and splice combination described in subsection 4&ore
reaching the root. When the data transport reattteesoot, only
a split-up (4.1) is required if the root in a vatwstate. This is
equivalent to a split-up followed by a no-op. Wds the
students on this vertical data transport, as ithés key to self-
balancing.

We abstract the splice and no-op into an abstrauttion, or in
the parlance of design patterns, a “commarddmbda (see
Listing 2). This interface performs an arbitrary task os it
parameter when itapply(...) method is called. Consider for
example the following command:

ILambda cmd = new ILambda() {
public Object apply(Object tree) {
return T.spliceAt(x, (TreeN)tree);
}
2

cmd.apply(S) will splice anyTreeN S to the given tre& at the
given indexx. On the other hand, the anonymdusmbda
object

new ILambda() {
public Object apply(Object tree) {
return T;
}
}

can serve as a no-op command.

In the above two commandg,andx arefree and must be bound
in some non-local environment in order for the cands to
make sense. In Java, such bindings are made f@ssihg inner
classes. The commands are created anonymouslyediytand

i public interface ILambda {
public Object apply(Object p);

i public class SplitUpAndApply implements ITreeNAlgo {
' private int _order;
public SplitUpAndApply(int order) { _order = order; }

public Object caseAt(int s, TreeN host, Object cmd) {
if (s <=_order) return host;

host.splitUpAt(s/2);
return ((ILambda) cmd).apply(host);

Listing 2 ILambda command and SplitUpAndApply visitor

passed as input parameters to the process of tndimgp data

upward encapsulated in alTreeNAlgo visitor called
SplitUpAndApply (seelListing 2) which can be expressed as
follows.

o Hoststate < order: do nothing.

e Hoststate > order: Split up the host and apply the supplied
abstractiLambda command to the host which will either
perform a no-op or a splice.

Listing 3 shows the code for our insertion algorithm thakesa
use of the aboveSplitUpAndApply visitor and ILambda
commands. Our implementation is an adaptation cbrmamon
technique in functional programming (for examplee g[5]).
More specifically, in the case of non-empty hostet; the
insertion algorithm simply sets up a “helper” algfum and passes
a no-op command to it since at the top level dadl host is the
root.

As shown inListing 3, the helper algorithm and the splice
commands are created on the fly as an anonymoes ainjects,
which are analogous to lambda expressions in fonati
programming. They allow us to express computatiorterms of
data in their closures. The use of anonymous inlasises greatly
simplifies the code by minimizing parameter passing control
structures. This often results in program code ihaeclarative,
clear and concise.

5.2 Correctness

To help the students gain a deeper understandittgeadigorithm,
we need to lead them through a more rigorous proof
correctness.

Case 0 ofnsertNAlgo is trivial. The correctness of the default
case hinges on the fact that the recursive caitiénthe helper
algorithm does indeed insert the key into the himse and
maintains the host's STP and height balance. Wellthe
anonymous helper algorithm instanicesertHelper and claim
the following.

Lemma 1: Let T be a balancedon-emptyTreeN of order > 1
that satisfies the STP, and suppkeg is not in the root node of
T. Letx be the index at the root &f such that if the-1" data
element exists, it is strictly less th&ey and if thex™ data

,,,

Function abstraction representing a command. A 5
function knows how to perform an operation on an
input Object p and return the result as an Object.

cmd is an ILambda operating on TreeN.
Case s = state <= order: do nothing (no-op).

Default (state>order) case: split up host at its
midpoint and then apply the ILambda parameter to
host .

element exists, it is strictly greater thkey. LetS be thex™
child tree ofT. Then, the following post-conditions hold for

S.execute(insertHelper , new ILambda() {
public Object apply(Object tree) {
return T.spliceAt(x, (TreeN)tree);
}

D:

¢ T containkey and preserves the STP and its height.
e« All subtrees ofT satisfy the order constraint.

Proof of lemma 1We shall prove by induction on the heighfTof

e Case height = 1S is empty, andk = 0. Thus case 0 of
insertHelper is called and evaluates TospliceAt(0, new
TreeN(key)). As a resultT contains onlykey at the root,
clearly satisfies the STP and preserves its heightll
subtrees of T are empty and trivially satisfy thedeo
constraint.

e Suppose the lemma holds for @lleeN T of order > 1 and
of heightsh that satisfy the STP and such thath <n. We
will prove the lemma holds for the case of dimgeN T of
order > 1 and of height+1 that satisfies the STP.

a) Here,S is not empty and thus the default case of
insertHelper is called with the parametbrbound toS
and the parametemd bound to the anonymous object

new ILambda() {
public Object apply(Obiject tree) {
return T.spliceAt(x, (TreeN)tree);

}

The body of this case consists of the followingethr
computations in sequence:

o afor loop;

o0 acallto execute recursiveiysertHelper ;

0 acallto execute theplitUpAndSplice algorithm.

We now examine the effects of each of the above
computations.

b) If key is in the root node o8, thefor loop will find a
match forkey and return. Nothing affect®, and so the
lemma holds.

c) If key is notin the root ofS, by the STP, the for loop
finds the indexx[0] of the child tree ofS wherekey
must be inserted in order to maintain the STPSof

public class InsertNAlgo implements ITreeNAlgo {
private SplitUpAndApply splitUpAndSplice;
public InsertNAIgo (int order) { splitUpAndSplice = new SplitUpAndApply(order);}

public Object caseAt(int s, final TreeN host, final Object key) {
switch (s) {

Initialize the splitUpAndSplice algorithm to split
up only those trees whose state > order .

The key to insert is the third parameter

The empty case simply splices a new tree into the :
host to mutate it into a 2-node tree. ‘

default : {
host.execute(new ITreeNAlgo() {

The default (state > 0) case simply sets up a call
to a helper algorithm, passing a no-op command.

public Object caseAt(int s_help, final TreeN h, final Object cmd) {

case 0O: {

The helper's empty case: The parent tree has
height 1 here. The empty case means that we are :
at a leaf and that the key was not found. Thus, a !
new tree is instantiated and spliced into the parent. !

default : {
final int[] x = {0};
for (; x[0] < s_help; x[0]++) {
int d = h.getDat(x[0]).intValue();
if (d >= ((Integer)key).intValue()) {

if (d == ((Integer)key).intValue()) return h;

else break;

The helper's default (state > 0) case: The tree has !
height at least 1 here. Linear search for the index |
of the child tree that will hold the key (the insertion
point) and preserve the STP of the tree. Could
alternatively use a binary search.

If the key is in the host tree already, do nothing,
else x[0] is the index of the child tree where the
key should be inserted, so break out of the loop.

h.getChild(x[0]).execute(this , new ILambda() {

public Object apply(Object tree) {
return h.spliceAt(x[0], (TreeN)tree);

return h.execute(splitUpAndSplice, cmd);

}
}; /1 end switch(s_help)

Recur on the helper, passing it an ILambda
command to splice at the computed insertion
point. The splice command’s closure is effectively
a memento that holds the previous insertion point.

If necessary, split this host and splice the excess
data into the parent using the supplied ILambda
command.

}, new ILambda() {
public Object apply(Object tree){
return host;

}
D

The no-op ILambda command is passed to the
first call of the helper on the root node.

return host;

}
}; /1 end switch(s)

Listing 3 : Self-balancing tree insertion algorithm

Consequently, the conditions of the lemma holdé it
S.getChild(x[0]) and x[0] in place of T, S and x,
respectively.

d) By the induction hypothesis, after the recursiat
S.getChild(x[0]) .execute(this, new ILambda() {
public Object apply(Object tree) {
return S.spliceAt(x[0], (TreeN)tree);
}
D
0 S containkey and preserves the STP and height.
0 All subtrees ofS satisfy the order constraint. .
e) As a result, the only place wheB8ecan break the order

constraint is at its root node. After the insertif key,
the size of the root node &f can only exceed the order

by at most one. Thus, splitting W will re-satisfy the
order constraint. The call
S.excecute(splitUpAndSplice , cmd)
splits S up at the middle and splices it Toat the index
X, if S break the order constraint. From the discussion i
subsection 4.3, such a combination of operatiores do
not affect the height of and the order of the subtrees of
T. Moreover, from the very definition af the STP off
is preserved.
f) Thus, the lemma holds fdr of heightn+1.
By induction, lemma 1 holds for all balanc&deeN T or
order > 1 and of heights1 that satisfy the STP.

We are now ready to prove correctness of the iioseaigorithm
InsertNAlgo .

Theorem 1. The algorithm InsertNAIgo inserts without
duplication an Integekey into a balancechost TreeN and
maintainshost’s STP and height balance.

Proof of theorem :1We shall prove the theorem by considering
the two casedost is empty andhost is not empty.

e Whenhost is empty, case 0 is calledost simply mutates
to a 2-node tree containifkgy. Obviously,host maintains
the STP, the height balance and the order constrain

¢ Whenhost is not empty, the default case is invoked, which
calls for host to execute the insert helper algorithm with
parameteh bound tohost and the parametemd bound to
the no-op anonymous object

new ILambda() {
public Object apply(Object tree) {
return host ;

}

As in the proof of lemma 1, ey is in the root node of
host, thefor loop will find a match fokey and return
from the call. Nothing affectsost, and so the theorem
holds.

If key is not in the root node, then the recursive call t
the helper is made. It follows from lemma 1 thast
then containkey, preserves its STP and height and all
subtrees ohost satisfy the order constraint.

The size of the root node bbst can only exceed the
prescribed order by at most one. If this happéms,
application of thesplitAndSplice algorithm onhost

will split host up at the middle, re-establishing the order
constraint and maintaining the height balancéhadt .
There will be no splicing to a parent tree howesgarce
the supplied command is a no-op. QED

a)

b)

0)

The above proof illustrates many important techagused in
more theoretically oriented upper division courses.

5.3 Complexity Analysis
The complexity analysis for the insertion is trlvia

1. All operations at a node are worst c@gerder) .

2. All the algorithm does is to recur once dowith® bottom of
the tree and then return.

3. Therefore the overall complexity of the algamithis O(log
N) whereN is the number of elements in the tree since the
tree is balanced.

6 Self-Balancing Tree Deletion

Deletion of a data element is well defined only wlhike tree is a
leaf. Any other situation leads to ambiguous cb®ion the
disposal of one or more of the child trees. Ifiteyg to be deleted
is at a leaf node, a simple call gplitDownAt(...) will remove
the key from the tree. Thus, similar to the insertcase, self-
balancing tree deletiomust take place athe leaf levelwhile
maintaining three invariants: the STP (search mexperty), the
height balance constraint, and the order constrabce again,
the students are lead to focus on the verticaspar of data.

6.1 Heuristics

Since the data element to be deleted must be wdtiyncated at
the leaf level, it must be moved from its origit@dation down to
the leaf level for deletion. We must thereforedfim method of
transporting data from the root to the leaves withaffecting the
height of the child trees. The problem is that¢hie a possibility
that the data to be deleted is located in a 2-nadeé,data cannot
be pushed down out of a 2-node without changing tthe's
height. To solve this problem, consider the follogvfacts:

1. Only trees with order > 1 can push data downsvavithout
changing their height because data will be lefhimnode.

2. From fact 1, if one data element is added tmadles in the
tree from which data is being pushed downwards) treeght
preservation is guaranteed.

3. Any elemenk; in a node, when combined with its left and
right child trees, can be considered as the rota deement
of a 2-node tree.

4. From the STP of the tree, we can always identfy
“candidaté element in the root node whose associated 2—
node tree is guaranteed to hold the desired dataegit to be
deleted, should it exist in the tree at all.

Recursively pushing a candidate element down froenrbot of
the tree will effectively add one element to allléinodes along
the path to from the root to the leaves that costétie element to
be deleted. When the data to be deleted is eneashtit will
automaticallybecome the candidate element and continue to be
pushed down to the leaves. Thus, except at thearabthe leaf,
height preservation is guaranteed during the dasmsport
process. At the root, a height change is posdiliethat will not
affect the balance of the tree. At the leaf, thedidate element is
either the element to be deleted, upon which itlvélremoved, or
if it is not, just as the insertion case, this esscelata will be
transported back upwards to the root. In eitheecao height
change takes place.

The deletion algorithm is thus analogous to theerimsn
algorithm except that it transports data from thet to the leaves
as well as from the leaves to the rodtisting 4 shows the
complete Java implementation. The deletion codesgentially
the same as the insertion code except that itifdenthe state = 1
(2-node state) as a special case, plus, it pusitesddwnward as
well as upward.

The 2-node case is singled out because when thésrad?-node,
data cannot be pushed downward from it, so it ndedbe

collapsed before the split down process beginss iBhwhat one
expects because the deletion process will causedbdo shorten
after enough data elements have been removed.ntizdlsethat

point is reached when the root runs out of dataugh downward.
Having a 2-node root does not guarantee that deewill shorten
on the next deletion however, due to the excesslgihg pushed
upwards from the leaves.

Just as in the insertion algorithm, for trees vdthtes > 1, the
deletion algorithm simply sets up an anonymouséredgorithm
and passes to it an anonymous no-op splice comrsiace the
root of the tree has no parent. The helper algwriis very
similar to that in the insertion algorithm in th#t uses an
appropriatelLambda command to splice excess data into the
parent tree.

! public class DeleteNAlgo implements ITreeNAlgo {
private SplitUpAndApply splitUpAndSplice;

public DeleteNAlgo (int order) { splitUpAndSplice = new SplitUpAndApply(order); } Initialize the splitUpAndSplice algorithm to
split up only those trees whose state > order .

public Object caseAt(int s, final TreeN host, final Object key) { The key to insert is the third parameter.
switch (s) {
DT Tease O: {return null;} T Empty case: do nothing and return. !
77 case 1: {collapse2Node(host); } T Case state = 1: collapse the 2-node and then |
fall through to the default case. :
default : { :
! return host.execute(new ITreeNAlgo() { Default (state>1) case: set up a call to a helper :
: public Object caseAt(int s_help,final TreeN h, Object cmd) { algorithm, passing a no-op splice command. :
} switch (s_help) {
pTTTTTTTTT case 0: {return null;} T Heliper's empty case: key is not in the tree; do
3 nothing and return. :
T, case 1:{ Helper's state = 1 case: encountered only if the
if (h.getDat(0).equals(key)) { data has been pushed down through a leaf.
Object d = h.getDat(0); !
h.splitDownAt(0); If key is found, then delete it from the 2-node |
return d; using a split down. ;
} |
else { If key is not found, splice the candidate key :
((lLambda)cmd).apply(h); back into the parent. :
return null;
}
_________________________ } g
default : { The helper's default (state>1): find the :
; final int x = findX(h, s_help, ((Integer)key).intValue()); candidate key index, split h down at that point :
| TreeN newChild = and collapse the resultant child tree. h still :
| collapse2Node(h.splitDownAt(x).getChild(x)); maintains its STP. :
P Object result = newChild.execute(this , new ILambda() { Recur on the helper, passing it the command !
! public Object apply(Object child) { (ILambda) to splice at the computed deletion !
return h.spliceAt(x, (TreeN)child); point. The splice command’'s closure is :
! } effectively a memento that holds the child :
3 i deletion point. ;
T h.execute(splitUpAndSplice, cmd); If necessary, split this host and splice the :
! return result; excess data into the parent using the supplied :
1 ILambda command. :
} /I end switch(s_help)
""""""""" }new iLambda() { T e o-op ILambda command is passed to the |
public Object apply(Object child) { return host; } first call of the helper on the root node because :
b; the root has no parent. :
}
} // end switch(s)
}
" private” TreeN collapse2Node(TreeN t) { T Utility method to coliapse a 2-node tree with its |
: t.spliceAt(1,t.getChild(1)); children. :
! return t.spliceAt(0,t.getChild(0));
C) .
) private int findX(TreeN t, int state,int k) { T Utility method for linear search for the
; for (int i=0; i< state; i++) if (t.getDat(i).intValue() >= k) return i; candidate data element. Candidate may
; return state - 1; actually be the key. Could use a binary search. :
) |
i

Listing 4 : Self-balancing tree deletion algorithm

In the helper algorithm, the 2-node case is singlaet because level has been reached. It also conveniently ardnaatically
when a data element is split down from a leafpitrfs a 2-node isolates the key to be deleted from the rest ofriwe
belowthe leaf level. This then serves as an indicatian the leaf

Pushing the candidate data downward is accomplibliquhiring
a split down operation with a “collapse” operatasdescribed in
Section 4. The collapsing process may create & itrevirtual
state. Once again, this is easily handled by ybtem, as it is still
an operational state of the tree. Since one ofitia elements of
the virtual state is pushed down to the next lewblen the excess
data is spliced back in during the recursion’s metthe splitting
up process will split the virtual state in two. #&sthe insertion
algorithm, the order constraint is maintained.

Conspicuously absent in the above algorithm aretrdditional
rotation operations. Rotations occur when localhgre aren’t
enough data elements to maintain the tree heigrite above
algorithm ensures the proper amount of data by ydwaishing
down data from the root. In addition, the collagsand splitting
up of the nodes promotes tree fullness better thansingle
element transfer in a rotation operation.

6.2 Correctness and Complexity

Let us label the anonymous helper algoritlieleteHelper .
Analogous to the insertion algorithm, we prove eotmness for
DeleteNAlgo by first establishing the following lemma on
deleteHelper :

Lemma 2: Let T be a balancedon-emptyTreeN of order > 1
that satisfies the STP akeéy be an Integer object. L&tbe the
index at the root of such that if thex-1" data element exists, it
is strictly less thatkey and if thex+1" data element exists, it is
strictly greater tharkey. Then, the following post-conditions
hold for

TreeN S = collapse2Node(T.splitDownAt(x).getChild(x));
S.execute(deleteHelper , new ILambda() {
public Object apply(Object tree) {
return T.spliceAt(x, (TreeN)tree);
}

D:

e T does not contaikey and preserves the STP and its height.
e All subtrees ofT satisfy the order constraint.

The correctness @eleteNAlgo then follows.

Theorem 2: The algorithmDeleteNAlgo removes an Integer
key from a balancetiost TreeN and maintainfiost’s STP and
height balance.

We leave as exercises the proofs for lemma 2 asmtéim 2 since
they are essentially identical to those of lemmad theorem 1.

The complexity analysis once again is trivial anddentical to
the analysis of the insertion algorithm.

7 Conclusion

We have presented our tree framework and exhilitgecbmplete
Java implementation. Akisting 3 and Listing 4 show, the
code of SBT insertion and deletion are each singoleugh to
easily fit on one page without relying on non-itite
manipulations.

The fundamental design principle is the separatibinvariant
behaviors from variant behaviors. In our framewadthe tree
structure serves as the re-usable invariant componéh a
complete and minimal set of intrinsic behaviorsheTbehaviors
are partitioned into constructors, structural miedéf and data
access. The extrinsic algorithms on the tree swisitors and add
an open-ended number of variant behaviors to #ee tr

We generalize the visitor pattern by replacing\rdlial visiting
methods with a single parameterized method. Threergdized
visitor can handle a dynamically changing numbehasts, or in
this case, a single host with dynamically changignbers of
states, each of which may require a different migibehavior.

The insertion and deletion process on a SBT reliegertical data
movement that preserves the height balance of rde t The
intrinsic structural operations of the tree were@wh to easily
support this process. The insertion and deletigarthms were
then expressed in terms of leaf manipulations, icadrtdata
movement and root manipulations. Their impleméostclosely
matched their abstract descriptions and lead djreatrigorous
proofs of correctness. The complexity analysesewsmple,
straightforward and intuitive. These algorithm&ien plugged
into the tree framework, transform the tree stmectnto a SBT.
This demonstrates the framework’s flexibility anktemsibility.

The algorithms can be easily modified to suppotteotself-
balancing tree structures such as B-trees.

Studying OO SBTSs reinforces students’ understandinapstract
decomposition, OOP, design patterns, complexitylyasi® and
proof-of-correctness. The drive towards proper tralbdon
unifies all the above principles. The students fmus on the
fundamental principles involved with the system heiit the
distractions of low-level manipulation code. Alastr concepts
such as closures, lambda expressions, itemizedacesdgsis and
other abstract behaviors are well represented infawmulation.
Functional programming and declarative programningie in
naturally without the traditional topical boundari¢hat hinder
students’ learning.

Acknowledgement

The authors would like to thank Caleb Hyde for ésd work in
helping make sense of the system during its eagldpment.

References

[1] Gamma, E., Helm, R., Johnson, R., and Vlisside®esign
Patterns, Elements of Reusable Object-Orientedw@odt
Addison-Wesley, 1995.

[2] Cormen, T., Leiserson, C., Rivest, N., and steC.
Introduction to Algorithms,™ ed, MIT Press, 2001.

[3] Nguyen, D. and Wong, SDesign Patterns for Decoupling
Data Structures and AlgorithmsSIGCSE Bulletin,31, 1,
March 1999, pp. 87-91.

[4] Nguyen, D. and Wong, S. Design Patterns for Lazy
Evaluation SIGCSE Bulletin32, 1, March 2000, pp. 21-25.

[5] Felleisen, M., Findler, B., Flatt, M., Krishnamthi, S. How
to Design ProgramaMIT Press, 2001.

