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PREFACE 
 
 

This dissertation was produced in accordance with guidelines which permit the inclusion 

as part of the dissertation the text of an original paper or papers submitted for publication. The 

dissertation must still conform to all other requirements explained in the "Guide for the 

Preparation of Master's Theses and Doctoral Dissertations at The University of Texas at Dallas." 

It must include a comprehensive abstract, a full introduction and literature review and a final 

overall conclusion. Additional material (procedural and design data as well as descriptions of 

equipment) must be provided in sufficient detail to allow a clear and precise judgment to be 

made of the importance and originality of the research reported.  

It is acceptable for this dissertation to include as chapters authentic copies of papers 

already published, provided these meet type size, margin and legibility requirements. In such 

cases, connecting texts which provide logical bridges between different manuscripts are 

mandatory. Where the student is not the sole author of a manuscript, the student is required to 

make an explicit statement in the introductory material to that manuscript describing the student's 

contribution to the work and acknowledging the contribution of the other author(s). The 

signatures of the Supervising Committee which precede all other material in the dissertation 

attest to the accuracy of this statement.  
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It is important to understand how the human brain processes speech sounds in order to lead to 

perception. fMRI and EEG studies have shown that certain cortical regions are activated after 

hearing speech, but these techniques lack the temporal and spatial precision necessary to 

document the unique pattern of activation evoked by each speech sound. Previous studies have 

shown that the primary auditory cortex (A1) pattern of activity evoked in response to speech 

sounds is altered by the temporal features of the sound. In this study, we show that rats’ (Rattus 

norvegicus) behavioral performance on consonant discrimination tasks is similar in key respects 

to human performance, and can be predicted from the spatiotemporal pattern of rat A1 activity 

when temporal information is maintained. When temporal information is ignored and the mean 

firing rate is used, behavioral performance cannot be predicted as accurately. We also document 

the ability of rats to categorize speech sounds by voicing or gender on the first day of training. 

This categorization ability is also predicted by the spatiotemporal pattern of A1 activity. Finally, 

we show that training on multiple speech discrimination tasks increases the proportion of 
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neurons responding to low frequency tones, the threshold of A1 neurons, the response strength to 

tones, the receptive field size, and response latencies. Passive exposure to speech sounds 

increases the proportion of neurons responding to high frequency tones, and decreases the 

threshold of A1 neurons and response latencies. These results indicate that training on multiple 

speech tasks does not result in stimulus specific response enhancement in primary auditory 

cortex, but instead, results in generalized enhancement of untrained sounds following speech 

training. This result suggests that non-primary or higher cortical areas, as opposed to A1, may 

exhibit stimulus specificity after speech sound training.      
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CHAPTER 1 
 

INTRODUCTION 
 
 

Processing speech sounds is something that we humans do on a daily basis. Throughout 

the day, we are able to perceive the words that someone has spoken, process what was said, and 

then respond. When the ability to perceive speech sounds is lost, as a result of stroke or traumatic 

brain injury, the road to recovery can be long to impossible. Understanding the neural 

mechanisms behind cortical speech sound processing could potentially lead to better treatment 

options to facilitate recovery in patients with speech processing disorders.      

fMRI and EEG studies show that certain areas of the brain are activated by speech sounds 

(Callan et al. 2003). However, there are limitations on the spatial and temporal resolution of 

these techniques (Rosen et al. 1998). People with speech processing disorders need treatment 

options, and this study may facilitate the development of new therapeutic paradigms. Multi-unit 

recordings offer better temporal precision than fMRI and better spatial resolution than EEG 

recordings. As a result, it is possible to document which neurons are firing down to the single 

unit level, and precisely when they are firing on a millisecond timescale. Using this technique, 

we are able to show that the precise spectrotemporal activation pattern of primary auditory cortex 

neurons strongly predicts rat behavioral performance on a variety of speech discrimination tasks 

(Chapter 2).  

Previous studies have documented the neural responses to speech sounds in primary 

auditory cortex (A1). Monkey A1 neurons respond distinctly to sounds that differ in voice onset 
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time (VOT), which is the amount of time between the onset of the consonant burst release and 

the onset of vocal fold vibrations (Kent and Read 2002). Sounds with short VOTs, corresponding 

to voiced stop consonants in English, like 'dad', evoke a single peak of activity in response to the 

onset of the consonant /d/, while sounds with long VOTs, like 'tad', evoke two peaks of activity 

in response to the consonant onset and the vowel onset (Steinschneider et al. 2003). This finding 

has been obtained in cats, awake and anesthetized monkeys, as well as humans (Steinschneider et 

al. 2003; Steinschneider et al. 2005; Steinschneider et al. 1999; Wong and Schreiner 2003). 

Sounds that differ in place of articulation also evoke distinct responses in A1. Low frequency 

neurons have a stronger response to the consonant /b/, while high frequency neurons have a 

stronger response to the consonant /d/ (Steinschneider et al. 1995). These studies have shown 

that primary auditory cortex neurons generate different spatial and temporal patterns of activity 

to speech depending upon the acoustic features of the sound. 

Numerous studies have documented the ability of animals to discriminate speech sounds. 

Chinchillas can respond to consonants with either short or long VOTs in order to avoid foot 

shock (Kuhl and Miller 1975). When the sounds are synthesized to lie on a VOT continuum 

between the voiced and voiceless endpoints, the perceptual boundary for chinchillas is nearly 

identical to the identification function found in humans. Japanese quail are able to accurately 

peck for words starting with /d/ and refrain from pecking for words that start with either /b/ or /g/, 

in multiple vowel contexts (Kluender et al. 1987). Rats have also been shown to discriminate 

speech sounds, and (for example) are able to accurately discriminate 'shad' from 'chad' (Reed et 

al. 2003).   

In Chapter 2, we document the ability of rats to successfully discriminate nine out of 

eleven different consonant pairs. This behavioral performance is strongly predicted by A1 neural 
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responses when temporal information is maintained, but is not predicted when using the mean 

firing rate. This study supports the view that both spatial and temporal information are necessary 

to accurately predict rat behavior. 

The stimuli used for the experiments in Chapter 2 are spoken by a single speaker. 

However, in the real world, humans are able to categorize speech sounds regardless of the gender 

of the speaker, age of the speaker, or distance from the speaker. The word 'dad' could be spoken 

by a young child or a deep voiced adult male, but it still needs to be put into the 'dad' category 

regardless of the speaker. This ability to normalize across the variability is important not only for 

human speech sounds, but also for many visual stimuli and other auditory stimuli, including 

animal vocalizations.    

Both animals and humans are able to accurately categorize sounds; however the neural 

mechanisms involved in sound categorization are not yet known. When Vervet monkeys spot an 

eagle, snake, or leopard, they produce an alarm call specific to the type of animal sighted 

(Seyfarth et al. 1980). Surrounding monkeys who hear the alarm call will produce an animal-

specific reaction: after hearing an eagle call, monkeys will look up at the sky, while a snake call 

causes monkeys to look down at the ground. Monkeys run up a tree in response to hearing a 

leopard alarm call. In this case, being able to correctly categorize the sound can mean the 

difference between life and death for the monkey. Monkeys are also able to categorize 

vocalizations based on the quality of the food that another monkey has found (Gifford et al. 

2003). These studies show that animals are able to categorize complex acoustic stimuli, 

including vocalizations. 

In Chapter 3, we show that rats are able to accurately categorize a single set of sounds on 

the first day of training either by voicing (while ignoring gender information) or by gender 
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(while ignoring voicing information). Voicing categorization is also possible when the sounds 

are temporally compressed. Behavioral performance on each of these categorizations tasks can 

be predicted from A1 responses. This chapter extends the experiments in the previous chapter by 

showing that animals can categorize multiple tokens despite large acoustic variability, and that 

A1 responses are still able to predict behavior even with the increase in acoustic variability. 

   It is well known that training on visual, auditory, or somatosensory tasks changes the 

brain. Monkeys trained on a tone frequency discrimination task had an enlarged representation of 

the tone in A1 (Recanzone et al. 1993). Expansion of the representation of a trained tone has also 

been seen in rats trained on a frequency discrimination task (Polley et al. 2006). However, when 

rats were trained on an intensity discrimination task using the same stimuli, there was no increase 

in frequency representation; instead, there was an increase in the response to the trained intensity 

(increased non-monotonicity). We hypothesized that speech training would alter the receptive 

fields, cortical maps, and speech responses in A1.  

In Chapter 4, we show that long-term speech training on multiple tasks alters the 

receptive field properties in A1, and shows an opposite effect compared to rats passively exposed 

to speech sounds. Long-term speech training also causes an increase in the response to low 

frequency tones, and a decrease in the response to mid frequency tones. Passive exposure results 

in an increased response to high frequency tones. This chapter shows that speech training alters 

A1 responses.  

In Chapter 5, we discuss the clinical implications of these experiments, and explore how 

these experiments fit in with the previous literature. This dissertation consists of 5 chapters and 1 

appendix that contains supplementary data and figures. Chapter 2 explores consonant 
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discrimination, Chapter 3 explores categorization ability, and Chapter 4 documents A1 plasticity 

after speech training.  
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CHAPTER 2 
 

CORTICAL ACTIVITY PATTERNS PREDICT SPEECH DISCRIMINATION ABILITY 
 
 
 
 
 
 

Crystal T. Engineer, Claudia A. Perez, YeTing H. Chen, Ryan S. Carraway, Amanda C. Reed, 
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ABSTRACT 
 
 

Neural activity in the cerebral cortex can explain many aspects of sensory perception. 

Extensive psychophysical and neurophysiological studies of visual motion and vibrotactile 

processing show that the firing rate of cortical neurons averaged across 50–500 ms is well 

correlated with discrimination ability. In this study, we tested the hypothesis that primary 

auditory cortex (A1) neurons use temporal precision on the order of 1–10 ms to represent speech 

sounds shifted into the rat hearing range. Neural discrimination was highly correlated with 

behavioral performance on 11 consonant-discrimination tasks when spike timing was preserved 

and was not correlated when spike timing was eliminated. This result suggests that spike timing 

contributes to the auditory cortex representation of consonant sounds. 
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INTRODUCTION 
 
 

The debate about the importance of spike timing began with the first recordings of neural 

activity and remains unresolved (Parker and Newsome 1998; DeWeese, Hromadka et al. 2005). 

Although coding strategies based on precise timing have the potential to transmit more 

information than strategies based on firing rate averaged over long intervals, psychophysical 

studies of tactile modulation rate and visual movement indicate that rate-based descriptions of 

sensory events provide the best predictions of behavioral discrimination ability (Britten, Shadlen 

et al. 1992; Parker and Newsome 1998; Pruett, Sinclair et al. 2001; Romo and Salinas 2003; Liu 

and Newsome 2005). The use of precise temporal information by somatosensory cortex has been 

rejected because neurometric analysis predicts much better discrimination ability than is 

observed behaviorally (Romo and Salinas 2003).  

The auditory system is sensitive to precise temporal information and is a logical place to 

study perceptual correlates of neural representations based on precise spike timing (DeWeese, 

Hromadka et al. 2005; Narayan, Grana et al. 2006; Schnupp, Hall et al. 2006; Walker, Ahmed et 

al. 2007). However, few behavioral studies have examined the relationship between neural 

activity and auditory discrimination (Ahissar, Nagarajan et al. 2001; Orduna, Mercado et al. 

2005; Schnupp, Hall et al. 2006; Wang, Narayan et al. 2007). Psychophysical studies have 

demonstrated that newborn and adult humans, as well as rats and chinchillas, can reliably 

distinguish consonants based on acoustic information found within 40 ms of sound onset (Miller 

and Nicely 1955; Kuhl and Miller 1975; Blumstein and Stevens 1979; Bertoncini, Bijeljac-Babic 

et al. 1987; Jongman 1989; Fowler, Brown et al. 2003; Reed, Howell et al. 2003). Similarly, the 
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onset response of neurons in the central auditory system recorded in awake and anesthetized 

subjects reliably encodes the rapid acoustic transitions that provide information about consonant 

identity (Steinschneider, Reser et al. 1995; Steinschneider, Fishman et al. 2003; Steinschneider, 

Volkov et al. 2005; Tavabi, Obleser et al. 2007; Young 2007). A1 lesions impair judgments of 

complex sounds, including speech (Dewson, Pribram et al. 1969; Heffner and Heffner 1989; 

Wetzel, Ohl et al. 1998; Rybalko, Suta et al. 2006; Cooke, Zhang et al. 2007). Here we report 

that the precise spatiotemporal activity pattern evoked by the onset of consonant sounds is well 

correlated with the ability of rats to discriminate these sounds.  
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METHODS 
 
 

Speech stimuli. 

We recorded 20 English words ending in /ad/ (as in 'sad') in a double-walled, soundproof 

booth. The initial consonants differed in voicing (voiced /d/ versus voiceless /t/), place of 

articulation (lips /b/ versus back of mouth /g/) or manner of articulation (fricative /sh/ versus 

nasal /n/) (Figure A2.1). The fundamental frequency and spectrum envelope of each word was 

shifted up in frequency by a factor of two using the STRAIGHT vocoder (Kawahara 1997) in 

order to better match the rat hearing range (Figure B2.9). The intensity of each sound was 

adjusted so that the intensity during the most intense 100 ms was 60 dB SPL. 

Operant training procedure and analysis. 

Eleven rats were trained using an operant go/no-go procedure to discriminate words 

differing in their initial consonant sound. Each rat trained for two 1-h sessions each day (5 

d/week). Rats first underwent a shaping period during which they were taught to press the lever. 

Each time the rat was in close proximity to the lever, the rat heard the target sound and received 

a pellet (45-mg sugar pellet). Eventually, the rat began to press the lever without assistance. 

After each lever press, the rat heard the target sound and received a pellet. The shaping period 

lasted until the rat was able to obtain at least 100 pellets per session for two consecutive sessions. 

This stage lasted on average 3.5 d. After the shaping period, rats began a detection task in which 

they learned to press the lever each time the target sound was presented. Silent periods were 

randomly interleaved with the target sounds during each training session. Sounds were initially 

presented every 10 s, and the rat was given an 8-s window to press the lever. The sound interval
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was gradually decreased to 6 s, and the lever-press window was decreased to 3 s. Once rats 

reached the performance criteria of a d' 1.5 for ten sessions, they advanced to a consonant 

discrimination task. The quantity d' is a measure of discriminability of two sets of samples based 

on signal detection theory. 

During each consonant discrimination task, rats learned to discriminate the target sound 

from the distractor sounds. Trials began every 6 s, and silent catch trials were randomly 

interleaved 20–33% of the time. Rats were only rewarded for lever presses to the target 

(conditioned) stimulus. Pressing the lever on a stimulus other than the target resulted in a time-

out during which the house light was extinguished and the training program paused for a period 

of approximately 6 s. Training took place in a soundproof, double-walled training booth that 

included a house light, a video camera for monitoring, a speaker (Optimus Bullet Horn Tweeter) 

and a cage (8 inches length 8 inches width 8 inches height) that included a lever, lever light 

and pellet receptacle. A pellet dispenser was mounted outside the double-walled, foam-lined 

booth to reduce noise. Rats were food deprived to motivate behavior, but were fed on days off to 

maintain between 80% and 90% ad lib body weight. Rats were housed individually and 

maintained on a reverse 12-h light-dark cycle. 

Each consonant discrimination task lasted for 20 training sessions over 2 weeks. Six rats 

performed each of four different consonant-discrimination tasks (/d/ versus /s/, /d/ versus /t/, /r/ 

versus /l/, and /d/ versus /b/ and /g/), and five rats performed each of three different consonant-

discrimination tasks (/m/ versus /n/; /sh/ versus /f/, /s/ and /h/; and /sh/ versus /ch/ and /j/). Each 

group of rats trained on each of the tasks for 2 weeks, in the order given. We subsequently tested 

them for 2 d on each task to ensure that discrimination ability was not strongly influenced by 

task order (see Appendix B: Supplementary Data). Data shown in Figure A2.4 was collected on 
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the seventh and eighth days (that is, four sessions) of training on each task. Over these 2 d, each 

rat performed 940 173 trials (mean s.d.). An example learning curve is shown in Figure B2.4. 

Recording procedure. 

We recorded multiunit (n = 445) and single-unit (n = 16) responses from right primary 

auditory cortex (A1) of anesthetized, experimentally naive, female Sprague-Dawley rats in a 

soundproof recording booth (n = 11 rats). Rats were anesthetized with pentobarbital (50 mg kg- 1) 

and received supplemental dilute pentobarbital (8 mg ml- 1) every 0.5–1 h as needed to maintain 

areflexia, along with a 1:1 mixture of dextrose (5%) and standard Ringer's lactate (Engineer et al., 

2004) to prevent dehydration. Heart rate and body temperature were monitored throughout the 

experiment. Four Parylene-coated tungsten microelectrodes (1–2 M , FHC) were simultaneously 

lowered to 600 m below the surface of the right primary auditory cortex (layer 4/5). Electrode 

penetrations were marked using blood vessels as landmarks. 

We recorded multiunit A1 responses (n = 40) in six awake rats using chronically 

implanted microwire arrays, which have been described in detail in previous publications 

(Rennaker et al., 2005a; Rennaker et al., 2005b). Briefly, 14-channel microwire electrodes were 

implanted in the right primary auditory cortex using a custom-built mechanical insertion device 

to rapidly insert electrodes in layers 4/5 (depth, 550 m) (Rennaker et al., 2005b). Restraint 

jackets were used to minimize movement artifacts during recording sessions, conducted 1–7 d 

after implantation. 

Twenty 60-dB speech stimuli were randomly interleaved and presented every 2,000 ms 

for 20 repeats per site at each recording site. Brief (25-ms) tones were presented at 81 

frequencies (1–32 kHz) at 16 intensities (0–75 dB) to determine the characteristic frequency of 

each site. All tones were separated by 560 ms and randomly interleaved. Sounds were presented 
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approximately 10 cm from the left ear of the rat. Stimulus generation, data acquisition and spike 

sorting were performed with Tucker-Davis hardware (RP2.1 and RX5) and software (Brainware). 

Single units refer to well isolated waveforms likely to have been evoked by a single neuron. 

Multiunits include action potentials from more than one nearby neuron. The University of Texas 

at Dallas Institutional Animal Care and Use Committee approved all protocols and recording 

procedures. 

Statistical analysis. 

Neurogram similarity was computed using euclidean distance. The euclidean distance 

between any two neurograms (X, Y) is the square root of the sum of the squared differences 

between the firing rate at each bin (j) for each recording site (i). For the analysis in Figure A2.3, 

part 1 and Figure A2.5a, we used activity from 40 1-ms bins from all 445 sites to compute the 

similarity between neurogram pairs. For the analysis in Figure A2.3, part 2 and Figure A2.5b, we 

used activity from a single 40-ms bin from each of 445 sites to compute the similarity between 

neurogram pairs 

 

where nsites and nbins are the total numbers of sites and bins, respectively. 

We used a nearest-neighbor classifier to quantify neural discrimination performance 

based on single-trial activity patterns (Schnupp et al., 2006; Foffani and Moxon, 2004). The 

classifier binned activity using 1-ms to 700-ms intervals and then compared the response of each 

single trial with the average activity pattern (PSTH) evoked by each of the speech stimuli 

presented. The given trial being considered was not included in the average activity pattern, to 

prevent artifact. This model assumes that the brain region reading out the information in the 
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spike trials has previously heard each of the sounds 19 times and attempts to identify which of 

the possible choices was most likely to have generated the trial under consideration. It uses 

euclidean distance to determine how similar each response was to the average activity evoked by 

each of the sounds. The classifier guesses that the single-trial pattern was generated by the sound 

whose average pattern it most closely resembles (that is, minimum euclidean distance). The 

onset response to each sound is defined as the 40-ms interval beginning when neural activity 

exceeded the spontaneous firing rate by three s.d. Error estimates are s.e.m. Pearson's correlation 

coefficient was used to examine the relationship between neural and behavioral discrimination 

on the 11 tasks (n = 11). 
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RESULTS 
 
 

Neural responses to consonant sounds 

We recorded neural responses to 20 English consonants (Figure A2.1 and Figure B2.1) 

from single neurons and multiunit clusters of A1 neurons in awake and barbiturate-anesthetized 

rats. To illustrate the response to each sound, we constructed neurograms from the average onset 

response of 445 multiunit A1 recording sites ordered by characteristic frequency (Figure A2.2 

and Figure B2.2). As expected, each consonant evoked a distinct spatiotemporal activity pattern 

in A1 (Supplementary Video 1 online: 

http://www.nature.com/neuro/journal/v11/n5/suppinfo/nn.2109_S1.html). 

Consonants differing only in their place of articulation resulted in different spatial 

activity patterns (Blumstein and Stevens, 1979; Steinschneider et al., 1995; Tavabi et al, 2007). 

For example, the /s/ sound activated high frequency neurons, whereas /sh/ activated mid-

frequency neurons (Figure A2.2, third column and Appendix B: Supplementary Data). Manner 

of articulation (for example, stop, fricative or glide) substantially altered the temporal profile of 

the population response (Figure A2.2, top row). As in earlier studies, stop consonants generated 

the sharpest onset peaks (Steinschneider et al., 1999; Steinschneider et al., 2003; Wong and 

Schreiner, 2003). Nasals, glides and liquids resulted in the weakest onset responses; fricatives 

and affricates resulted in intermediate onset responses (Appendix B: Supplementary Data). 

Whereas the voiced stop consonants (/b/, /d/, /g/) evoked a single burst of activity, unvoiced stop 

consonants (/p/, /t/, /k/) resulted in a second peak of activity at voicing onset, consistent with 



17 

 

previous reports in cats, monkeys and humans (Figure B2.3, Appendix 2: Supplementary Data, 

and Supplementary Video 2 online: 

http://www.nature.com/neuro/journal/v11/n5/suppinfo/nn.2109_S1.html) (Steinschneider et al., 

1999; Steinschneider et al., 2003; Steinschneider et al., 2005; Wong and Schreiner, 2003). 

Relating onset response similarity and behavior 

Although it is reasonable to expect that sounds that evoke similar cortical responses will 

be more difficult to discriminate than sounds that evoke distinct responses, this is the first study 

to test whether this relationship requires precise temporal information (that is, 1-ms bins) or 

whether the rate-based strategies observed in visual and somatosensory cortex (that is, 50- to 

500-ms bins) predict behavioral performance. 

We quantified the difference between each pair of neurograms using euclidean distance 

(Figures A2.2 and A2.3). When 1-ms windows were used, the spatiotemporal patterns evoked by 

the consonants /d/ and /b/ were much more distinct than the patterns evoked by /m/ and /n/ 

(Figure A2.3, part 1), leading to the prediction that /d/ versus /b/ would be one of the easiest 

consonant pairs to discriminate and /m/ versus /n/ would be one of the hardest. Alternatively, if 

information about precise timing is not used, /d/ versus /b/ was predicted to be a very difficult 

discrimination (Figure A2.3, part 2). To test these contrasting predictions, we evaluated the 

ability of rats to distinguish between these and nine other consonant pairs using an operant 

go/no-go procedure wherein rats were rewarded for a lever press after the presentation of a target 

consonant. The tasks were chosen so that each consonant pair differed by one articulatory feature 

(place, voicing or manner; Figure A2.1). Rats were able to reliably discriminate 9 of the 11 pairs 

tested (Figure A2.4 and Figure B2.4). These results extend earlier observations that monkeys, 

cats, birds and rodents can discriminate consonant sounds (Kuhl and Miller 1975; Kluender, 
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Diehl et al. 1987; Dooling, Okanoya et al. 1989; Sinnott and Brown 1997; Ramus, Hauser et al. 

2000; Reed, Howell et al. 2003; Wong and Schreiner 2003; Toro, Trobalon et al. 2005). The 

wide range of difficulty across the 11 tasks is advantageous for identifying neural correlates. 

Consistent with our hypothesis that A1 representations make use of precise spike timing, 

/d/ versus /b/ was one of the easiest tasks (Figure A2.4), and differences in the A1 onset response 

patterns were highly correlated with performance on the 11 tasks when 1-ms bins were used (R2 

= 0.75, P = 0.0006, Figure A2.5a). A1 responses were not correlated with behavior when spike 

timing information was removed (R2 = 0.046, P = 0.5; Figure A2.5b; Figure B2.5a and 

Supplementary Data). 

Neural discrimination predicts behavioral discrimination 

Although it is interesting that the average neural response to each consonant was related 

to behavior, in practice, individual speech sounds must be identified during single trials, not 

based on the average of many trials. Analysis using a nearest-neighbor classifier makes it 

possible to document neural discrimination on the basis of single trial data and allows the direct 

correlation between neural and behavioral discrimination in units of percentage correct. This 

classifier (which compares the poststimulus time histogram (PSTH) evoked by each stimulus 

presentation with the average PSTH evoked by each consonant and selects the most similar; see 

Methods) is effective in identifying tactile patterns and animal vocalizations using cortical 

activity (Foffani and Moxon 2004; Schnupp, Hall et al. 2006).  

Behavioral performance was well predicted by classifier performance when activity was 

binned with 1-ms precision. For example, a single sweep of activity from one multiunit cluster 

was able to discriminate /d/ from /b/ 79.5 0.8% (mean  s.e.m.) of the time and /m/ from /n/ 

60.1 0.7% of the time; 50% is chance performance. Consistent with previous psychophysical 
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evidence that the first 40 ms contain sufficient information to discriminate consonant sounds 

(Blumstein and Stevens 1979; Bertoncini, Bijeljac-Babic et al. 1987; Jongman 1989; Fowler, 

Brown et al. 2003), the correlation between the behavioral and neural discrimination was highest 

when the classifier was provided A1 activity patterns during the first 40 ms of the cortical 

response (R2 = 0.66, P = 0.002; Figures A2.5c and A2.6a, part 1, Figure B2.6 and Supplementary 

Data). This correlation was equally strong in awake rats (R2 = 0.63, P = 0.004; Figure B2.7). 

Neural discrimination correlated well with behavior provided that onset responses were used (5–

100 ms) and temporal information was preserved (1–10 ms, Figure B2.5b). 

Because of a ceiling effect caused by greatly improved neural discrimination, the 

correlation between the behavioral and neural discrimination was not significant (R2 = 0.02, P = 

0.6) when the classifier was given all 700 ms of activity (Figure A2.6b, part 3). Neural 

discrimination was greatly reduced when temporal information was eliminated (that is, mean 

firing rate over 700 ms) and no relationship with behavior was observed (R2 = 0.06, P = 0.5). For 

example, on the easiest task (/d/ versus /s/), rats were correct on 92.5 0.8% of trials, whereas the 

classifier was correct only 55.4 0.6% of the time when spike timing was removed (Figure A2.6b, 

part 4). The correlation between classifier and behavior was also not significant when the mean 

onset response rate was used (40-ms bin, R2 = 0.14, P = 0.2; Figures A2.5d and A2.6a, part 2). 

These results show that the distinctness of the precise temporal activity patterns evoked by 

consonant onsets is highly correlated with discrimination ability in rats. 

Influence of population size on neural discrimination 

To determine the neural population size that best correlates with behavior, we compared 

behavioral discrimination with neural discrimination using individual single units, 16 single units, 

individual multiunits and sets of 16 multiunits. Stringent spike-sorting criteria were used to 
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increase our confidence that we were recording from individual neurons. We collected a total of 

16 well isolated single units from 16 different recording sites distributed across A1. Consonant 

discrimination was evaluated for each of the 16 single units individually and for the set of all 16 

single units. When the classifier was provided with activity from all 16 sites, each pattern was a 

matrix of 16 columns and a number of rows determined by the bin size used. We used the same 

technique to evaluate classifier performance using multiunit activity from sets of 16 recording 

sites randomly selected from the full set of 445 recording sites. Each population size was 

evaluated with or without precise temporal information using the onset response (that is, 1-ms or 

40-ms bins) or the entire response (that is, 1-ms or 700-ms bins). 

Neural discrimination using single units did not correlate with behavior regardless of the 

coding strategy used in the analysis (Figure A2.7a). The poor correlation may be related to the 

poor neural discrimination of single units (Figure A2.7b), which was probably due to the small 

number of action potentials in single-unit responses compared to multiunit responses. Although 

discrimination using all 16 single units was better than individual single units, neural 

discrimination on the 11 tasks was still not significantly correlated with behavior (Figure A2.7), 

perhaps because of the anatomical distance between the 16 recording sites. 

Neural discrimination using 16 randomly selected multiunit sites correlated with behavior 

but did so only when temporally precise onset responses were used (Figure A2.7a). Although the 

dependence on temporally precise onset responses was similar to results based on single 

multiunit sites, the average neural performance using 16 multiunit sites significantly exceeded 

actual behavioral performance (Figure A2.7b). This excessive accuracy resulted in a ceiling 

effect, which probably explains why the correlation with behavior was lower when large 

populations were used. After exploring a large set of neural readouts using various time windows 
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and population sizes, we found that discrimination using onset activity patterns from individual 

multiunit sites correlated best with behavioral discrimination. 

Our observation that multiunit responses were highly correlated with behavioral 

performance is consistent with earlier reports that multiunit responses are superior to single-unit 

responses for identifying complex stimuli. For example, V1 single units provide an unreliable 

estimate of the local contrast in natural images, whereas multiunit responses encode this 

information efficiently (Weliky, Fiser et al. 2003). Similarly, multiunit clusters in the bird 

homolog of A1 are better than single units at discriminating song from simpler sounds, including 

tones, ripples and noise (Grace, Amin et al. 2003). 
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DISCUSSION 
 
 

Although theoretical studies have suggested that precise spike timing can provide a rapid 

and accurate code for stimulus recognition and categorization (Buonomano and Merzenich 1999; 

VanRullen, Guyonneau et al. 2005), studies in visual and somatosensory cortex have indicated 

that firing rates averaged across 50–500 ms are best correlated with behavior (Britten, Shadlen et 

al. 1992; Parker and Newsome 1998; Pruett, Sinclair et al. 2001; Romo and Salinas 2003; Liu 

and Newsome 2005). Our results suggest that the representation of consonant sounds in A1 is 

based on time windows that are approximately 50 times more precise. 

The greater temporal precision observed in this study could be specific to the auditory 

system (DeWeese, Hromadka et al. 2005; Narayan, Grana et al. 2006; Schnupp, Hall et al. 2006; 

Walker, Ahmed et al. 2007). However, it is also possible that spike timing is important in all 

modalities when transient stimuli are involved (Weliky, Fiser et al. 2003; Grace, Amin et al. 

2003; Richmond, Optican et al. 1990). The latter hypothesis is supported by observations of a 

rate-based code for steady-state vowels (Ohl and Scheich 1997; Versnel and Shamma 1998; Qin, 

Chimoto et al. 2004; Young 2007) and by computational studies showing that cortical neurons 

can efficiently extract temporal patterns from populations of neurons in a manner that promotes 

accurate consonant categorization (Buonomano and Merzenich 1995). It will be important to test 

whether neural correlates of transient visual and tactile stimuli make use of spike timing. 

Error-trial analysis in an awake behaving preparation, as well as lesion and 

microstimulation experiments, are needed to evaluate our hypothesis that consonant processing 

depends upon precise spike timing in A1. Recordings in higher cortical areas will be needed to
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establish whether temporal patterns or mean firing rates are better correlated with behavioral 

discrimination. 
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APPENDIX A 

FIGURES 

 

Figure A2.1. Spectrograms of each speech sound grouped by manner and place of articulation.  
Words with unvoiced initial consonants are underlined.  Frequency is represented on the y axis 
(0–35 kHz) and time on the x axis (–50 to 700 ms).  Speech sounds were shifted one octave 
higher to accommodate the rat hearing range.  See Figure B2.1 for a more detailed view of the 
first 40 ms of each spectrogram.  
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Figure A2.2. Neurograms depicting the onset response of rat A1 neurons to twenty English 
consonants.  Multi-unit data was collected from 445 recording sites in eleven anesthetized 
experimentally naïve adult rats.  Average post-stimulus time histograms (PSTH) derived from 
twenty repeats were ordered by the characteristic frequency (kHz) of each recording site (y axis).  
Time is represented on the x axis (–5 to 40 ms). The firing rate of each site is represented in 
grayscale, where black indicates 400 Hz. For comparison, the mean population PSTH evoked by 
each sound is plotted above the corresponding neurogram.  For reference, ‘gad’ evoked the 
highest population firing rate of 288 Hz. As in Figure A2.1, rows differ in the place of 
articulation of each consonant, while columns differ in the manner of articulation.  See Figure 
B2.2 for a direct comparison between stop consonant spectrograms and neurograms.  
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Figure A2.3. Predictions of consonant discrimination ability based on onset response similarity. 
The Euclidean distance between the neurograms evoked by each consonant pair (Figure A2.2) 
was computed using (1) spike timing with 1 ms bins or (2) average firing rate over a 40 ms bin 
(see Methods). Distance measures were normalized by the most distinct pair such that dark red 
squares indicate pairs that are highly distinct, and blue indicates pairs that are similar. Pairs that 
were tested behaviorally are outlined in black.  (1) refers to the upper left half of the figure and 
(2) refers to the lower right.   
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Figure A2.4. Behavioral discrimination of consonant sounds. Rats successfully discriminated 
nine of eleven consonant pairs evaluated. Open bars represent the target sound for each go/no-go 
task and filled bars represent the non-target sound. Error bars indicate s.e.m. across rats. 
Asterisks indicate significant discrimination (one tailed paired t-test, P < 0.05).   
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Figure A2.5. Both average A1 responses and trial-by-trial neural discrimination predicted 
consonant discrimination ability when temporal information was maintained.  (a) The 
normalized Euclidean distance between neurogram onset patterns (Figure A2.3.1) was correlated 
with behavioral performance when action potential times were binned with 1 ms precision. (b) 
Distance was not correlated with behavior when a single 40 ms bin was used (Figure A2.3.2).  
(c,d) The average neural discrimination was correlated with behavioral discrimination when 1 
ms bins were used (c), but not when a 40 ms bin was used (d). Neural discrimination was 
performed by a nearest-neighbor classifier (see methods) using a single sweep of neural activity.  
The eleven consonant pairs are printed next to each data point. Error bars indicate s.e.m. for 
behavioral and neural discrimination performance.  Solid lines indicate the best linear fits when 
statistically significant. Analysis using other distance measures is shown in Table B2.1. 
Classifier performance on each task as a function of tone characteristic frequency is shown in 
Figure B2.5.    
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Figure A2.6. Predictions of consonant discrimination ability based on nearest-neighbor classifier. 
(a.1) Neural discrimination of each consonant pair using the 40 ms onset response with 1 ms bins. 
(a.2) Neural discrimination of each consonant pair using the average firing rate over the first 40 
ms of the onset response. (b.3) Neural discrimination using the entire 700 ms stimulus duration 
with 1 ms bins. (b.4) Neural discrimination using the average rate over the 700 ms stimulus 
duration. Pairs that were tested behaviorally (Figure A2.4) are outlined in black.   
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Figure A2.7. Neural discrimination using the onset activity pattern from individual multi-unit 
sites was best correlated with behavior.  (a) Percent of variance across the eleven behavioral 
tasks that was explained using individual single units, sixteen single units, individual multi-units, 
and sets of sixteen multi-units. Each population size was evaluated with or without precise 
temporal information using the onset response or the entire response.  Filled symbols indicate 
statistically significant correlations between neural and behavioral discrimination (Pearson's 
correlation coefficient, P < 0.05).  Regardless of population size, neural discrimination based on 
mean firing rate (i.e. 40 or 700 ms bin) was not correlated with behavioral performance on the 
eleven tasks. (b) Mean neural discrimination on the eleven consonant discrimination tasks using 
individual single units, sixteen single units, individual multi-units, and sets of sixteen multi-units. 
The solid line indicates average behavioral discrimination. Error bars indicate s.e.m. across the 
eleven tasks. The complete distributions of neural discrimination by single and multi-unit 
activity for each task are provided in Figure B2.8. 
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APPENDIX B 
 

SUPPLEMENTARY DATA 
 
 

Neurogram quantification and comparison with earlier physiology studies 

Consistent with earlier observations in humans and non-human animals (Steinschneider 

et al., 1999; Steinschneider et al., 2003; Steinschneider et al., 2005; Wong and Schreiner, 2003), 

more spikes were evoked during the second peak of the unvoiced stop consonant /p/ than during 

the second peak of the voiced stop consonant /b/ (1.05 ± 0.08 additional spikes from 70 to 170 

ms after consonant onset, two tailed t-test, n = 445, P < 0.00001). An increase in firing rate was 

also seen in the unvoiced stop consonants /k/ and /t/ compared to the voiced stop consonants /g/ 

and /d/ (two tailed t-test, n = 445, P < 0.00001, Figure B2.3 and Supplementary Video 2). The 

stop consonants generated the strongest onset response (40 ms), the fricatives and affricates had 

an intermediate response, and the sonorants (nasals, glides, and liquids) generated the weakest 

response. The six stops had an average peak firing rate of 524 ± 13 Hz, the eight fricatives and 

affricates had an average peak firing rate of 284 ± 9 Hz, and the six sonorants had an average 

peak firing rate of 203 ± 7 Hz (ANOVA F19,444 = 284, MSE = 43745, P < 0.00001, Figure A2.2).   

 Consistent with earlier observations in human and monkey auditory cortex, consonants 

that differ in place of articulation generate different spatial patterns of A1 activity (Blumstein 

and Stevens, 1979; Obleser et al., 2003; Steinschneider et al., 1995). In the low frequency region 

of A1 ( < 9 kHz), the consonant /d/ had the weakest response of the voiced stop consonants (two 

tailed t-test, n = 445, P < 0.001, 40 ms onset window), while in the high frequency region of A1 
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( > 9 kHz), the consonant /b/ had the weakest response (two tailed t-test, n = 445, P < 0.00001). 

The differential spatial patterns were most apparent when comparing activity produced during 1 

ms windows.  For example, 8 ms after sound onset, /b/ primarily activated sites with 2–9 kHz 

CF’s, /g/ activated sites with 6–14 kHz CF’s, and /d/ activated sites with 8–25 kHz CF’s 

(Supplementary Video 1). 

  The fact that voicing, manner, and place of articulation alter A1 activity as in earlier 

studies conducted in humans and non-human animals with or without anesthesia supports the use 

of the rat model and indicates that frequency shifting speech sounds to match the rat hearing 

range does not dramatically distort the previously reported pattern of cortical responses 

(Steinschneider et al., 1995; Steinschneider et al., 1999; Steinschneider et al., 2003; 

Steinschneider et al., 2005; Wong and Schreiner, 2003; Blumstein and Stevens, 1979; Obleser et 

al., 2003). 

Behavioral discrimination time course 

Average performance during the seventh and eighth days of training was used to estimate 

the relative difficulty of different consonant discriminations.  By the end of day eight, each rat 

had performed 3544 ± 757 (mean ± s.d.) trials.  All rats reached asymptotic performance by the 

seventh day of training on each task.   

Two additional days of training (i.e. days 9 and 10) were used to confirm asymptotic 

performance (paired t-test, P > 0.05).  However, for /d/ versus /t/, only one rat was trained for ten 

days and the others were inadvertently trained for only nine (n = 4 rats) or seven (n = 1 rat) days.  

The learning curve for the /d/ versus /t/ task is shown in Figure B2.4a.  Although the false alarm 

rate was trending down during the last three days of training, discrimination quantified by d’ did 

not improve because the hit rate was also trending down (Figure B2.4b).   
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To ensure discrimination ability was not strongly influenced by task order, each rat 

underwent a review session (after completion of all of the two week consonant discrimination 

tasks) during which it reviewed each of the tasks it was trained on for two additional days per 

task.  Performance was not significantly different between the seventh and eighth days of 

training and the two days of review training (ANOVA F9,36 = 0.49, MSE = 0.28, P = 0.87).  

Onset neurograms only predict behavior when spatial and temporal information is preserved 

The correlation between behavioral discrimination and the Euclidean distance between 

neurogram pairs was highest when the classifier was provided 40 ms of A1 onset activity in 1 ms 

bins (R2 = 0.75, P = 0.0006, Figure A2.5a). When spike timing information was removed by 

using a single 40 ms bin, the distance between neurogram pairs was not significantly correlated 

with behavior (R2 = 0.046, P = 0.5, Figure A2.5b).  When the entire duration (i.e. including the 

vowel and final /d/) was included, the distances between neurogram pairs (Figure B2.3) were not 

significantly correlated with behavior whether 1 ms bins were used (R2 = 0.07, P = 0.4) or a 

single 700 ms bin was used (R2 = 0.08, P = 0.4). The critical observation is that cortical 

responses are only correlated with behavior when spike timing is considered.   

To test whether spatial information is also required for accurate consonant discrimination, 

we compared the Euclidean distances between the mean population PSTH’s (i.e. the PSTH 

above each neurogram in Figure A2.2) for each pair of sounds.   Although precise temporal 

information was maintained, behavior was not significantly correlated with the similarity of 

responses averaged across all 445 A1 sites (R2 = 0.23, P = 0.1).  Similarly, no correlation was 

observed when both spatial and temporal information was removed (i.e. comparing the total 

number of spikes in each neurogram in Figure A2.2, R2 = 0.14, P = 0.2). These results indicate 

that the precise spatiotemporal pattern of A1 activity is best correlated with behavior. 
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The Euclidean distances between the first 40 ms of the consonant spectrograms (Figure 

B2.1) were modestly correlated with behavior (R2 = 0.40, P = 0.038), and no correlation was 

observed when the entire spectrogram was used (R2 = 0.03, P = 0.61).  This result confirms our 

expectation that behavioral discrimination ability is related to acoustic similarity.   

Relationship between tone and consonant responses 

As expected, tone response properties explain much of the variance in the ability of 

different recording sites to discriminate each of the eleven pairs evaluated.  For example, low 

frequency neurons were better than high frequency neurons at distinguishing nasals and liquids 

(Figure B2.6 black lines), and the opposite pattern was seen for fricatives and affricates (Figure 

B2.6 green lines).  Stops which begin with broadband noise could be reliably discriminated by 

neurons from any region of A1.  These observations are consistent with the acoustics of the 

consonants studied (Figure B2.1) (Stevens, 2000). Broader tone frequency tuning, shorter 

response latency, lower tone thresholds, and greater tone evoked response strength were each 

positively correlated with neural discrimination ability (R2 = 0.15, P = 1.1 x 10–17; R2 = 0.2, P = 

7.8 x 10–23; R2 = 0.1, P = 3.2 x 10–12; R2 = 0.38, P = 2.1 x 10–47).  Collectively, these factors 

account for 47.3% of the variance in average consonant discrimination ability (P = 0). 

Other analysis models 

 Although there are an infinite number of potential models that could be used to read out 

neural activity, we attempted to use common analysis methods that relied on as few assumptions 

as possible.  Euclidean distance was selected to compare average and single trial responses 

(Figures A2.3 and A2.5–2.7) as it is the most commonly used metric of similarity.  Our results 

are not dependent on the use of Euclidean distance.  When Chebychev and city block distances 

were computed with 1 ms bins, neural discrimination was also well correlated with behavior 
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(Table B2.1).  Neither method was significantly correlated with behavior when a single bin of 

activity was used. 
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Figure B2.1. Spectrograms of each speech sound grouped by manner and place of articulation.  
Words with unvoiced initial consonants are underlined.  All conventions are identical to Figure 
A2.1, except that the x axis has been limited to 40 ms to facilitate comparison with Figure A2.2. 
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Figure B2.2. Onset neurograms and spectrograms of each stop consonant are shown to facilitate 
visual comparison.  All conventions are identical to Figure A2.2 and Figure B2.1. 
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Figure B2.3. Neurograms and population PSTH’s of rat A1 neurons to twenty English 
consonants.  Post-stimulus time histograms (PSTH) were ordered by the characteristic frequency 
(kHz) of each recording site (y axis).  Multi-unit data was collected from each of 445 multi-unit 
recording sites in eleven experimentally naïve adult rats.  Conventions are identical to Figure 
A2.2, except for the time interval included on the x axis (–75 to 700 ms).  Late response peaks 
were due to the onset of the vowel /a/ and the terminal /d/ (as in ‘sad’). 
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Figure B2.4. Average learning curve illustrates asymptotic performance by the seventh and 
eighth days of /d/ versus /t/ discrimination (n = 6 rats).  In (a) the percent of trials in which rats 
pressed the lever is given.  In (b), the discrimination between /d/ and /t/ is shown using d’.  
Review indicates performance during review sessions conducted after several weeks of training 
on other discriminations.  For this task, we only had data from four rats on day 9 and one rat on 
day ten (see methods). 
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Figure B2.5. Percent of variance explained decreases as bin size increases. (a) Percent of 
variance across the 11 consonant discrimination tasks that is explained using Euclidean distance 
calculated from the 40 ms onset response. (b) Percent of variance explained using classifier 
percent correct. The observation that neural discrimination in the auditory system depends upon 
temporal information is consistent with earlier studies 9–11. Asterisks indicate correlations that are 
statistically significant (Pearson’s correlation coefficient, P < 0.05). 
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Figure B2.6. Classifier performance on each task as a function of tone characteristic frequency. 
High frequency neurons provide little information about nasals and liquids (black).  Low 
frequency neurons provide little information about fricatives and affricates (green).  Both high 
and low frequency neurons provide information about stop consonants (purple) and manner of 
articulation (blue).  Classifier data is identical to that used in Figure A2.5c.   
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Figure B2.7. Strong correlation between behavioral performance on 11 consonant discrimination 
tasks and neural discrimination using data from 40 A1 multi-unit recording sites in 6 chronically 
implanted awake rats. Conventions are identical to Figure A2.5c, except data was recorded 
without anesthesia. The solid line indicates the best linear fit (R2 = 0.63, P = 0.004 compared to 
R2 = 0.66, P = 0.002 in anesthetized rats).   
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Figure B2.8. Neural discrimination using the onset response of individual multi-units with 
precise temporal information predicts behavioral discrimination. (a) The population distribution 
of the onset response of 445 multi-unit sites using forty 1 ms bins and (b) a single 40 ms bin. (c) 
The population distribution of the onset response of 16 single unit sites using forty 1 ms bins and 
(d) a single 40 ms bin. Black circles indicate the median classifier percent correct for each of the 
11 consonant discrimination tasks, and white circles indicate the mean classifier percent correct. 
The dashed line indicates chance performance. The scale bar at the top left of each subplot 
represents 10% of multi-units sites (a,b) and 40% of single unit sites (c,d). Classifier percent 
correct is binned into 2.5% correct bins.  Each task is labeled to the right of the figure. 
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Figure B2.9. The spectrum sampled from a typical stimulus (the word ‘sad’, blue line) shifted up 
using STRAIGHT superimposed on the rat audiogram (Kelly and Masterton 1977, red line). The 
amplitude scale (in decibels) of the speech was shifted to match the spectrum of the stimulus to 
the audiogram. 
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Table B2.1. Neural activity was only correlated with behavioral performance when temporal 
precision was preserved. Both mean activity and single trial activity were significantly correlated 
with behavior when temporal information was preserved using Euclidean distance, City block 
distance, and Chebychev distance. There was no significant correlation between behavior and 
neural activity when temporal information was eliminated using mean or single trial activity for 
each of the three models. Significant correlations are shown in bold. 
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Supplementary Video 1. The video illustrates the spatiotemporal activity patterns evoked in 
primary auditory cortex by twenty different consonant sounds (Figure B2.1).  The color of each 
polygon indicates the multi-unit activity at each of 63 recording sites in a single rat.  Pairs of 
sounds that evoke similar patterns (i.e. /m/ and /n/) are difficult for rats to discriminate, while 
pairs that evoke distinct patterns are easy (i.e. /d/ and /b/, Figure A2.4).  The map of 
characteristic frequency (CF) illustrates the topographic organization of tone frequency tuning.  
Red indicates instantaneous firing rates above 800 Hz, yellow and orange denote 550–800 Hz, 
light blue and green denote 100–550 Hz, and dark blue denotes rates below 100 Hz.  Activity 
patterns reflect the average response to twenty repeats.  The blue lines under each activity map 
indicate the average firing rate for all 63 A1 sites.  The red lines mark the time at which each 
spatial activity pattern occurs relative to response onset.  The patterns were smoothed using a 3 
ms sliding window.   
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Supplementary Video 2. The video illustrates the spatiotemporal activity patterns evoked in 
primary auditory cortex by twenty different consonant sounds (Figure A2.1).  The conventions 
are the same except that the frame rate is faster and the video continues until 250 ms after 
response onset.  Late response peaks were due to the onset of the vowel /a/ (as in ‘sad’).  The 
terminal /d/ of each sound was excluded to reduce video size. 
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ABSTRACT 
 
 

 The brain processes sights and sounds into meaningful categories.  Prefrontal neurons 

faithfully represent category membership.  Although it is assumed that similarities in earlier 

cortical regions contribute to stimulus categorization, few studies have tested this hypothesis 

with real-world stimuli.  In this study, we demonstrate that rats rapidly categorize speech sounds 

using voicing and gender cues.  Our results provide the first evidence that spatiotemporal 

patterns in primary auditory cortex (A1) contain sufficient information to explain behavioral 

categorization of speech sounds. 
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INTRODUCTION 
 
 

Both humans and animals categorize the sights and sounds they encounter on a daily 

basis. Vervet monkeys emit different warning calls for each class of predator in their 

environment, and troop mates exhibit distinct behaviors that indicate they understand the 

categories each call type represents (Seyfarth et al., 1980).  After a few weeks of training, 

macaque monkeys can categorize images of animals, plants, and objects (Seyfarth et al., 1980; 

Vogels, 1999; Freedman et al., 2001).  Several species have been shown to categorize animal 

vocalizations, music and human speech sounds (Kuhl and Miller, 1975; Kluender et al., 1987; 

Wyttenbach et al., 1996; Wright et al., 2000; Gifford et al., 2003; Reed et al., 2003). Rodents, for 

example, can accurately categorize speech sounds based on differences in voice onset time (/d/ 

vs. /t/, (Kuhl and Miller, 1975)) and rise time (/sh/ vs. /ch/, (Reed et al., 2003)).  

Prefrontal and parietal cortex neurons develop categorical responses based on observed 

contingencies.  For example, after training many prefrontal neurons respond more robustly to 

images of cats compared to images of dogs, and respond similarly to visually distinct images 

within the same category, such as a housecat and a cheetah (Freedman et al., 2001).  Prefrontal 

and parietal neurons can also respond categorically to drifting dot patterns, vibrotactile stimuli 

and vocalizations (Freedman et al., 2001; Romo and Salinas, 2003; Gifford et al., 2005; Cohen et 

al., 2006).  

These categorical boundaries develop in a space of features (i.e. orientation, color, 

motion, etc.) created by earlier sensory areas. Studies using simple visual and somatosensory 

stimuli indicate that the transformation of sensory information to guide behavioral responses is a
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hierarchical process involving many brain regions (Freedman et al., 2003; Romo and Salinas, 

2003).  To understand how early sensory processing of complex stimuli relates to categorization 

behavior, we tested the ability of rats to categorize speech stimuli that differed in both voicing 

and gender, and compared categorization behavior with predictions derived from responses in 

primary auditory cortex (A1). 

Neurons in the primary auditory cortex of humans, monkeys and cats show distinct 

responses to speech sounds that differ in voice onset time (VOT). For example, syllables with a 

short VOT evoke a single peak of activity in response to the onset of the consonant, while 

syllables with a long VOT evoke an additional peak of activity to the onset of voicing 

(Steinschneider et al., 1999; Steinschneider et al., 2003; Wong and Schreiner, 2003; 

Steinschneider et al., 2005). While cortical responses to speech stimuli that differ in voicing have 

been well studied, it is not known what stimulus features are highlighted in A1 that provide 

useful information that higher areas can extract to form behaviorally relevant categorical 

boundaries. 

Our earlier study demonstrates that the unique spatiotemporal pattern of A1 responses to 

each consonant accurately predicts consonant discrimination performance (Reed et al., 2003; 

Toro et al., 2003, 2005; Engineer et al., 2008). This study expands on our earlier consonant 

discrimination study that used single exemplars by testing the ability of rats to accurately 

categorize speech sounds when presented with multiple exemplars. We trained rats to categorize 

speech stimuli that differed in both voicing and gender, and recorded A1 responses to these 

sounds to determine if A1 responses can accurately predict categorization performance. 
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METHODS 
 
 

Eleven rats were trained to categorize sounds by voicing or gender. Each rat performed 

the categorization task for two weeks. Behavioral performance on the voicing multiple speaker, 

gender multiple speaker, and voicing temporal compression categorization tasks was compared 

to neural activity in 441 primary auditory cortex (A1) sites in 11 experimentally naïve rats in 

response to the ‘dad’ and ‘tad’ stimuli. Behavioral training and A1 recording procedures are 

identical to previous studies and the 11 trained and 11 naïve rats used in this study are the same 

rats involved in consonant discrimination tasks in our previous study (Engineer et al., 2008).  

Speech stimuli  

We recorded the words ‘dad’ and ‘tad’ spoken by 3 male and 3 female native English 

speakers (n = 12 sounds, Figure C3.1). Additionally, ‘dad’ and ‘tad’ spoken by a single female 

speaker were temporally compressed in 10% increments, down to 10% of the original stimulus 

length, resulting in 20 temporally compressed ‘dad’ and ‘tad’ stimuli, using the STRAIGHT 

vocoder (Kawahara, 1997). As in our earlier study, the speech sounds were shifted up an octave 

in order to match the rat hearing range and presented at 60 dB (Kawahara, 1997; Engineer et al., 

2008).  

Behavioral training  

To test for the ability of rats to discriminate differences in voicing, we trained six rats to 

categorize by voicing when the stimuli were temporally compressed. These six rats were 

previously trained for two weeks to discriminate ‘dad’ from ‘tad’ when spoken by a single 

female speaker. Immediately following the single speaker voicing task, rats were trained to 
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categorize the 20 temporally compressed ‘dad’ and ‘tad’ stimuli. Following two weeks of 

training on the temporal compression voicing task, these six rats began training on the voicing 

multiple speaker task.  

 To test for the ability of rats to discriminate gender, we trained five rats to categorize 

gender when presented with ‘dad’ and ‘tad’ sounds spoken by multiple speakers. The rats were 

previously trained on other tasks for a month. For the first two weeks, the rats were trained to 

discriminate pitch using the word ‘dad’ spoken by a single female speaker. For the remaining 

two weeks, the rats were trained to categorize gender using the 6 male and female ‘dad’ stimuli. 

Immediately following the ‘dad’ gender task, rats began training on the gender multiple speaker 

task.  

 Training took place in double-walled booths that each contained a speaker (Optimus 

Bullet Horn Tweeter), house light, and cage (8” length x 8” width x 8” height) which included a 

lever, lever light, and pellet dish. The pellet dispenser was mounted outside of the booth to 

minimize the sound. Rats received a 45 mg sugar pellet reward for pressing the lever in response 

to the CS+ sounds, and received a time out where the house light was extinguished for a period 

of approximately 6 seconds for pressing the lever in response to the CS- sounds. Rats were food 

deprived to encourage motivation, and were kept between 80% and 90% body weight.   

 Rats were first trained to press the lever in order to receive a sugar pellet reward. Once 

they reached the criteria of independently pressing the lever 100 times per session for two 

sessions, they advanced to the detection phase of training. During this phase, rats learned to press 

the lever after hearing the ‘dad’ speech stimulus spoken by a female speaker. Rats started with a 

long 8 second hit window after each sound presentation, and the hit window was decreased in 0.5 

second increments every few sessions as performance increased, down to a hit window of 3 
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seconds. When rats reached the criteria of a d’ ≥ 1.5 for 10 sessions, they advanced to the 

discrimination task. From this phase on, rats performed each task for 20 sessions over 2 weeks (2 

training sessions per day). Six rats trained on a ‘dad’ vs. ‘tad’ discrimination task for two weeks, 

followed by a ‘dad’ vs. ‘tad’ temporal compression categorization task for two weeks, followed 

by a ‘dad’ vs. ‘tad’ multiple speaker categorization task for two weeks (Figure C3.2). Five rats 

trained on a ‘dad’ pitch discrimination task for two weeks, followed by a ‘dad’ gender 

categorization task for two weeks, followed by a ‘dad’ and ‘tad’ gender categorization task for 

two weeks (Figure C3.3). The final categorization task in each group used the exact same stimuli, 

‘dad’ and ‘tad’ spoken by multiple male and female speakers. One group of rats was trained to 

categorize these stimuli by VOT, while the other group of rats was trained to categorize these 

stimuli by gender.   

Anesthetized recordings 

 We recorded multi-unit responses (n = 441) to each of the ‘dad’ and ‘tad’ stimuli in the 

right primary auditory cortex of 11 anesthetized experimentally naïve female Sprague-Dawley 

rats. Rats were initially anesthetized with pentobarbital (50 mg kg-1), and received dilute 

pentobarbital (8 mg ml–1) as needed. Four Parylene-coated tungsten microelectrodes (1–2 MΩ, 

FHC) were used to record action potentials 600 μm below the cortical surface.  

Thirty 60 dB speech stimuli were each presented 20 times, every 2 seconds at each 

recording site. Additionally, to determine the characteristic frequency of each site, 25 ms tones 

were presented at 81 frequencies (1 to 32 kHz) at 16 intensities (0 to 75 dB) at each site. 

Stimulus generation and data acquisition were performed with Tucker-Davis hardware (RP2.1 

and RX5) and software (Brainware). The University of Texas at Dallas Institutional Animal Care 

and Use Committee approved all protocols and recording procedures.  
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Data analysis   

To quantify neural performance, we used a nearest-neighbor classifier that made a PSTH 

template based on 19 of the 20 repeats for each sound at each recording site (Foffani and Moxon, 

2004; Schnupp et al., 2006). The remaining repeat for each sound was compared to the PSTH 

templates based on the previous nineteen repeats, and the classifier chooses the PSTH template 

that has the smallest Euclidean distance from the repeat currently being considered. Responses 

included the entire 400 ms duration of the neural response, either with temporal precision (using 

1 to 10 ms bins) or without temporal precision (a single 400 ms bin).  
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RESULTS 
 
 
Rats accurately categorize voicing 

 Previous studies have shown that rats are able to easily discriminate differences in 

voicing (Engineer et al., 2008), and chinchillas can categorize voicing even when there are 

differences in vowel context and speaker (Kuhl and Miller, 1975). We predicted that rats would 

also be able to categorize by voicing on the first day of testing on a novel set of sounds. 

Six rats were trained to discriminate ‘dad’ and ‘tad’ spoken by a single female speaker. After two 

weeks of training on this task, performance was significantly better than discrimination 

performance on the first day of training (d’=2.5 ± 0.3 vs. d’=0.7 ± 0.3, p=0.0002, Figure 

C3.2a,b,g). These well trained rats were then required to categorize voicing differences when 

sounds were temporally compressed or spoken by multiple speakers.  

The first categorization task involved temporally compressed versions of the same ‘dad’ 

and ‘tad’ sounds used for the initial discrimination training. The two sounds were temporally 

compressed in 10% increments, down to 10% of the original stimulus length to create a set of 9 

novel ‘dad’ sounds and 9 novel ‘tad’ sounds. Rats were able to accurately categorize 16 of the 18 

novel sounds on the first day of training (85 ± 2% vs. 35 ± 7%, d’=1.5 ± 0.2, Figure C3.2c,g). 

Only the most compressed stimuli (10% of the original length) required additional training to 

distinguish (Figure C3.2c,d). These results are consistent with observations in chinchillas and 

indicate that rats perceive the ‘dad’ and ‘tad’ sounds categorically even in the presence of a 

nearly ten-fold variation in stimulus duration.
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After testing with temporally compressed versions of the original ‘dad’ and ‘tad’ sounds, 

rats were tested with a novel set of ‘dad’ and ‘tad’ sounds produced by three male and two 

female speakers (Figure C3.1). Rats accurately categorized these sounds on the first day of 

training (d’=1.4 ± 0.1, Figure C3.2e,g), and did not improve significantly with two weeks of 

additional testing (d’=1.6 ± 0.3, p=0.23, Figure C3.2f,g).  These results indicate rats can also 

perceive ‘dad’ and ‘tad’ categorically in the presence of natural variation in VOT, formant 

transition, burst amplitude and burst spectrum. 

 Consistent with previous observations that males produce voiceless sounds with shorter 

voice onset times than females (Robb et al., 2005), the false alarm rate was significantly higher 

for male ‘tad’ stimuli compared to female ‘tad’ stimuli (56 ± 13% vs. 11 ± 5%, p=0.04). VOT 

duration was highly correlated with behavioral categorization (R2=0.75, p=0.0002, Figure C3.7a). 

This result suggests that rats use VOT when it is helpful in classifying sounds produced by 

multiple speakers. The earlier observation that rats can ignore significant VOT variability when 

differences in burst acoustics reliably distinguish the temporally compressed stimuli suggests 

that rats, like humans, can make use of multiple acoustic features to categorize speech sounds 

(Summerfield and Haggard, 1977; Holt et al., 2001). 

Rats accurately categorize gender 

 Five rats were trained to categorize speech stimuli based on the gender of the speaker. 

Rats were first trained to discriminate ‘dad’ with a high pitch from ‘dad’ with a low pitch. The 

target ‘dad’ stimulus used was identical to the ‘dad’ stimulus from the previous voicing 

discrimination, while the distracter ‘dad’ stimulus had a pitch one octave lower. On the first day 

of discrimination training, rats were unable to discriminate pitch, and pressed equally to both the 

high and low pitched ‘dad’ stimuli (78% vs. 78%, d’=0.01 ± 0.07, p=0.87, Figure C3.3a,g). After 
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two weeks of training on this task, performance improved, and rats pressed the lever significantly 

more to the high pitched ‘dad’ than the low pitched ‘dad’ (78% vs. 48%, d’=1.05 ± 0.19, 

p=0.003, Figure C3.3b,g).  

 Following the pitch discrimination task, rats began the ‘dad’ gender categorization task 

where they were rewarded for pressing the lever in response to a female ‘dad’, and punished for 

pressing in response to a male ‘dad’. Rats were able to accurately categorize gender on the first 

day of training (d’=1.28 ± 0.34, Figure C3.3c,g), and performance improved over two weeks of 

training (d’=2.79 ± 0.17 on the last day of training, Figure C3.3d,g). On the first day of training, 

rats pressed the lever 82 ± 3% (mean ± se) to the female ‘dad’ stimuli, and pressed 38 ± 9% to 

the male ‘dad’ stimuli.  

After two weeks of training on the ‘dad’ gender task, rats were switched to a gender 

categorization task using both the ‘dad’ and ‘tad’ multiple speaker stimuli, the exact same sounds 

used in the previous voicing categorization task. On the first day of training on this task, rats 

were able to successfully categorize by gender (d’ = 2.1 ± 0.19, Figure C3.3e,g), and after two 

weeks of training on the task, performance improved slightly (d’=2.6 ± 0.33, Figure C3.3f,g). On 

the first day of training, rats pressed 81 ± 8% to the female ‘dad’ and ‘tad’ stimuli, and pressed 

13 ± 2% to the male ‘dad’ and ‘tad’ stimuli. Rats were able to successfully categorize each of the 

male and female stimuli except for the ‘tad’ stimulus produced by male #1, and they were unable 

to accurately categorize this sound after two weeks of training (Figure C3.3f).    

The final categorization task for each group of rats used identical stimuli, ‘dad’ and ‘tad’ 

spoken by multiple male and female speakers. Rats were able to accurately categorize this set of 

sounds by both voicing (‘dad’ vs. ‘tad’) and gender (female vs. male).   
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A1 responses to speech sounds 

We recorded the primary auditory cortex responses to each of the 15 ‘dad’ and 15 ‘tad’ 

stimuli at 441 multi-unit sites in 11 experimentally naïve rats. Neurograms for each of the ‘dad’ 

and ‘tad’ multiple speaker stimuli were constructed, with each of the 441 recording sites 

arranged by characteristic frequency (CF) from low to high frequency on the y axis (Figure C3.4).  

  To quantify the differences in the response to each sound and identify potential neural 

mechanisms for categorization, we calculated the peak firing rate to each of the sounds at each 

recording site. Female sounds evoked on average more than twice as many spikes as male sounds 

in high frequency neurons between 16 and 32 kHz (281 Hz vs. 118 Hz, p=0.002, Figure C3.5a). 

There was no difference between the firing rate evoked by female and male sounds in low 

frequency neurons between 1 and 2 kHz (p=0.49). In contrast to gender firing differences, ‘dad’ 

sounds evoked almost twice as many spikes as ‘tad’ sounds in low frequency neurons between 1 

and 2 kHz (328 Hz vs. 182 Hz, p=0.03, Figure C3.5b), but there was no difference between the 

firing rate evoked by ‘dad’ and ‘tad’ sounds in high frequency neurons (p=0.54). For sounds that 

were temporally compressed, ‘dad’ sounds evoked a higher firing rate than ‘tad’ sounds in low 

frequency neurons (p=0.0001), while ‘tad’ sounds evoked a higher firing rate than ‘dad’ sounds 

in high frequency neurons (p=0.000006, Figure C3.5c).  

We also calculated the total number of spikes at each recording site over the 400 ms 

duration of the response for each of the ‘dad’ and ‘tad’ stimuli. Using this method, female sounds 

evoked more spikes than male sounds in high frequency neurons between 16 and 32 kHz (4.8 

spikes vs. 2.9 spikes, p=0.02, Figure C3.5d). As with the peak rate analysis, ‘dad’ sounds evoked 

more spikes than ‘tad’ sounds in low frequency neurons between 1 and 2 kHz (7.7 spikes vs. 6.6 

spikes, p=0.06, Figure C3.5e). For the temporally compressed sounds, however, ‘tad’ sounds 
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evoked more spikes than ‘dad’ sounds in high frequency neurons (5.3 spikes vs. 2.9 spikes, 

p=0.0000001), but there was no difference in the number of evoked spikes in low frequency 

neurons (p=0.32, Figure C3.5f).  

The peak rate differences between sound categories are more distinct than the total 

number of spikes evoked over the entire duration of the response, suggesting that spike timing 

provides more information than mean rate, which is consistent with earlier reports (Engineer et 

al., 2008).    

Neural responses predict categorization ability 

To categorize A1 neural responses, the Euclidean distance was determined between each 

of the categorization sounds and the template sounds that rats were initially trained to 

discriminate. Responses included the 40 ms onset of the neural response, using 20 ms smoothing. 

When temporal precision was preserved, the Euclidean distance between the CS+ and CS- 

templates on the gender categorization task strongly predicts behavioral performance (R2 = 0.61, 

p = 0.004, Figure C3.6a). The Euclidean distance for male sounds was low, and rats performing 

the gender categorization task rarely hit to these sounds. In contrast, the Euclidean distance for 

female sounds was high, and rats performing this task almost always pressed the lever in 

response to these sounds. The Euclidean distance between the CS+ and CS- templates strongly 

predicts behavioral performance on the voicing multiple speaker task (R2 = 0.75, p = 0.001, 

Figure C3.6b), and on the temporal compression voicing task (R2 = 0.86, p = 0.00000004, Figure 

C3.6c).  
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DISCUSSION 
 
 

In this study, rats were able to successfully categorize speech sounds by both voicing and 

gender on the first day of training. This adds to previous findings that animals are able to 

categorize speech sounds (Kluender et al., 1987; Reed et al., 2003), including consonants which 

differ in VOT (Kuhl and Miller, 1975). Categorization performance was strongly predicted using 

the temporal pattern of A1 activity, but was not predicted by the mean firing rate. 

 This study helps to bridge the gap between the acoustic input and the category directed 

behavior. A1 responds to features of the input sound that are relevant and necessary for a higher 

association area to categorize the sound. Based on the spatiotemporal pattern of activation in A1, 

a higher area would be able to classify the sound and relay the category information to prefrontal 

cortex. This study indicates that the A1 representation of the acoustic input serves as a template 

of the features involved in the categorization of the sound, and we hypothesize that this area of 

the brain is approximately midway along the categorization pathway. A1 does not faithfully 

represent all possible acoustic features of the sound, as the auditory nerve might, but instead 

represents the features actually used by the animals to categorize the sounds. A1 also does not 

display category selective neurons, like the prefrontal cortex (Freedman et al., 2001), but instead 

offers a processed version of the stimulus that includes all the information necessary to 

accurately categorize the sounds. 
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APPENDIX C 

FIGURES 

 

Figure C3.1. Spectrograms of each speech sound grouped by voicing (voiced ‘dad’ or voiceless 
‘tad’) and speaker gender (female or male).  Three female and three male speakers each 
produced the words ‘dad’ and ‘tad’ (n=6 speakers total). Frequency is represented on the y axis 
(0–35 kHz) and time on the x axis (–50 to 500 ms).  Speech sounds were shifted one octave 
higher to accommodate the rat hearing range.   
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Figure C3.2. Behavioral performance time course for six rats trained on voicing categorization 
tasks. The top row shows the percent lever press on the first day of training for target sounds 
(red) and distractor sounds (blue) during (a) a single exemplar ‘dad’ versus ‘tad’ discrimination 
task, (c) a 20 stimuli temporal compression voicing categorization task, and (e) a 12 stimuli 
multiple speaker voicing categorization task. The middle row shows the percent lever press on 
the last day of training during (b) ‘dad’ versus ‘tad’ discrimination, (d) temporal compression 
categorization, and (f) multiple speaker categorization. The bottom row shows the time course of 
training on the three tasks over 30 days using the performance measure d’ (g).   
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Figure C3.3. Behavioral performance time course for five rats trained on gender categorization 
tasks. The top row shows the percent lever press on the first day of training for target sounds 
(red) and distractor sounds (blue) during (a) a high versus low pitch discrimination task, (c) a 6 
stimuli (‘dad’) gender categorization task, and (e) a 12 stimuli (‘dad’ and ‘tad’) gender 
categorization task. The middle row shows the percent lever press on the last day of training 
during (b) pitch discrimination, (d) ‘dad’ gender categorization, and (f) ‘dad’ and ‘tad’ gender 
categorization. The bottom row shows the time course of training on the three tasks over 30 days 
using the performance measure d’ (g).   
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Figure C3.4. Neurograms depicting the response of rat A1 neurons to twelve speech sounds.  
Multi-unit data was collected from 441 recording sites in eleven anesthetized experimentally 
naïve adult rats.  Average post-stimulus time histograms (PSTH) derived from twenty repeats 
were ordered by the characteristic frequency (kHz) of each recording site (y axis).  Time is 
represented on the x axis (–50 to 400 ms). The firing rate of each site is represented in grayscale, 
where black indicates 400 Hz. For comparison, the mean population PSTH evoked by each 
sound is plotted above the corresponding neurogram. As in Figure C3.1, rows differ in voicing, 
while columns differ in speaker gender.   
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Figure C3.5. Neurogram quantification using peak firing rate and total number of spikes. Peak 
firing rate (Hz) is shown in five characteristic frequency bins from low (1-2 kHz) to high (16-32 
kHz) frequency for target (red) and distractor (blue) sounds for each of the three categorization 
tasks: (a) gender, (b) multiple speaker voicing, and (c) temporal compression voicing. The total 
number of spikes is shown in five characteristic frequency bins from low (1-2 kHz) to high (16-
32 kHz) frequency for target (red) and distractor (blue) sounds for each of the three 
categorization tasks: (d) gender, (e) multiple speaker voicing, and (f) temporal compression 
voicing. 
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Figure C3.6. Trial-by-trial neural discrimination predicted categorization ability when temporal 
information was maintained. The average neural discrimination was correlated with behavioral 
categorization when 5 ms bins were used for the (a) gender, (b) multiple speaker voicing, and (c) 
temporal compression voicing categorization tasks. Neural discrimination was performed by a 
nearest-neighbor classifier (see methods) using a single sweep of neural activity.  The stimulus 
names are printed next to each data point. Error bars indicate s.e.m. for behavioral and neural 
discrimination performance.  Solid lines indicate the best linear fits.  
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Figure C3.7. The voice onset time (VOT) and pitch acoustic features of the stimuli predict 
behavioral categorization performance. (a) VOT length (ms) was correlated with behavioral 
performance on the multiple speaker voicing categorization task. (b) Pitch (Hz) was correlated 
with behavioral performance on the gender categorization task.  
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ABSTRACT 
 
 

Discrimination training with speech sound contrasts results in improved behavioral 

performance and an increase in the cortical representation of the trained stimuli in humans. Due 

to the technical challenges and ethical issues involved in recording auditory neurons from human 

cortex, it is not known how primary auditory cortex (A1) neurons process speech sounds after 

behavioral training.  Multi-unit recordings from animal studies allow us to study the fine spatial 

and temporal resolution that is lacking in brain imaging and evoked potential studies. In this 

study, groups of rats were trained to discriminate either a single speech sound contrast or 

multiple contrasts while another group was passively exposed to the speech sounds. After 

behavioral training, we recorded responses from A1 neurons to tones and speech sound stimuli.   

Our results demonstrate that training on multiple speech contrasts increased response 

strength to tones, receptive field size, response latencies and the proportion of neurons 

responding to low frequencies compared to naïve rats.  Auditory cortex responses were not 

significantly different from naïve rats after training on a single speech task. In addition, A1 

plasticity was not specific to the behaviorally relevant speech sounds after speech sound training. 

This absence of stimulus specific plasticity for speech sounds in primary auditory cortex 

suggests that higher cortical areas may be responsible for encoding speech specific plasticity 

after behavioral training. 
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INTRODUCTION 
 
 

Several weeks of discrimination training is sufficient to induce plasticity in visual, 

somatosensory, and auditory cortex (Karni and Sagi 1991; Recanzone et al. 1993; Xerri et al. 

1996).  Numerous studies have shown that speech sound discrimination training improves 

behavioral performance in humans. These improvements were accompanied by enhanced 

responses of auditory cortex potentials or activation of cortical areas during functional brain 

imaging (Callan et al. 2003; Kraus et al. 1995; Tremblay et al. 2001; Wang et al. 2003). While 

these studies give some indication of the spatiotemporal activation of the areas involved, they are 

still limited in their ability to resolve the fine spatial and temporal cues of speech sounds. Many 

studies have demonstrated how speech sounds are represented in the auditory cortex of rats, cats, 

monkeys and humans (Engineer et al. 2008; Steinschneider et al. 2003; Steinschneider et al. 

1995; Steinschneider et al. 1999; Wong and Schreiner 2003). However, it is not known how 

auditory cortex neurons respond to tones and speech sounds after speech discrimination training. 

We have previously demonstrated that rats can discriminate different speech features, and 

that A1 responses to these sounds are highly predictive of the rats behavioral performance on 

consonant discrimination tasks (Engineer et al. 2008). Here, we trained groups of rats to perform 

multiple speech discrimination tasks involving both consonant and vowel differences. Separate 

groups of rats were trained on a single speech discrimination task, or were passively exposed to 

speech sounds. In this study, we evaluated multiple forms of plasticity in A1 that have been 

documented in previous discrimination training studies, including changes in cortical maps,
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receptive field size, combination selectivity, response strength, and latency (Gentner and 

Margoliash 2003; Recanzone et al. 1993; Schnupp et al. 2006; Wong and Schreiner 2003). 
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METHODS 
 
 

We trained 27 rats to discriminate and categorize speech sounds, after which primary 

auditory cortex (A1) responses to tones as well as speech sounds were recorded from 1199 A1 

sites. Five groups of rats were trained; the first group was trained to discriminate consonants as 

well as vowels (n=4 rats), the second group was trained to discriminate consonants and gender 

differences (n=5 rats), the third group was trained to discriminate vowels (n=8 rats), the fourth 

group was trained to categorize sounds by voicing (n=5 rats), and the fifth group was trained to 

categorize sounds by gender (n=5 rats). A sixth group of rats was passively exposed to the same 

stimuli used in the fourth and fifth groups for the voicing and gender categorization tasks (n=5 

rats, 244 A1 sites). A1 responses in these trained and passively exposed rats were compared to 

the responses recorded in experimentally naïve rats (n=11 rats, 514 A1 sites). Speech sounds, 

training, and anesthetized recording procedures are identical to the methods used in our previous 

study (Engineer et al. 2008).  

Speech stimuli 

 Speech stimuli were produced in a CVC (consonant-vowel-consonant) context and were 

recorded in a soundproof booth. Twenty English consonants were produced in a ‘_æd’ context 

(as in ‘dad’). Additionally, the four vowels /æ/, /ε/, /℘/, /i/, /u/ were produced in both a ‘d_d’ 

and ‘s_d’ context (/ae/ ‘dad’, /ε/ ‘dead’, /Λ/ ‘dud’, /i/ ‘deed’, /u/ ‘dood’). The words ‘dad’ and 

‘tad’ were also recorded spoken by multiple speakers, 3 male and 3 female. As in our previous 

study, all words were shifted up an octave using the STRAIGHT vocoder (Engineer et al. 2008; 
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Kawahara 1997) in order to better match the rat hearing range and presented so that the intensity 

of the loudest 100 ms of the vowel was 60 dB.      

Training timeline 

 Rats were trained using an operant go/no-go procedure in double-walled booths for two 

1-hour sessions a day, 5 days a week. Each booth contained a speaker (Optimus Bullet Horn 

Tweeter), house light, and cage (8” length x 8” width x 8” height) which included a lever, lever 

light, and pellet dish. A pellet dispenser was mounted outside of the booth to minimize the sound 

of the pellet dispensing. Rats received a 45 mg sugar pellet reward for pressing the lever in 

response to the CS+ sounds within 3 seconds. If they pressed the lever in response to the CS- 

sounds, rats received a time out where the house light was extinguished for approximately 6 

seconds.  

To shape behavior, rats were initially trained to press the lever to receive a sugar pellet 

reward. After reaching the criteria of obtaining 100 pellets for 2 sessions, rats were moved to the 

detection stage. In this stage, rats were trained to press the lever in response to the CS+ sound 

(‘dad’) to receive a sugar pellet. This stage lasted until the rat was able to obtain a d’ 

performance value of 1.5 or greater for 10 sessions. Following the detection stage, rats began the 

discrimination stage of training. Each discrimination task lasted for a fixed 2 week period.  

Training groups 

 Of the five groups of trained rats, groups 1 through 3 were long-term experiments where 

rats trained on multiple discrimination tasks. Group 1 rats were trained on seven discrimination 

tasks: /d/ (target) vs. /s/ (distracter); /d/ vs. /t/; /d/ vs. /t/ when sounds were temporally 

compressed; /d/ vs. /t/ when sounds were spoken by multiple male and female speakers; /r/ vs. 

/l/; ‘dad’ vs. ‘dead’, ‘dud’, ‘deed’, and ‘dood’; and /d/ vs. /b/ and /g/. Group 2 rats were trained 



84 

 

on six discrimination tasks: pitch discrimination; gender discrimination of the word ‘dad’ spoken 

by multiple male and female speakers; gender discrimination of the words ‘dad’ and ‘tad’ spoken 

by multiple male and female speakers; /m/ vs. /n/, ‘shad’ vs. ‘fad’, ‘sad’, and ‘had’; and ‘shad’ vs. 

‘chad’ and ‘jad’. Group 3 rats were trained on three vowel discrimination tasks: ‘dad’ vs. ‘dead’, 

‘dud’, ‘deed’, and ‘dood’; ‘sad’ vs. ‘said’, ‘sud’, ‘seed’, and ‘sood’; and a combination of the two 

previous tasks, where the CS+ was the vowel /æ/ in either the /d/ or /s/ context, and the CS- 

sounds were the vowels /ε/, /℘/, /i/, and /u/ in either the /d/ or /s/ context.    

Groups 4 and 5 were short-term experiments where rats trained for 2 weeks on a single 

discrimination task. Group 4 rats were trained on a voicing discrimination task with a target of 

‘dad’ and a distracter of ‘tad’. Both ‘dad’ and ‘tad’ were spoken by multiple male and female 

speakers. Group 5 rats were trained on a gender discrimination task using the exact same stimuli 

as Group 4, but with a target of ‘female’ and a distracter of ‘male’. A 6th group was passively 

exposed to the same stimuli used for groups 4 and 5, and was exposed to the sounds for 2 weeks.  

Anesthetized recordings 

 Following the last day of training, rats were anesthetized and multi-unit and local field 

potential responses were recorded from the right primary auditory cortex. Rats were anesthetized 

with pentobarbital (50 mg kg-1), and received dilute pentobarbital (8 mg ml–1) as needed. 

Responses were recorded 600 μm below the cortical surface using four Parylene-coated tungsten 

microelectrodes (1–2 MΩ, FHC) simultaneously.  

 In order to determine the characteristic frequency at each recording site, 25 ms tones 

were presented at 81 frequencies (1 to 32 kHz) at 16 intensities (0 to 75 dB). A total of 80 speech 

stimuli were presented at each site for 20 repeats each. Each of the trained speech sounds was 

presented, and other novel speech sounds were presented at each site in order to determine if 
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response changes were specific to trained stimuli. Stimulus generation and data acquisition were 

performed with Tucker-Davis hardware (RP2.1 and RX5) and software (Brainware). The 

University of Texas at Dallas Institutional Animal Care and Use Committee approved all 

protocols and recording procedures.  

Data analysis 

 Behavioral performance was quantified using the measure d-prime (d’). This measure is 

based on signal detection theory, and uses the percent hit to CS+ and CS- sounds. 

 We quantified the receptive field properties for each group, including threshold, 

bandwidth, latency, spontaneous firing, and response strength to tones. These properties were 

quantified by a blind observer using customized MATLAB software. Threshold was defined as 

the lowest intensity that evoked a response at the characteristic frequency for each site. 

Bandwidth was measured in octaves as the frequency range that evokes a response 10, 20, 30, 

and 40 dB above the threshold. The onset, peak, and end of peak latencies were also determined 

for each site.   

 The percent of primary auditory cortex responding to each tone at each intensity was 

calculated for each group and compared to the percent of cortex responding in experimentally 

naïve rats, as in previous studies (Puckett et al. 2007). Briefly, we assume unsampled regions of 

cortex respond like the nearest sampled point. 

 Responses to speech stimuli were quantified using a nearest-neighbor classifier to 

determine neural discrimination performance (Engineer et al. 2008; Foffani and Moxon 2004; 

Schnupp et al. 2006). The classifier formed a PSTH template for each sound based on 19 of the 

20 repeats from each recording site. The remaining repeat for each sound was then presented to 

the classifier, where it determined which sound the neural response was evoked by based on 
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which PSTH template had the minimum Euclidean distance to the PSTH evoked by the 

remaining repeat.   
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RESULTS 
 
 

Behavioral performance  

 Numerous previous studies have demonstrated the ability of animals to discriminate 

speech sounds (Engineer et al. 2008; Kluender et al. 1987; Kuhl and Miller 1975; Ramus et al. 

2000; Reed et al. 2003). In this study, rats were trained to perform either a single speech 

discrimination task (groups 4 and 5, see methods), or multiple speech discrimination tasks 

(groups 1 through 3). After two weeks of training on each task, rats were able to accurately 

discriminate most speech tasks (Figure D4.1). In addition to the eleven consonant tasks that have 

been previously published (Engineer et al. 2008), rats were also trained on vowel, voicing, and 

gender categorization tasks. Rats were unable to successfully discriminate two of the consonant 

tasks: /m/ vs. /n/ (d’= -0.03, p=0.72) and /r/ vs. /l/ (d’=0.07, p=0.62, Figure D4.1) after two 

weeks of training. Rats were easily able to discriminate the consonant pairs /d/ vs. /s/ (d’=2.92, 

p=0.00009) and /d/ vs. /b/ (d’=2.99, p=0.0005, Figure D4.1). Rats were highly accurate at speech 

discrimination, and had better than chance performance on 22 out of the 24 discrimination tasks. 

Receptive field changes 

 Previous studies have shown sharper tuning, longer latencies, and an increase in the 

cortical area of representation of the trained stimuli in A1 following long term frequency 

discrimination training (Recanzone et al. 1993). Multiple task trained rats exhibited a 21% 

increase in the threshold of A1 neurons following the completion of speech training 

(p=0.0000000007, Figure D4.2a). There was no significant change in threshold seen in rats who 
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were trained on a single task compared to naïve rats (2% increase, p=0.49, Figure D4.2a). In rats 

passively exposed to speech sounds, there was a 12% decrease in the threshold of A1 neurons 

(p=0.006). The bandwidth of frequencies responded to only increased significantly in the 

multiple task group of rats (8% increase, p=0.004, Figure D4.2b). Spontaneous firing increased 

in both the multiple task and single task trained rats (45% increase, p=0.00000000002; 17% 

increase, p=0.003, respectively), but not in the passively exposed rats (8% increase, p=0.27, 

Figure D4.2c). After multiple task speech training, the response strength to tones increased by 

9% (p=0.009, Figure D4.2d), while the response strength to tones did not change after training 

on a single task or passive exposure. Training on multiple tasks resulted in a larger threshold, 

wider bandwidth, and greater response strength to tones compared to naïve rats.  

Latency changes  

  There was a 7% increase in onset latency for long-term trained rats (p=0.000003), while 

short-term trained rats did not exhibit a significant change in onset latency (p=0.42, Figure 

D4.3a). Rats who were passively exposed to speech showed a significant decrease in onset, peak, 

and end of peak latencies (6%, p=0.002; 3%, p=0.04; 4%, p=0.0009). Peak latency significantly 

increased for both long- and short-term trained rats (7%, p=0.000001; 3%, p=0.006; Figure 

D4.3b), while end of peak latency only significantly increased for long-term trained rats (7%, 

p=0.00008, Figure D4.3c). A1 neurons in rats who trained on multiple tasks were slower after 

training, while neurons were faster in rats passively exposed to speech sounds.  This result is 

consistent with previous studies which show longer response latencies after long-term training on 

a frequency discrimination task (Recanzone et al. 1993).  
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Cortical map changes 

Long-term trained rats had a low frequency map expansion for high intensity sounds, and 

a mid frequency map contraction for low intensity sounds (Figure D4.4). Short-term trained rats 

had a slight low frequency map expansion for high intensity sounds, a slight mid frequency map 

contraction for low intensity sounds, and a slight high frequency map expansion for low intensity 

sounds (Figure D4.5). Passive exposure rats had a slight low frequency map expansion for low 

intensity sounds, and a high frequency map expansion for sounds of all intensities (Figure D4.6).  

Local field potential changes 

Humans trained to discriminate speech sounds have exhibited an increase in the N1-P2 

peak-to-peak amplitude following training (Tremblay et al. 2001). In naïve rats, the word ‘dad’ 

evoked negativities 20 ms and 125 ms after sound onset (N1 and N2) and evoked a positivity 53 

ms after sound onset (P1, Figure D4.7). Rats who were trained on multiple speech discrimination 

tasks showed an increase in the onset latency of the N1 response evoked in response to the word 

‘dad’ (Figure D4.7, top row). Additionally, N1 amplitude was decreased after training on 

multiple tasks compared to naïve control rats. The same increase in N1 onset latency and 

decrease in N1 amplitude was seen in response to the word ‘tad’ in rats trained to discriminate 

multiple tasks (Figure D4.8, top row). However, in response to the untrained sound ‘wad’, all 

three multiple task trained groups of rats exhibited an increase in the N1 onset latency (Figure 

D4.9, top row). Local field potential latencies and amplitudes were altered for both trained and 

untrained stimuli in rats trained to discriminate multiple speech tasks.  
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DISCUSSION 
 
 
Following speech training on multiple tasks, there is an increase in the proportion of 

neurons responding to low frequency sounds. Additionally, response strength, threshold, 

bandwidth, and latencies are increased after multiple speech discrimination task training. Passive 

exposure to speech sounds causes an increase in the proportion of neurons responding to high 

frequency sounds, and leads to a decrease in the threshold and latencies of A1 neurons. 

Although tone training changes A1 in a trained frequency specific manner in rats and 

monkeys (Polley et al. 2006; Recanzone et al. 1993), speech training does cause stimulus 

specific enhancement in A1. Our findings are consistent with Schnupp et al., which does not 

show evidence of specificity, as well as with previous studies in birds  which do not show 

stimulus specific changes in primary fields (Gentner and Margoliash 2003; Tremblay et al. 2001). 

This suggests that the A1 representation of speech sounds is sufficiently precise so that there is 

no need to change it. While changes do occur in A1 after speech training, there is no stimulus-

specific enhancement, which is consistent with previous studies showing generalization to 

untrained stimuli following speech training (Tremblay et al. 1997). Given the spectrotemporal 

complexity of speech sounds, it is likely that higher cortical areas extract higher order features of 

speech sounds and may show stimulus specificity following extensive speech training.  
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APPENDIX D 

FIGURES 
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Figure D4.1. Behavioral performance on days 7/8 of 24 speech discrimination tasks.  
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Figure D4.2. Changes in a) threshold, b) bandwidth 10 dB above threshold, c) spontaneous 
firing rate, and d) response strength in A1 after speech training and passive exposure. 
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Figure D4.3. Changes in a) onset latency, b) peak latency, and c) end of peak latency in A1 after 
speech training and passive exposure. 
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Figure D4.4. Percent cortex changes after training on multiple speech discrimination tasks. 
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Figure D4.5. Percent cortex changes after training on a single speech discrimination task. 
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Figure D4.6. Percent cortex changes after passive exposure to speech sounds. 
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Figure D4.7. Local field potential response to the onset of the word ‘dad’. a) multiple task 
trained group 1 (blue) and naïve (black) rats; b) multiple task trained group 2 (blue) and naïve 
(black) rats; c) multiple task trained group 3 (blue) and naïve (black) rats; d) single task trained 
group 4 (green) and naïve (black) rats; e) single task trained group 5 (green) and naïve (black) 
rats; f) passive exposure group 6 (red) and naïve (black) rats. Standard error is shown behind the 
colored lines in gray. The black line at the bottom of the figure indicates time points where the 
two groups of rats are significantly different.   
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Figure D4.8. Local field potential response to the onset of the word ‘tad’. a) multiple task 
trained group 1 (blue) and naïve (black) rats; b) multiple task trained group 2 (blue) and naïve 
(black) rats; c) multiple task trained group 3 (blue) and naïve (black) rats; d) single task trained 
group 4 (green) and naïve (black) rats; e) single task trained group 5 (green) and naïve (black) 
rats; f) passive exposure group 6 (red) and naïve (black) rats. Standard error is shown behind the 
colored lines in gray. The black line at the bottom of the figure indicates time points where the 
two groups of rats are significantly different.   
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Figure D4.9. Local field potential response to the onset of the word ‘wad’. a) multiple task 
trained group 1 (blue) and naïve (black) rats; b) multiple task trained group 2 (blue) and naïve 
(black) rats; c) multiple task trained group 3 (blue) and naïve (black) rats; d) single task trained 
group 4 (green) and naïve (black) rats; e) single task trained group 5 (green) and naïve (black) 
rats; f) passive exposure group 6 (red) and naïve (black) rats. Standard error is shown behind the 
colored lines in gray. The black line at the bottom of the figure indicates time points where the 
two groups of rats are significantly different.   
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CHAPTER 5 
 

CONCLUSION 
 
 

 These experiments have shown that behavioral performance on speech discrimination 

tasks can be predicted using the pattern of A1 responses. Rats are able to discriminate many 

consonant pairs, and this performance is predicted when the spike timing information of A1 

neurons is preserved, but is not predicted by the mean firing rate, when timing information is 

eliminated. Rats are also able to perform speech categorization tasks, and are able to categorize 

sounds spoken by multiple speakers by voicing or gender cues on the first day of training. 

Following speech discrimination training, A1 responses have altered receptive fields and 

response latencies, and there is an altered representation of the percent of cortex responding to 

tones.   

Rate vs. temporal coding  

Chapter 2 showed that temporal coding strongly predicts behavioral performance while 

rate coding does not. In addition to the temporal firing pattern, this chapter also determined that 

the spatial pattern of activation was necessary to accurately discriminate consonants. For 

example, the consonant /b/ activates low frequency neurons first, and later activates high 

frequency neurons, while the opposite is true for the consonant /d/. This study highlights the 

limitations of fMRI and EEG methods, which do not have the high temporal or spatial precision 

needed in order to see these patterns of activation. This study also shows the importance of 

studying complex sounds, since many real-world sounds, like speech, are spatially and 

temporally complex. Previous studies using simple stimuli that varied on a single dimension 
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revealed that rate coding was sufficient to discriminate these sounds, while the current study 

shows that temporal precision is necessary to discriminate real-world stimuli. Our lab has also 

studied vowels, which are steady-state sounds without the rapid transitions that consonants have, 

and found that rate coding is sufficient to predict vowel discrimination (unpublished results; 

Perez et al., 2008). 

The exemplar theory of categorization 

 The categorization study in Chapter 3 demonstrated that behavioral performance on the 3 

voicing or gender categorization tasks was predicted based on the neural distance between each 

of the novel sounds and the template sounds that the rats had been previously trained to 

discriminate. Our hypothesis from this result is that the neural distance metric mimics a higher 

cortical area that is receiving input from A1 and using this input to categorize the stimuli. Since 

behavioral performance was predicted using the distance from the template sounds, we believe 

that the higher cortical area has stored templates for the categorization task, rather than retaining 

a representation of each of the individual stimuli.    

Primary auditory cortex necessity 

It is possible that although A1 has unique representations of each speech sound that are 

predictive of behavioral ability, this area may not be necessary for speech sound discrimination. 

The plasticity study in Chapter 4 did not show speech-specific changes in A1 or changes that 

were specific to the trained stimuli. This finding is consistent with previous studies that do not 

exhibit feature specific changes in primary fields (Schnupp et al., 2006; Gentner and Margoliash, 

2003; Tremblay et al., 2001). Preliminary unpublished studies from our lab indicate that rats are 

still able to perform speech discrimination and categorization tasks with bilateral primary 

auditory cortex lesions (Porter et al., 2007; Porter et al., 2008). Future lesion and behavioral 
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studies are needed to determine what areas are necessary for accurate speech sound 

discrimination.  

Future studies 

Many future studies are needed to expand upon the experiments presented here. Plasticity 

studies in awake, behaving animals are necessary to confirm the current findings. Speech 

training and physiology experiments conducted in the presence of background noise are needed 

since in the real world, comprehending speech often occurs in noisy environments, and not in a 

sound-shielded laboratory environment. Studies involving stimuli that have been spectrally 

degraded are necessary to determine how the cortical response in cochlear implant patients 

differs from the cortical response when all spectral information is available. Additionally, 

physiology experiments need to be conducted in other auditory areas, both higher and lower in 

the auditory pathway to determine how the representation of speech changes along the pathway, 

and which specific areas are necessary for accurate speech discrimination.  
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