5.6 Quadratic and Cubic Equations 183

The solution in such cases is to use an alternative Clenshaw recurrence that
incorporates:;’s in an upward direction. The relevant equations are

Yy2=y-1=0 (5.5.25
1

Y = m[yk—2 —a(k, )ye-1 — ),

(k=0,1,...,N—1) (5.5.26
f(x) = enFn(z) — B(N,2)Fn_1(2)yn—1 — Fn(z)yn—2  (5.5.27

The rare case where equations (5.5.25)—(5.5.27) should be used instead
equations (5.5.21) and (5.5.23) can be detected automatically by testing whethe
the operands in the first sum in (5.5.23) are opposite in sign and nearly equal i
magnitude. Other than in this special case, Clenshaw’s recurrence is always stab
independent of whether the recurrence for the functibpss stable in the upward
or downward direction.
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5.6 Quadratic and Cubic Equations
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The roots of simple algebraic equations can be viewed as being functions of th
equations’ coefficients. We are taught these functions in elementary algebra. Ye
surprisingly many people don’'t know the right way to solve a quadratic equation
with two real roots, or to obtain the roots of a cubic equation.
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There are two ways to write the solution of theadratic equation
ax® +bxr+c=0 (5.6.1
with real coefficientsa, b, ¢, namely

 —bEVb? —4ac
- 2a

xT

(5.6.2
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184 Chapter 5.  Evaluation of Functions

and )
C
. 56,
T L Vb2 = dac (563

If you useeither (5.6.2)or (5.6.3) to get the two roots, you are asking for trouble:

If eithera or ¢ (or both) are small, then one of the roots will involve the subtraction
of b from a very nearly equal quantity (the discriminant); you will get that root very

inaccurately. The correct way to compute the roots is

g= _% {b + sgr(b)v/b? — 4@0] (5.6.4

Then the two roots are

and To =

q
= = 5.6.
T = (5.6.9

c
q

If the coefficientsu, b, ¢, are complex rather than real, then the above formulas
still hold, except that in equation (5.6.4) the sign of the square root should be

chosen so as to make

Re(b*/b2 — 4ac) > 0 (5.6.9

where Re denotes the real part and asterisk denotes complex conjugation.

Apropos of quadratic equations, this seems a convenient place to recall tha

the inverse hyperbolic functionsnh ~! andcosh™" are in fact just logarithms of
solutions to such equations,

sinh™*(z) = In(z + Va2 +1) (5.6.7
cosh™!(z) = £ In(z + Va2 — 1) (5.6.8

Equation (5.6.7) is numerically robust for> 0. For negativer, use the symmetry
sinh ™' (—z) = —sinh™*(z). Equation (5.6.8) is of course valid only for> 1.

For the cubic eguation
2 +ar? +br4+c=0 (5.6.9
with real or complex coefficients, b, ¢, first compute

a? —3b 2a% — 9ab + 27¢
= d -
Q 9 an R 1

(5.6.10

If @ andR are real (always true when b, c are realjand R? < @3, then the cubic
equation has three real roots. Find them by computing

6 = arcco$R/+/Q?) (5.6.11)
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5.6 Quadratic and Cubic Equations 185

in terms of which the three roots are

r, = —2 Qcos( %

To = —2 Qcos( 27T>—
3
r3 = —2+/Q cos (0_327T> —

(This equation first appears in Chapter VI of Feais, Viete's treatise “De emen-
datione,” published in 1615!)
Otherwise, compute

1/3
A=— [R + VR - Qﬂ (5.6.13
where the sign of the square root is chosen to make

Re(R*\/R2 — Q3) > 0 (5.6.14

(asterisk again denoting complex conjugation)Qland R are both real, equations
(5.6.13)—(5.6.14) are equivalent to

(5.6.12

wle wle

1/3
A = —sgnR) [|R| +V/R2- Qﬂ (5.6.15
where the positive square root is assumed. Next compute
_lQ/A  (A#£0)
B= {O (A =0) (5.6.16
in terms of which the three roots are
21 =(A+B)— % (5.6.17
(the single real root when, b, ¢ are real) and
= —2A+B) - L+ B)
(5.6.18
- tayp - 'E(A—B)
BTy 372
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(in that same case, a complex conjugate pair). Equations (5.6.13)—(5.6.16) aré
arranged both to minimize roundoff error, and also (as pointed out by A.J. Glassman
to ensure that no choice of branch for the complex cube root can result in the

Yyuo

spurious loss of a distinct root. §§
If you need to solve many cubic equations with only slightly different coeffi- =
cients, it is more efficient to use Newton's meth@8.4). T8
@
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186 Chapter 5.  Evaluation of Functions

5.7 Numerical Derivatives

Imagine that you have a procedure which computes a fungtief, and now
you want to compute its derivativg’(z). Easy, right? The definition of the
derivative, the limit ash — 0 of

F(z) ~ M (5.7.)

practically suggests the program: Pick a small vaiyeevaluatef(z + h); you
probably havef(z) already evaluated, but if not, do it too; finally apply equation
(5.7.1). What more needs to be said?

Quite a lot, actually. Applied uncritically, the above procedure is almost
guaranteed to produce inaccurate results. Applied properly, it can be the right ways
to compute a derivative only when the functigns fiercely expensive to compute,
when you already have invested in computjf{g:), and when, therefore, you want
to get the derivative in no more than a single additional function evaluation. In such
a situation, the remaining issue is to choaggroperly, an issue we now discuss:

There are two sources of error in equation (5.7.1), truncation error and roundoff
error. The truncation error comes from higher terms in the Taylor series expansion,
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P+ h) = @)+ hF@) + G20 @)+ h @) e (572

whence

flz+h) - fz)

! 1 1
- = Ghf" (5.7.3

The roundoff error has various contributions. First there is roundoff errdr. in
Suppose, by way of an example, that you are at a poiat 10.3 and you blindly
chooseh = 0.0001. Neitherz = 10.3 nor x + A = 10.30001 is a number with
an exact representation in binary; each is therefore represented with some fraction
error characteristic of the machine’s floating-point fornagt, whose value in single
precision may be- 10~7. The error in theffective value ofh, namely the difference
between: + h andz as represented in the machine, is therefore on the ordey, of
which implies a fractional error ih of order~ ¢,,z/h ~ 10~2! By equation (5.7.1)
this immediately implies at least the same large fractional error in the derivative.
We arrive at Lesson 1: Always chooseo thatr + h andx differ by an exactly
representable number. This can usually be accomplished by the program steps

temp=z+h
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(5.7.4

h =temp—z

Some optimizing compilers, and some computers whose floating-point chips have
higher internal accuracy than is stored externally, can foil this trick; if so, it is
usually enough to declareemp asvolatile, or else to call a dummy function
donothing (temp) between the two equations (5.7.4). This foreeap into and

out of addressable memory.
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