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Preface

The aim of these notes is to provide a succinct, accessible introduction to some
of the basic ideas of category theory and categorical logic. The notes are based
on a lecture course given at Oxford over the past few years. They contain
numerous exercises, and hopefully will prove useful for self-study by those
seeking a first introduction to the subject, with fairly minimal prerequisites.
The coverage is by no means comprehensive, but should provide a good basis
for further study; a guide to further reading is included.

The main prerequisite is a basic familiarity with the elements of discrete
mathematics: sets, relations and functions. An Appendix contains a summary
of what we will need, and it may be useful to review this first. In addition,
some prior exposure to abstract algebra — vector spaces and linear maps, or
groups and group homomorphisms — would be helpful.
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1.1 Introduction

Why study categories—what are they good for? We can offer a range of
answers for readers coming from different backgrounds:

• For mathematicians: category theory organises your previous mathe-
matical experience in a new and powerful way, revealing new connections
and structure, and allows you to “think bigger thoughts”.

• For computer scientists: category theory gives a precise handle on
important notions such as compositionality, abstraction, representation-
independence, genericity and more. Otherwise put, it provides the fun-
damental mathematical structures underpinning many key programming
concepts.

• For logicians: category theory gives a syntax-independent view of the
fundamental structures of logic, and opens up new kinds of models and
interpretations.

• For philosophers: category theory opens up a fresh approach to struc-
turalist foundations of mathematics and science; and an alternative to the
traditional focus on set theory.
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• For physicists: category theory offers new ways of formulating physical
theories in a structural form. There have inter alia been some striking
recent applications to quantum information and computation.

1.1.1 From Elements To Arrows

Category theory can be seen as a “generalised theory of functions”, where
the focus is shifted from the pointwise, set-theoretic view of functions, to an
abstract view of functions as arrows.

Let us briefly recall the arrow notation for functions between sets.1 A
function f with domain X and codomain Y is denoted by: f : X → Y .

Diagrammatic notation: X
f
−→ Y .

The fundamental operation on functions is composition: if f : X → Y and
g : Y → Z, then we can define g ◦ f : X → Z by g ◦ f(x) = g(f(x)). Note
that, in order for the composition to be defined, the codomain of f must be
the same as the domain of g.

Diagrammatic notation: X
f
−→ Y

g
−→ Z .

Moreover, for each set X there is an identity function on X , which is denoted
by:

idX : X −→ X idX(x) = x .

These operations are governed by the associativity law and the unit laws. For
f : X → Y , g : Y → Z, h : Z →W :

(h ◦ g) ◦ f = h ◦ (g ◦ f) , f ◦ idX = f = idY ◦ f .

Notice that these equations are formulated purely in terms of the algebraic
operations on functions, without any reference to the elements of the sets X ,
Y , Z, W . We will refer to any concept pertaining to functions which can be
defined purely in terms of composition and identities as arrow-theoretic. We
will now take a first step towards learning to “think with arrows” by seeing
how we can replace some familiar definitions couched in terms of elements by
arrow-theoretic equivalents; this will lead us towards the notion of category.

We say that a function f : X −→ Y is:

injective if ∀x, x′ ∈ X. f(x) = f(x′) =⇒ x = x′ ,
surjective if ∀y ∈ Y. ∃x ∈ X. f(x) = y ,

monic if ∀g, h. f ◦ g = f ◦ h =⇒ g = h ,
epic if ∀g, h. g ◦ f = h ◦ f =⇒ g = h .

1 A review of basic ideas about sets, functions and relation, and some of the notation
we will be using, is provided in Appendix A.
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Note that injectivity and surjectivity are formulated in terms of elements,
while epic and monic are arrow-theoretic.

Proposition 1. Let f : X → Y . Then,

1. f is injective iff f is monic.
2. f is surjective iff f is epic.

Proof: We show 1. Suppose f : X → Y is injective, and that f ◦ g = f ◦ h,
where g, h : Z → X . Then for all z ∈ Z:

f(g(z)) = f ◦ g(z) = f ◦ h(z) = f(h(z)) .

Since f is injective, this implies g(z) = h(z). Hence we have shown that

∀z ∈ Z. g(z) = h(z) ,

and so we can conclude that g = h. So f injective implies f monic.
For the converse, fix a one-element set 1 = {•}. Note that elements x ∈ X are
in 1–1 correspondence with functions x̄ : 1 → X , where x̄(•) = x. Moreover,
if f(x) = y then ȳ = f ◦ x̄ . Writing injectivity in these terms, it amounts to
the following:

∀x, x′ ∈ X. f ◦ x̄ = f ◦ x̄′ =⇒ x̄ = x̄′.

Thus we see that being injective is a special case of being monic. �

Exercise 1. Show that f : X → Y is surjective iff it is epic.

1.1.2 Categories Defined

Definition 1 A category C consists of:

• A collection Ob(C) of objects. Objects are denoted by A, B, C, etc.
• A collection Ar(C) of arrows (or morphisms). Arrows are denoted by f ,

g, h, etc.
• Functions dom, cod : Ar(C) −→ Ob(C), which assign to each arrow f its

domain dom(f) and its codomain cod(f). An arrow f with domain A
and codomain B is written f : A→ B. For each pair of objects A, B, we
define the set

C(A, B) := {f ∈ Ar(C) | f : A→ B} .

We refer to C(A, B) as a hom-set . Note that distinct hom-sets are disjoint.
• For any triple of objects A, B, C, a composition map

cA,B,C : C(A, B)× C(B, C) −→ C(A, C) .

cA,B,C(f, g) is written g◦f (or sometimes f ; g). Diagrammatically: A
f
−→

B
g
−→ C.

• For each object A, an identity morphism idA : A→ A.
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The above must satisfy the following axioms:

h ◦ (g ◦ f) = (h ◦ g) ◦ f , f ◦ idA = f = idB ◦ f .

whenever the domains and codomains of the arrows match appropriately so
that the compositions are well-defined. N

1.1.3 Diagrams in Categories

Diagrammatic reasoning is an important tool in category theory. The
basic cases are commuting triangles and squares. To say that the following
triangle commutes

A
f

- B

C

g

?

h
-

is exactly equivalent to asserting the equation g ◦ f = h. Similarly, to say that
the following square commutes

A
f

- B

C

h

?

k
- D

g

?

means exactly that g ◦ f = k ◦ h. For example, the equations

h ◦ (g ◦ f) = (h ◦ g) ◦ f , f ◦ idA = f = idB ◦ f ,

can be expressed by saying that the following diagrams commute.

A
f //

g◦f

��@
@@

@@
@@

@@
@@

B

g

��

h◦g

��@
@@

@@
@@

@@
@@

C
h

// D

A
idA //

f

��@
@@

@@
@@

@@
@@

A

f

��

f

��@
@@

@@
@@

@@
@@

B
idB

// B

As these examples illustrate, most of the diagrams we shall use will be “pasted
together” from triangles and squares: the commutation of the diagram as a
whole will then reduce to the commutation of the constituent triangles and
squares.

We turn to the general case. The formal definition is slightly cumbersome;
we give it anyway for reference.
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Definition 2 We define a graph to be a collection of vertices and directed
edges, where each edge e : v → w has a specified source vertex v and target
vertex w. Thus graphs are like categories without composition and identities.2

A diagram in a category C is a graph whose vertices are labelled with
objects of C and whose edges are labelled with arrows of C, such that, if
e : v → w is labelled with f : A→ B, then we must have v labelled by A and
w labelled by B. We say that such a diagram commutes if any two paths in it
with common source and target, and at least one of which has length greater
than 1, are equal. That is, given paths

A
f1
−→ C1

f2
−→ · · ·Cn−1

fn
−→ B and A

g1
−→ D1

g2
−→ · · ·Dm−1

gm
−→ B,

if max(n, m) > 1 then

fn ◦ · · · ◦ f1 = gm ◦ · · · ◦ g1 .
N

To illustrate this definition, to say that the following diagram commutes

E
e

- A
f

-

g
- B

amounts to the assertion that f ◦ e = g ◦ e; it does not imply that f = g.

1.1.4 Examples

Before we proceed to our first examples of categories, we shall present some
background material on partial orders, monoids and topologies, which will
provide running examples throughout these notes.

Partial orders

A partial order is a structure (P,≤) where P is a set and ≤ is a binary relation
on P satisfying:

• x ≤ x (Reflexivity)
• x ≤ y ∧ y ≤ x ⇒ x = y (Antisymmetry)
• x ≤ y ∧ y ≤ z ⇒ x ≤ z (Transitivity)

For example, (R,≤) and (P(X),⊆) are partial orders, and so are strings with
the sub-string relation.

If P , Q are partial orders, a map h : P −→ Q is a partial order homomor-
phism (or monotone function) if:

∀x, y ∈ P. x ≤ y =⇒ h(x) ≤ h(y) .

Note that homomorphisms are closed under composition, and that identity
maps are homomorphisms.

2 This would be a “multigraph” in normal parlance, since multiple edges between
a given pair of vertices are allowed.
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Monoids

A monoid is a structure (M, ·, 1) where M is a set,

· : M ×M −→M

is a binary operation, and 1 ∈M , satisfying the following axioms:

(x · y) · z = x · (y · z) , 1 · x = x = ·1 .

For example, (N, +, 0) is a monoid, and so are strings with string-concatenation.
Moreover, groups are special kinds of monoids.

If M , N are monoids, a map h : M → N is a monoid homomorphism if

∀m1, m2 ∈M. h(m1 ·m2) = h(m1) · h(m2) , h(1) = 1 .

Exercise 2. Suppose that G and H are groups (and hence monoids), and
that h : G −→ H is a monoid homomorphism. Prove that h is a group
homomorphism.

Topological spaces

A topological space is a pair (X, TX) where X is a set, and TX is a family of
subsets of X such that

• ∅, X ∈ TX ,
• if U, V ∈ TX then U ∩ V ∈ TX ,
• if {Ui}i∈I is any family in TX , then

⋃
i∈I Ui ∈ TX .

A continuous map f : (X, TX)→ (Y, TY ) is a function f : X → Y such that,
for all U ∈ TY , f−1(U) ∈ TX .

Let us now see some first examples of categories.

• Any kind of mathematical structure, together with structure preserving
functions, forms a category. E.g.
– Set (sets and functions)
– Mon (monoids and monoid homomorphisms)
– Grp (groups and group homomorphisms)
– Vectk (vector spaces over a field k, and linear maps)
– Pos (partially ordered sets and monotone functions)
– Top (topological spaces and continuous functions)

• Rel: objects are sets, arrows R : X → Y are relations R ⊆ X × Y .
Relational composition:

R; S(x, z) ⇐⇒ ∃y. R(x, y) ∧ S(y, z)
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• Let k be a field (for example, the real or complex numbers). Consider the
following category Matk. The objects are natural numbers. A morphism
M : n −→m is an n×m matrix with entries in k. Composition is matrix
multiplication, and the identity on n is the n× n diagonal matrix.

⋄ Monoids are one-object categories. Arrows correspond to the elements of
the monoid, with the monoid operation being arrow-composition and the
monoid unit being the identity arrow.

⋄ A category in which for each pair of objects A, B there is at most one
morphism from A to B is the same thing as a preorder , i.e. a reflexive
and transitive relation.

Note that our first class of examples illustrate the idea of categories as math-
ematical contexts ; settings in which various mathematical theories can be
developed. Thus for example, Top is the context for general topology, Grp is
the context for group theory, etc.

On the other hand, the last two examples illustrate that many important
mathematical structures themselves appear as categories of particular kinds.
The fact that two such different kinds of structures as monoids and posets
should appear as extremal versions of categories is also rather striking.

This ability to capture mathematics both “in the large” and “in the small”
is a first indication of the flexibility and power of categories.

Exercise 3. Check that Mon, Vectk, Pos and Top are indeed categories.

Exercise 4. Check carefully that monoids correspond exactly to one-object
categories. Make sure you understand the difference between such a category
and Mon. (For example: how many objects does Mon have?)

Exercise 5. Check carefully that preorders correspond exactly to categories
in which each homset has at most one element. Make sure you understand
the difference between such a category and Pos. (For example: how big can
homsets in Pos be?)

1.1.5 First Notions

Many important mathematical notions can be expressed at the general level
of categories.

Definition 3 Let C be a category. A morphism f : X → Y in C is:

• monic (or a monomorphism) if f ◦ g = f ◦ h =⇒ g = h ,

• epic (or an epimorphism) if g ◦ f = h ◦ f =⇒ g = h .

An isomorphism in C is an arrow i : A→ B such that there exists an arrow
j : B → A — the inverse of i — satisfying

j ◦ i = idA , i ◦ j = idB .
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We denote isomorphisms by i : A
∼=
−→ B, and write i−1 for the inverse of i. We

say that A and B are isomorphic, A ∼= B, if there exists some i : A
∼=
−→ B.N

Exercise 6. Show that the inverse, if it exists, is unique.

Exercise 7. Show that ∼= is an equivalence relation on the objects of a cate-
gory.

As we saw previously, in Set monics are injections and epics are surjections.
On the other hand, isomorphisms in Set correspond exactly to bijections, in
Grp to group isomorphisms, in Top to homeomorphisms, in Pos to order
isomorphisms, etc.

Exercise 8. Verify these claims.

Thus we have at one stroke captured the key notion of isomorphism in a form
which applies to all mathematical contexts. This is a first taste of the level of
generality which category theory naturally affords.

We have already identified monoids as one-object categories. We can now
identify groups as exactly those one-object categories in which every arrow is
an isomorphism. This also leads to a natural generalization, of considerable
importance in current mathematics: a groupoid is a category in which every
morphism is an isomorphism.

Opposite Categories and Duality

The directionality of arrows within a category C can be reversed without
breaking the conditions of category; this yields the notion of opposite cate-
gory .

Definition 4 Given a category C, the opposite category Cop is given by
taking the same objects as C, and

Cop(A, B) := C(B, A) .

Composition and identities are inherited from C. N

Note that if we have

A
f
−→ B

g
−→ C

in Cop, this means

A
f
←− B

g
←− C

in C, so composition g ◦ f in Cop is defined as f ◦ g in C!
Consideration of opposite categories leads to a principle of duality : a

statement S is true about C if and only if its dual (i.e. the one obtained from
S by reversing all the arrows) is true about Cop. For example,

A morphism f is monic in Cop if and only if it is epic in C .
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Indeed, f is monic in Cop iff for all g, h : C → B in Cop,

f ◦ g = f ◦ h =⇒ g = h ,

iff for all g, h : B → C in C,

g ◦ f = h ◦ f =⇒ g = h ,

iff f is epic in C. We say that monic and epic are dual notions.

Exercise 9. If P is a preorder, for example (R,≤), describe P op explicitly.

Subcategories

Another way to obtain new categories from old ones is by restricting their
objects or arrows.

Definition 5 Let C be a category. Suppose that we are given collections

Ob(D) ⊆ Ob(C) , ∀A, B ∈ Ob(D). D(A, B) ⊆ C(A, B)

We say that D is a subcategory of C if

A ∈ Ob(D) ⇒ idA ∈ D(A, A), f ∈ D(A, B), g ∈ D(B, C) ⇒ g◦f ∈ D(A, C) ,

and hence D itself is a category. In particular, D is:

• A full subcategory of C if for any A, B ∈ Ob(D), D(A, B) = C(A, B).
• A lluf subcategory of C if Ob(D) = Ob(C). N

For example, Grp is a full subcategory of Mon (by Exercise 2), and Set is a
lluf subcategory of Rel.

Simple cats

We close this section with some very basic examples of categories.

• 1 is the category with one object and one arrow, that is1 := •BB

where the arrow is necessarily id• . Note that, although we say that 1
is the one-object/one-arrow category, there is by no means a unique such
category. This is explained by the intuitively evident fact that any two such
categories are isomorphic. (We will define what it means for categories to
be isomorphic later).

• In two-object categories, there is the one with two arrows, 2 := • • ,
and also:2→ := • // • , 2⇉ := • '' 77 • , 2⇄ := • '' •gg . . .

Note that we have omitted identity arrows for economy. Categories with
only identity arrows, like 1 and 2, are called discrete categories.

Exercise 10. How many categories C with Ob(C) = {•} are there? (Hint:
what do such categories correspond to?)
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1.1.6 Exercises

1. Consider the following properties of an arrow f in a category C.
• f is split monic if for some g, g ◦ f is an identity arrow.
• f is split epic if for some g, f ◦ g is an identity arrow.

a) Prove that if f and g are arrows such that g ◦ f is monic, then f is
monic.

b) Prove that, if f is split epic then it is epic.
c) Prove that, if f and g ◦ f are iso then g is iso.
d) Prove that, if f is monic and split epic then it is iso.
e) In the category Mon of monoids and monoid homomorphisms, con-

sider the inclusion map

i : (N, +, 0) −→ (Z, +, 0)

of natural numbers into the integers. Show that this arrow is both
monic and epic. Is it an iso?

The Axiom of Choice in Set Theory states that, if {Xi}i∈I is a family
of non-empty sets, we can form a set X = {xi | i ∈ I} where xi ∈ Xi for
all i ∈ I.
f) Show that in Set an arrow which is epic is split epic. Explain why

this needs the Axiom of Choice.
g) Is it always the case that an arrow which is epic is split epic? Either

prove that it is, or give a counter-example.
2. Give a description of partial orders as categories of a special kind.

1.2 Some Basic Constructions

We shall now look at a number of basic constructions which appear throughout
mathematics, and which acquire their proper general form in the language of
categories.

1.2.1 Initial and terminal objects

A first such example is that of initial and terminal objects. While apparently
trivial, they are actually both important and useful, as we shall see in the
sequel.

Definition 6 An object I in a category C is initial if, for every object A,
there exists a unique arrow from I to A, which we write ιA : I → A.
A terminal object in C is an object T such that, for every object A, there
exists a unique arrow from A to T , which we write τA : A→ T . N
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Note that initial and terminal objects are dual notions: T is terminal in C iff
it is initial in Cop. We sometimes write 1 for the terminal object and 0 for
the initial one. Note also the assertions of unique existence in the definitions.
This is one of the leitmotifs of category theory; we shall encounter it again in
a conceptually deeper form in Chapter 5.

Let us examine initial and terminal objects in our standard example cat-
egories.

• In Set, the empty set is an initial object while any one-element set {•} is
terminal.

• In Pos, the poset (∅, ∅) is an initial object while ({•}, {(•, •)}) is terminal.
• In Top, the space (∅, {∅}) is an initial object while ({•}, {∅, {•}}) is

terminal.
• In Vectk, the one-element space {0} is both initial and terminal.
• In a poset, seen as a category, an initial object is a least element, while a

terminal object is a greatest element.

Exercise 11. Verify these claims. In each case, identify the canonical arrows.

Exercise 12. Identify the initial and terminal objects in Rel.

Exercise 13. Suppose that a monoid, viewed as a category, has either an
initial or a terminal object. What must the monoid be?

We shall now establish a fundamental fact: initial and terminal objects
are unique up to (unique) isomorphism. As we shall see, this is characteristic
of all such “universal” definitions. For example, the apparent arbitrariness in
the fact that any singleton set is a terminal object in Set is answered by the
fact that what counts is the property of being terminal; and this suffices to
ensure that any two concrete objects having this property must be isomorphic
to each other.

The proof of the proposition, while elementary, is a first example of dis-
tinctively categorical reasoning.

Proposition 2. If I and I ′ are initial objects in the category C then there

exists a unique isomorphism I
∼=
−→ I ′.

Proof: Since I is initial and I ′ is an object of C, there is a unique arrow
ιI′ : I −→ I ′. We claim that ιI′ is an isomorphism.
Since I ′ is initial and I is an object in C, there is an arrow ι′I : I ′ −→ I.
Thus we obtain ιI′ ; ι′I : I −→ I, while we also have the identity morphism
idI : I −→ I. But I is initial and therefore there exists a unique arrow from
I to I, which means that ιI′ ; ι′I = idI . Similarly, ι′I ; ιI′ = idI′ , so ιI′ is indeed
an isomorphism. �

Hence, initial objects are “unique up to (unique) isomorphism”, and we can
(and do) speak of the initial object (if any such exists). Similarly for terminal
objects.
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1.2.2 Products and Coproducts

Products

We now consider one of the most common constructions in mathematics: the
formation of “direct products”. Once again, rather than giving a case-by-case
construction of direct products in each mathematical context we encounter,
we can express once and for all a general notion of product, meaningful in
any category — and such that, if a product exists, it is characterized uniquely
up to unique isomorphism, just as for initial and terminal objects. Given a
particular mathematical context, i.e. a category, we can then verify whether on
not the product exists in that category. The concrete construction appropriate
to the context will enter only into the proof of existence; all of the useful
properties of the product follow from the general definition. Moreover, the
categorical notion of product has a normative force; we can test whether
a concrete construction works as intended by verifying that it satisfies the
general definition.

In set theory, the cartesian product is defined in terms of the ordered pair:

X × Y := {(x, y) | x ∈ X ∧ y ∈ Y }.

It turns out that ordered pairs can be defined in set theory, e.g. as

(x, y) := {{x, y}, y}.

Note that in no sense is such a definition canonical. The essential properties
of ordered pairs are:

1. We can retrieve the first and second components x, y of the ordered pair
(x, y), allowing projection functions to be defined:

π1 : (x, y) 7→ x, π2 : (x, y) 7→ y .

2. The information about first and second components completely deter-
mines the ordered pair:

(x1, x2) = (y1, y2) ⇐⇒ x1 = y1 ∧ x2 = y2.

The categorical definition expresses these properties in arrow-theoretic terms,
meaningful in any category.

Definition 7 Let A, B be objects in a category C. An A,B–pairing is a triple
(P, p1, p2) where P is an object, p1 : P → A and p2 : P → B. A morphism of
A,B–pairings

f : (P, p1, p2) −→ (Q, q1, q2)

is a morphism f : P → Q in C such that q1 ◦ f = p1 and q2 ◦ f = p2 , i.e. the
following diagram commutes.
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P

p1

����
��

��
��

��
�

p2

��?
??

??
??

??
??

f

��
A Q

q1

oo
q2

// B

The A,B–pairings form a category Pair(A, B). We say that (A×B, π1, π2) is
a product of A and B if it is terminal in Pair(A, B). N

Exercise 14. Verify that Pair(A, B) is a category.

Note that products are specified by triples A
π1←− A×B

π2−→ B, where πi’s are
called projections. For economy (and if projections are obvious) we may say
that A × B is the product of A and B. We say that C has (binary) products
if each pair of objects A, B has a product in C. A direct consequence of the
definition, by Proposition 2, is that if products exist, they are unique up to
(unique) isomorphism.

Unpacking the uniqueness condition from Pair(A, B) back to C we obtain
a more concise definition of products which we use in practice.

Definition 8 (Equivalent definition of product) Let A, B be objects in
a category C. A product of A and B is an object A×B together with a pair

of arrows A
π1←− A×B

π2−→ B such that for every triple A
f
←− C

g
−→ B there

exists a unique morphism

〈f, g〉 : C −→ A×B

such that the following diagram commutes.

A A×B
π1oo π2 // B

C

f

bbEEEEEEEEEEEEE
g

<<yyyyyyyyyyyyy

〈f,g〉

OO�
�
�
�

(
π1 ◦ 〈f, g〉 = f

π2 ◦ 〈f, g〉 = g

)

N

We call 〈f, g〉 the pairing of f and g.
Note that the above diagram features a dashed arrow. Our intention with

such diagrams is always to express the following idea: if the undashed part
of the diagram commutes, then there exists a unique arrow (the dashed one)
such that the whole diagram commutes. In any case, we shall always spell out
the intended statement explicitly.

We look at how this definition works in our standard example categories.

• In Set, products are the usual cartesian products.
• In Pos, products are cartesian products with the pointwise order.
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• In Top, products are cartesian products with the product topology.
• In Vectk, products are direct sums.
• In a poset, seen as a category, products are greatest lower bounds.

Exercise 15. Verify these claims.

The following proposition shows that the uniqueness of the pairing arrow can
be specified purely equationally.

Proposition 3. For any triple A
π1←− A× B

π2−→ B the following statements
are equivalent.

(I) For any triple A
f
←− C

g
−→ B there exists a unique morphism 〈f, g〉 : C →

A×B such that π1 ◦ 〈f, g〉 = f and π2 ◦ 〈f, g〉 = g.

(II) For any triple A
f
←− C

g
−→ B there exists a morphism 〈f, g〉 : C → A×B

such that π1 ◦ 〈f, g〉 = f and π2 ◦ 〈f, g〉 = g, and moreover, for any
h : C → A×B, h = 〈π1 ◦ h, π2 ◦ h〉.

Proof: For (I)⇒(II), take any h : C −→ A × B ; we need to show h =
〈π1 ◦ h, π2 ◦ h〉. We have

A C
π1◦hoo π2◦h // B

and hence, by (I), there exists unique k : C −→ A×B such that

π1 ◦ k = π1 ◦ h ∧ π2 ◦ k = π2 ◦ h (∗)

Note now that (∗) holds both for k := h and k := 〈π1 ◦ h, π2 ◦ h〉, the latter
because of (I). Hence, h = 〈π1 ◦ h, π2 ◦ h〉.

For (II)⇒(I), take any triple A
f
←− C

g
−→ B. By (II), we have that there exists

an arrow 〈f, g〉 : C −→ A × B such that π1 ◦ 〈f, g〉 = f and π2 ◦ 〈f, g〉 = g.
We need to show it is the unique such. Let k : C −→ A×B s.t.

π1 ◦ k = f ∧ π2 ◦ k = g

Then, by (II),
k = 〈π1 ◦ k, π2 ◦ k〉 = 〈f, g〉

as required. �

In the following proposition we give some useful properties of products. First,
let us introduce some notation for arrows: given f1 : A1 → B1, f2 : A2 → B2,
define

f1 × f2 := 〈f1 ◦ π1, f2 ◦ π2〉 : A1 ×A2 −→ B1 ×B2.

Proposition 4. For any f : A → B, g : A → C, h : A′ → A, and any
p : B → B′, q : C → C′,
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• 〈f, g〉 ◦ h = 〈f ◦ h, g ◦ h〉,
• (p× q) ◦ 〈f, g〉 = 〈p ◦ f, q ◦ g〉.

Proof: For the first claim we have:

〈f, g〉 ◦ h = 〈π1 ◦ (〈f, g〉 ◦ h), π2 ◦ (〈f, g〉 ◦ h)〉 = 〈f ◦ h, g ◦ h〉.

And for the second:

(p× q) ◦ 〈f, g〉 = 〈p ◦ π1, q ◦ π2〉 ◦ 〈f, g〉
= 〈p ◦ π1 ◦ 〈f, g〉, q ◦ π2 ◦ 〈f, g〉〉
= 〈p ◦ f, q ◦ g〉.

�

General Products

The notion of products can be generalised to arbitrary arities as follows. A
product for a family of objects {Ai}i∈I in a category C is an object P and
morphisms

pi : P −→ Ai (i ∈ I)

such that, for all objects B and arrows

fi : B −→ Ai (i ∈ I)

there is a unique arrow
g : B −→ P

such that, for all i ∈ I, the following diagram commutes:

B
g //

fi   A
AA

AA
AA

P

pi~~~~
~~

~~
~

Ai

As before, if such a product exists, it is unique up to (unique) isomorphism.
We write P =

∏
i∈I Ai for the product object, and g = 〈fi | i ∈ I〉 for the

unique morphism in the definition.

Exercise 16. What is the product of the empty family?

Exercise 17. Show that if a category has binary and nullary products then
it has all finite products.
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Coproducts

We now investigate the dual notion to products: namely coproducts. Formally,
coproducts in C are just products in Cop, interpreted back in C . We spell out
the definition.

Definition 9 Let A, B be objects in a category C. A coproduct of A and B

is an object A + B together with a pair of arrows A
in1−→ A + B

in2←− B such

that for every triple A
f
−→ C

g
←− B there exists a unique morphism

[f, g] : A + B −→ C

such that the following diagram commutes:

A
in1 //

f

""E
EE

EE
EE

EE
EE

EE
A + B

[f,g]

���
�
�
� B

in2oo

g

||yy
yy

yy
yy

yy
yy

y

C

(
[f, g] ◦ in1 = f

[f, g] ◦ in2 = g

)

N

We call ini’s injections and [f, g] a copairing. As with pairings, uniqueness of
copairings can be specified by an equation:

∀h : A + B → C. h = [h ◦ in1, h ◦ in2] .

Coproducts in Set

This is given by disjoint union of sets, which can be defined concretely e.g.
by

X + Y = {1} ×X ∪ {2} × Y.

We can define injections

X
in1 // X + Y Y

in2oo

in1(x) = (1, x) in2(y) = (2, y).

Also, given functions f : X −→ Z and g : Y −→ Z, we can define

[f, g] : X + Y −→ Z

[f, g](1, x) = f(x) [f, g](2, y) = g(y).

Exercise 18. Check that this construction does yield coproducts in Set.

Note that this example suggests that coproducts allow for definition by cases.
Let us examine coproducts for some of our other standard examples.
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• In Pos, disjoint unions (with the inherited orders) are coproducts.
• In Top, topological disjoint unions are coproducts.
• In Vectk, direct sums are coproducts.
• In a poset, least upper bounds are coproducts.

Exercise 19. Verify these claims.

Exercise 20. Dually to products, express coproducts as initial objects of a
category Copair(A, B) of A,B–copairings.

1.2.3 Pullbacks and Equalisers

We shall consider two further constructions of interest: pullbacks and equalis-
ers.

Pullbacks

Definition 10 Consider a pair of morphisms A
f
−→ C

g
←− B. The pull-back

of f along g is a pair A
p
←− D

q
−→ B such that f ◦ p = g ◦ q and, for any pair

A
p′

←− D′ q′

−→ B such that f ◦ p′ = g ◦ q′, there exists a unique h : D′ → D
such that p′ = p ◦ h and q′ = q ◦ h. Diagrammatically,

D′

h   B
B

B q′

%%

p′

��

D
q //

p

��

B

g

��
A

f // C N

Example 1. • In Set the pullback of A
f
−→ C

g
←− B is defined as a subset

of the cartesian product :

A×C B = {(a, b) ∈ A×B | f(a) = g(b)}.

For example, given a category C, with

Ar(C)
dom
−→ Ob(C)

cod
←− Ar(C) .

Then the pullback of dom along cod is the set of compable morphisms,
i.e. pair of morphisms (f, g) in C such that g ◦ f is well-defined.

• In Set again, subsets (i.e. inclusion maps) pull back to subsets:

f−1(U) //
� _

��

U
� _

��
X

f
// Y
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Just as for products, pullbacks can equivalently be described as terminal ob-

jects in suitable categories. Given a pair of morphisms A
f
−→ C

g
←− B, we

define an (f, g)–cone to be a pair (p, q) such that the following diagram com-
mutes.

D
q //

p

��

B

g

��
A

f
// C

A morphism of (f, g)–cones h : (D1, p1, q1) → (D2, p2, q2) is a morphism
h : D1 → D2 such that the following diagram commutes.

D1

p1

~~~~
~~

~~
~~

~

h

��

q1

  A
AA

AA
AA

AA

A D2p2

oo
q2

// B

We can thus form a category Cone(f, g). A pull-back of f along g, if it
exists, is exactly a terminal object of Cone(f, g). Once again, this shows the
uniqueness of pullbacks up to unique isomorphism.

Equalisers

Definition 11 Consider a pair of parallel arrows A
g

//
f // B . An equaliser

of (f, g) is an arrow e : E → A such that f ◦ e = g ◦ e and, for any arrow

h : D → A such that f ◦ h = g ◦ h there is a unique ĥ : D → E so that
h = e ◦ ĥ. Diagrammatically,

E
e // A

g
//

f //
B

D

h

??~~~~~~~~~
ĥ

OO�
�
�

N

As for products, uniqueness of the arrow from D to E can be expressed equa-
tionally:

∀k : D → E. ê ◦ k = k .

Exercise 21. Why is ê ◦ k well-defined for any k : D → E? Prove that the
above equation is equivalent to the uniqueness requirement.

Example 2. In Set, the equaliser of f, g is given by the inclusion

{x ∈ A | f(x) = g(x)} ⊂ - A .



24 Contents

This allows equationally defined subsets to be defined as equalisers. For exam-

ple, consider the pair of maps R2

g
//

f // R , where

f : (x, y) 7→ x2 + y2, g : (x, y) 7→ 1 .

Then the equaliser is the unit circle as a subset of R2.

1.2.4 Limits and Colimits

The notions we have introduced so far are all special cases of a general notion
of limits in categories, and the dual notion of colimits.

Limits Colimits

Terminal Objects Initial Objects

Products Coproducts

Pullbacks Pushouts

Equalisers Coequalisers

Table 1.1: Examples of limits and colimits

An important aspect of studying any kind of mathematical structure is to see
what limits and colimits the category of such structures has. We shall return
to these ideas shortly.

1.2.5 Exercises

1. Give an example of a category where some pair of objects lacks a product
or coproduct.

2. (Pullback lemma) Consider the following commutative diagram.

A
f //

u

��

B
g //

v

��

C

w

��
D

h
// E

i
// F

Given that the right hand square BCEF and the outer square ACDF
are pullbacks, prove that the left hand square ABDE is a pullback.

3. Consider A
f
−→ C

g
←− B with pullback A

p
←− D

q
−→ B. For each A

p′

←−

D′ q′

−→ B′ with f ◦ p′ = g ◦ q′, let φ(p′, q′) : D′ → D be the arrow dictated
by the pullback condition. Express uniqueness of φ(p′, q′) equationally.
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1.3 Functors

Part of the “categorical philosophy” is:

Don’t just look at the objects; take the morphisms into account too.

We can also apply this to categories!

1.3.1 Basics

A “morphism of categories” is a functor.

Definition 12 A functor F : C → D is given by:

• An object-map, assigning an object FA of D to every object A of C.
• An arrow-map, assigning an arrow Ff : FA→ FB of D to every arrow f :

A→ B of C, in such a way that composition and identities are preserved:

F (g ◦ f) = Fg ◦ Ff , F idA = idFA.
N

Note that we use the same symbol to denote the object- and arrow-maps. In
practice, this never causes confusion.

The conditions on preservation of composition and identities are called func-
toriality.

Examples:

Example 3. Let (P,≤), (Q,≤) be preorders (seen as categories). A functor
F : (P,≤) −→ (Q,≤) is specified by an object-map, say F : P → Q, and an
appropriate arrow-map. The arrow-map corresponds to the condition

∀p1, p2 ∈ P. p1 ≤ p2 =⇒ F (p1) ≤ F (p2) ,

i.e. to monotonicity of F . Moreover, the functoriality conditions are trivial
since in the codomain (Q,≤) all hom-sets are singletons.
Hence, a functor between preorders is just a monotone map.

Example 4. Let (M, ·, 1), (N, ·, 1) be monoids. A functor F : (M, ·, 1) −→
(N, ·, 1) is specified by a trivial object map (monoids are categories with a
single object) and an arrow-map, say F : M → N . The functoriality conditions
correspond to

∀m1, m2 ∈M. F (m1 ·m2) = F (m1) · F (m2) , F (1) = 1 ,

i.e. to F being a monoid homomorphism.
Hence, a functor between monoids is just a monoid homomorphism.

Other examples are the following.
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• Inclusion of a sub-category, C →֒ D, is a functor (by taking the identity
map for object- and arrow-map).

• The covariant powerset functor PSet −→ Set::

X 7→ P(X) , (f : X −→ Y ) 7→ P(f) := S 7→ {f(x) | x ∈ S}.

• U : Mon −→ Set is the ‘forgetful’ or ‘underlying’ functor which sends
a monoid to its set of elements, ‘forgetting’ the algebraic structure, and
sends a homomorphism to the corresponding function between sets. There
are similar forgetful functors for other categories of structured sets. Why
are these trivial-looking functors useful? — We shall see!

• Group theory examples. The assignment of the commutator sub-group of
a group extends to a functor from Group to Group; and the assignment
of the quotient by this normal subgroup extends to a functor from Group
to AbGroup. The assignment of the centralizer of a group does not!

• More sophisticated examples: e.g. homology. The basic idea of algebraic
topology is that there are functorial assignments of algebraic objects
(e.g. groups) to topological spaces, and variants of this idea (‘(co)homology
theories’) are pervasive throughout modern pure mathematics.

Functors ‘of several variables’

We can generalise the notion of a functor to a mapping from several domain
categories to a codomain category. For this we need the following definition.

Definition 13 For categories C,D define the product category C × D as
follows. An object in C × D is a pair of objects from C and D, and an arrow
in C × D is a pair of arrows from C and D. Identities and arrow composition
are defined componentwise:

id(A,B) := ( idA, idB) , (f, g) ◦ (f ′, g′) := (f ◦ f ′, g ◦ g′) .
N

A functor ‘of two variables’, with domains C and D, to E is simply a functor:

F : C × D −→ E .

For example, there are evident projection functors

C ←− C ×D −→ D .

1.3.2 Further Examples

Set-valued functors

Many important constructions arise as functors F : C → Set. For example:

• If G is a group, a functor F : G→ Set is an action of G on a set.
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• If P is a poset representing time, a functor F : P → Set is a notion of set
varying through time. This is related to Kripke semantics, and to forcing
arguments in set theory.

• Recall that 2 is the category • )) 55 • . Then, functors F : 2 → Set
correspond to directed graphs understood as in Definition 2, i.e. as struc-
tures (V, E, s, t), where V is a set of vertices, E is a set of edges, and
s, t : E → V specify the source and target vertices for each edge.

Let us examine the first example in more detail. For a group (G, ·, 1), a functor
F : G→ Set is specified by a set X (where the unique object of G is mapped),
and by an arrow-map sending each element m of G to an endofunction on X ,
say m • : X → X . Then, functoriality amounts to the conditions

∀m1, m2 ∈ G. F (m1 ·m2) = F (m1) ◦ F (m2) , F (1) = idX ,

that is, for all m1, m2 ∈ G and all x ∈ X ,

(m1 ·m2) • x = m1 • m2 • x , 1 • x = x .

We therefore see that F defines an action of G on X .

Exercise 22. Verify that functors F : 2→ Set correspond to directed graphs.

Example: Lists

Data-type constructors are functors. As a basic example, we consider lists.
There is a functor

List : Set −→ Set

which takes a set X to the set of all finite lists (sequences) of elements of
X . List is functorial: its action on morphisms (i.e. functions, i.e. (functional)
programs) is given by maplist :

f : X −→ Y

List(f) : List(X) −→ List(Y )

List(f)[x1, . . . , xn] = [f(x1), . . . , f(xn)]

We can upgrade List to a functor MList : Set→Mon by mapping each set X
to the monoid (List(X), ∗, ǫ) and f : X → Y to List(f), as above. The monoid
operation ∗ : List(X) × List(X) → List(X) is list concatenation, and ǫ is the
empty list. We call MList(X) the free monoid over X . This terminology will
be justified in Chapter 5.

Products as functors

If a category C has binary products, then there is automatically a functor

× : C × C −→ C



28 Contents

which takes each pair (A, B) to the product A×B, and each (f, g) to

f × g = 〈f ◦ π1, g ◦ π2〉 .

Functoriality is shown as follows, using proposition 4 and uniqueness of pair-
ings in its equational form.

(f × g) ◦ (f ′ × g′) = (f × g) ◦ 〈f ′ ◦ π1, g
′ ◦ π2〉 = 〈f ◦ f ′ ◦ π1, g ◦ g′ ◦ π2〉

= (f ◦ f ′)× (g ◦ g′) ,

idA × idB = 〈 idA ◦ π1, idB ◦ π2〉 = 〈π1 ◦ idA×B, π2 ◦ idA×B〉 = idA×B .

The category of categories

There is a category Cat whose objects are categories, and whose arrows are
functors. Composition of functors is defined in the evident fashion. Note that
if F : C → D and G : D → E then, for f : A→ B in C,

G ◦ F (f) := G(F (f)) : G(F (A)) −→ G(F (B))

so the types work out. A category of categories sounds (and is) circular, but in
practice is harmless: one usually makes some size restriction on the categories,
and then Cat will be too “big” to be an object of itself.

Note that product categories are products in Cat! For any pair of cate-
gories C,D, set

C
π1←− C ×D

π2−→ D

where C × D the product category (defined previously) and πi’s the obvious

projection functors. For any pair of functors C
F
←− E

G
−→ D, set

〈F, G〉 : E −→ C ×D := A 7→ (F (A), F (B)), f 7→ (Ff, Gf) .

It is easy to see that 〈F, G〉 is indeed a functor. Moreover, satisfaction of the
product diagram and uniqueness are shown exactly as in Set.

1.3.3 Contravariance

By definition, the arrow-map of a functor F is covariant : it preserves the
direction of arrows, so if f : A → B then Ff : FA → FB. A contravariant
functor G does exactly the opposite: it reverses arrow-direction, so if f : A→
B then Gf : GB → GA. A concise way to express contravariance is as follows.

Definition 14 Let C,D be categories. A contravariant functor G from C
to D is a functor G : Cop → D. (Equivalently, a functor G : C −→ Dop). N

Explicitly, a contravariant functor G is given by an assignment of:

• an object GA in D to every object A in C,
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• an arrow Gf : GB −→ GA in D to every arrow f : A −→ B in C, such
that (notice the change of order in composition):

G(g ◦ f) = Gf ◦Gg , G idA = idGA.

Note that functors of several variables can be covariant in some variables and
contravariant in others, e.g.

F : Cop ×D −→ E .

Examples of Contravariant Functors

• The contravariant powerset functor, Pop : Setop → Set , is given by:

Pop(X) := P(X) .

Pop(f : X −→ Y ) : P(Y ) −→ P(X) := T 7→ {x ∈ X | f(x) ∈ T } .

• The dual space functor on vector spaces:

( )∗ : Vectop

k −→ Vectk := V 7→ V ∗.

Note that these are both examples of the following idea: send an object A into
functions from A into some fixed object. For example, the powerset can be
written as P(X) = 2X , where we think of a subset in terms of its characteristic
function.

Hom-functors

We now consider some fundamental examples of Set-valued functors, Given
a category C and an object A of C, two functors to Set can be defined:

• The covariant Hom-functor at A,

C(A, ) : C −→ Set ,

which is given by (recall that each C(A, B) is a set):

C(A, )(B) := C(A, B) , C(A, )(f : B → C) := g 7→ f ◦ g .

We usually write C(A, )(f) as C(A, f). Functoriality reduces directly to
the basic category axioms: associativity of composition and the unit laws
for the identity.

• There is also a contravariant Hom-functor,

C( , A) : Cop −→ Set ,

given by:

C( , A)(B) := C(B, A) , C( , A)(h : C → B) := g 7→ g ◦ h .

Generalizing both of the above, we obtain a bivariant Hom-functor,

C( , ) : Cop × C −→ Set .

Exercise 23. Spell out the definition of C( , ) : Cop × C −→ Set. Verify
carefully that it is a functor.



30 Contents

1.3.4 Properties of functors

Definition 15 A functor F : C −→ D is said to be:

• faithful if each map FA,B : C(A, B) −→ D(FA, FB) is injective.
• full if each map FA,B : C(A, B) −→ D(FA, FB) is surjective.
• an embedding if F is full, faithful, and injective on objects.
• an equivalence if F is full, faithful, and essentially surjective: i.e. for

every object B of D there is an object A of C such that F (A) ∼= B.
• An isomorphism if there is a functor G : D −→ C such that

G ◦ F = IdC , F ◦G = IdD .

Note that this is just the usual notion of isomorphism applied to Cat.
We say that categories C and D are isomorphic, C ∼= D, if there is an
isomorphism between them. N

Examples:

• The forgetful functor U : Mon → Set is faithful, but not full. For the
latter, note that not all functions f : M → N yield an arrow f : (M, ·, 1)→
(N, ·, 1). Similar properties hold for other forgetful functors.

• The free monoid functor MList : Set→Mon is faithful, but not full.
• The product functor × : C × C −→ C is generally neither faithful nor

full.
• There is an equivalence between FDVectk the category of finite dimen-

sional vector spaces over the field k, and Matk, the category of matrices
with entries in k. Note that these categories are very far from isomorphic!
This example is elaborated in exercise 3.5(1).

Preservation and Reflection

Let P be a property of arrows. We say that a functor F : C −→ D preserves P
if whenever f satisfies P , so does F (f). We say that F reflects P if whenever
F (f) satisfies P , so does f . For example:

a. All functors preserve isomorphisms, split monics and split epics.
b. Faithful functors reflect monics and epics.
c. Full and faithful functors reflect isomorphisms.
d. Equivalences preserve monics and epics.
• The forgetful functor U : Mon→ Set preserves products.

Let us show c; the rest are given as exercises below. So let f : A → B in C
be such that Ff is an iso, that is it has an inverse g′ : FB → FA. Then, by
fullness, there exists some g : B → A so that g′ = Fg. Thus,

F (g ◦ f) = Fg ◦ Ff = g′ ◦ Ff = idFA = F ( idA) .

By faithfulness we obtain g ◦ f = idA . Similarly, f ◦ g = idB and therefore f
is an isomorphism.
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Exercise 24. Show items a, b and d above.

Exercise 25. Show the following.

• Functors do not in general reflect monics or epics.
• Faithful functors do not in general reflect isomorphisms.
• Full and faithful functors do not in general preserve monics or epics.

1.3.5 Exercises

1. Consider the category FDVectR of finite dimensional vector spaces over
R, and MatR of matrices over R. Concretely, MatR is defined as follows:

Ob(MatR) := N ,

MatR(n, m) := {M | M is an n×m matrix with entries in R} .

Thus, objects are natural numbers, and arrows n → m are n × m real
matrices. Composition is matrix multiplication, and the identity on n is
the n× n diagonal matrix.
Now let F : MatR −→ FDVectR be the functor taking each n to the
vector space Rn and each M : n→ m to the linear function

FM : Rn −→ Rm := (x1, ..., xn) 7→ [x1, ..., xn]M

with the 1 ×m matrix [x1, ..., xn]M considered as a vector in Rm. Show
that F is full, faithful and essentially surjective, and hence that FDVectR

and MatR are equivalent categories. Are they isomorphic?
2. Let C be a category with binary products such that, for each pair of objects

A, B,
C(A, B) 6= ∅. (∗)

Show that the product functor F : C × C → C is faithful.
Would F still be faithful in the absence of condition (∗)?

1.4 Natural transformations

“Categories were only introduced to allow functors to be defined; func-
tors were only introduced to allow natural transformations to be de-
fined.”

Just as categories have morphisms between them, namely functors, so functors
have morphisms between them too —natural transformations.
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1.4.1 Basics

Definition 16 Let F, G : C → D be functors. A natural transformation

t : F −→ G

is a family of morphisms in D indexed by objects A of C,

{ tA : FA −→ GA }A∈Ob(C)

such that, for all f : A→ B, the following diagram commutes.

FA
Ff //

tA

��

FB

tB

��
GA

Gf
// GB

This condition is known as naturality.
If each tA is an isomorphism, we say that t is a natural isomorphism:

t : F
∼=
−→ G .

N

Examples:

• Let Id be the identity functor on Set, and ×◦〈Id, Id〉 be the functor taking
each set X to X×X and each function f to f ×f . Then there is a natural
transformation d : Id −→ × ◦ 〈Id, Id〉 given by:

dX : X −→ X ×X := x 7→ (x, x) .

Naturality amounts to asserting that, for any function f : X → Y , the
following diagram commutes:

X
f //

dX

��

Y

dY

��
X ×X

f×f
// Y × Y

We call d the diagonal transformation on Set. In fact, it is the only natural
transformation between these functors.

• The diagonal transformation can be defined for any category C with binary
products by setting, for each object A in C,

dA : A −→ A×A := 〈 idA, idA〉 .
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Projections also yield natural transformations. For example the arrows

π1(A,B) : A×B −→ A := π1

specify a natural transformation π1 : × → π1 . Note that ×, π1 : C×C → C
are the functors for product and first projection respectively.

• Let C be a category with terminal object T , and let KT : C → C be the
functor mapping all objects to T and all arrows to idT . Then the canonical
arrows

τA : A −→ T

specify a natural transformation τ : Id → KT (where Id the identity
functor on C).

• Recall the functor List : Set→ Set which takes a set X to the set of finite
lists with elements in X . We can define (amongst others) the following
natural transformations,

reverse : List −→ List , unit : Id −→ List , flatten : List ◦ List −→ List ,

by setting, for each set X ,

reverseX : List(X) −→ List(X) := [x1, . . . , xn] 7→ [xn, . . . , x1] ,

unitX : X −→ List(X) := x 7→ [x] ,

flattenX : List(List(X)) −→ List(X)

:= [ [x1
1, . . . , x

1
n1

], . . . , [xk
1 , . . . , xk

nk
] ] 7→ [x1

1, . . . . . . , x
k
nk

] .

• Consider the following functor.

× ◦ 〈U, U〉 : Mon −→ Set = (M, ·, 1) 7→M ×M, f 7→ f × f .

Then, the monoid operation yields a natural transformation t : × ◦
〈U, U〉 → U defined by:

t(M,·,1) : M ×M −→M := (m, m′) 7→ m ·m′ .

Naturality corresponds to asserting that, for any f : (M, ·, 1) → (N, ·, 1),
the following diagram commutes,

M ×M
f×f //

tM

��

N ×N

tN

��
M

f
// N

that is, for any m1, m2 ∈M , f(m1) · f(m2) = f(m1 ·m2).



34 Contents

• If V is a finite dimensional vector space, then V is isomorphic to both its
first dual V ∗ and to its second dual V ∗∗.
However, while it is naturally isomorphic to its second dual, there is no
natural isomorphism to the first dual. This was actually the original ex-
ample which motivated Eilenberg and Mac Lane to define the concept of
natural transformation; here naturality captures basis independence.

Exercise 26. Verify naturality of diagonal transformations, projections and
terminals for a category C with finite products.

Exercise 27. Prove that the diagonal is the only natural transformation
Id −→ × ◦ 〈Id, Id〉 on Set. Similarly, prove that the first projection is the
only natural transformation × → π1 on Set.

1.4.2 Further examples

Natural isomorphisms for products

Let C be a category C with finite products, i.e. binary products and a terminal
object 1. Then we have the following canonical natural isomorphisms.

aA,B,C : A× (B × C)
∼=
−→ (A×B)× C ,

sA,B : A×B
∼=
−→ B ×A ,

lA : 1×A
∼=−→ A ,

rA : A× 1
∼=
−→ A .

The first two isomorphisms are meant to assert that the product is associative
and symmetric, and the last two that 1 is its unit. In later sections we will
see that these conditions form part of the definition of symmetric monoidal
categories.

These natural isomorphisms are defined explicitly by:

aA,B,C := 〈〈π1, π1 ◦ π2〉, π2 ◦ π2〉 ,

sA,B := 〈π2, π1〉 ,

lA := π2 ,

rA := π1 .

Since natural isomorphisms are a self-dual notion, similar natural isomor-
phisms can be defined if C has binary coproducts and an initial object.

Exercise 28. Verify that these families of arrows are natural isomorphisms.
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Natural transformations between Hom-functors

Let f : A→ B in a category C. Then this induces a natural transformation

C(f, ) : C(B, ) −→ C(A, ) ,

C(f, )C : C(B, C) −→ C(A, C) := (g : B → C) 7→ (g ◦ f : A→ C) .

Note that C(f, )C is the same as C(f, C), the result of applying the con-
travariant functor C( , C) to f . Hence, naturality amounts to asserting that,
for each h : C → D, the following diagram commutes.

C(B, C)

C(f,C)

��

C(B,h) // C(B, D)

C(f,D)

��
C(A, C)

C(A,h)
// C(A, D)

Starting from a g : B → C, we compute:

C(A, h)(C(f, C)(g)) = h ◦ (g ◦ f) = (h ◦ g) ◦ f = C(f, D)(C(B, h)(g)) .

The natural transformation C( , f) : C( , A)→ C( , B) is defined similarly.

Exercise 29. Define the natural transformation C( , f) and verify its natu-
rality.

There is a remarkable result, the Yoneda Lemma , which says that every
natural transformation between Hom-functors comes from a (unique) arrow
in C in the fashion described above.

Lemma 1. Let A, B be objects in a category C. For each natural transforma-
tion t : C(A, )→ C(B, ), there is a unique arrow f : B → A such that

t = C(f, ) .

Proof: Take any such A, B and t and let

f : B −→ A := tA( idA) .

We want to show that t = C(f, ). For any object C and any arrow g : A→ C,
naturality of t means that the following commutes.

C(A, A)
C(A,g) //

tA

��

C(A, C)

tC

��
C(B, A)

C(B,g)
// C(B, C)
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Starting from idA we have that:

tC(C(A, g)( idA)) = C(B, g)(tA( idA)) , i.e. tC(g) = g ◦ f .

Hence, noting that C(f, C)(g) = g ◦ f , we obtain t = C(f, ).
For uniqueness we have that, for any f, f ′ : B → A, if C(f, ) = C(f ′, ) then

f = idA ◦ f = C(f, A)( idA) = C(f ′, A)( idA) = idA ◦ f ′ = f ′.
�

Exercise 30. Prove a similar result for contravariant hom-functors.

Alternative definition of equivalence

Another way of defining equivalence of categories is as follows.

Definition 17 We say that categories C and D are equivalent , C ≃ D, if
there are functors F : C → D, G : D → C and natural isomorphisms

G ◦ F ∼= IdC , F ◦G ∼= IdD .
N

1.4.3 Functor Categories

Suppose we have functors F, G, H : C −→ D and natural transformations

t : F −→ G , u : G −→ H .

Then we can compose these natural transformations, yielding u ◦ t : F → H :

(u ◦ t)A := F (A)
tA−→ G(A)

uA−→ H(A).

Composition is associative, and has as identity the natural transformation

IF : F −→ F := { (IF )A := idA : F (A) −→ F (A) }A .

These observations lead us to the following.

Definition 18 For categories C,D define the functor category Func(C,D)
by taking:

• Objects: functors F : C −→ D.
• Arrows: natural transformations t : F −→ G.

Composition and identities are given as above. N

Remark 19 We see that in the category Cat of categories and functors,
each hom-set Cat(C,D) itself has the structure of a category. In fact, Cat
is the basic example of a “2-category”, i.e. of a category where hom-sets are
themselves categories.
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Note that a natural isomorphism is precisely an isomorphism in the functor
category. Let us proceed to some examples of functor categories.

• Recall that, for any group G, functors from G to Set are G-actions on sets.
Then, Func(G,Set) is the category of G-actions on sets and equivariant
functions : f : X → Y such that f(m • x) = m • f(x).

• Func(2,Set): Graphs and graph homomorphisms.
• If F, G : P → Q are monotone maps between posets, then t : F → G

means that
∀x ∈ P. Fx ≤ Gx .

Note that in this case naturality is trivial (hom-sets are singletons in Q).

Exercise 31. Verify the above descriptions of Func(G,Set) and Func(2,Set).

Remark 20 The composition of natural transformations defined above is
called vertical composition. The reason for this terminology is depicted below.

C

F

��

H

BB
G // D +3 C

F

&&

H

88 D

t

��

u

��

u ◦ t

��

As expected, there is also a horizontal composition, which is given as follows.

C

F

%%

G

99 D

F ′

''

G′

77 E
+3 C

F ′◦F

%%

G′◦G

99 Et

��
t′

��
t′• t

��

1.4.4 Exercises

1. Show that the two definitions of equivalence of categories, namely
a) C and D are equivalent if there is an equivalence F : C → D (defini-

tion 15),
b) C and D are equivalent if there are F : C → D, G : D → C, and

isomorphisms F ◦G ∼= IdD, G ◦ F ∼= IdC (definition 17),
are: equivalent! Note that this will need the Axiom of Choice.

2. Define a relation on objects in a category C by: A ∼= B iff A and B are
isomorphic.
a) Show that this relation is an equivalence relation.
Define a skeleton of C to be the (full) subcategory obtained by choosing one
object from each equivalence class of ∼= (note that this involves choices,
and is not uniquely defined).
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b) Show that C is equivalent to any skeleton.
c) Show that any two skeletons of C are isomorphic.
d) Give an example of a category whose objects form a proper class, but

whose skeleton is finite.
3. Given a category C, we can define a functor

y : C −→ Func(Cop,Set) := A 7→ C( , A), f 7→ C( , f) .

Prove carefully that this is indeed a functor. Use exercise 30 to conclude
that y is full and faithful. Prove that it is also injective on objects, and
hence an embedding. It is known as the Yoneda embedding.

4. Define the vertical composition u • t of natural transformations explicitly.
Prove that it is associative.

1.5 Universality and Adjoints

There is a fundamental triad of categorical notions:

Functoriality, Naturality, Universality.

We have studied the first two notions explicitly. We have also seen many
examples of universal definitions, notably the various notions of limits and
colimits considered in section 2. It is now time to consider universality in
general; the proper formulation of this fundamental and pervasive notion is
one of the major achievements of basic category theory.

Universality arises when we are interested in finding canonical solutions to
problems of construction: that is, we are interested, not just in the existence of
a solution, but in its canonicity. This canonicity should guarantee uniqueness,
in the sense we have become familiar with; a canonical solution should be
unique up to (unique) isomorphism.

The notion of canonicity has a simple interpretation in the case of posets, as
an extremal solution: one that is the least or the greatest among all solutions.
Such an extremal solution is obviously unique. For example, consider the
problem of finding a lower bound of a pair of elements A, B in a poset P : a
greatest lower bound of A and B is an extremal solution to this problem. As
we have seen, this is the specialization to posets of the problem of constructing
a product:

 A product of A, B in a poset is an element C such that C ≤ A and C ≤ B,
(C is a lower bound);

 and for any other other solution C′, i.e. C′ such that C′ ≤ A and C′ ≤ B,
we have C′ ≤ C. ( C is a greatest lower bound.)

Because the ideas of universality and adjunctions have an appealingly simple
form in posets, which is, moreover, useful in its own right, we will develop
the ideas in that special case first, as a prelude to the general discussion for
categories.
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1.5.1 Adjunctions for posets

Suppose g : Q → P is a monotone map between posets. Given x ∈ P , a g-
approximation of x (from above) is an element y ∈ Q such that x ≤ g(y).
A best g-approximation of x is an element y ∈ Q such that

x ≤ g(y) ∧ ∀z ∈ Q. (x ≤ g(z) =⇒ y ≤ z ) .

If a best g-approximation exists then it is clearly unique.

Discussion

It is worth clarifying the notion of best g-approximation. If y is a best g-
approximation to x, then in particular, by monotonicity of g, g(y) is the least
element of the set of all g(z) where z ∈ Q and x ≤ g(z). However, the property
of being a best approximation is much stronger than the mere existence of
a least element of this set. We are asking for y itself to be the least, in Q,
among all elements z such that x ≤ g(z). Thus even if g is surjective, so that
for every x there is a y ∈ Q such that g(y) = x, there need not exist a best
g-approximation to x. This is exactly the issue of having a canonical choice
of solution.

Exercise 32. Given a example of a surjective monotone map g : Q→ P and
an element x ∈ P such that there is no best g-approximation to x in Q.

If such a best g-approximation f(x) exists for all x ∈ P then we have a
function f : P → Q such that, for all x ∈ P , z ∈ Q:

x ≤ g(z) ⇐⇒ f(x) ≤ z . (1.1)

We say that f is the left adjoint of g, and g is the right adjoint of f .
It is immediate from the definitions that the left adjoint of g, if it exists, is
uniquely determined by g.

Proposition 5. If such a function f exists, then it is monotone. Moreover,

idP ≤ g ◦ f , f ◦ g ≤ idQ , f ◦ g ◦ f = f , g ◦ f ◦ g = g .

Proof: If we take z = f(x) in equation (1.1), then since f(x) ≤ f(x), x ≤
g ◦ f(x). Similarly, taking x = g(z) we obtain f ◦ g(z) ≤ z. Now, the ordering
on functions h, k : P −→ Q is the pointwise order :

h ≤ k ⇐⇒ ∀x ∈ P. h(x) ≤ k(x).

This gives the first two equations.
Now if x ≤P x′, then x ≤ x′ ≤ g ◦ f(x′), so f(x′) is a g-approximation of

x, and hence f(x) ≤ f(x′). Thus f is monotone.
Finally, using the fact that composition is monotone with respect to the

pointwise order on functions, and the first two equations:
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g = idP ◦ g ≤ g ◦ f ◦ g ≤ g ◦ idQ = g,

and hence g = g ◦ f ◦ g. The other equation is proved similarly. �

Examples:

• Consider the inclusion map

i : Z →֒ R .

This has both a left adjoint fL and a right adjoint fR, where fL, fR :
R→ Z. For all z ∈ Z, r ∈ R:

z ≤ fR(r) ⇐⇒ i(z) ≤ r , fL(r) ≤ z ⇐⇒ r ≤ i(z) .

We see from these defining properties that the right adjoint maps a real r
to the greatest integer below it (the extremal solution to finding an integer
below a given real). This is the standard floor function.
Similarly, the left adjoint maps a real to the least integer above it yielding
the ceiling function. Thus:

fR(r) = ⌊r⌋ , fL(r) = ⌈r⌉ .

• Consider a relation R ⊆ X × Y . R induces a function:

fR : P(X) −→ P(Y ) := S 7→ {y ∈ Y | ∃x ∈ S. xRy} .

This has a right adjoint [R] : P(Y ) −→ P(X):

S ⊆ [R]T ⇐⇒ fR(S) ⊆ T .

The definition of [R] which satisfies this condition is:

[R]T := {x ∈ X | ∀y ∈ Y. xRy ⇒ y ∈ T } .

If we consider a set of worlds W with an accessibility relation R ⊆W ×W
as in Kripke semantics for modal logic, we see that [R] gives the usual
Kripke semantics for the modal operator 2, seen as a propositional opera-
tor mapping the set of worlds satisfied by a formula φ to the set of worlds
satisfied by 2φ.
On the other hand, if we think of the relation R as the denotation of a
(possibly non-deterministic) program, and T as a predicate on states, then
[R]T is exactly the weakest precondition wp(R, T ). In Dynamic Logic, the
two settings are combined, and we can write expressions such as [R]T
directly, where T will be (the denotation of) some formula, and R the
relation corresponding to a program.
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• Consider a function f : X → Y . This induces a function:

f−1 : P(Y ) −→ P(X) := T 7→ {x ∈ X | f(x) ∈ T } .

This function f−1 has both a left adjoint ∃(f) : P(X) −→ P(Y ), and a
right adjoint ∀(f) : P(X) −→ P(Y ). For all S ⊆ X , T ⊆ Y :

∃(f)(S) ⊆ T ⇐⇒ S ⊆ f−1(T ) , f−1(T ) ⊆ S ⇐⇒ T ⊆ ∀(f)(S) .

How can we define ∀(f) and ∃(f) explicitly so as to fulfil these defining
conditions? –As follows:

∃(f)(S) := {y ∈ Y | ∃x ∈ X. f(x) = y ∧ x ∈ S} ,

∀(f)(S) := {y ∈ Y | ∀x ∈ X. f(x) = y ⇒ x ∈ S} .

If R ⊆ X × Y , which we write in logical notation as R(x, y), and we take
the projection function π1 : X × Y −→ X , then:

∀(π1)(R) ≡ ∀y. R(x, y) , ∃(π1)(R) ≡ ∃y. R(x, y) .

This extends to an algebraic form of the usual Tarski model-theoretic
semantics for first-order logic, in which:

Quantifiers are Adjoints.

Couniversality

We can dualize the discussion, so that starting with a monotone map f :
P −→ Q and y ∈ Q, we can ask for the best P -approximation to y from
below: x ∈ P such that f(x) ≤ y, and for all z ∈ P :

f(z) ≤ y ⇐⇒ z ≤ x.

If such a best approximation g(y) exists for all y ∈ Q, we obtain a mono-
tone map g : Q −→ P such that g is right adjoint to f . From the symmetry
of the definition, if it clear that:

f is the left adjoint of g ⇐⇒ g is the right adjoint of f

and each determines the other uniquely.

1.5.2 Universal Arrows and Adjoints

Our discussion of best approximations for posets is lifted to general categories
as follows.
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Definition 21 Let G : D → C be a functor, and C an object of C. A uni-
versal arrow from C to G is a pair (D, η) where D is an object of D
and

η : C −→ G(D) ,

such that, for any object D′ of D and morphism f : C → G(D′), there exists

a unique morphism f̂ : D → D′ in D such that f = G(f̂) ◦ η .
Diagrammatically:

C
η //

f

!!C
CC

CC
CC

CC
CC

C G(D)

G(f̂)

���
�
�
� D

f̂

���
�
�
�

G(D′) D′
N

As in previous cases, uniqueness can be given a purely equational specification:

∀h : D −→ D′. Ĝ(h) ◦ η = h . (1.2)

Exercise 33. Show that if (D, η) and (D′, η′) are universal arrows from C to
G then there is a unique isomorphism D ∼= D′.

Exercise 34. Check that the equational specification of uniqueness (1.2) is
valid.

Examples:

• Take U : Mon→ Set. Given a set X , the universal arrow is

ηX : X −→ U(MList(X)) := x 7→ [x] .

Indeed, for any monoid (M, ·, 1) and any function f : X →M , set

f̂ : MList(X) −→ (M, ·, 1) := [x1, . . . , xn] 7→ f(x1) · · · · · f(xn) .

It is easy to see that f̂ is a monoid homomorphism, and that U(f̂)◦ηX = f .
Moreover, for uniqueness we have that, for any h : MList(X)→ (M, ·, 1),

̂U(h) ◦ ηX = ̂x 7→ h([x]) = [x1, . . . , xn] 7→ h([x1]) · · · · · h([xn])

= [x1, . . . , xn] 7→ h([x1] ∗ · · · ∗ [xn])

= [x1, . . . , xn] 7→ h([x1, . . . , xn]) = h .

• Let K : C → 1 be the unique functor to the one-object/one-arrow category.
A universal arrow from the object of 1 to K corresponds to an initial object
in C.
Indeed, such a universal arrow is given by an object I of C (and a trivial
arrow in 1), such that for any A in C (and relevant arrow in 1) there exists
a unique arrow from I to A (such that a trivial condition holds).
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• Consider the functor 〈IdC , IdC〉 : C → C×C, taking each object A to (A, A)
and each arrow f to (f, f). A universal arrow from an object (A, B) of
C × C to 〈IdC , IdC〉 corresponds to a coproduct of A and B.

Exercise 35. Verify the description of coproducts as universal arrows.

As in the case of posets, a related notion to universal arrows is that of ad-
junction.

Definition 22 Let C,D be categories. An adjunction from C to D is a triple
(F, G, θ), where F and G are functors

C
F //

D
G

oo

and θ is a family of bijections

θA,B : C(A, G(B))
∼=
−→ D(F (A), B) ,

for each A ∈ Ob(C) and B ∈ Ob(D), natural in A and B.
We say that F is left adjoint to G, and G is right adjoint to F . N

Note that θ should be understood as the “witnessed” form — i.e. arrows
instead of mere relations — of the defining condition for adjunctions in the
case of posets:

x ≤ g(y) ⇐⇒ f(x) ≤ y.

This is often displayed as a two-way ‘inference rule’:

C −→ GC

FC −→ D

Naturality of θ is expressed as follows: for any f : A → G(B) and any g :
A′ → A, h : B → B′,

θA′,B(f ◦ g) = θA,B(f) ◦ F (g) ,

θA,B′(G(h) ◦ f) = h ◦ θA,B(f) .

In one line:
θA′,B′(G(h) ◦ f ◦ g) = h ◦ θA,B(f) ◦ F (g) .

Diagrammatically:

C(A, GB′)

θA,B′

��

C(A, GB)
C(A,Gh)oo C(g,GB) //

θA,B

��

C(A′, GB)

θA′,B

��
D(FA, B′) D(FA, B)

D(FA,h)
oo

D(Fg,B)
// D(FA′, B)

C(A, GB)

θA,B

��

C(g,Gh) // C(A′, GB′)

θA′,B′

��
D(FA, B)

D(Fg,h)
// D(FA′, B′)
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Thus, θ is in fact a natural isomorphism

θ : C( , G( )) −→ D(F ( ), ) ,

where C( , G( )) : Cop × D → Set is the result of composing the bivariant
hom-functor C( , ) with IdCop ×G, and D(F ( ), ) is similar.

In the next two propositions we show that universal arrows and adjunctions
are equivalent notions.

Proposition 6 (Universals define adjunctions). Let G : D → C. If for
every object C of C there exists a universal arrow ηC : C → G(F (C)), then:

1. F uniquely extends to a functor F : C → D such that η : IdC → G ◦F is a
natural transformation.

2. F is uniquely determined by G (up to unique natural isomorphism), and
vice versa.

3. For each pair of objects C of C and D of D, there is a natural bijection:

θC,D : C(C, G(D)) ∼= D(F (C), D) .

Proof: For 1, we extend F to a functor as follows. Given f : C → C′ in C, we
consider the composition

ηC′ ◦ f : C −→ GFC′.

By the universal property of ηC , there exists a unique arrow Ff : FC → FC′

such that the following diagram commutes.

C
ηC //

f

��

GFC

GFf

��
C′

ηC′

// GFC′

Note that the above is the naturality diagram for η on C, hence the arrow-map
thus defined for F is the unique candidate that makes η a natural transfor-
mation.
It remains to verify the functoriality of F . To show that F preserves compo-
sition, consider g : C′ → C′′. We have the following commutative diagram,

C
f //

ηC

��

C′
g //

ηC′

��

C′′

ηC′′

��
GFC

GFf
// GFC′

GFg
// GFC′′

from which it follows that

G(Fg ◦ Ff) ◦ ηC = GFg ◦GFf ◦ ηC = ηC′′ ◦ g ◦ f .
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By definition, F (g ◦ f) is the unique arrow h : FC → FC′ such that
Gh ◦ ηC = ηC′′ ◦(g◦f). By uniqueness, it follows that Fg ◦ Ff = h = F (g◦f).
The verification that F preserves identities is similar.
For 2, we have that each FC is determined uniquely up to unique isomor-
phism, by the universal property, and once the object part of F is fixed, the
arrow part is uniquely determined.
For 3, we need to define a natural isomorphism θC,D : C(C, G(D)) ∼=
D(F (C), D). Given f : C → GD, θC,D(f) is defined to be the unique ar-
row FC → D such that the following commutes, as dictated by universality.

C
ηC //

f
""E

EE
EE

EE
EE

E GFC

G(θC,D(f))

��
GD

Suppose that θC,D(f) = θC,D(g). Then

f = G(θC,D(f)) ◦ ηC = G(θC,D(g)) ◦ ηC = g .

Thus θC,D is injective. Moreover, given h : FC → D, by the equational
formulation of uniqueness we have:

h = θC,D(Gh ◦ ηC) .

Thus θC,D is surjective. We are left to show naturality, i.e. that the following
diagram commutes, for all h : C′ → C and g : D → D′.

C(C, G(D))

θC,D

��

C(h,G(g)) // C(C′, G(D′))

θC′,D′

��
D(F (C), D)

D(F (h),g)
// D(F (C′), D′)

We chase around the diagram, starting from f : C → G(D).

D(F (h), g) ◦ θC,D(f) = g ◦ θC,D(f) ◦ F (h)

θC′,D′ ◦ C(h, G(g))(f) = θC′,D′(G(g) ◦ f ◦ h)

Now:

g ◦ θC,D(f) ◦ F (h) = θC′,D′(G(g ◦ θC,D(f) ◦ F (h)) ◦ ηC′) by (1.2)

= θC′,D′(Gg ◦G(θC,D(f)) ◦GF (h) ◦ ηC′) functoriality of G

= θC′,D′(Gg ◦G(θC,D(f)) ◦ ηC ◦ h) naturality of η

= θC′,D′(Gg ◦ f ◦ h) by (1.2).
�
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Proposition 7 (Adjunctions define universals). Let G : D → C be a
functor, D ∈ Ob(D) and C ∈ Ob(C). If, for any D′ ∈ Ob(D), there is a
bijection

φD′ : D(D, D′) ∼= C(C, G(D′))

natural in D′ then there is a universal arrow η : C → G(D).

Proof: Take η : C → G(D) := φD( idD) and, for any g : C → G(D′), take
ĝ : D → D′ := φ−1

D′ (g).
We have that

G(ĝ) ◦ η = G(ĝ) ◦ φD( idD)
nat
= φD′(ĝ) = g .

Moreover, for any h : D → D′,

φ−1
D′ (Gh ◦ η) = φ−1

D′ (Gh ◦ φD( idD))
nat
= φ−1

D′ (φD(h)) = h ,

as required. �

Equivalence of Universal and Adjoints

Thus we see that the following two situations are equivalent,

• We are given a functor G : D → C, and for each object C of C a universal
arrow from C to G.

• We are given functors F : C → D and G : D → C, and a natural bijection

θC,D : C(C, G(D)) ∼= D(F (C), D) .

in the sense that each determines the other uniquely.

Couniversal Arrows

Let F : C → D be a functor, and D an object of D. A couniversal arrow from
F to D is an object C of C and a morphism

ǫ : F (C) −→ D

such that, for every object C′ of C and morphism g : F (C′)→ D, there exists
a unique morphism ḡ : C′ −→ C in C such that g = ǫ ◦ F (ḡ).
Diagrammatically:

C F (C)
ǫ // D

C′

ḡ

OO�
�
�
�

F (C′)

F (ḡ)

OO�
�
�
�

g

=={{{{{{{{{{{{
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By exactly similar (but dual) reasoning to the previous propositions, an ad-
junction implies the existence of couniversal arrows, and the existence of the
latter implies the existence of the adjunction. Hence,

Universality ≡ Adjunctions ≡ Couniversality .

Some examples of couniversal arrows:

• A terminal object in a category C is a couniversal arrow from the unique
functor K : C → 1 to the unique object in 1.

• Let A, B be objects of C. A product of A and B is a couniversal arrow
from 〈IdC , IdC〉 : C → C × C to (A, B).

1.5.3 Limits and colimits

In the previous paragraph we described products A×B as couniversal arrows
from the diagonal functor ∆ : C → C×C to (A, B). ∆ is the functor assigning
(A, A) to each object A, and (f, f) to each arrow f . Noting that C × C = C2,
where C2 is a functor category, this suggests an important generalization.

Definition 23 Let C be a category and I be another category, thought of as
an ‘index category’. A diagram of shape I in C is just a functor F : I → C.
Consider the functor category CI with objects the functors from I to C, and
natural transformations as morphisms. There is a diagonal functor

∆ : C −→ CI ,

taking each object C of C to the constant functor KC : I → C, which maps
every object of I to C. A limit for the diagram F is a couniversal arrow from
∆ to F . N

This concept of limit subsumes products (including infinite products), pull-
backs, inverse limits, etc.
For example, take I := 2⇉ (we have seen this before: 2⇉ = • %% 99• ). A
functor F from I to C corresponds to a diagram:

A

f
))

g

55 B

A couniversal arrow from ∆ to F corresponds to the following situation,

E
e // A

f
))

g

55 B

C

ĥ

OO�
�
� h

??~~~~~~~~~
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i.e. to an equaliser!
By dualizing limits we obtain colimits. Some important examples are co-

products, coequalisers, pushouts and ω-colimits.

Exercise 36. Verify that pullbacks are limits by taking:

I := • −→ • ←− •

Limits as terminal objects

Consider ∆ : C → CI and F : I → C. A cone to F is an object C of C and
family of arrows γ,

{ γI : C −→ FI }I∈Ob(I) ,

such that, for any f : I → J , the following triangle commutes.

FI
Ff // FJ

C

γI

``BBBBBBBBB γJ

>>|||||||||

Thus a cone is exactly a natural transformation γ : ∆C −→ F . A morphism
of cones (‘mediating morphism’) (C, γ) −→ (D, δ) is an arrow g : C → D such
that each of the following triangles commutes.

FI

C

γI

>>|||||||||
g

// D

δI

``BBBBBBBBB

We obtain a category Cone(F ) whose objects are cones to F and whose
arrows are mediating morphisms. Then, a limit of F is a terminal object in
Cone(F ).

1.5.4 Exponentials

In Set, given sets A, B, we can form the set of functions BA := Set(A, B),
which is again a set, i.e. an object of Set. This closure of Set under forming
‘function spaces’ is one of its most important properties.

How can we axiomatise this situation? Once again, rather than asking what
the elements of a function space are, we ask instead what we can do with them
operationally. The answer is simple: apply functions to their arguments. That
is, there is a map

evA,B : BA ×A −→ B such that evA,B(f, a) = f(a) .
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We can think of the function as a ‘black box’: we can feed it inputs and observe
the outputs.

Evaluation has the following couniversal property. For any g : C × A →
B, there is a unique map Λ(g) : C → BA such that the following diagram
commutes.

BA ×A
evA,B // B

C ×A

Λ(g)× idA

OO

g

<<yyyyyyyyyyyyy

commutes. In Set, this is defined by:

Λ(g)(c) : A −→ B := a 7→ g(c, a) .

This process of transforming a function of two arguments into a function-
valued function of one argument is known as currying, after H. B. Curry. It
is an algebraic form of λ-abstraction.

We are now led to the general definition of exponentials. Note that, for
each object A of a category C with products, we can define a functor

×A : C −→ C .

Definition 24 Let C be a category with binary products. We say that C has
exponentials if for all objects A and B of C there is a couniversal arrow from
×A to B, i.e. an object BA of C and a morphism

evA,B : BA ×A −→ B

with the couniversal property: for every g : C × A → B, there is a unique
morphism Λ(g) : C → BA such that the following diagram commutes.

BA ×A
evA,B // B

C ×A

Λ(g)× idA

OO

g

<<yyyyyyyyyyyyy

N

Equivalently, C has exponentials if, for every object A, the functor ×A has
a right adjoint, that is there exists a functor A : C → C and a bijection

ΛB,C : C(C ×A, B)
∼=
−→ C(C, BA)

natural in B, C.
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Notation 25 The notation BA for exponential objects is standard in the cat-
egory theory literature. For our purposes, however, it will be more convenient
to write A⇒ B.

Exponentials bring us to another fundamental notion, this time for under-
standing functional types, models of λ-calculus, and the structure of proofs.

Definition 26 A category with a terminal object, products and exponentials
is called a Cartesian Closed Category (CCC).

For example, Set is a CCC. Another class of examples are Boolean algebras,
seen as categories:

• Products are given by conjunctions A ∧B. We define exponentials as im-
plications :

A⇒ B := ¬A ∨B .

• Evaluation is just Modus Ponens,

(A⇒ B) ∧A ≤ B

while couniversality is the Deduction Theorem,

C ∧A ≤ B ⇐⇒ C ≤ A⇒ B .

1.5.5 Exercises

1. Suppose that U : C → D has a left adjoint F1, and V : D → E has a left
adjoint F2. Show that V ◦ U : C → E has a left adjoint.

2. A sup-lattice is a poset P in which every subset S ⊆ P has a supremum
(least upper bound)

∨
S. Let P , Q be sup-lattices, and f : P → Q be a

monotone map.
a) Show that if f has a right adjoint then f preserves least upper bounds:

f(
∨

S) =
∨
{f(x) | x ∈ S} .

b) Show that if f preserves least upper bounds then it has a right adjoint
g, given by:

g(y) =
∨
{x ∈ P | f(x) ≤ y} .

c) Dualise to get a necessary and sufficient condition for the existence of
left adjoints.

3. Let F : C → D, G : D → C be functors such that F is left adjoint to G,

with natural bijection θC,D : C(C, GD)
∼=
−→ D(FC, D). Show that there is

a natural transformation ε : F ◦G→ IdD, the counit of the adjunction.
Describe this counit explicitly in the case where the right adjoint is the
forgetful functor U : Mon→ Set.
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4. Let F : C → D and G : D → C be functors, and assume F is left adjoint
to G with natural bijection θ.
a) Show that F preserves epimorphisms.
b) Show that F is faithful if and only if, for every object A of C, ηA :

A→ GF (A) is monic.
c) Show that if, for each object A of C, there is a morphism sA :

GF (A) −→ A such that ηA ◦ sA = idGF (A) then F is full.

1.6 The Curry-Howard isomorphism

We shall now study a beautiful three-way connection between logic, compu-
tation and categories:

Logic Computation

Categories

This connection has been known since the 1970’s, and is widely used in Com-
puter Science — it is also beginning to be used in Quantum Informatics! It
is the upper link (Logic – Computation) that is usually attributed to Haskell
B. Curry and William A. Howard, although the idea can be traced back to
Brouwer, Heyting and Kolmogorov, and their interpretation of intuitionistic
logic. The link to Categories is mainly due to the pioneering work of Joachim
Lambek.

1.6.1 Logic

Suppose we ask ourselves the question: What is Logic about? There are two
main kinds of answer: one focuses on Truth, and the other on Proof. We focus
on the latter, that is on:

What follows from what

Traditional introductions to logic focus on Hilbert-style proof systems, that is
on generating the set of theorems of a system from a set of axioms by applying
rules of inference (e.g. Modus Ponens).

A key step in logic took place in the 1930’s, with the advent of Gentzen-
style systems. Instead of focusing on theorems, we look more generally and
symmetrically at What follows from what : in these systems the primary focus
is on proofs from assumptions.
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Definition 27 Consider the fragment of propositional logic with logical con-
nectives ∧ and ⊃. The assertion that a formula A can be proved from assump-
tions A1, ..., An is expressed by a sequent :

A1, . . . , An ⊢ A

We use Γ , ∆ to range over finite sets of formulas, and write Γ, A for Γ ∪{A}.
Proofs are built using the following proof rules; the resulting proof system is
called the Natural Deduction system for ∧,⊃.

Identity Conjunction Implication

Γ, A ⊢ A
Id

Γ ⊢ A Γ ⊢ B
Γ ⊢ A ∧B

∧ intro
Γ, A ⊢ B

Γ ⊢ A ⊃ B
⊃ intro

Γ ⊢ A ∧B
Γ ⊢ A

∧ elim1
Γ ⊢ A ⊃ B Γ ⊢ A

Γ ⊢ B
⊃ elim

Γ ⊢ A ∧B
Γ ⊢ B

∧ elim2

N

For example, we have the following proof for ⊃-transitivity.

A ⊃ B, B ⊃ C, A ⊢ B ⊃ C
Id

A ⊃ B, B ⊃ C, A ⊢ A ⊃ B
Id

A ⊃ B, B ⊃ C, A ⊢ A ⊃ A
Id

A ⊃ B, B ⊃ C, A ⊢ B
⊃E

A ⊃ B, B ⊃ C, A ⊢ C
⊃E

A ⊃ B, B ⊃ C ⊢ A ⊃ C
⊃ I

noindent An important feature of Natural Deduction is the systematic
pattern it exhibits in the structure of the inference rules. For each connective
2, there are introduction rules, which show how formulas A2B can be derived,
and elimination rules, which show how such formulas can be used to derive
other formulas.

Admissibility

We say that a proof rule

Γ1 ⊢ A1 · · · Γn ⊢ An

∆ ⊢ B

is admissible in Natural Deduction if, whenever there are proofs of Γi ⊢ Ai

then there is also a proof of ∆ ⊢ B. For example, the following Cut rule is
admissible.

Γ ⊢ A Γ, A ⊢ B

Γ ⊢ B
Cut
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Exercise 37. Use induction on the size of proofs to show the following:

1. The Weakening rule:
Γ ⊢ B

Γ, A ⊢ B

2. The Cut rule.

Our focus will be on Structural Proof Theory , that is studying the ‘space
of formal proofs’ as a mathematical structure in its own right, rather than
focussing only on

Provability ←→ Truth

(i.e. the usual notions of ‘soundness and completeness’). One motivation for
this approach comes from trying to understand and use the computational
content of proofs, epitomised in the ‘Curry-Howard correspondence’.

1.6.2 Computation

Our starting point in computation is the pure calculus of functions called the
λ-calculus.

Definition 28 (λ-calculus) λ-calculus terms are constructed from a count-
ably infinite set of variables by applying applications and λ-abstractions.

VA ∋ x, y, z, . . .

TE ∋ t, u ::= x | t u | λx. t
N

The computational content of the calculus is exhibited in the following exam-
ples.

λx. x + 1 successor function
λx. x identity function
λf. λx. fx application
λf. λx. f(fx) double application
λf. λg. λx. g(f(x)) composition and application

Note that the first example is not part of our formal syntax; it presupposes
some encoding of numerals and successors.

The notation λx.t is meant to serve the purpose of expressing formally

the function that returns t on input x.

Thus λ is a binder, that is it binds the variable x in the ‘function’ λx.t, in the
same way that e.g.

∫
binds x in

∫
f(x) dx . This means that there should not

be a difference between λx.t and λx′.t′, where t′ is the result of swapping x
with some fresh variable x′ inside t. For example, the terms
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λx.x and λx′.x′

should be ‘equivalent’, as they both stand for the identity function. We for-
malize this by stipulating that

Terms are identified up to α-equivalence

where we say that two terms are α-equivalent iff they differ by some permu-
tation of variables appearing in binding positions.

We now proceed to give a formal definition of α-equivalence. The definition
is given in two steps, as follows.

Definition 29 We define variable-swapping on terms recursively as follows.

(y x) • z :=





y if z = x

x if z = y

z otherwise

(y x) • u v := ((y x) • u)((y x) • v)

(y x) • λz.u := λ((y x) • z).((y x) • u)

Then, α-equivalence, =α, is the relation on terms defined inductively by:3

• x =α x,
• M N =α M ′ N ′ if M =α M ′ and N =α N ′,
• λx.M =α λx′.M ′ if, for all y not appearing in M M ′, (y x) • M =α

(y x′) • M ′ . N

The free variables of a term are those that are not bound by any λ; they can
be seen as the assumptions of the term. Formally, the set of free variables
of a term t, fv(t), is given by:

fv(y) := {y}

fv(u v) := fv(u) ∪ fv(v)

fv(λz.u) := fv(u) \ {z} .

Exercise 38. Show that, for all terms t, t′, if t =α t′ then fv(t) = fv(t′).
Moreover, show that, for any x, y 6∈ fv(t), t =α (x y) • t . Hence infer that,
for any y 6∈ fv(t), λx. t =α λy. (y x) • t .

3 In fact, the definition can be given be replacing the last clause by any of the
following:

• . . . if, for some y not appearing in M M ′, (y x) • M =α (y x′) • M ′ .
• . . . if, for all y not appearing free in M M ′, (y x) • M =α (y x′) • M ′ .
• . . . if, for some y not appearing free in M M ′, (y x) • M =α (y x′) • M ′ .
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Since λ-abstractions stand for functions, an application of a λ-abstraction on
another term should result to a substitution of the latter inside the body of
the abstraction.

Definition 30 Define the substitution of a term t for a variable x inside a
term inductively by:

y[t/x] :=

{
t if y = x

y if y 6= x

(uv)[t/x] := (u[t/x])(v[t/x])

(λz.u)[t/x] := λz. (u[t/x]) (∗)

where (∗) indicates the condition that z 6∈ fv(x t). N

Note that, due to identification of α-equivalent terms, it is always possible to
rename bound variables so that condition (∗) is satisfied: for example,

(λz.zx)[z/x] =α (λy.yx)[z/x] = λy.yz

We proceed to the definition of β-reduction and β-conversion, which are both
relations defined on pairs of terms and express the computational content of
the calculus.

Definition 31 We take β-reduction , −→β , to be the relation induced by
applying the following reduction rule inside terms.

(λx.t)u −→β t[u/x] .

We take β-conversion , =β, to be the symmetric reflexive transitive closure
of β-reduction, that is the equivalence relation on terms induced by:

(λx.t)u =β t[u/x] .
N

With β-reduction we obtain a notion of ‘computational dynamics’. For exam-
ple,

(λf.λg. f g x) y y −→ (λg. y g x) y −→ y y x .

1.6.3 Simply-typed λ-calculus

The ‘pure’ λ-calculus we have discussed so far is very unconstrained. For
example, it allows self-application, i.e. and terms like xx are perfectly legal.
On the one hand, this means that the calculus very expressive: for example,
we can encode recursion by setting

Y := λf. (λx. f(xx))(λx. f(xx)) .



56 Contents

We have:

Yt→ (λx. t(xx))(λx. t(xx)) → t((λx. t(xx))(λx. t(xx))) = t(Yt) .

However, self-application also leads to divergences. For example, setting Ω :=
ωω,

Ω −→ Ω −→ Ω −→ · · · .

Historically, Curry extracted Y from an analysis of Russell’s Paradox, so this
should be no surprise.

The solution is to introduce types. The original idea, due to Church fol-
lowing Russell, was that:

Types are there to stop you doing bad things

However, it has turned out that types constitute one of the most fruitful
positive ideas in Computer Science, and provide one of the key disciplines of
programming.

Definition 32 Let us assume a set of base types, ranged over by b. The
simply-typed λ-calculus is defined as follows.

Type TY ∋ T, U ::= b | T → U | T × U

Term TE ∋ t, u ::= x | t u | λx. t | 〈t, u〉 | π1u | π2u

Typing context Γ ::= ∅ | x : T, Γ

Note that x : T, Γ stands for {x : T } ∪ Γ with x not appearing in Γ .
Examples of types:

ι→ ι→ ι first-order function type

(ι→ ι)→ ι second-order function type

Terms are typed by deriving typing judgements of the form Γ ⊢ t : T , which is
to be understood as the assertion that term t has the type T under the assump-
tions that x1 has type T1, . . . , tk has type Tk, where Γ = x1 : T1, . . . , xk : Tk.

The System of Simply-Typed λ-calculus

The following set of rules are used to derive typing judgements.
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Variable Product Function

Γ, x : T ⊢ x : T
Γ ⊢ t : T Γ ⊢ u : U

Γ ⊢ 〈t, u〉 : T × U

Γ, x : U ⊢ t : T

Γ ⊢ λx. t : U → T

Γ ⊢ v : T × U
Γ ⊢ π1v : T

Γ ⊢ t : U → T Γ ⊢ u : U
Γ ⊢ tu : T

Γ ⊢ v : T × U
Γ ⊢ π2v : U

N

We say that a term t is typable iff there is a context Γ and a type T such
that Γ ⊢ t : T is derivable.

Exercise 39. Can you type the following terms?

λx. xx , λf. (λx. f(xx))(λx. f(xx)) .

The reduction and conversion rules in the calculus now involve also rules for
products. We also include η-rules, which are essentially extensionality princi-
ples.

Definition 33 We define β-reduction, −→β, by the following rules, and let
β-conversion, =β , be its symmetric reflexive transitive closure.

(λx. t)u −→β t[u/x]
π1〈t, u〉 −→β t
π2〈t, u〉 −→β u

Moreover, η-conversion, =η, is the congruence equivalence relation defined by
the following rules,

t =η λx. tx x 6∈ fv(t), at function types
v =η 〈π1v, π2v〉 at product types

and λ-conversion, =λ, is the transitive closure of =β ∪ =η . N

Exercise 40 (Weakening). Let t be a λ-term, Γ a context and x some
variable not appearing in Γ . Show that, for any type U , if Γ ⊢ t : T is typed
then so is Γ, x : U ⊢ t : T .

Exercise 41 (Subject Reduction). Show first that Cut is admissible in the
typing system of the simply-typed λ-calculus:

Γ ⊢ t : T Γ, x : T ⊢ u : U

Γ ⊢ u[t/x] : U
Cut

Show then that, for any typed term Γ ⊢ t : T , if t →β t′ then Γ ⊢ t′ : T is
typed.
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The Curry-Howard correspondence

Comparing the following two systems,

• Natural Deduction System for ∧ , ⊃ ,
• Simple Type System for × , → ,

we notice that if we equate
∧ ≡ ×
⊃ ≡ →

then they are the same! This is the Curry-Howard isomorphism (sometimes:
‘Curry-Howard correspondence’). It works on three levels:

Formulas Types
Proofs Terms
Proof transformations Term reductions

Strong Normalisation

Term reduction results in a normal form: an explicit but much longer expres-
sion which corresponds to a proof in which all lemmas have been eliminated.
Even simply typed lambda calculus has enormous (non-elementary) complex-
ity.

A λ-term is called a redex if it is in one of forms of the left-hand-side of
the β-reduction rules and therefore β-reduction can be applied to it. A term
is in normal form if it contains no redexes as subterms.

Fact 34 (SN) For every term t, there is no infinite sequence of β-reductions:

t −→ t0 −→ t1 −→ t2 −→ · · ·

Constructive reading of formulas

The view of proofs as containing computational content can be also detected
in the Brouwer-Heyting-Kolmogorov interpretation of intuitionistic logic:

• A proof of an implication A ⊃ B is a procedure which transforms any
proof of A into a proof of B.

• A proof of A ∧B is a pair consisting of a proof of A and a proof of B.

These readings motivate identifying A ∧ B with A × B, and A ⊃ B with
A→ B.

Moreover, these ideas have strong connections to computing. The λ-
calculus is a ‘pure’ version of functional programming languages such as
Haskell and SML. So we get a reading of:

Proofs as Programs

We now have our link between Logic and Computation. We proceed to com-
plete the triangle which opened this section by showing their connection to
Categories.
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1.6.4 Categories

We establish the link from Logic (and Computation) to Categories. Let C be
a cartesian closed category. We shall interpret formulas (or types) as objects
of C. A morphism f : A → B will then correspond to a proof of B from
assumption A, i.e. a proof of A ⊢ B (a typed term x : A ⊢ t : B).

Note that the bare structure of a category only supports proofs from a
single assumption. Since C has finite products, a proof of

A1, . . . , Ak ⊢ A

will correspond to a morphism

f : A1 × · · · ×Ak −→ A .

The correspondence is depicted as follows.

Axiom Γ, A ⊢ A
Id

π2 : Γ ×A −→ A

Conjunction
Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧B
∧ I

f : Γ −→ A g : Γ −→ B

〈f, g〉 : Γ −→ A×B

Γ ⊢ A ∧B
Γ ⊢ A

∧E1

f : Γ −→ A×B

π1 ◦ f : Γ −→ A

Γ ⊢ A ∧B
Γ ⊢ B

∧E2

f : Γ −→ A×B

π2 ◦ f : Γ −→ B

Implication

Γ, A ⊢ B

Γ ⊢ A ⊃ B
⊃ I

f : Γ ×A −→ B

Λ(f) : Γ −→ (A⇒ B)

Γ ⊢ A ⊃ B Γ ⊢ A
Γ ⊢ B

⊃E

f : Γ −→ (A⇒ B) g : Γ → A

evA,B ◦ 〈f, g〉 : Γ −→ B

Moreover, the rules for β- and η-conversion are all then derivable from the
equations of cartesian closed categories. So cartesian closed categories are mod-
els of ∧,⊃-logic at the level of proofs and proof-transformations, and of simply
typed λ-calculus at the level of terms and term-conversions. The connection
to computation is examined in more detail below.

1.6.5 Categorical semantics of simply-typed λ-calculus

We translate the simply-typed λ-calculus into a cartesian closed category C,
so that to each typed term x1 : T1, ..., xk : Tk ⊢ t : T corresponds an arrow

JtK : JT1K× · · · × JTkK −→ JT K .

The translation if given by the function J K defined below (‘semantic brack-
ets’).
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Definition 35 (Semantic translation) Let C be a CCC and suppose we
are given an assignment of an object b̃ to each base type b. Then, the trans-
lation is defined recursively on types by:

JbK := b̃ , JT × UK := JT K× JUK , JT → UK := JT K⇒ JUK .

and on typed terms by:

JΓ, x : T ⊢ x : T K := π2 : JΓ K× JT K −→ JT K

JΓ ⊢ t : T × UK = f : JΓ K −→ JT K× JUK

JΓ ⊢ π1t : T K := JΓ K
f
−→ JT K× JUK

π1−→ JT K

JΓ ⊢ t : T K = f : JΓ K −→ JT K JΓ ⊢ u : UK = g : JΓ K −→ JUK

JΓ ⊢ 〈t, u〉 : T × UK := JΓ K
〈f,g〉
−→ JT K× JUK

JΓ, x : T ⊢ t : UK = f : JΓ K× JT K −→ JUK

JΓ ⊢ λx. t : T → UK := Λ(f) : JΓ K −→ (JT K⇒ JUK)

JΓ ⊢ t : T → UK = f JΓ ⊢ u : T K = g

JΓ ⊢ t u : UK := JΓ K
〈f,g〉
−→ (JT K⇒ JUK)× JT K

ev
−→ JUK

N

Our aim now is to verify that the λ-conversion (induced by β- and η-rules) is
preserved by the translation, i.e. that, for any t, u,

t =λ u =⇒ JtK = JuK .

Let us recall some structures from CCC’s. Given f1 : D1 → E1, f2 : D2 → E2,
we defined

f1 × f2 = 〈f1 ◦ π1, f2 ◦ π2〉 : D1 ×D2 −→ E1 × E2 ,

and we showed that (f1 × f2) ◦ 〈h1, h2〉 = 〈f1 ◦ h1, f2 ◦ h2〉 . Moreover, expo-
nentials are given by the following natural bijection,

f : D × E −→ F

Λ(f) : D −→ (E ⇒ F )

and recall the basic equation:

ev ◦ 〈Λ(f)× idE〉 = f .

Moreover, Λ(f) is the unique function D → (E ⇒ F ) satisfying this equation,
with uniqueness being specified by the equation:

∀h : D −→ (E ⇒ F ). Λ(ev ◦ (h× idE)) = h .
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Proposition 8 (A key property of currying). For any f : A × B → C
and g : A′ → A ,

Λ(f) ◦ g = Λ(f ◦ (g × idB)) .

Proof:
Λ(f) ◦ g = Λ(ev ◦ ((Λ(f) ◦ g)× idB))

= Λ(ev ◦ (Λ(f)× idB) ◦ (g × idB)))
= Λ(f ◦ (g × idB)) . �

Substitution Lemma

We consider a simultaneous substitution for all the free variables in a term.

Definition 36 Let Γ := {x1 : T1, . . . , xk : Tk} . Given typed terms

Γ ⊢ t : T and Γ ⊢ ti : Ti , 1 ≤ i ≤ k ,

we define t[t/x] ≡ t[t1/x1, . . . , tk/xk] recursively by:

xi[t/x] := ti

(πi t)[t/x] := πi(t[t/x])

〈t, u〉[t/x] := 〈t[t/x], u[t/x]〉

(t u)[t/x] := (t[t/x])(u[t/x])

(λx. t)[t/x] := λx. t[t, x/x, x] . N

Note that, in contrast to ordinary substitution, simultaneous substitution
can be defined directly on raw terms, that is prior to equating them mod-
ulo α-equivalence. Moreover, we can show that:

t[t1/x1, . . . , tk/xk] = t[t1/x1] · · · [tk/xk] .

We can now show the following Substitution Lemma.

Proposition 9. For t, t1, . . . , tk as in the previous definition,

Jt[t1/x1, . . . , tk/xk]K = JtK ◦ 〈Jt1K, . . . , JtkK〉 .

Proof: By induction on the structure of t.
(1) If t = xi:

Jxi[t/x]K = JtiK = πi ◦ 〈Jt1K, . . . , JtkK〉 = JxiK ◦ 〈Jt1K, . . . , JtkK〉 .

(2) If t = uv then, abbreviating 〈Jt1K, . . . , JtkK〉 to 〈JtK〉 we have:

Juv[t/x]K = J(u[t/x])(v[t/x])K Defn of substitution
= ev ◦ 〈Ju[t/x]K, Jv[t/x]K〉 Defn of semantic function
= ev ◦ 〈JuK ◦ JtK, JvK ◦ JtK〉 Induction hyp.
= ev ◦ 〈JuK, JvK〉 ◦ 〈JtK〉 property of products
= JuvK ◦ 〈JtK〉 Defn of semantic function
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(3) If t = λx. u:

Jλx.u[t/x]K = Jλx.(u[t, x/x, x])K Defn. of substitution
= Λ(Ju[t, x/x, x]K) Defn. of semantic function
= Λ(JuK ◦ (JtK× id)) Induction hyp.
= Λ(JuK) ◦ 〈JtK〉 Prop. 8
= Jλx.uK ◦ 〈JtK〉 Defn. of semantic function

(4,5) The cases of projections and pairs are left as exercise. �

Validating the conversion rules

We can now show that the conversion rules of the λ-calculus are preserved by
the translation, and hence the interpretation is sound.

• For β-conversion:
[
(λx. t)u = t[u/x] , π1〈t, u〉 = t , π2〈t, u〉 = u

]

J(λx. t)uK = ev ◦ 〈Λ(JtK), JuK〉 Defn. of semantics

= ev ◦ (Λ(JtK)× id) ◦ 〈 idJΓ K, JuK〉 Property of ×

= JtK ◦ 〈 idJΓ K, JuK〉 Defn. of Λ

= Jt[x, u/x, x]K Substitution lemma.

Jπ1〈t, u〉K = π1 ◦ J〈t, u〉K = π1 ◦ 〈JtK, JuK〉 = JtK .

• For η-conversion:
[
t = λx. tx , 〈π1t, π2t〉 = t

]

Jλx. txK = Λ(ev ◦ (JtK × id)) = JtK Uniqueness equation (⇒)

J〈π1t, π2t〉K = 〈π1 ◦ JtK, π2 ◦ JtK〉 = JtK Uniqueness equation (×)

1.6.6 Completeness?

Certainly, in a general CCC C there may be equalities which are not reflected
by the semantic translation:

JtK = JuK yet t 6=λ u .

We will now construct a CCC Cλ in which all equalities between arrows are
translations of λ-conversions between terms.

Definition 37 We define an equivalence relations of typed terms by setting
(x, t) ∼T,U (y, u) iff x : T ⊢ t : U and y : T ⊢ u : U are derivable and

t =λ u[x/y] .

This yields an equivalence relation, so we set:

[(x, t)]T,U := { (y, u) | (x, t) ∼T,U (y, u) }
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Similarly, ( � , t) ∼ � ,U ( � , u) iff ⊢ t : U and ⊢ u : U are derivable and t =λ

u[x/y]. Moreover,

[( � , t)] � ,U := { ( � , u) | ( � , t) ∼ � ,U ( � , u) } .
N

We denote [(x, t)]T,U simply as [x, t] ; and [( � , t)] � ,U simply as [ � , t]. (Note
these have nothing to do with copairings!) We proceed with Cλ.

Definition 38 Cλ is defined as follows.

Objects Ob(Cλ) := {1} ∪ { T̃ | T a λ-type }

Arrows Cλ(T̃ , Ũ) := { [x, t] | x : T ⊢ t : U is derivable }

Cλ(1, Ũ) := { [ � , t] | ⊢ t : U is derivable }

Cλ(A,1) := { τA }

Identities ideT
:= [x, x] , id1 := τ1

Composition [x, t] ◦ [y, u] := [y, t[u/x]] (y 6= x)

[x, t] ◦ [ � , u] := [ � , t[u/x]]

[ � , t] ◦ τA :=

{
[y, t] if A = Ũ

[ � , t] if A = 1

τB ◦ h := τA (h ∈ Cλ(A, B))

N

Proposition 10. Cλ is a category.

Proof: It is not difficult to see that id’s are identities. For associativity, we
show the most interesting case (and leave the rest as an exercise):

[x, t] ◦ ([y, u] ◦ [z, v]) = [x, t] ◦ [z, u[v/y]] = [z, t[(u[v/y])/x]] ,

([x, t] ◦ [y, u]) ◦ [z, v] = [y, t[u/x]] ◦ [z, v] = [z, t[u/x][v/y]] .

Since y 6= x and t has at most x as a free variable, y is not free in t and
therefore:

t[u/x][v/y] = t[(u[v/y])/x]

.
�

Proposition 11. Cλ has finite products.
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Proof: Clearly, 1 is terminal with canonical arrows τA : A −→ 1. For (binary)

products, 1×A = A× 1 = A. Otherwise, define T̃
π1←− T̃ × Ũ

π2−→ Ũ by:

T̃ × Ũ := T̃ × U

πi := [x, πix] i = 1, 2 .

Given T̃
[x,t]
←− Ṽ

[x,u]
−→ Ũ , take 〈[x, t], [x, u]〉 : Ṽ −→ T̃ × Ũ := [x, 〈t, u〉] . Then:

π1 ◦ 〈[x, t], [x, u]〉 = [y, π1y] ◦ [x, 〈t, u〉] Definitions

= [x, π1〈t, u〉] Defn of composition

= [x, t] β-conversion

Uniqueness left as exercise. �

Proposition 12. Cλ has exponentials.

Proof: We have that 1 ⇒ A = A and A ⇒ 1 = 1, with obvious evaluation
arrows. Otherwise,

Ũ ⇒ T̃ := Ũ → T

eveU, eT
: (Ũ ⇒ T̃ )× Ũ −→ T̃ := [x, (π1x)(π2x)]

Given [x, t] : Ṽ × Ũ −→ T̃ , take Λ([x, t]) := [x1, λx2.t[〈x1, x2〉/x]] .
Then,

ev ◦ Λ([x, t])× id = ev ◦ 〈Λ([x, t]) ◦ π1, id ◦ π2〉

= ev ◦ 〈[x1, λx2.t[〈x1, x2〉/x]] ◦ [y, π1y], [y, π2y]〉

= ev ◦ 〈[y, λx2.t[〈π1y, x2〉/x]], [y, π2y]〉

= [z, (π1z)(π2z)] ◦ [y, 〈λx2.t[〈π1y, x2〉/x], π2y〉]
u

= [y, (π1u)(π2u)]
β
= [y, (λx2.t[〈π1y, x2〉/x])(π2y)]

β
= [y, t[〈π1y, π2y〉/x]]

η
= [y, t[y/x]] = [x, t] .

Uniqueness and other cases left as exercise. �

Now applying our translation from the λ-calculus to a CCC we (can show
that we) have

JΓ ⊢ t : T K = [x, t[πix/xi]i=1..n]

where Γ = {x1 : T1, ..., xn : Tn}, x /∈ Γ and x :
∏

i=1..n Ti . Then,

t =λ u ⇐⇒ JΓ ⊢ t : T K = JΓ ⊢ u : T K .
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1.6.7 Exercises

1. Give Natural Deduction proofs of the following sequents.
• ⊢ (A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C))
• ⊢ (A ⊃ (A ⊃ B)) ⊃ (A ⊃ B)
• ⊢ (C ⊃ A) ⊃ ((C ⊃ B) ⊃ (C ⊃ (A ∧B)))
• ⊢ (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))
In each case, give the corresponding λ-term.

2. For each of the following λ-terms, find a type for it. Try to find the ‘most
general’ type, built from ‘type variables’ α, β etc. For example, the most
general type for the identity λx. x is α→ α. In each case, give the deriva-
tion of the type for this term (where you may assume that types can be
built up from type variables as well as base types).

• λf. λx. fx
• λx. λy. λz. x(yz)
• λx. λy. λz. xzy
• λx. λy. xyy
• λx. λy. x
• λx. λy. λz. xz(yz)

Reflect a little on the methods you used to do this exercise. Could they
be made algorithmic?

1.7 Linearity

In the system of Natural Deduction, implicit in our treatment of assumptions
in sequents

A1, . . . , An ⊢ A

is that we can use them as many times as we want (including not at all). In
this section we will explore the field that is opened once we apply restrictions
on this approach, and thus render our treatment of assumptions more linear
(or resource sensitive).

1.7.1 Gentzen sequent calculus

In order to make the manipulation of assumptions more visible, we now rep-
resent the assumptions as a list (possibly with repetitions) rather than a set,
and use explicit structural rules to control copying, deletion and interchange
of assumptions.

Definition 39 The structural rules for Logic are the following.
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A ⊢ A
Id

Γ, A, B, ∆ ⊢ C

Γ, B, A, ∆ ⊢ C
Exch

Γ, A, A ⊢ B

Γ, A ⊢ B
Contr

Γ ⊢ B
Γ, A ⊢ B

Weak

N

If we think of using proof rules backwards to reduce the task of proving a
given sequent to various sub-tasks, then we see that the Contraction rule lets
us duplicate premises, and the Weakening rule lets us discard them, while
the Exchange rule merely lets us re-order them. The Identity axiom as given
here is equivalent to the one with auxiliary premises given previously in the
presence of Weakening. The structural rules have clear categorical meanings
in a category C with products. Recalling the diagonal transformation ∆A :=
〈 idA, idA〉 and the symmetry transformation sA,B := 〈π2, π1〉, the meanings
are as follows.

Γ, A, B, ∆ ⊢ C

Γ, B, A, ∆ ⊢ C
Exch

f : Γ ×A×B ×∆ −→ C

f ◦ ( idΓ × sA,B × id∆) : Γ ×B ×A×∆ −→ C

Γ, A, A ⊢ B

Γ, A ⊢ B
Contr

f : Γ ×A×A −→ B

f ◦ ( idΓ ×∆A) : Γ ×A −→ B

Γ ⊢ B
Γ, A ⊢ B

Weak
f : Γ −→ B

f ◦ π1 : Γ ×A −→ B

Definition 40 We define the Gentzen sequent calculus for ∧,⊃ as the
proof system obtained by the structural rules (def. 37) and the following rules
for connectives.

Conjunction Implication Cut

Γ ⊢ A ∆ ⊢ B
Γ, ∆ ⊢ A ∧B

∧R
Γ, A ⊢ B

Γ ⊢ A ⊃ B
⊃R

Γ ⊢ A A, ∆ ⊢ B

Γ, ∆ ⊢ B
Cut

Γ, A, B ⊢ C

Γ, A ∧B ⊢ C
∧ L

Γ ⊢ A B, ∆ ⊢ C

Γ, A ⊃ B, ∆ ⊢ C
⊃ L

N

Note that the sequent calculus introduces a new kind of pattern for proof
rules: Left and Right rules, rather than the Introduction and Elimination
rules of Natural deduction.

For example, the proof of ⊃-transitivity is now given as follows.
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A ⊢ A
Id

B ⊢ B
Id

A, A ⊃ B ⊢ B
⊃R

A ⊃ B, A ⊢ B
Exch

C ⊢ C
Id

A ⊃ B, A, B ⊃ C ⊢ C
⊃L

A ⊃ B, B ⊃ C, A ⊢ C
Exch

A ⊃ B, B ⊃ C ⊢ A ⊃ C
⊃R

The Cut rule allows the use of lemmas in proofs. It also yields a dynamics
of proofs via Cut Elimination, that is a dynamics of proof transformations
towards the goal of eliminating the uses of the Cut rule in a proof, i.e. removing
all lemmas and making the proof completely “explicit”, meaning Cut-free.
Such transformations are always possible, which leads to the following seminal
result of Gentzen (Hauptsatz ).

Fact 41 (Cut Elimination) The Cut rule is admissible in the Gentzen se-
quent calculus without Cut.

Exercise 42. Show that the Gentzen-rules are admissible in Natural Deduc-
tion. Moreover, show that the Natural Deduction rules are admissible in the
Gentzen sequent calculus.

1.7.2 Linear Logic

In the presence of the structural rules, the Gentzen sequent calculus is entirely
equivalent to the Natural Deduction system we studied earlier. Nevertheless,

What happens if we drop the Contraction and Weakening rules (but
keep the Exchange rule)?

It turns out we can still make good sense of the resulting proofs, terms and
categories, but now in the setting of a different, ‘resource-sensitive’ logic.

Definition 42 Multiplicative Linear logic is a variant of standard logic
with linear logical connectives (and linear proof rules). The multiplicative
connectives for conjunction and implication are ⊗ and⊸. Proof sequents are
of the form Γ ⊢ A, where Γ is now a multiset. The proof rules for ⊗,⊸-Linear
Logic are the multiplicative versions of the Gentzen rules.

Conjunction Implication Cut

Γ ⊢ A ∆ ⊢ B
Γ, ∆ ⊢ A⊗B

⊗R
Γ, A ⊢ B

Γ ⊢ A⊸ B
⊸ R

Γ ⊢ A A, ∆ ⊢ B

Γ, ∆ ⊢ B
Cut

Γ, A, B ⊢ C

Γ, A⊗ B ⊢ C
⊗ L

Γ ⊢ A B, ∆ ⊢ C

Γ, A⊸ B, ∆ ⊢ C
⊸ L

N
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Multiplicativity here means the use of disjoint (i.e. non-overlapping) contexts.
The use of multisets allows us to omit explicit use of the Exchange rule in our
proof system. Note the following:

• The use of disjoint (i.e. non-overlapping) contexts.
• The given system satisfies Cut-elimination, and this leans heavily on the
⊸ L rule. We could have used instead the following rule,

Γ ⊢ A⊸ B ∆ ⊢ A
Γ, ∆ ⊢ B

⊸ E

which is more intuitive computationally, but then cut-elimination would
fail. Note, though, that:

⊸ L , Cut , Id ≡ ⊸ E , Cut , Id .

This is shown as follows.

Γ ⊢ A A⊸ B ⊢ A⊸ B
Id

Γ, A⊸ B ⊢ B
⊸ E

B, ∆ ⊢ C

Γ, A⊸ B, ∆ ⊢ C
Cut

Γ ⊢ A⊸ B
B ⊢ B

Id
∆ ⊢ A

A⊸ B, ∆ ⊢ B
⊸ L

Γ, ∆ ⊢ B
Cut

Exercise 43. Can you construct proofs in Linear Logic of the following se-
quents? (Hint: Use the Cut Elimination property.)

• A ⊢ A⊗A
• (A⊗A)⊸ B ⊢ A⊸ B
• ⊢ A⊸ (B⊸ A)

Related to linear logic is the linear λ-calculus, which is a linear version of the
simply-typed λ-calculus.

Definition 43 The linear λ-calculus is defined as follows.

Type TY ∋ T, U ::= b | T ⊸ U | T ⊗ U

Term TE ∋ t, u ::= x | t u | λx. t | t⊗ u | let z be x⊗ y in t

Typing context Γ ::= ∅ | x : T, Γ

Note that x : T, Γ stands for {x : T } ∪ Γ with x not appearing in Γ . Terms
are typed by use of typing rules as follows.
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x : T ⊢ x : T

Γ ⊢ t : T x : T, ∆ ⊢ u : U

Γ, ∆ ⊢ u[t/x] : U

Γ, x : U ⊢ t : T

Γ ⊢ λx. t : U ⊸ T

Γ ⊢ t : U x : U, ∆ ⊢ u : V

Γ, f : T ⊸ U, ∆ ⊢ u[ft/x] : V

Γ ⊢ t : T ∆ ⊢ u : U
Γ, ∆ ⊢ t⊗ u : T ⊗ U

Γ, x : T, y : U ⊢ v : V

Γ, z : T ⊗ U ⊢ let z be x⊗ y in v : V

Note that Cut-free proofs always yield terms in normal form.
The rules for β-reduction are:

(λx. t)u −→β t[u/x]
let t⊗ u be x⊗ y in v −→β v[t/x, u/y] .

N

Note that term formation is now highly constrained by the form of the typing
judgements. In particular,

x1 : A1, . . . , xk : Ak ⊢ t : A

now implies that each xi occurs exactly once (free) in t. Moreover, note that,
for function application, instead of the rule on the LHS below, we could have
used the more intuitive rule on the RHS.

Γ ⊢ t : U x : U, ∆ ⊢ u : V

Γ, f : T ⊸ U, ∆ ⊢ u[ft/x] : V
Γ ⊢ t : A⊸ B ∆ ⊢ u : A

Γ, ∆ ⊢ t u : B

As we did in the logic, we can show that the typing systems with one or the
other rule are equivalent.

1.7.3 Linear Logic in monoidal categories

We proceed to give a categorical counterpart to linearity by providing a cate-
gorical interpretation of linear logic. Note that CCC’s are no longer adequate
for this task, as they contain arrows

∆A : A −→ A×A , π1 : A×B −→ A

which violate linearity. It turns out that the right setting is that of symmetric
monoidal closed categories.

Definition 44 A monoidal category is a structure (C,⊗, I, a, l, r) where:

• C is a category,
• ⊗ : C × C → C is a functor (tensor),
• I is a distinguished object of C (unit),
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• a, l, r are natural isomorphisms (structural isos) of the types:

aA,B,C : A⊗ (B ⊗ C)
∼=
−→ (A⊗B)⊗ C

lA : I ⊗A
∼=
−→ A rA : A⊗ I

∼=
−→ A

such that lI = rI : I ⊗ I → I and the following diagrams commute.

A⊗ (I ⊗B)
a //

id⊗l

��

(A⊗ I)⊗B

r⊗ id

~~~~
~~

~~
~~

~~
~~

~~
~~

~~
~

A⊗B

(A⊗B)⊗ (C ⊗D)

a

$$J
JJJ

JJJJJ

A⊗ (B ⊗ (C ⊗D))

a

::ttttttttt

id⊗a

��

((A⊗B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D)
a // (A⊗ (B ⊗ C))⊗D

a⊗ id

OO

N

The monoidal diagrams ensure coherence, described by the slogan:

“. . . ‘all’ diagrams involving a, l and r must commute.”

Examples:

• Both products and coproducts give rise to monoidal structures— which
are the common denominator between them. (But in addition, products
have diagonals and projections, and coproducts have codiagonals and in-
jections.)

• (N,≤, +, 0) is a monoidal category.
• Rel, the category of sets and relations, with cartesian product (which is

not the categorical product).
• Vectk with the tensor product.

Let us examine the example of Rel in some detail. We take ⊗ to be the
cartesian product, which is defined on relations R : X → X ′ and S : Y → Y ′

as follows.

∀(x, y) ∈ X × Y, (x′, y′) ∈ X ′ × Y ′. (x, y)R ⊗ S(x′, y′) ⇐⇒ xRx′ ∧ ySy′ .

It is not difficult to show that this is indeed a functor. Note that, in the case
that R, S are functions, R⊗S is the same as R×S in Set. Moreover, we take
each aA,B,C to be the associativity function for products (in Set), which is
an iso in Set and hence also in Rel. Finally, we take I to be the one-element
set, and lA, rA to be the projection functions: their relational converses are
their inverses in Rel. The monoidal diagrams commute simply because they
commute in Set.

Exercise 44. Verify that (N,≤, +, 0) and Vectk are monoidal categories.
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Tensors and products

As we mentioned earlier, products are tensor with extra structure: natural
diagonals and projections. This fact, which reflects no-cloning and no-deleting
of Linear Logic, is shown as follows.

Proposition 13. Let C be a monoidal category (C,⊗, I, a, l, r). ⊗ induces a
product structure iff there exist natural diagonals and projections, i.e. natural
transformations given by arrows

dA : A −→ A⊗A , pA,B : A×B −→ A , qA,B : A×B −→ B ,

such that the following diagrams commute.

A

dA

��

idA

||yy
yy

yy
yy

yy
yy

idA

""E
EE

EE
EE

EE
EE

E

A A⊗ApA,A

oo
qA,A

// A

A⊗B
dA,B //

idA⊗B

''OOOOOOOOOOOOOOOO (A⊗B)⊗ (A⊗B)

pA,B⊗qA,B

��
A⊗B

Proof: The “only if” direction is straightforward. For the converse, let C be
monoidal with natural projections and diagonals. Then, we take product pairs
to be pairs of the form

A
pA,B

←− A⊗B
qA,B

−→ B .

Moreover, for any pair of arrows B
f
←− A

g
−→ C , define

〈f, g〉 := A
dA−→ A⊗A

f⊗g
−→ B ⊗ C .

Then the product diagram commutes. For example:

A

(1)

dA //

f

��

A⊗A
f⊗g //

f⊗ idA

��
f⊗f

��

B ⊗ C

pB,C

��

B ⊗A

idB⊗g

88qqqqqqqqqqqqqqqq

pB,A

(∗)

&&MMMMMMMMMMMMMMMMM

idA⊗f

��

(∗)

B

idB

(2)

66
dB // B ⊗B

pB,B // B

(∗) naturality of p
(1) naturality of d
(2) hypothesis

For uniqueness, if h : A→ B ⊗ C then the following diagram commutes,
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A
h //

dA

��

(1)

B ⊗ C

dB⊗C

��

idB⊗C

(2)

''NNNNNNNNNNNNNNNNN

A⊗A
h⊗h

// (B ⊗ C)⊗ (B ⊗ C)
pB,C⊗qB,C

// B ⊗ C

(1) naturality of d
(2) hypothesis

so h = 〈π1 ◦ h, π2 ◦ h〉. �

SMCC

Linear Logic is interpreted in monoidal categories with two more pieces of
structure: monoidal symmetries and monoidal closures. The former essentially
correspond to the Exchange rule (now incorporated in the multiset specifica-
tion of assumptions), while the latter realises linear implication.

Definition 45 A symmetric monoidal category is a monoidal category
(C,⊗, I, a, l, r) with an additional natural isomorphism (symmetry),

sA,B : A⊗B
∼=
−→ B ⊗A

such that sB,A = s−1
A,B and the following diagrams commute.

A⊗ I
s //

r

$$I
IIIIIIIII I ⊗A

l

��
A

A⊗ (B ⊗ C)

a

��

id⊗s // A⊗ (C ⊗B)
a // (A⊗ C)⊗B

s⊗ id

��
(A⊗B)⊗ C

s
// C ⊗ (A⊗B)

a
// (C ⊗A)⊗B

N

Definition 46 A symmetric monoidal closed category (SMCC) is a
symmetric monoidal category (C,⊗, I, a, l, r, s) such that, for each object A,
there is a couniversal arrow to the functor

⊗A : C −→ C .

That is, for all pairs A, B, there is an object A⊸ B and a morphism

evA,B : (A⊸ B)⊗A −→ B

such that, for every morphism f : C ⊗ A → B, there is a unique morphism
Λ(f) : C → (A⊸ B) such that

evA,B ◦ (Λ(f)⊗ idA) = f .
N
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Note that, although we use notation borrowed from CCC’s (ev, Λ), these are
different structures! Examples of symmetric monoidal closed categories are
Rel, Vectk, and (a fortiori) cartesian closed categories.

Exercise 45. Show that Rel is a symmetric monoidal closed category.

Linear logic in SMCC’s

Just as cartesian closed categories correspond to ∧,⊃-logic (and simply-
typed λ-calculus), so do symmetric monoidal closed categories correspond
to ⊗,⊸-logic (and linear λ-calculus).

So let C be a symmetric monoidal closed category. The interpretation of a
linear sequent

A1, . . . , Ak ⊢ A

will be a morphism
f : A1 ⊗ · · · ⊗Ak −→ A .

To be precise in our interpretation, we will again treat contexts as lists of
formulas, and explicitly interpret the Exchange rule by:

Γ, A, B, ∆ ⊢ C

Γ, B, A, ∆ ⊢ C

f : Γ ⊗A⊗B ⊗∆ −→ C

f ◦ ( idΓ ⊗ sA,B ⊗ id∆) : Γ ⊗B ⊗A⊗∆ −→ C

The rest of the rules are translated as follows.

A ⊢ A idA : A −→ A

Γ ⊢ A A, ∆ ⊢ B

Γ, ∆ ⊢ B

f : Γ −→ A g : A⊗∆ −→ B

g ◦ (f ⊗ id∆) : Γ ⊗∆ −→ B

Γ ⊢ A ∆ ⊢ B
Γ, ∆ ⊢ A⊗B

f : Γ −→ A g : ∆ −→ B

f ⊗ g : Γ ⊗∆ −→ A⊗B

Γ, A, B ⊢ C

Γ, A⊗B ⊢ C

f : (Γ ⊗A)⊗B −→ C

f ◦ aA,B,C : Γ ⊗ (A⊗B) −→ C

Γ, A ⊢ B

Γ ⊢ A⊸ B

f : Γ ⊗A −→ B

Λ(f) : Γ −→ (A⊸ B)

Γ ⊢ A⊸ B ∆ ⊢ A
Γ, ∆ ⊢ B

f : Γ −→ (A⊸ B) g : ∆ −→ A

evA,B ◦ (f ⊗ g) : Γ ⊗∆ −→ B

Exercise 46. Let C be a symmetric monoidal closed category. Give the inter-
pretation of the ⊸-left rule in C:

Γ ⊢ A B, ∆ ⊢ C

Γ, A⊸ B, ∆ ⊢ C
⊸ L
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1.7.4 Beyond the multiplicatives

Linear Logic has three ‘levels’ of connectives, each describing a different aspect
of standard logic:

• The multiplicatives: e.g. ⊗,⊸,
• The additives: additive conjunction & and disjunction ⊕,
• The exponentials, allowing controlled access to copying and discarding.

We focus on additive conjunction and the exponential “ ! ”, which will allow
us to recover the ‘expressive power’ of standard ∧,⊃-logic.

Definition 47 The logical connective for additive disjunction is &, and
the related proof rules are the following.

Γ ⊢ A Γ ⊢ B
Γ ⊢ A & B

& R
Γ, A ⊢ C

Γ, A & B ⊢ C
&L

Γ, B ⊢ C

Γ, A & B ⊢ C
&L

N

So additive conjunction has proof rules that are identical to those of standard
conjunction (⊃). Note though that, since by linearity an argument of type
A & B can only be used once, each use of a left rule for & makes a once-and-
for-all choice of a projection. On the other hand, A⊗B represents a conjunction
where both projections must be available.

Additive conjunction can be interpreted in any symmetric monoidal closed
category with products, i.e. a category C with structure (⊗,⊸,×) where
(⊗,⊸) are a symmetric monoidal tensor and its adjoint, and × is a prod-
uct.

f : Γ −→ A g : Γ −→ B

〈f, g〉 : Γ −→ A×B

f : Γ ⊗A −→ C

f ◦ ( id ⊗ π1) : Γ ⊗ (A×B) −→ C

Moreover, we can extend the linear λ-calculus with term constructors for
additive conjunction as follows.

Γ ⊢ t : A Γ ⊢ u : B
Γ ⊢ 〈t, u〉 : A & B

Γ, x : A ⊢ t : C

Γ, z : A & B ⊢ let z = 〈x,−〉 in t : C

Γ, B ⊢ C

Γ, z : A & B ⊢ let z = 〈−, y〉 in t : C

The β-reduction rules related to these constructs are:

let 〈t, u〉 = 〈x,−〉 in v −→β v[t/x]
let 〈t, u〉 = 〈−, y〉 in v −→β v[u/y] .

Finally, we can gain back the lost structural rules, in disciplined versions, by
introducing an exponential bang operator ! which is a kind of modality which
enables formulas to participate in structural rules.
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Definition 48 The logical connective for bang is !, and the related proof
rules are the following.

Γ, A ⊢ B

Γ, !A ⊢ B
!L

!Γ ⊢ A
!Γ ⊢ !A

!R
Γ ⊢ B

Γ, !A ⊢ B
Weak

Γ, !A, !A ⊢ B

Γ, !A ⊢ B
Contr

N

We can now see the discipline imposed in structural rules: in order for the
rules to be applied, the participating formulas need to be tagged with bang.

Interpreting standard Natural Deduction

We are now in position to recover the standard logical connectives ∧, ⊃ within
Linear Logic. If we interpret

A ⊃ B := !A⊸ B
A ∧B := A & B

and each ∧,⊃-sequent Γ ⊢ A as !Γ ⊢ A , then each proof rule of Natural
Deduction for ∧,⊃ is admissible in the proof system of Linear Logic for ⊗,⊸
, &, ! .

Note in particular that the interpretation

A ⊃ B := !A⊸ B

decomposes the fundamental notion of implication into finer notions— like
‘splitting the atom of logic’ !

1.7.5 Exercises

1. Give proofs of the following sequents in Linear Logic:
a) ⊢ A⊸ A
b) A⊸ B, B⊸ C ⊢ A⊸ C
c) ⊢ (A⊸ B⊸ C)⊸ (B ⊸ A⊸ C)
d) A⊗ (B ⊗ C) ⊢ (A⊗B)⊗ C
e) A⊗B ⊢ B ⊗A

For each of the proofs constructed give:
• the corresponding linear λ-term,
• its interpretation in Rel.

2. Consider a symmetric monoidal closed category C.
a) Suppose the sequents Γ1 ⊢ A, Γ2 ⊢ B and A, B, ∆ ⊢ C are provable

and let their interpretations (i.e. the interpretations of their proofs)
in C be f1 : Γ1 → A, f2 : Γ2 → B and g : A⊗B⊗∆→ C respectively.
Find then the interpretations h1, h2 of the following proofs:

...
Γ1 ⊢ A

...
Γ2 ⊢ B

Γ1, Γ2 ⊢ A ⊗ B
⊗R

...
A, B, ∆ ⊢ C

A ⊗ B, ∆ ⊢ C
⊗L

Γ1, Γ2, ∆ ⊢ C
Cut

...
Γ2 ⊢ B

...
Γ1 ⊢ A

...
A, B, ∆ ⊢ C

Γ1, B, ∆ ⊢ C
Cut

Γ1, Γ2, ∆ ⊢ C
Cut
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and show that h1 = h2.
b) Suppose now C has also binary products, given by ×. Given that the

sequents Γ ⊢ A, Γ ⊢ B and A, ∆ ⊢ C are provable, and that their
interpretations in C are f1 : Γ → A, f2 : Γ → B and g : A ⊗∆ → C
respectively, find the interpretations h1, h2 of the following proofs:

...
Γ ⊢ A

...
Γ ⊢ B

Γ ⊢ A & B
& R

...
A, ∆ ⊢ C

A & B, ∆ ⊢ C
&L

Γ, ∆ ⊢ C
Cut

...
Γ ⊢ A

...
A, ∆ ⊢ C

Γ, ∆ ⊢ C
Cut

and show that h1 = h2.
3. Show that the condition lI = rI in the definition of monoidal categories

is redundant.
Moreover, show that the condition idA ⊗ lB = aA,I,B ◦ rA ⊗ idB in the
definition of symmetric monoidal categories is redundant.

1.8 Monads and comonads

1.8.1 Basics

Definition 49 A monad over a category C is a triple (T, η, µ) where T is
an endofunctor on C and η : IdC → T , µ : T 2→ T are natural transformations
such that the following diagrams commute.

T 3A
µT A //

TµA

��

T 2A

µA

��
T 2A µA

// TA

TA
ηT A //

idT A

!!D
DD

DD
DD

DD
DD

D

TηA

��

T 2A

µA

��
T 2A µA

// TA
N

We usually call η the unit of the monad, and µ its multiplication; the whole
terminology comes from monoids. Let us now proceed to some examples.

• Let C be a category with coproducts and let E be an object in C. We can
define a monad (T, η, µ) of E-coproducts (computationally, E-exceptions)
by taking T : C → C to be the functor + E , and η, µ as follows.

T := A 7→ A + E , f 7→ f + idE

ηA := A
in1−−→ A + E

µA := (A + E) + E
[ idA+E , in2]
−−−−−−−→ A + E
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That η, µ are natural transformations follows from the fact that injec-
tions and copairings are. Moreover, the monadic diagrams follow from the
properties of the coproduct. For example,

µA ◦ µTA = [µA ◦ µTA ◦ in1, µA ◦ µTA ◦ in2]

= [µA ◦ [ idTA+E , in2] ◦ in1, µA ◦ [ idTA+E , in2] ◦ in2]

= [µA ◦ idTA+E , µA ◦ in2] = [µA, [ idA+E , in2] ◦ in2]

= [µA, in2] = [ idA+E ◦ µA, in2 ◦ idE ] = [ idA+E , in2] ◦ (µA + idE)

= µA ◦ TµA .

• Now let C be a cartesian closed category and let ξ be some object in C.
We can define a monad of ξ-side-effects by taking T to be the functor
ξ ⇒ ( × ξ), and η, µ as follows (recall Λ and ev for CCC’s).

T := A 7→ ξ ⇒ (A× ξ) , f 7→ ξ ⇒ (f × idξ)

ηA := Λ(A× ξ
idA×ξ
−−−−→ A× ξ )

µA := Λ(T (TA)× ξ
evξ,TA×ξ
−−−−−−→ TA× ξ

evξ,A×ξ
−−−−−→ A× ξ )

Naturality of η, µ follows from naturality of Λ: for any f : A→ A′,

Tf ◦ ηA = (ξ ⇒ f × idξ) ◦ Λ( idA×ξ) = Λ(f × idξ ◦ idA×ξ)

= Λ( idA′×ξ ◦ f × idξ) = Λ( idA′×ξ) ◦ f = ηA′ ◦ f ,

µA′ ◦ T 2f = Λ(evξ,A′×ξ ◦ evξ,TA′×ξ) ◦ T 2f = Λ(evξ,A′×ξ ◦ evξ,TA′×ξ ◦ T 2f × idξ)

= Λ(evξ,A′×ξ ◦ Tf × idξ ◦ evξ,TA×ξ) = Λ(f × idξ ◦ evξ,A×ξ ◦ evξ,TA×ξ)

= (ξ ⇒ f × idξ) ◦ Λ(evξ,A×ξ ◦ evξ,TA×ξ) = Tf ◦ µA .

The monadic properties are shown in a similar manner.
• Our third example employs the functor U : Mon→ Set. In particular, we

take T := U ◦MList and η, µ as follows.

T := X 7→
⋃

n∈ω
{[x1, . . . , xn] | x1, . . . , xn ∈ X} ,

f 7→ ( [x1, . . . , xn] 7→ [f(x1), . . . , f(xn)] ) .

ηX := x 7→ [x]

µX := [[x11, . . . , x1n1
], . . . , [xk1, . . . , xknk

]] 7→ [x11, . . . , x1n1
, . . . , xk1, . . . , xknk

]

Naturality of η, µ is obvious—besides, η is the unit of the corresponding
adjunction. The monadic diagrams are also straightforward: they corre-
spond to the following equalities of mappings (we use [x] for [x1, . . . , xn]).

[[[x11], ..., [x1n1
]], ..., [[xk1], ..., [xknk

]]]
� µ //

_

Tµ

��

[[x11], ..., [x1n1
], ..., [xk1], ..., [xknk

]]
_

µ

��
[[x11, ...,x1n1

], . . . , [xk1, ...,xknk
]] �

µ
// [x11, ...,x1n1

, . . . ,xk1, ...,xknk
]
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[x1, . . . , xn] � η //
�

id

((PPPPPPPPPPPP_

Tη

��

[[x1, . . . , xn]]
_

µ

��
[[x1], . . . , [xn]] �

µ
// [x1, . . . , xn]

Exercise 47. Show that the E-coproduct monad and the ξ-side-effect monads
are indeed monads.

Our discussion on monads can be dualised, leading us to comonads.

Definition 50 A comonad over a category C is a triple (Q, ε, δ) where Q is
an endofunctor on C and ε : Q→ IdC , δ : Q→ Q2 are natural transformations
such that the following diagrams commute.

QA
δA //

δA

��

Q2A

δQA

��
Q2A

QδA

// Q3A

QA
δA //

idQA

!!C
CCC

CC
CC

CC
C

δA

��

Q2A

εQA

��
Q2A

QεA

// QA
N

ε is the counit of the comonad, and δ its comultiplication. Two of our examples
from monads dualise to comonads.

• If C has finite products then, for any object S, we can define the S-product
comonad with functor Q := S × .

• We can form a comonad on Mon with functor Q := MList◦U (and counit
that of the corresponding adjunction).

Exercise 48. Give an explicit description of the comonad on Mon with func-
tor Q := MList ◦ U described above. Verify it is a comonad.

1.8.2 (Co)Monads of an adjunction

In the previous section, we saw that an adjunction between Mon and Set
yielded a monad on Set (and a comonad on Mon), with its unit being the
unit of the adjunction. We now show that this observation generalises to any
adjunction. Recall that an adjunction is specified by:

• a pair of functors C
F // D
G

oo ,

• for each A ∈ Ob(C), B ∈ Ob(D), a bijection θA,B : C(A, GB) ∼= D(FA, B)
natural in A, B.
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For such an adjunction we build a monad on C: the functor of the monad is
simply T := G ◦ F , and unit and multiplication are defined by setting

ηA : A −→ GFA := θ−1
A,FA( idFA) ,

µA : GFGFA −→ GFA := G(θGFA,FA( idGFA)) .

Observe that η is the unit of the adjunction.

Proposition 14. Let (F, G, η) be an adjunction. Then, the triple (T, η, µ) de-
fined above is a monad on C.

Proof: Recall that naturality of θ means concretely that, for any f : A→ GB,
g : A′ → A and h : B → B′,

θA′,B′(Gh ◦ f ◦ g) = h ◦ θA,B(f) ◦ Fg .

Now, we first show naturality of µ:

GFGFf ◦ µB = GθGFB,FB( idGFB) ◦GFGFf = G(θGFB,FB( idGFB) ◦ FGFf)

nat.θ
= GθGFA,FB( idGFB ◦GFf) = GθGFA,FB(GFf ◦ idGFA)

nat.θ
= G(Ff ◦ θGFA,FA( idGFA)) = GFf ◦ µA .

The monoidal condition for µ also follows from naturality of θ:

µA ◦ µGFA = G(θ( idGFA) ◦ θ( idGFGFA))
nat
= Gθ(Gθ( idGFA) ◦ idGFGFA)

= Gθ( idGFA ◦Gθ( idGFA))
nat
= G(θ( idGFA) ◦ FGθ( idGFA))

= µA ◦GFµA .

Finally, for the η-µ conditions we also use the universality diagram for η and
the uniqueness property (in equational form).

µA ◦ ηGFA = GθGFA,FA( idGFA) ◦ ηGFA = idGFA ,

µA ◦GFηGFA = GθGFA,FA( idGFA) ◦GFηGFA = G(θGFA,FA( idGFA) ◦ FηGFA)

nat
= Gθ( idGFA ◦ ηGFA) = Gθ(G idFA ◦ ηGFA) = G idFA = GFA .

�

Hence, every adjunction gives rise to a monad. It turns out that the converse is
also true: every monad is described by means of an adjunction in this way. In
particular, there are two canonical constructions of adjunctions from a given
monad: the Kleisli construction, and the Eilenberg-Moore construction. These
are in a sense minimal and maximal solutions to describing a monad via an
adjunction. We describe the former one in the next section.

Finally, note that— because of the symmetric definition of adjunctions —
the whole discussion can be dualised to comonads. That is, every adjunction
gives rise to a comonad with counit that of the adjunction, and also every
comonad can be derived from an adjunction in this manner.
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1.8.3 The Kleisli construction

The Kleisli construction starts from a monad (T, η, µ) on a category C and
builds a category CT of T -computations, as follows.

Definition 51 Let (T, η, µ) be a monad on a category C. Construct the
Kleisli category CT by taking the same objects as C, and by including an
arrow f.T : A→ B in CT for each f : A→ TB in C. That is,

Ob(CT ) := Ob(C) ,

CT (A, B) := {f.T | f ∈ C(A, TB)} .

The identity arrow for A in CT is ηA.T , while the composite of f.T : A → B
and g.T : B → C is h.T , where:

h := A
f
−→ TB

Tg
−−→ T 2C

µC
−−→ TC .

N

The conditions for CT being a category correspond to the monadic conditions.
For composition with identity, for any f : A→ TB,

f.T ◦ ηA.T = (µB ◦ Tf ◦ ηA).T = (µB ◦ ηB ◦ f).T = f.T ,

ηB.T ◦ f.T = (µB ◦ TηB ◦ f).T = f.T .

For associativity of composition, for any f : A → TB, g : B → TC and
h : C → TD,

(h.T ◦ g.T ) ◦ f.T = (µD ◦ Th ◦ g).T ◦ f.T = (µD ◦ T (µD ◦ Th ◦ g) ◦ f).T

= (µD ◦ TµD ◦ T 2h ◦ Tg ◦ f).T = (µD ◦ µD ◦ T 2h ◦ Tg ◦ f).T

= (µD ◦ Th ◦ µC ◦ Tg ◦ f).T = h.T ◦ (g.T ◦ f.T ) .

Let us now proceed to build the adjunction between C and CT that will even-
tually give us back the monad T . Construct the functors F : C → CT and
G : CT → C as follows.

F := A 7→ A , (f : A→ B) 7→ ((ηB ◦ f).T : A→ B) ,

G := A 7→ TA , (f.T : A→ B) 7→ (µB ◦ Tf : TA→ TB) .

Moreover, for each A, B ∈ Ob(C), construct the following bijection of arrows.

θA,B : C(A, TB)
∼=
−→ CT (A, B) := f 7→ f.T

To establish that (F, G, θ) is an adjunction we need only show that θ is natural
in A, B. So take f : A→ TB, g : A′ → A and h.T : B → B′. We then have:
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θA′,B′(Gh ◦ f ◦ g) = θA′,B′(µB′ ◦ Th ◦ f ◦ g) = (µB′ ◦ Th ◦ f ◦ g).T

= h.T ◦ (f ◦ g).T = h.T ◦ (µB ◦ Tf ◦ ηA ◦ g).T

= h.T ◦ f.T ◦ (ηA ◦ g).T = h.T ◦ θA,B(f) ◦ Fg .

The final step in this section is to verify that the monad (T ′, η′, µ′) that arises
from this adjunction is the one we started from. The construction of T ′ follows
the recipe given in the previous section, that is:

• T ′ : C → C := G ◦F . Thus, T ′ maps each object A to TA, and each arrow
f : A→ B to µB ◦ TηA ◦ Tf = Tf .

• η′
A : A→ TA := θ−1

A,FA( id
(CT )
FA ) = θ−1(ηA.T ) = ηA .

• µ′
A : T 2A→ TA := GθGFA,FA( id

(C)
GFA) = Gθ( idTA) = µA ◦ T idTA = µA .

Thus, we have indeed obtained the initial (T, η, µ).

The Kleisli construction on a comonad

Dually to the Kleisli category of a monad we can construct the Kleisli category
of a comonad4 — and reobtain the comonad through an adjunction between
the Kleisli category and the original one. Specifically, given a category C and
a comonad (Q, ε, δ) on C, we define the category CQ as follows.

Ob(CQ) := Ob(C)

CQ(A, B) := {f.Q | f ∈ C(QA, B)}

id
(CQ)
A := εA.Q

g.Q ◦ f.Q := (g ◦Qf ◦ δA).Q

The Kleisli category of a comonad will be of use in the next sections, where
comonads will be considered for modeling bang of Linear Logic. We end this
section by showing a result that will be of use then.

Proposition 15. Let C be a category and (Q, ε, δ) be a comonad on C. If C
has binary products then so does CQ.

Proof: Let A, B be objects in C, CQ. We claim that their product in CQ is
given by (A×B, p1, p2), where

p1 :=
(
Q(A×B)

ε
−→ A×B

π1−→ A
)

.Q

and p2 is similar. Now, for each f.Q : C → A and g.Q : C → B, setting
〈f.Q, g.Q〉 := 〈f, g〉.Q we have:

p1 ◦ 〈f.Q, g.Q〉 = (π1 ◦ ε ◦Q〈f, g〉 ◦ δ).Q = (π1 ◦ 〈f, g〉 ◦ ε ◦ δ).Q = f.Q ,

and similarly p2 ◦ 〈f.Q, g.Q〉 = g.Q . Finally, for any h.Q : C → A× B,

〈p1 ◦ h.Q, p2 ◦ h.Q〉 = 〈π1 ◦ ε ◦Qh ◦ δ, π2 ◦ ε ◦Qh ◦ δ〉.Q = 〈π1 ◦ h, π2 ◦ h〉.Q

= h.Q .
�

4 in some texts, this is called a coKleisli category.
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Exercise 49. Show that the Kleisli category CQ of a comonad (Q, ε, δ) has a
terminal object when C does.

1.8.4 Modeling of Linear exponentials

In this section we employ comonads in order to model the exponential bang
operator, ! , of Linear Logic. Let us start with modeling a weak bang operator,
!̂ , which involves solely the following proof rules.

Γ, A ⊢ B

Γ, !̂A ⊢ B
!̂L

!̂B ⊢ A

!̂B ⊢ !̂A
!̂R

Observe that, compared to ! , !̂ is weak in its Right rule.
Let us now assume as given a symmetric monoidal category C along with

a comonad (Q, ε, δ) on C. As seen previously, C is a model of (⊗⊸)-Linear
Logic. Moreover, (C, Q) yields a model of (⊗⊸!̂)-Linear Logic by modeling
each formula !̂A by QA (i.e. Q applied to the translation of A). The rules for
weak bang are then interpreted as follows.

f : Γ ⊗A −→ B

f ◦ idΓ ⊗ εA : Γ ⊗QA −→ B

f : QB −→ A

Qf ◦ δB : QB −→ QA

We know that arrow-equalities in the translation correspond to proof-transfor-
mations in the proof system. Let us see how this applies to the comonadic laws
for ε. Firstly, naturality of ε, which is expressed by εB ◦ Qf = f ◦ εA , for
each f : A→ B, corresponds to the following situation. Given a proof of the
sequent A ⊢ B, the following proof-transformation is valid.

...
A ⊢ B

!̂A ⊢ B
!̂L

!̂A ⊢ !̂B
!̂R

B ⊢ B

!̂B ⊢ B
!̂L

!̂A ⊢ B
Cut +3

...
A ⊢ B

!̂A ⊢ B
!̂L

Moreover, the comonadic law εQA ◦ δA = idQA = QεA ◦ δA corresponds to
the following transformations.

!̂A ⊢ !̂A
Id

!̂A ⊢ !̂̂!A
!̂R

!̂A ⊢ !̂A
Id

!̂̂!A ⊢ !̂A
!̂L

!̂A ⊢ !̂A
Cut +3

!̂A ⊢ !̂A
Id

A ⊢ A
Id

!̂A ⊢ A
!̂L

!̂A ⊢ !̂A
!̂Rks

Exercise 50. Find the proof-transformations corresponding to naturality of
δ and to the comonadic law δQA ◦ δA = QδA ◦ δA .
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In order to extend our translation to the general !R rule, we need arrows in C
of the form

Q2A1 ⊗ · · · ⊗Q2An −→ Q(QA1 ⊗ · · · ⊗QAn) .

Hence, we need to impose (a coherent) distributivity of the tensor— either
binary (⊗) or nullary (I) — over the comonad Q. This can be formalised by
stipulating that Q be a symmetric monoidal endofunctor.

Definition 52 Let (C,⊗, I, a, l, r, s) and (C′,⊗′, I ′, a′, l′, r′, s′) be symmetric
monoidal categories. A functor F : C → D is called symmetric monoidal if
there exist:

• a morphism m0 : I ′ → F (I) ,
• a natural transformation m2 : F ( )⊗′ F ( )→ F ( ⊗ ) ,

such that the following diagrams commute.

FA⊗′ (FB ⊗′ FC)

a′

��

id×m2 // FA⊗′ F (B ⊗ C)
m2 // F (A⊗ (B ⊗ C))

Fa

��
(FA⊗′ FB)⊗′ FC

m2× id

// F (A⊗B)⊗′ FC
m2

// F ((A ⊗B)⊗ C)

FA⊗′ I ′
id⊗′m0 //

r′

��

FA⊗′ FI

m2

��
FA F (A⊗ I)

Fr
oo

FA⊗′ FB

s

��

m2 // F (A⊗B)

Fs

��
FB ⊗′ FA m2

// F (B ⊗A)

We may write such an F as (F, m). Moreover, if (F, m), (G, n) : C → C′ are
(symmetric) monoidal functors then a natural transformation φ : F → G is
called monoidal whenever the following diagrams commute.

I ′
m0 //

n0 $$I
IIIIIIII FI

φ

��
GI

FA⊗′ FB
m2 //

φ⊗φ

��

F (A⊗B)

φ

��
GA⊗′ GB n2

// G(A⊗B)
N

For example, the identity functor is symmetric monoidal. Moreover, if F and
G are symmetric monoidal functors then so is G ◦ F . Other examples are the
following.

• The constant endofunctor KI , which maps each object to I and each arrow
to idI , is symmetric monoidal with structure maps:

m0 : I −→ I := idI , m2 : I ⊗ I −→ I := rI .
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• The endofunctor ⊗ ◦ 〈IdC , IdC〉, which maps each object A to A ⊗ A and
each arrow f to f ⊗ f , is symmetric monoidal with:

m0 : I −→ I⊗I := r−1
I , m2 := (A⊗A)⊗(B⊗B) −→ (A⊗B)⊗(A⊗B) ,

the latter given by use of structural transformations.

Exercise 51. Verify that if F : C → D, G : D → E are symmetric monoidal
functors then so is G ◦ F .

Definition 53 A comonad (Q, ε, δ) on a SMCC C is called a monoidal
comonad if Q is a symmetric monoidal functor, say (Q, m), and ε, δ are
monoidal natural transformations. We write Q as (Q, ε, δ, m). N

Now let us assume C is a SMCC and (Q, ε, δ, m) is a monoidal comonad on
C. The coherence of m2 with a, expressed by the first diagram of symmetric
monoidal functors, allows us to generalise m0 and m2 to arbitrary arities and
assume arrows:

mn : QA1 ⊗ · · · ⊗QAn −→ Q(A1 ⊗ · · · ⊗An) .

We can give the interpretation of the Right rule for bang as follows.

f : QB1 ⊗ · · · ⊗QBn −→ A

Qf ◦mn ◦ (δB1
⊗ · · · ⊗ δBn

) : QB1 ⊗ · · · ⊗QBn −→ QA

Contraction and Weakening

Our discussion on the categorical modeling of linear exponentials has only
touched the issues of Right and Left rules. However, this is only the beginning
of the story: we also need adequate structure for translating Contraction and
Weakening.

Γ, !A, !A ⊢ B

Γ, !A ⊢ B
Contr

Γ ⊢ B
Γ, !A ⊢ B

Weak

The solution is to use appropriate (monoidal) natural transformations. For
Contraction, we stipulate a transformation with components dA : QA →
QA⊗QA , i.e.

d : Q −→ ⊗ ◦ 〈Q, Q〉 .

For Weakening, a transformation with components eA : QA→ I, i.e.

e : Q −→ KI .

Although the above allow the categorical interpretation of the proof-rules,
they do not necessarily preserve the intended proof-transformations. For that,
we need to impose some further coherence conditions, which are epitomised
in the following notion.
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Definition 54 Let C be a SMCC. A monoidal comonad (Q, ε, δ, m) on C
is called a linear exponential comonad if there exist monoidal natural
transformations

d : Q −→ ⊗ ◦ 〈Q, Q〉 , e : Q −→ KI ,

such that:

(a) for each object A, the triple (QA, dA, eA) is a commutative comonoid in
C, i.e. the following diagrams commute,

QA
dA //

dA

''OOOOOOOOOOOOO QA⊗QA

sQA,QA

��
I ⊗QA

lQA

OO

QA⊗QA
eA⊗ idQA

oo

QA
dA //

dA

��

QA⊗QA

dA⊗ idQA

��
QA⊗QA

a◦( idQA⊗dA)
// (QA⊗QA)⊗QA

(b) for each object A, the following diagrams commute.

QA
δA //

eA

��

Q2A

QeA

��
I m0

// QI

QA
δA //

dA

��

Q2A

QdA

((QQQQQQQQQQQQQQ

QA⊗QA
δA⊗δA

// Q2A⊗Q2A m2

// Q(QA⊗QA)

QA
δA //

eA

$$I
IIIIIIIII Q2A

eQA

��
I

QA
δA //

dA

��

Q2A

dQA

��
QA⊗QA

δA⊗δA

// Q2A⊗Q2A

We write Q as (Q, ε, δ, m, d, e). N

Exercise 52. Give the categorical interpretation of Contraction and Weak-
ening in a SMCC C with a linear exponential comonad.

1.8.5 Including products

We now consider the fragment of Linear Logic which includes all four linear
connectives we have seen thus far, i.e. ⊗ ⊸ !&, and their respective proof
rules (see definitions 45, 46). The categorical modeling of (⊗ ⊸ !&)-Linear
Logic requires:

• a symmetric monoidal closed category C,
• a linear exponential comonad (Q, ε, δ, m, d, e) on C,
• finite products in C.
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The above structure is adequate for modeling the proof rules as we have seen
previously. Moreover, it provides rich structure for the Kleisli category CQ.
The next result, and its proof, demonstrates categorically the ‘interpretation’
of ordinary logic within Linear Logic given by:

A⇒ B ≡ !A⊸ B .

Proposition 16. Let C be a SMCC with finite products and let (Q, ε, δ, m, d, e)
be a linear exponential comonad on C. Then:

(a) The Kleisli category CQ has finite products.
(b) There exists an isomorphism i : Q1 → I and a natural isomorphism

j : Q( × )→ Q( )⊗Q( ).
(c) CQ is cartesian closed.

Proof: Part (a) has been shown previously (proposition 15, exercise 49), and
part (b) is left as exercise. For (c), we have the following isomorphisms:

CQ(A×B, C) = C(Q(A×B), C) definition of CQ
∼= C(QA⊗QB, C) part (b)
∼= C(QA, QB⊸ C) monoidal closure of C

= CQ(A, QB⊸ C) defn of CQ.

Concretely, we obtain θA : CQ(A×B, C)
∼=
−→ CQ(A, QB ⊸ C) by:

θA := (f.Q : A×B → C) 7−→ (Λ(f ◦ j−1
A,B)).Q

θ−1
A := (g.Q : A→ QB⊸ C) 7−→ (Λ−1(g ◦ j)).Q .

Clearly, θA is a bijection. In order to establish couniversality of the expo-
nential, we need also show naturality in A. So take f.Q : A × B → C and
h.Q : A′ → A. Note first that the following commutes.

Q(A×B)
δ //

j

��

Q2(A×B)
Q〈Qπ1,Qπ2〉 // Q(QA×QB)

j

��
QA⊗QB

δ⊗δ
// Q2A⊗Q2B

(∗)

Note also that, for any hi.Q : A′
i → Ai in CQ, we have:

h1.Q × h2.Q :=
(
Q(A′

1 × A′
2)

〈Qπ1,Qπ2〉
−−−−−−−→ QA′

1 ×QA′
2

h1×h2−−−−→ A1 ×A2

)
.Q

Thus, noting that id
(CQ)
B = εB.Q,
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θA′(f.Q ◦ h.Q × ε.Q) =
(
Λ(f ◦Q(h× ε ◦ 〈Qπ1, Qπ2〉) ◦ δ ◦ j−1)

)
.Q

=
(
Λ(f ◦Q(h× ε) ◦Q〈Qπ1, Qπ2〉 ◦ δ ◦ j−1)

)
.Q

(∗)
=
(
Λ(f ◦Q(h× ε) ◦ j−1 ◦ δ ⊗ δ)

)
.Q

=
(
Λ(f ◦ j−1 ◦Qh⊗Qε ◦ δ ⊗ δ)

)
.Q

=
(
Λ(f ◦ j−1 ◦ (Qh ◦ δ)⊗ id)

)
.Q

=
(
Λ(f ◦ j−1) ◦Qh ◦ δ

)
.Q

= θA(f.Q) ◦ h.Q

as required. Hence, CQ has exponentials and is therefore a CCC. In particular,
the exponential of objects B, C is QB⊸ C. �

Exercise 53. Show part (b) of proposition 16. For the defined j, show com-
mutativity of (∗).

1.8.6 Exercises

1. We say that a category C is well-pointed if it contains a terminal object 1
and, for any pair of arrows f, g : A→ B,

f 6= g =⇒ ∃h : 1 −→ A. f ◦ h 6= g ◦ h .

Let now C be a well-pointed category with a terminal object 1 and binary
coproducts, and consider the functor G : C → C given by:

G := A 7→ A + 1 , f 7→ f + id1 .

If C(1,1+1) = { in1, in2} with in1 6= in2, show that if (G, η, µ) is a monad
on C then, for each object A:

ηA = A
in1−−→ A + 1 , µA = (A + 1) + 1

[ idA+1, in2]
−−−−−−−→ A + 1 .

2. Let C be a SMCC and let (Q, ε, δ) be a comonad on C. Suppose that the
sequents !̂A ⊢ B and !̂B ⊢ C are provable and let f : FA → B and g :
FB → C be their interpretations (i.e. the interpretations of their proofs)
in C. Find the interpretations of the sequent !̂A ⊢ !̂C which correspond
to each of the following proofs,

...

!̂A ⊢ B

!̂A ⊢ !̂B
!̂R

...

!̂B ⊢ C

!̂B ⊢ !̂C
!̂R

!̂A ⊢ !̂C
Cut

...

!̂A ⊢ B

!̂A ⊢ !̂B
!̂R

...

!̂B ⊢ C

!̂A ⊢ C
Cut

!̂A ⊢ !̂C
!̂R

and show that the two interpretations are equal.
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3. Show that a symmetric monoidal category C has finite products (given by
⊗, I, etc.) iff there are monoidal natural transformations

d : IdC −→ ⊗ ◦ 〈IdC , IdC〉 , e : IdC −→ KI ,

such that the following diagram commutes, for any A ∈ Ob(C).

A
dA

&&MMMMMMMMMMM A⊗ I
rAoo

I ⊗A

lA

OO

A⊗A
idA⊗eA

oo

eA⊗ idA

OO

A Review of Sets, Functions and Relations

Our aim in this Appendix is to provide a brief review of notions we will
assume in the notes. If the first paragraph is not familiar to you, you will
need to acquire more background before being ready to read the notes.

Cartesian products, relations and functions

Given sets X and Y , their cartesian product is

X × Y = {(x, y) | x ∈ X ∧ y ∈ Y } .

A relation R from X to Y , written R : X → Y , is a subset R ⊆ X×Y . Given
such a relation, we write (x, y) ∈ R, or equivalently R(x, y). We compose
relations as follows: if R : X → Y and S : Y → Z, then for all x ∈ X and
z ∈ Z:

R; S(x, z) ≡ ∃y ∈ Y. R(x, y) ∧ S(y, z) .

A relation f : X → Y is a function if it satisfies the following two properties:

• (single-valuedness): if (x, y) ∈ f and (x, y′) ∈ f , then y = y′.
• (totality): for all x ∈ X , for some y ∈ Y , (x, y) ∈ f .

If f is a function, we write f(x) = y or f : x 7→ y for (x, y) ∈ f . Function
composition is written as follows: if f : X → Y and g : Y → Z,

g ◦ f(x) = g(f(x)) .

It is easily checked that g ◦ f = f ; g, viewing functions as relations.

Equality of functions

Two functions f, g : X → Y are equal if they are equal as relations, i.e. as
sets of ordered pairs. Equivalently, but more conveniently, we can write:

f = g ⇐⇒ ∀x ∈ X. f(x) = g(x) .

The right-to-left implication is the standard tool for proving equality of func-
tions on sets. As we shall see, when we enter the world of category theory,
which takes a more general view of “arrows” f : X → Y , for most purposes
we have to leave this familiar tool behind!
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Making the arrow notation for functions and relations unambiguous

Our definitions of functions and relations, as they stand, have an unfortunate
ambiguity. Given a relation R : X → Y , we cannot uniquely recover its
“domain” X and “codomain” Y . In the case of a function, we can recover the
domain, because of totality, but not the codomain.
Example Consider the set of ordered pairs {(n, n) | n ∈ N}, where N is the
set of natural numbers. Is this the identity function idN : N −→ N, or the
inclusion function inc : N ⊂ - Z, where Z is the set of integers?

We wish to have unambiguous notions of domain and codomain for func-
tions, and more generally relations. Thus we modify our official definition of
a relation from X to Y to be an ordered triple (X, R, Y ), where R ⊆ X × Y .
We then define composition of (X, R, Y ) and (Y, S, Z) in the obvious fashion,
as (X, R; S, Z). We treat functions similarly. We shall not belabour this point
in the notes, but it is implicit when we set up perhaps the most fundamental
example of a category, namely the category of sets.

Size

We shall avoid explicit discussion of set-theoretical foundations in the text,
but we include a few remarks for the interested reader. Occasionally, distinc-
tions of set-theoretic size do matter in category theory. One example which
does arise in the notes is when we consider Cat, the category of “all” cate-
gories. Does this category belong to (is it an object of) itself, at the risk of a
Russell-type paradox? The way we avoid this is to impose some set-theoretic
limitation of size on the categories gathered into Cat. Cat will then be too
big to fit into itself. For example, we can limit Cat to those categories whose
collections of objects and arrows form sets in the sense of some standard set
theory such as ZFC. Cat will then be a proper class, and will not be an ob-
ject of itself. One assumption we do make throughout the notes is that the
categories we deal with are “locally small”, i.e. that all hom-sets are indeed
sets. Another place where some technical caveat would be in order is when
we form functor categories. In practice, these issues never (well, hardly ever)
cause problems, because of the strongly-typed nature of category theory. We
leave the interested reader to delve further into these issues by consulting
some of the standard texts.

B Guide to Further Reading

Of the many texts on category theory, we shall only mention a few, which
may be particularly useful to someone who has read these notes and wishes
to learn more.

The short text [10] is very nicely written and gently paced; it is probably a
little easier going than these notes. Two texts which are written with a clarity
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and at a level which makes them ideal as a next step after these notes are [1]
and [6]. Unfortunately, both are out of print.

Another very nicely written text, focussing on the connections between
categories and logic, and especially topos theory, is [5], recently reissued by
Dover Books. A classic text on categorical logic is [7].

A particularly useful feature of [3] is the large number of exercises with
solutions.

The text [9] is a classic by one of the co-founders of category theory. It
assumes considerable background knowledge of mathematics to fully appreci-
ate its wide-ranging examples, but it provides invaluable coverage of the key
topics.

The 3-volume handbook [4] provides coverage of a broad range of topics
in category theory. The book [8] is somewhat idiosyncratic in style, but offers
insights by one of the key contributors to category theory. We have not yet
had the chance to study [2] in detail, but it looks useful, albeit exorbitantly
priced.
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