Auditory Stimulus Discrimination from MEG Data
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Abstract

We consider Magnetoencephalographic
(MEG) data in a signal detection framework.
Our data set consists of responses evoked by
the voiced syllables /bae/ and /d=/ and the
corresponding voiceless syllables /pae/ and
/tee/. The data yield well to principal com-
ponent analysis (PCA), with a reasonable
subspace in the order of three components
out of 37 channels. To discriminate between
responses to the voiced and voiceless ver-
sions of a consonant we form a feature vector
by either matched filtering or wavelet packet
decomposition and use a mixture-of-experts
model to classify the stimuli. Both choices of
a feature vector lead to a significant detec-
tion accuracy. Furthermore, we show how to
estimate the onset time of a stimulus from a
continuous data stream.

1 INTRODUCTION

Magnetoencephalography (MEG) uses SQUID
technology to measure the small magnetic fields in-
duced by electrical activity in the brain. Sensitive
to roughly the same neural activity as EEG/ERP,
MEG offers some advantages in data analysis and
source localization. Although multi-sensor MEG
systems recording magnetic flux at kilohertz sam-
pling rates provide an incredibly rich source of data
about brain activity, most current analysis tech-
niques make use of only a fraction of the data col-
lected (see, e.g., Aulanko et al. 1993, Fujimaki et

al. 1995). The most common approach to the anal-
ysis of stimulus evoked responses with MEG 1s to
record 100 or more time-locked responses to the
same stimulus, average these responses, and then
perform single dipole source analysis on the aver-
aged waves. While averaging serves to reduce noise
and to remove “background” activity unrelated to
the stimulus, dipole modeling loses the statistics of
the averaging and proves a data-wasteful method
of reducing the dimensionality of MEG data.

In this paper, we introduce a new way of looking
at MEG data from a signal processing and discrim-
ination perspective. We show that it is possible to
build a classifier system to discriminate between
different stimuli from the un-averaged data. Prin-
cipal component analysis is used to reduce the di-
mensionality of the data without loss of significant
information.

2 DATA

The data were collected as part of the experiment
reported in Poeppel et al. 1996, where detailed
description of the stimuli and data collection tech-
niques may be found. Briefly, the stimuli were 4
synthesized 300ms syllables, /ba/, /pe/, /de/,
and /tee/. The voiced-voiceless pairs /bee/-/pae/
and /dee/-/tee/ differ acoustically only in “voicing
onset time,” with the first member of each pair con-
taining 20ms of “aspiration” prior to the onset of
the (voiced) vocalic portion of the syllable and the
second member containing 80ms of aspiration.

MEG recordings were taken in a magnetically
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Figure 1: MEG data. a) All channels of one raw epoch. b) single-epoch-defined PCA and c) average-

response-defined PCA of the same data.

shielded room using a 37-channel system with
SQUID-based first-order gradiometer sensors. The
sensor array was centered over the left auditory cor-
tex and the 4 stimuli were presented to the right ear
100 times each, in pseudorandom order at a vari-
able IST of 1 to 1.5 seconds. 400 epochs of 600ms
were recorded, time-locked to stimulus onset, with
a 100ms pre-stimulus interval. The sampling rate

was 1041.7 Hz with a bandwidth of 400 Hz.

3 ALGORITHMS

Our analysis of the MEG data proceeds in three
steps. In the first we reduce the dimensionality
of the data from 37 to the order of three by prin-
cipal component analysis (PCA) (see Oja 1983).
The second step is concerned with analyzing the
reduced data in a time-dependent way with either
matched filtering or wavelet packet analysis. From
this step we obtain a low-dimensional feature vec-
tor which we use in step three to do the actual
discrimination with a local experts type model.

3.1 PCA

From Fig. 1 a) it is clear that the incoming signals
are not independent. The PCA transformation re-
duces this redundancy by finding the best orthog-
onal linear subspace. This is useful for compact
visualization (Fig. 1 b) and c¢)) as well as for re-
duction of computational effort in the subsequent
manipulation of the data.

The transformation is defined by the eigenvectors
of the covariance matrix of the data (see Oja 1983).
With the MEG data, we can define the covariance
matrix either by the usual covariance over single
epochs or by the covariance of the averaged re-
sponses to the stimuli.

The difference between the two definitions is illus-
trated by Fig. 1 and Fig. 3: in the data transformed
by the PCA defined by the single epochs, the re-
sponse is split between channels 2 and 3 whereas
the average-defined PCA reduces the amount of
noise by concentrating the response in the first
channels, and therefore seems preferable. However,
if the response varies from epoch to epoch (e.g. if
the response to /dae/ were to depend on some other
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Figure 2: Raw MEG epochs recorded for the stimuli /dee/,/bee/,/tee/,/pae/ and /pae/. a)-e) PCA trans-
formed (single epoch defined)responses. f)-j) Same epochs ICA transformed as suggested in Makeig et al.
1996 and 1997. Some events come out clearly, such as the heart beat in channel 4 and the stimulus response

in channel 3.

variable such as the phase of the background brain
waves), the covariance matrix of the single epochs
should be used as otherwise information might be
lost when the number of channels i1s cut after the

PCA.

It is also possible to use independent component
analysis (ICA) (Makeig et al. 1996, 1997 and 1998)
to separate independent components in the data.
Figure 2 f)—j) show the results of the ICA transfor-
mation. However, for noisy data such as ours, [CA
can increase the effect of noise and make classifica-
tion of signals more difficult.

3.2 MATCHED FILTERING

It 1s well known that time-correlating noisy sig-
nals with the known ‘true signal’ leads to effi-
cient estimators and detectors of linear time sig-
nals (matched filtering, see e.g. Brown and Hwang
1992). We calculate the convolutions of the data
with the time-reversed average responses to the

stimuli. These convolved signals peak whenever a
stimulus occurs so the onset time of the stimulus
can be estimated. Alternatively, the values of the
convolved signals at a known onset time can be
used as a feature vector for discriminating between
different stimuli.

Although the feature vector 1s constructed un-
der linear assumptions, non-linear effects between
channels can be exploited due to the non-linear na-
ture of the detector. However, because matched
filtering is linear, it should perform equally well
with both the raw and the PCA transformed data.
In practice the data set is large and performing the
computation only on the largest principal compo-
nents improves the efficiency markedly.

3.3 WAVELET PACKETS

The windowed training signals are expanded in an
orthonormal wavelet packet basis that assigns coef-
ficients in a time-frequency grid (see e.g. Coifman
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Figure 3: Average responses to the four different stimuli after a) single-epoch-defined PCA, b) average-
response-defined PCA and ¢) ICA transform (lowpass filtered at 60 Hz). A single epoch and the average
superimposed, in d) single-epoch-defined PCA, d) average-response-defined PCA and e) ICA transformed

data.

and Saito 1994). The transform is based on the
repeated application of a quadrature mirror filter
(Daubechies 6 was used in this work) followed by a
downsampling step so that at each transform level
the coefficients represent the time domain behav-
ior of a particular frequency band. Fig. 4 shows the
first 194 coefficients of a Wavelet packet in time and
frequency, where the coefficients denote the average
energy difference between the two stimulus classes.
It can be seen how the discriminating power, orig-
inally distributed over the entire time interval, can
be found in very few frequency bins after the trans-
form was applied.

In the first approach a low-dimensional orthonor-
mal subset of coefficients is chosen to maximize the
square distance discrimination measure Dgp:

Dsp = (w1 — Wi2)? /(0w 0w,s); (1)

where w;, denotes the averaged coefficient ¢ of stim-
ulus class ¢, and oy, is the standard deviation of
coeflicients w;,.

In the second approach we select a optimal com-
plete orthonormal basis from the time frequency
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Figure 4: Wavelet packet transform (averaged dis-
criminating energy): The y-axis refers to the depth
of the transform while the x-axis represents the
sub-bands, ordered from left to right. Hence the
Oth-order data shows a pure time-domain picture
and the 8th-order transform gives a pure frequency
representation.

grid. The discriminant power of the squared and
normalized coeflicients 1s evaluated in terms of



the symmetrized relative entropy (Kullback-Leibler
distance) between either two stimuli (for discrim-
ination) or a ‘stimulus’ and a ‘non-stimulus’ win-
dow (for onset detection). The algorithm for se-
lecting the basis is described in detail in Coifman
and Wickerhauser (1992). The expansion and basis
selection is done for all selected PCA channels.

3.4 CLUSTER-WEIGHTED
DETECTION

We use Gaussian-weighted local experts in a
Cluster-Weighted Modeling framework (Gershen-
feld et al 1997) to discriminate between stimulus
classes based on the feature vectors obtained in the
previous sections. As opposed to conventional den-
sity approximation techniques, each local expert
represents a probability distribution in the joint
input-output space. The likelihood of a class Cj
given a particular feature vector 7 is

p(C|7) = Zp(anj)p(Ej %) (2)

where E; is the expert j and

_ p(T|E;)p(E;j)
p(E;|x) = — . 3
B = @eoEy @
The domain of each expert is characterized by the
probability distribution p(E;|Z) which in this work
is Gaussian. The model is trained by the Expecta-
tion Maximization algorithm (Gershenfeld et al.).

For comparison a statistical discriminator based on
the Kullback-Leibler distance is tested. The com-
plete set of normalized coefficients of new data is
compared in probability to the averaged energy dis-
tribution of the different reference stimuli. The
data is classified according to the best match.

4 RESULTS

4.1 VOICED/VOICELESS
DISCRIMINATION

We applied the above methods to the data de-
scribed in section 2. Two different windows with
different offsets were tested, both 256 samples long.
The offset for the second window is beyond the
acoustic difference between the stimuli, which en-
sures that we are detecting based on brain activ-
ity and not simply a MEG recording of the actual
stimulus.

convolution with Pa/Ba response

L L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
time /' n

KL-Distance to Pa and Ba

L L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

; time /' n

Figure 6: Two example signals from the onset de-
tection. a) matched filtering b) Kullback-Leibler
distance

As seen in Table 1, it is possible to get a statistically
significant detection accuracy for voiced/voiceless
discrimination. The number of local experts N, in
the detector was found by cross-validation. Figure
2 shows slices of example input spaces to the mix-
ture of experts classifier. We show the results for
one specific subject. The data taken from a second
subject led to nearly identical results. There were
no significant differences between matched filter-
ing and the wavelet packet decomposition meth-
ods, nor was there significant difference between
different quadrature mirror filters (Haar, Coiflet
and Daubechies filter were tested). Two coefficients
were used to form the wavelet coefficient feature
vector, as using more coefficients didn’t improve
performance and led to overfitting.

Discrimination between the two voiced conso-
nants (/bae/-/dee/) or the two voiceless conso-
nants (/pee/-/tae/) was impossible with the avail-
able data. The results indicate that more MEG
channels are needed for discrimination in this case
(see Fig. 1).

We also made some tests of using ICA-transformed
data to discriminate between the different cases but
were not able to get better results using the detec-
tion methods outlined here.
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Figure 5: Two dimensions of the feature vector for the bae/dae discrimination: a) A/WP b) A/MF. The
small letters refer to the actual sample points; the large letters are the centers of the local experts. The
letter T refers to the voiceless and D to the voiced version of the consonant.

Table 1: Results for discriminating voiced /voiceless syllables. The last four columns are the detection results,
the numbers before/after the slash are the number of correct/incorrect classifications.

Window Classification
Offset Training Testing
Syllables | Method N.% | (samples) (o Cy (o Cy
bae/pee AP /WP* 10 105 | 52/18 62/8 25/5 21/9
bae/pee S?/WPpP 4 105 | 50/20 53/17 | 25/5 21/9
bae/pee A/KLe N/A 205 | 59/11 63/7 | 25/5 18/12
bae/pee A/MF/ 15 205 | 52/18 56/14 | 19/11 25/5
dae/te A/WP 4 205 | 45/25 51/19 | 19/11 20/10
dae/te A/WP 2 105 | 50/20 49/21 | 21/9 22/8
dae/te A/MF 15 205 | 57/13 65/5 21/9 25/5

Number of clusters (local experts)

b Average-defined PCA

“Wayvelet packet coefficient and cluster-weighted detection

dSingle-epoch-defined PCA

¢Kullback-Leibler distance discrimination

fMatched filtering discrimination and cluster-weighted detection

4.2 ONSET DETECTION

The average response of the processing techniques
described above can be used in a slightly modified
way to detect the presence and the onset of a stimu-
lus in a continuous data stream. The convolution of
signal and reference epoch peaks whenever a stim-
ulus occurs. Similarly the onset can be estimated
based on the wavelet expansion. The best basis is

defined with respect to the discriminating power
between ’stimulus event’ and ’zero event’.

Fig. 6 shows the results of using a matched filter
as well as Kullback-Leibler distance estimator on
some out-of-sample data. Due to the lack of an ac-
tual continuous data stream, chained single epochs
were used for this experiment. From these sig-
nals, the onset times of stimuli can be estimated



by some peak detection algorithm. It is clear that
the Kullback-Leibler distance is much more sensi-
tive to noise. The periodic structure of the signal
between the onsets is mostly due to the periodicity
of the background brain waves.

As a proof-of-principle experiment the local perfor-
mance of the matched filter onset estimator was es-
timated on 60 out-of-sample epochs (mixed /pee/-
/bae/ stimuli) by taking the onset time to be the
local maximum within 100 samples of the true on-
set in either direction. The estimator worked with
an average bias of -0.6 and a standard deviation of
15.3 time samples.

Another way of estimating stimulus onsets is to
pick out the ICA channel that corresponds to the
response. It is clear from Fig. 2 that this approach
could work pretty easily.

5 CONCLUSIONS AND FUTURE
WORK

The fact that the nonlinear wavelet packet ap-
proaches and a simple matched filter work equally
well indicates that for the current case where the
stimulus 1s always the same the response is essen-
tially linear. However, it is not clear whether this
would be the case e.g. if there were several different
speakers for each stimulus.

It would be interesting to see if other detection
methods after an ICA transformation of the data
would yield as good or better performance as our
current methods do with PCA.

Since MEG provides an extremely rich source of
data on brain function, it is important for cog-
nitive neuroscience to develop analysis techniques
for extracting signal from noise and for identifying
crucial features of evoked responses. For computa-
tional neuroscience, the data provide a very good
test case for a variety of neural algorithms, as they
are time-dependent, multidimensional, noisy, but
regular. In this paper, we have only just begun the
task of mining MEG data.
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