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1 Introduction

1.1 Scope

This paper is a survey of the current state of the art of research on methods for formal
software development. The scope of this paper is necessarily restricted so as to avoid
discussion of a great many approaches at a very superficial level. First, although some of
the ideas discussed below could be (and have been) applied to hardware development as
well as to software development, this topic will not be treated here. Second, the special
problems involved in the development of concurrent systems will not be discussed here
although again many of the approaches mentioned below could be applied in this context.
Third, no attempt is made to treat programming methodologies such as Jackson’s method
and program development systems such as the MIT Programmer’s Apprentice which are
not formally based. Finally, this survey does not claim to be fully exhaustive although
an attempt has been made to cover most of the main approaches. Many of the technical
details of the different approaches discussed have been glossed over or simplified for the
purposes of this presentation; full details may be found in the cited references.

1.2 Software development: from requirements to program

This section presents a general picture of the process by which a software system may be
developed by formal methods from a specification of the requirements the system must
fulfill. This overall picture will be useful in discussing the wide variety of formal program
development approaches available, as the different approaches attack different aspects of
the problem.

Let SPg be a specification of the requirements which the software system is expected to
fulfill, expressed in some formal specification language SL. (The process, sometimes known
as requirements engineering, by which such a precise formal specification is obtained start-
ing from the informal and often vague requirements of the customer will not be discussed
here although it is acknowledged that this problem is by no means a trivial one.) This
specification constrains the input/output behaviour of the system in some fashion. It may
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also place constraints on the time and space resources available, although most of the
approaches to be discussed are unable to deal with constraints of this kind. The ultimate
objective is a program P written in some given programming language PL which satisfies
the requirements in SP,.

The usual way to proceed is to construct P by whatever means are available, making
informal reference to SP, in the process, and then verify in some way that P does indeed
satisfy SP,. The only practical verification method available at present is to test P,
checking that in certain selected cases the input/output relation it computes satisfies the
constraints imposed by SP,. This has the obvious disadvantage that (except for trivial
programs) correctness of P is never guaranteed by this process, even if the correct output
is produced in all test cases. On the other hand, methods for automatically generating
test cases which are likely to expose problems are available, see for example [BCFG 86].

An alternative to testing is a formal proof that the program P is correct with respect
to the specification SP,. However, after two decades of work on program verification it
now seems to be more or less widely accepted that this will probably never be feasible
for programs of realistic size. At the very least, initial hopes for a system capable of
automatically generating proofs of program correctness are regarded as unrealizable.

Most recent work in this area has focused on methods for developing programs from
specifications in such a way that the resulting program is guaranteed to be correct by
construction. The main idea is to develop P from SP via a series of small refinement
steps, inspired by the programming discipline of stepwise refinement. Each refinement step
captures a single design decision, for instance a choice between several algorithms which
implement the same function or between several ways of efficiently representing a given
data type. This yields the following diagram:

SPyrre> SP ~oni> SPyross> - oo o> P

If each individual refinement step (SPy~~> SPy, SP; ~> SP, and so on) can be proved
correct, then P itself is guaranteed to be correct. Each of these proofs is orders of mag-
nitude easier than a proof that P itself is correct since each refinement step is small. In
principle it would be possible to combine all the individual correctness proofs to yield a
proof of the correctness of P with respect to SP,, but in practice this would never be
necessary.

When this approach is used to develop large and complex programs, the individual
specifications SP, become large and unwieldy. This is particularly true as n increases. As
a consequence the proofs of correctness of refinement steps become difficult, even though
the creative leap involved in a single step remains the same. The solution to this problem
adopted by some formal program development approaches is to allow specifications to be
decomposed into smaller units during the development process. These smaller specifica-
tions may then be refined independently of one another. A simple development involving



only two decompositions and six refinement steps would then give the following diagram:

SP, res> SPy ~~> P
b
SPy ~vs SP, ~s P
SP| res> ®
SP, ~» P

Here & and ©@ are intended to denote arbitrary specification-building operations, and P,
P" and P" are program modules. The program P @ (P’ @ P") is guaranteed to be correct
with respect to the specification SP, provided each of the individual refinement steps can
be proved correct. This assumes that & and @ can be used for combining program modules
as well as specifications, or at least that operations corresponding to & and ©@ exist on the
level of program modules.

It is important to note that the neat and tidy diagrams above are not intended to
suggest that the formal development of realistic programs proceeds without backtracking,
mistakes and iteration. Formal program development approaches do not claim to remove
the possibility of unwise design decisions. But once a program is obtained by means of
some sequence of refinement steps then a diagram like the one above which omits all the
blind alleys may be drawn. Then, provided all the required correctness proofs have been
carried out, correctness of the resulting program is guaranteed. Most approaches do not
require the correctness proofs to be carried out when the individual refinement steps are
first proposed; the proof obligations can be recorded for later, to be discharged after it
becomes clear if the refinement step will lead to (a module of) the final program.

There are a number of questions which the general view of formal program development
presented above leaves completely open, and which any particular approach which fits into
this mould must answer. These include:

e What is the specification language SL7

o What specification-building operations such as & and @ above are available in SL,
if any?

o What is the programming language PL?
o What is the relationship between PL and SL?

o What does “refinement” mean and under what circumstances is a refinement step
correct?

e How is the transition between SL and PL made?
e What is the relationship between refinement and decomposition?

e Does refinement of programs P ~~> P’ make sense? What is the relation between
this and refinement of specifications SP ~~> SP'?



e Does the refinement process itself have the status of a formal object subject to
analysis and manipulation (see [SS 83])?

It is very important to the mathematical soundness of the particular program develop-
ment approach under consideration that some of these questions (at least the first seven)
be given very precise answers. For example, whatever specification language SL is used,
it is important that it be given a complete formal semantics. Without such a semantics,
specifications have no precise meaning and so no formal proofs can be undertaken. The
same holds for the programming language PL. The notion of refinement must be given a
precise mathematical definition and it must be shown that refinements preserve behaviour
in an appropriate sense.

There are other questions which are important for determining the useability of an
approach:’

o What methods are available for proving the correctness of refinement steps?
o Where do refinement steps come from?

o What tools are available for assisting with which aspects of the program development
process?

e What level of sophistication is required by the user of such tools?

o Which aspects of the program development process as sketched above can be fully
automated?

e Does the approach require specifications to be “complete” in any sense? Does it
provide a way of checking completeness of a specification or identifying areas of
incompleteness?

e Does the approach provide ways of deriving programs which are optimal (or at least
adequate) with respect to some performance measure?

e Does the approach provide a formal way of comparing pros and cons of different
implementations which meet a specification?

e What are the complexity properties of the approach; for example, what happens to
the size of proofs of correctness as specifications grow in size?

Again, it is essential for soundness that any methods which are established for proving
correctness of refinement steps etc. are shown to be sound with respect to the formal
definition of refinement.

Even once all these questions have been given precise answers, there are additional
conditions which the answers must satisfy. For example, whatever definition of refinement

*Thanks to Aaron Sloman for pointing out the importance of the last four of these.



is adopted, it is essential that refinement steps be composable as discussed at the begin-
ning of section 3. It turns out that this in turn imposes constraints on the semantics of
specification-building operations.

Although these are important questions, it is not the purpose of this paper to answer
all of them for all the approaches which will be mentioned below. Some of the answers
may be found in the cited papers. Sometimes an approach has no clear answer to one or
more of the most central questions; in this case I try to point this out.

1.3 Structure of this paper

The rest of this paper surveys different approaches to formal program development in the
light of the discussion above. Section 2 surveys languages for writing specifications and
programs. Section 3 examines the notions of refinement adopted in different approaches.
Finally, section 4 discusses the issue of where individual refinement steps come from.

2 Specification and programming languages

This section survey languages which are used in different formal program development ap-
proaches to write specifications and programs. As suggested by the gradual evolution from
high-level specification to program described above, in many approaches the distinction
between specifications and programs is blurred or even non-existent.

Some approaches described below adopt a single so-called wide spectrum language
which can be used to write high-level specifications, efficient programs, and everything
which arises in the transition from the former to the latter during the program develop-
ment process. In these intermediate steps it is natural for specification constructs to be
mixed freely with programming constructs because of the way that high-level specifications
are gradually refined to programs. This also avoids various problems which arise when
separate specification and programming languages are used: there is no essential difference
between refinement of programs and refinement of specifications; the same modularization
constructs can be used to structure specifications as well as programs; there is no sud-
den leap from one notation to another but rather a gradual transition from high-level
specification to efficient program.

For the purposes of this paper, “high-level specifications” are descriptions which give
details of what is required. This is contrasted with “programs” which suggest how the
desired result is to be computed (which amounts to an algorithm of some kind). The word
“specification” shall be used to refer to any description of the input/output behaviour of a
system, whether algorithmic or not; thus a program is a specification which is executable.
This is consistent with the terminology used in wide spectrum languages where a program
is a specification which happens to use only the executable subset of the language.

In some approaches it is argued that the initial high-level specification of requirements
must be executable. This is thought to be necessary in order to ensure that this formal
specification accurately reflects the customer’s intentions; with an executable specifica-
tion this can be ascertained by testing. We agree that it is necessary to start from a



specification of requirements which is correct with respect to our intentions, and that
bug-free formal specifications are difficult to construct. But requiring the initial specific-
ation to be executable means that a major part (the most difficult part, in our view) of
the program development process is not formalized. For one thing, in constructing an
executable specification it is necessary to make many decisions which could be left open
in a non-executable specification. This means that a whole range of perfectly acceptable
alternative implementations is unnecessarily eliminated from consideration from the very
beginning. Writing specifications in an executable specification language is just a form of
programming, and developing efficient programs from such specifications is just program
optimization. Aiming for an initial specification which is as abstract and non-algorithmic
as possible often leads to useful simplifications and generalizations which would not be
discovered otherwise. Such a specification can be “tested” and shown to accurately reflect
our intentions using a theorem prover; instead of evaluating an expression e and checking
that the resulting value is v as expected, we try to prove that e = v is impled by our
specification.

A number of papers discussing these issues and others can be found in [GMc 86;
unfortunately most of the papers in this collection were originally published in the period
1977-1982 and so recent developments are not discussed.

2.1 VDM

VDM (the Vienna Development Method) is a method for rigorous (not formal) pro-
gram development. The objective is to produce programs by a process similar to the one
sketched in section 1.2 where the individual refinement steps are shown to be correct us-
ing arguments which are formalizable rather than formal, thus approximating the level of
rigour used in mathematics. This is supposed to yield most of the advantages of formal
program development by ensuring that sloppiness is avoided without the foundational and
notational overhead of full formality. VDM is presented in [Jon 80] and [BJ 82]; a short
introduction to the approach is in [Jon 86]. VDM is the most widely accepted approach
to systematic program development available to date.

VDM uses a model-oriented approach to describing data types. Models are built using
functions, relations and sets. A simple example from [Jon 80] is the following specification
of dates:

Date :: YEAR:Nat MONTH : {Jan,Feb,... ,Dec} DAY : {1 :31}
This models dates as triples, but does not require that dates be represented as triples in

the final program. Not all of the values of type Date are valid; the legal ones are charac-
terized by the following data type invariant:



inv—date(<y, m, d>) —def
(m € {Jan,Mar,May,Jul,Aug,Oct,Dec} = 1 < d <31) A
(m € {Apr,Jun,Sep,Nov} = 1 < d <30) A
(m = Feb A— is-leap-year(y) = 1 < d < 28) A
(m = Feb A is-leap-year(y) = 1 < d < 29)

A problem with model-oriented specifications is that it is easy to overspecify a system,
eliminating certain implementations from consideration from the beginning. In VDM a
precise notion of overspecification has been studied. A model is called biased if it is not
possible to define an equality test on the data values in the model in terms of the operators
defined. Intuitively, a biased model contains unnecessary redundancy. An unbiased model
is viewed as sufficiently abstract to be the initial high-level specification of a system. More
concrete models are introduced during the process of refinement (section 3.1).

Pre- and post-conditions are used to specify procedures, which may have side effects.
For example, a procedure called TIMEWARP which resets the date (part of the global
state) to a point 100 years in the past provided it is not October may be specified as
follows:

TIMEWARP

states: DATE

pre-TIMEWARP ((y, m,d)) =44 m # Oct
post-TIMEWARP ((y,m, d),r) =4 7 = (y — 100, m, d)

In the post-condition, r is the state which is produced by the procedure TIMEWARP. It is
necessary to show that TIMEWARP preserves the invariant associated with Date to ensure
that TIMEWARP cannot create an invalid date when given a valid date. Decomposition
during the refinement process is a matter of breaking down procedures into individual
statements which can themselves be specified using pre- and post-conditions. When this
process has been carried out to completion the result is a program.

The ESPRIT project RAISE [BDMP 85] is attempting to provide VDM with a formal
foundation and support tools. A similar aim is being pursued by the MetaSoft project at

the Polish Academy of Sciences [Bli 87].

2.2 7

7 is a specification language based on the principle that programs and data can be de-
scribed using set theory just as all of mathematics can be built on a set-theoretic basis.
Thus, 7 is no more than a formal notation for ordinary naive set theory. The first version of
7 [ASM 79] used a rather clumsy and verbose notation but the current version [Spi 85,87]
adopts a more concise and elegant notation based on the idea of a scheme which general-
izes the sort of thing behind mathematical notations like {z | # < T}, Az.az 4 1, [42°dz,
Va.p(x), Jz.p(x), all of which involve bound variables of some kind.

Data types are modelled in 7Z using set-theoretic constructions, just as mathematical
“data types” like natural numbers, real numbers, ordered pairs and sequences are defined



in set-theoretic terms in mathematics. For example, in specifying a display-oriented text
editor [Suf 82] a document is described as an ordered pair consisting of the text before the
cursor and the text after the cursor:

DOC

seq[CH] x seq[CH]

(CH is the set of characters which may appear in documents.) Two DOC-transforming
functions may then be specified as follows:

back : DOC — DOC
ins . CH — DOC — DOC

dom back={l,r |1 # ()}
(Y(l,r): DOC;ch: CH)
back (1 (ch),r) = (I, (ch) *r);
ins ch(l,r) = (I (ch),r);

(In this specification, () is the empty sequence; (¢h) is the sequence containing the single
character ch; and = is the append function on sequences.) The function back (move
one character backwards) is partial; it is applicable only to documents having some text
before the cursor. This restriction on its domain is given by the first axiom in the above
specification. The set of documents whose cursor is positioned at the beginning of a word
can be described as a subset of DOC' as follows:

sp: CH
wordb : P(DOC)

sp # nl
wordb = {l,r | last(l) € {sp, nl} V first(r) & {sp,nl}}

This introduces two distinguished characters, sp (space) and nl (new line) which are
required to be different, and then defines the set wordb as that subset of DOC' satistying
the second axiom.

Pre- and post-conditions may be used to specify procedures with side effects Jin a way
similar to that used in VDM (section 2.2).

7 has been used with success in UK industry to specify real systems. [Hay 87] is a
collection of case studies. However, there is still a great deal of work needed to turn 7 into
a complete formal program development method. For example, although some work has
been done on theorem proving by the Z group at Oxford, this work is not yet integrated
with the Z language. It seems that the design of the language will make this more difficult



than its ease of use as a specification language would suggest [Far 87].

2.3 1I0TA

The IOTA project at the University of Kyoto attempted to provide a formal basis and
mechanizable verification method for modular program development [NY 83]. The IOTA
language allows programs to be built by composing (possibly parameterized) modules
containing Algol-like function definitions which are specified using a variant of predicate
logic with equality. Although the programming language is imperative, programs with side
effects are not permitted. Program development is supported by an integrated program
development environment which includes an interactive theorem proving subsystem.

The specification of a program module is split into the interface part which gives
the names of the types and functions introduced by the module and the specification part
which gives the axioms which the functions are required to satisfy. There are three kinds of
modules: type modules which introduce a new abstract data type, procedure modules which
introduce new functions which operate on existing data types, and sype modules which are
used to specify the parameters of parameterized type and procedure modules. Type and
procedure modules have in addition a realization part which gives an implementation which
has been proved to satisfy the axioms in the specification part. Sype modules are used to
constrain the permissible actual parameters of a parameterized module: a parameterized
type or procedure module can only be applied to an actual parameter (type) module if
that type module can be proved to satisfy the axioms in the sype module.

Program development in IOTA is not stepwise: the implementation of a type or pro-
cedure module is developed from its specification in a single step rather than via a gradual
refinement process. The intention of IOTA is to allow the programmer to concentrate
on a single module at a time rather than to support the process of developing an im-
plementation for that module. Thus the emphasis is on verification rather than formal
development.

2.4 Rewrite rule based languages

During the past decade a number of very high-level programming languages which can be
seen as executable specification languages have been developed. These are based on the
idea that equations can be viewed as rewrite rules. That is, an equation YX.t = ¢’ can be
viewed as a rewrite rule t = t' (or t' = t) which says that any substitution instance of ¢
in an expression can be replaced by the corresponding substitution instance of ¢'. Under
certain conditions it is possible to “run” a set of such rules to compute the value of an
expression.

These languages are related to logic programming languages like Prolog [CM 81] which
has also been touted as an executable specification language. One view of the relationship
between rewrite rule based programming and logic programming is given in [GM 86].



2.4.1 HOPE

HOPE [BMS 80] is a purely applicative programming language having a rich but secure
type system which allows new data types to be defined by the user. For example, binary
trees with integer labels on nodes and leaves may be defined as follows (we assume that
the type int has already been defined):

data tree == empty ++ leaf(int) +4 node(tree,int,tree)

This defines a type called tree and three constructors, a constant empty : tree and two
functions leaf : int — tree and node : tree x int X tree — tree. It is not necessary to
provide a representation for trees in terms of more primitive types; a value of type tree
is just an expression built from constructors such as leaf(3) or node(empty, 4, leaf(7)). A
function which produces the sum of all the labels in a tree is defined by cases as follows:

dec sum: tree — int

--- sum(empty) < 0

--- sum(leaf(n)) < n

--- sum(node(t1,n,t2)) < n 4+ sum(tl) + sum(t2)

Equations are required to be of the form f(pattern) < expression where pattern is an
expression containing variables and constructors only. This syntactic restriction is what
makes HOPE programs executable. Higher-order functions which take functions as argu-
ments and/or return functions as results are permitted. Static binding is used rather than
LISP-like dynamic binding.

HOPE has other features such as a simple program modularization facility and Milner-
style polymorphic types [Mil 78] which will not be discussed here.

2.4.2 Standard ML

One of the innovative features of the LCF theorem proving system [GMW 79] was the
use of a general-purpose programming language called ML as its metalanguage. ML soon
took on a life of its own with a number of implementations, each of a different dialect,
developed during the period 1980-1985. Standard ML [HMM 86] is an attempt to reconcile
the features of all these dialects which was strongly influenced by the design of HOPE.

The main concepts of Standard ML are similar to those of HOPE. The examples above
may be rewritten in Standard ML with only minor syntactic changes:

datatype tree = empty | leaf of int | node of tree * int * tree

fun sum(empty) =0
| sum(leaf(n)) = n
| sum(node(t1,n,t2)) = n + sum(tl) + sum(t2)
Standard ML has many other features which will not be discussed here, for example a
powerful exception mechanism, polymorphic types and some imperative constructs.

10



The main important advance of Standard ML with respect to HOPE is the powerful
facilities it provides for program modularization. These provide for the separate defini-
tion of interfaces (signatures and their implementations (structures). Every structure has
a signature which gives the names of the types and functions defined in the structure.
Structures may be built on top of existing structures, so each one is actually a hierarchy
of structures, and this is also reflected in its signature. It is possible, and sometimes ne-
cessary in order to allow interaction between different parts of a program, to declare that
certain substructures in the hierarchy are identical or shared. Functors are like paramet-
erized structures; applying a functor to a structure yields a structure. A functor has an
input signature describing structures to which it may be applied, and an output signature
describing the result of an application.

[Har 86] and [Wik 87] are readable introductions to Standard ML; the latter unfortu-
nately does not mention Standard ML’s modularization facilities.

2.4.3 OBJ2

OBJ2 [FGJM 85] is the most recent in a succession of programming languages which
includes OBJO, OBJT and OBJ1. The original motivation for this work was to allow
algebraic specifications to be tested, although it is now advertised as a ultra high level
programming language. An OBJ2 program (called an object) declares some new types and
functions which are then defined by means of a set of equations. When viewed as rewrite
rules, the equations are required to have the Church-Rosser and termination properties
which guarantee that repeated rewriting using the rules will always terminate with a
unique result. This allows equations which are not permitted in HOPFE or Standard ML
and does not require that constructors be distinguished from other functions. Functions
may be declared as commutative, associative, idempotent and /or having an identity; this
information is then used appropriately by the rewriting mechanism.

Objects may be parameterized, where the range of permissible actual parameter objects
is described by a (non-executable) requirement theory. At application time it is necessary
to check that the given actual parameter satisfies the axioms in the requirement theory,
up to a renaming which is supplied by the user. The semantics of object application is the
same as the semantics of parameterized specification application in CLEAR (section 2.5.1).

OBJ2 has other features which will not be discussed here, including a very flexible
syntax and a notion of subtype. OBJ2 does not permit higher-order functions in contrast
to HOPE and Standard ML. Some of the features of OBJ2 (for example, checking that
a system of equations is Church-Rosser and terminating, and checking that an actual
parameter object satisfies a requirement theory) require the use of a theorem prover.
[FGJM 85] indicates that the integration of OBJ2 with the REVE theorem proving system
[Les 83] is a topic for future work; it is not known what progress has been made in this
direction since then.
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2.5 Algebraic specification languages

A great deal of work has been devoted to methods of specification based on the idea that
for specification purposes a functional program can be modelled as a many-sorted algebra,
i.e. as a number of sets of data values (one set of values for each data type) together
with a number of (total) functions on those sets corresponding to the functions in the
program. This abstracts away from the algorithms used to compute the functions and
how those algorithms are expressed in a given programming language, focusing instead
on the representation of data and the input/output behaviour of functions. It is possible
to extend this paradigm to handle imperative programs as well by modelling imperative
programs as functional programs [GB 80b] or else by using a different notion of algebra,
as will be discussed below. The original motivation for this work was to provide a formal
basis for the use of data abstraction in program development.

The pioneering work in this area was [Zil 74], [Gut 75] and [GTW 78], of which the
latter (the so-called initial algebra approach)is the most formal. A specification consists of
a signature — a set of sorts (data type names) and a set of function names with their types
— together with a set of equational axioms expressing constraints which the functions must
satisfy. For example, here is a specification of an abstract data type of natural numbers:

signature sorts nat

opns 0 : — nat
succ : nat — nat
+ : nat x nat — nat
X : nat X nat — nat

axioms VYn:nat.04+n=n
Vm,n : nat. succ(m) + n = succ(m + n)
Vn:nat.0 x n =20
Vm,n : nat. succ(m) x n=n+ (m x n)

Notice how the constant 0 is viewed as a nullary function. This specification describes
a certain class of algebras having the given signature and satisfying the given equations
(the isomorphism class of so-called initial models, which includes the usual set-theoretic
model of natural numbers). Another possibility is to view this specification as describing
the isomorphism class of so-called final models [Kam 83] (see also [Gan 83]). Since this is
a very simple specification it has only one sort but in general a specification may include
many sorts. See [EM 85] for a detailed introduction to this style of specification.

2.5.1 CLEAR

Specifications such as those above are fine for specifying very simple data types such as
natural numbers, booleans, stacks and queues. But specifying a large programs using
this method would involve a list of hundreds or even thousands of axioms. Even if such
a large specification could be constructed, it would be impossible to understand or use.
The likelihood that a specification in this style accurately reflects the specifier’s intention
decreases dramatically with the size of the specification.
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The specification language CLEAR [BG 77, 80, 81], [San 84] provides a small number
of specification-building operations which allow large and complicated specifications to be
built in a structured way from small, understandable and reuseable pieces. The operations
provide ways of combining two specifications, of enriching a specification by some new sorts,
functions and axioms, of renaming and/or forgetting some of the sorts and functions of a
specification, and of constructing and applying parameterized specifications. In contrast to
the simple approach sketched above it is possible to write loose specifications in CLEAR,
i.e. specifications describing a range of non-isomorphic algebras. This allows decisions to be
left deliberately open to be made later in the program development process. For example,
it is possible to specify a function which takes the square root of a number without saying
whether it produces the negative or positive square root.

The semantics of CLEAR allows it to be used with different kinds of axioms (not
just equations) to specify different kinds of algebras. This allows appropriate treatment
of exceptions, non-terminating functions and imperative programs, among other things.
This point will be discussed at length in section 2.5.5 below.

2.5.2 CIP-L

The project CIP (Computer-aided, Intuition-guided Programming) at the Technische Uni-
versitat Minchen had as its aim the development of a methodology for formal program
development by transformation (see section 4) and the implementation of a system to
support the development process.

CIP-L [Bau 85] is the language on which the CIP project was based. CIP-L is a wide-
spectrum language which includes constructs for writing high-level specifications (using
predicate logic with equality, non-deterministic choice and set expressions), functional
programs, imperative programs and unstructured programs with gotos. These constructs
may be freely mixed in order to allow a gradual transition between the initial high-level
specification of the problem to be solved and the final efficient program. Some advantages
of a wide-spectrum language like CIP-L for formal program development were mentioned
at the beginning of section 2. CIP-L includes different facilities for constructing (possibly
parameterized) high-level specification modules and program modules in a hierarchical
fashion; the relationship between these different kinds of modules is similar to the relation
between the specification part and realization part of a module in IOTA (section 2.3) or
between signatures and structures in Standard ML (section 2.4.2).

The semantics of the specification part of CIP-L is expressed in terms of classes of
partial algebras (algebras in which partial functions may be modelled). In contrast to
most earlier approaches in the algebraic tradition, the axioms used in specifications need
not be equations. It is possible to write loose specifications in CIP-L as in CLEAR.

2.5.3 ACT ONE

The ideas incorporated in CLEAR and CIP-L diverge to some extent from the initial
algebra approach to algebraic specifications in [GTW 78] outlined above. This earlier
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strand of theoretical work was continued by Thatcher, Wagner and Wright of IBM York-
town Heights in collaboration with Ehrig and his colleagues at the Technische Universitat
Berlin. ACT ONE (described in [EM 85], chapters 9 and 10) is a specification language
developed in Berlin which adheres more or less strictly to the initial algebra approach.
ACT ONE includes specification-building operations similar to the ones in CLEAR ex-
cept that the mechanism which supports parameterization of specifications is intentionally
different. An important drawback of ACT ONE is that it does not permit loose specifica-
tions.

2.5.4 Larch
The Larch family of specification languages [GHW 82], [GH 83] was developed at MIT and

Xerox PARC to support the productive use of formal specifications in programming. One
of its goals is to support a variety of different programming languages, including imperative
languages, while at the same time localizing programming language dependencies as much
as possible. Fach Larch language is composed of two components: the interface language
which is specific to the particular programming language under consideration and the
shared language which is common to all programming languages. The interface language
is used to specify program modules using predicate logic with equality and constructs to
deal with side effects, exception handling and other aspects of the given programming
language. The shared language is an algebraic specification language used to describe
programming-language independent abstractions using equational axioms which may be
referred to by interface language specifications. The role of a specification in the shared
language is to define the concepts in terms of which program modules may be specified. The
shared language includes specification-building operations inspired by those in CLEAR,
although these are viewed as purely syntactic operations on lists of axioms rather than as
semantically non-trivial operations as in CLEAR.

2.5.5 Institutions

Any approach to algebraic specification must be based on some logical system. Typically
many-sorted equational logic is used for this purpose. Nowadays, however, examples of
logical systems in use include first-order logic (with and without equality), Horn-clause
logic, higher-order logic, infinitary logic, temporal logic and many others. All these logical
systems may be considered with or without predicates, admitting partial functions or not.
This leads to different concepts of signature of algebra. There is no reason to view any of
these logical systems as superior to the others; the choice must depend on the particular
area of application and may also depend on personal taste.

The informal notion of a logical system has been formalised by Goguen and Burstall
[GB 84], who introduced for this purpose the notion of institution. An institution consists
of a collection of signatures together with for any signature ¥ a set of well-formed -
sentences, a collection of Y-algebras and a satisfaction relation between }-algebras and
Y-sentences. The signatures come with some notion of signature morphism o : ¥ — ¥ in
order to provide for changing signatures, which induces the o-translation of X-sentences
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to X'-sentences and of X'-algebras to Y-algebras. When we change signatures, the induced
translations of sentences and algebras are required to preserve the satisfaction relation.
This condition expresses the intentional independence of the meaning of specifications
from the actual notation. All the above logical systems (and many others) fit into this
mould.

For purposes of generality, it is best to avoid choosing any particular logical system
on which to base a specification approach. This leads to results and tools which can be
reused in many different logical systems. The semantics of CLEAR (see section 2.5.1)
is parameterized by an arbitrary institution in this fashion. This means that CLEAR
accommodates a variety of logical systems and styles of specification without change. The
other specification languages discussed up to this point do not share this feature. Thus,
for example, CIP-L is solidly based on first-order logic and partial algebras and cannot be
used to specify higher-order functions or non-deterministic functions without fundamental
changes.

2.5.6 ASL

ASL [SWi 83], [Wir 86] is a kernel specification language intended primarily as a foundation
for building other more high-level and user-friendly specification languages rather than for
direct use in writing specifications. It comprises a small number of simple but powerful
specification-building operations. It has a simple semantics in comparison with high-level
specification languages like those described above. The semantics of the constructs of
a high-level specification language built on top of ASL would be expressed by mapping
these constructs into ASL expressions. Specification languages built on top of ASL in this
fashion include Extended ML (section 2.5.7), PLUSS [Gau 83] and SMoL.CS [AMRW 85]
which has in turn been used to give a formal semantics of Ada [DDC 85].

One novel feature of ASL is a specification-building operation which can be used to be-
haviourally abstract from a specification, closing its collection of models under behavioural
equivalence [GGM 76], [Rei 81], [ST 87]. This allows model-oriented specifications as in
VDM (section 2.1) in which a desired behaviour is described by giving a simple concrete
model which exhibits it. It is argued that such an operation is a necessary ingredient in
an algebraic specification language since the specification of e.g. an abstract data type
is supposed to describe a behaviour without regard to the particular representation used
and therefore all algebras which realize the desired behaviour should be permitted. Fur-
thermore, using algebraic specification languages which lack a behavioural abstraction
operation, it is in general difficult (as in CLEAR) or impossible (as in ACT ONE) to
describe collections of algebras which are closed under behavioural equivalence since such
a collection may contain a wide range of non-isomorphic algebras.

The semantics of ASL is parameterized by an arbitrary institution [ST 88a] so like
CLEAR it can be used with a wide variety of logical systems.
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2.5.7 Extended ML

Extended ML [ST 85] is a wide-spectrum language obtained by extending Standard ML
(section 2.4.2) to allow axioms to appear in signatures and in place of code in structure and
functor definitions. Axioms in a signature place constraints on the permitted behaviour
of the components of structures which match that signature. Axioms in a structure or
functor are used to write “abstract programs” [Wirth 71], i.e. to define functions and data
in a high-level way which is not necessarily executable. Some FExtended ML specifications
are executable, since Standard ML function definitions are just axioms of a certain special
form. The goal of program development is to refine non-executable specifications until
they contain axioms of this form only.

The semantics of Extended ML is defined by translation into ASL [ST 86] as described
in section 2.5.6. Behavioural abstraction plays an important role in the semantics of
signatures. Extended ML can be used with a wide variety of logical systems because of
the way that its semantics is based on ASL. This also amounts to the independence of
Extended ML from the programming language used to write code, since programs are
just a form of axioms. Thus Extended ML can be used without major change to develop
programs in languages other than Standard ML, for example Prolog (see also [SWa 87]).

3 Refinement of specifications

It turns out to be surprisingly difficult to give a precise definition which adequately captures
the intuitively simple notion of refinement. The main problem is with the representation
of data. During the process of refining an abstract specification to a concrete program, it
is necessary to devise more and more concrete data representations. Ultimately all data
must be represented using the primitive data types provided by the target programming
language. Some of the issues which arise are illustrated by the following very simple
example.

Consider a specification SP describing the function min which takes as input a set of
numbers and produces as output the smallest number in the set. It is natural to consider
representing sets as lists, but there are at least four different ways this may be done:

1. All of [1,2], [2,1], [2,1,2], [1,1,1,2] etc. represent the set {1,2}: order is insignificant
and elements may be repeated.

2. Allof [1,2], [1,2,2], [1,1,2,2,2] etc. represent the set {1,2}: elements may be repeated
but order is significant.

3. Both [1,2] and [2,1] represent the set {1,2}: order is not significant but elements are
not repeated.

4. The list [1,2] represents the set {1,2}: order is significant and elements may not be
repeated.
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Each of these representations is valid in the sense that the correctness of the resulting
program will not depend on which one is chosen. Which representation is most usetul
depends on the functions which will be used to create and access sets and their relative
frequency of use. Adding an element to a set using representation 1 is cheap since the
new element may simply be added to the beginning of the list. Adding a new element
using representation 3 involves checking if the element is already there, which may require
searching the entire list. Adding an element using representation 2 or 4 involves finding
the proper place in the list to deposit the new element. On the other hand, checking
membership using representation 2 or 4 is cheap since the list is ordered; finding the
minimum element is especially cheap. Finally, representations 3 and 4 are efficient in
terms of space since set elements are not needlessly repeated.

This example demonstrates some of the degrees of freedom which are possible when
refining the representing of data. Representations 1-3 show that it is possible to have
several concrete representations of a single abstract value, and representations 2-4 show
that sometimes there are concrete values (for example [2,1,2]) which are not used to rep-
resent abstract values. It is also possible to have several abstract values represented by the
same concrete value which can happen if the original specification is biased, to use VDM
terminology. Unless all of these degrees of freedom are captured by the formal notion
of refinement adopted by a particular program development approach, there will correct
programs which will not be obtainable using that approach.

Whatever formal notion of refinement is adopted, it is essential for the correctness of
the development method that refinement steps be composable in two ways. First of all, two
refinement steps SP ~~s SP’ and SP' ~~> SP" should compose to give a correct refinement
SP ~~> SP" for arbitrary specifications or programs SP, SP" and SP”. This is the prop-
erty of refinement steps (known as vertical composability [GB 80a]) which guarantees the
correctness of programs developed from specifications in a stepwise fashion. Secondly, if the
program development approach under consideration allows specifications to be decomposed
into smaller units during the development process, then the notion of refinement adopted
must be compatible with the specification-building operations: given two refinement steps
SP{ ~re> SP/1 and SP, ~~> SP;, it should be the case that SP, & SP, ~~> SP/1 @ SP/2 is a
correct refinement for any specification-building operation @. This is the property (known
as horizontal composability [GB 80a]) which guarantees that separate development strands
may proceed independently and then later be combined to yield a correct result. Finally,
a formal program development method must provide some way of proving that refinement
steps are correct with respect to the notion of refinement adopted.

Not all of the specification approaches presented in section 2 come with a corresponding
notion of refinement. This concept has received most attention in connection with algebraic
approaches.

3.1 VDM

VDM has already been introduced in section 2.1.
Suppose that we want to establish that one VDM specification SP’ is a correct refine-
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ment of another VDM specification SP. The proof of correctness consists of the following
steps:

o Define a “retrieve function” retr which maps the data values specified in SP’ to the
data values specified in SP. This relates concrete data values to the abstract values
they represent. Because of the direction of retr there may be many concrete values
which represent a single abstract value but not vice versa.

e Prove that retr is total (on data values in SP’ which satisfy the data type invariant)
and surjective. This guarantees that every concrete data value represents some
abstract value and that every abstract value has a representation. The data type
invariant in SP’ should restrict the domain of retr to the concrete values which will
be used as representations.

o Identify an operation f’ in SP' corresponding to each operation f in SP. The
operations on the concrete level are supposed to model those on the abstract level,
as will be ensured by the final two steps.

e Prove that pre—f(retr(v)) = pre—f'(v) for all concrete values v. This ensures that
the pre-conditions of the concrete operations are not more restrictive than those of
the corresponding abstract operations.

e Prove that pre— f(retr(v)) Apost— f'(D,v) = post— f(retr(v), retr(v)) for all concrete
values 7,v. This guarantees that the results produced by the concrete operations
mirror those produced by the abstract operations.

This notion of refinement is able to capture all four of the ways listed above of rep-
resenting sets as lists. However, if SP is biased then this approach will exclude some
refinements leading to programs which are correct from the point of view of the behaviour
they display. This point is discussed in [Sch 86]. An attraction of the VDM approach is
that the steps for verifying correctness are stated quite explicitly and are relatively easy
to accomplish. This is often not the case in other approaches.

3.2 Z

7, was introduced in section 2.2. The 7 approach to specification refinement as described
in [Spi 87] is virtually identical to the VDM approach presented above except for differ-
ences in notation and terminology, leading to the same advantages and disadvantages.
[Spi 87] claims that it is possible to handle situations in which several abstract values are
represented by a single concrete value (as is sometimes required when SP is biased) using
a slightly more complicated approach, but no details are provided.

3.3 Algebraic approaches

Some of the background to algebraic methods of program specification has already been
given in section 2.5.
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Work in this context on specification refinement has been inspired by the seminal work
of Hoare [Hoa 72] on data refinement. According to [Hoa 72], an algebra A’ is a refinement
of an algebra A if there is some subalgebra A” of A" with a surjective homomorphism
h: A" — A. There is an intimate connection with the VDM approach described in sec-
tion 3.1: the subalgebra A” contains those data values which satisfy the data type invariant
(the representation invariant in Hoare’s terminology) and h is the retrieve function (ab-
straction function). Requiring h to be a homomorphism guarantees that the operations in
A" (and thus in A’) behave the same as the operations in A.

This idea can be extended from algebras to specifications by regarding a specification
SP' as a correct refinement of another specification SP if every model of SP’ refines a model
of SP in Hoare’s sense. It is possible to modify Hoare’s definition in various ways so as to
take account of the possibility that SP’ might contain operations having different names
from those in SP and to allow an intermediate specification to be constructed based on SP’.
There has been a great deal of work on this topic with more than twenty different algebraic
definitions of refinement advocated in the literature, including definitions suitable for use
with CLEAR (section 2.5.1) and CIP-L (section 2.5.2). Probably the most influential of
these is the one given in [EKMP 82] which is suitable for use with ACT ONE (section 2.5.3).
Although Hoare’s refinement relation composes vertically (see section 3) most of the more
elaborate refinement relations which have been proposed do not compose vertically except
under conditions which are not easy to ensure. For many of these refinement relations the
question of horizontal composability has not been investigated while for others it has been
shown to be problematic.

A simpler approach is obtained by requiring specifications to describe all algebras
which are to be regarded as acceptable realizations. Then SP’ is a refinement of SP if
all the models of SP’ are also models of SP. This definition is only appropriate for use
with a specification language which incorporates behavioural abstraction (such as ASL,
discussed in section 2.5.6, and Extended ML, discussed in section 2.5.7) since otherwise it
is not flexible enough to capture the kinds of refinements which are required in practice.
It is easy to show that this refinement relation composes both vertically and horizontally.

A unifying and generalizing approach to the issue of specification refinement is [ST 88b].
All the other definitions of refinement (including the one used in VDM) are special cases
of this one. Refinements compose vertically and horizontally and it is shown how previous
problems in this area were the consequence of using notions of refinement which were
not sufficiently flexible. This notion of refinement works in the context of an arbitrary
institution and it is even possible to change institutions in the course of a refinement step,
so for example refining an equational specification to yield a Hoare-logic specification of
an imperative program.

4 Program transformation and program synthesis

Section 1.2 presented a general picture of formal program development in which programs
were evolved from specifications in a gradual fashion via a series of refinement steps. The
source of these refinement steps was left open. The program development approaches
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mentioned in section 3 assumed that refinement steps are supplied manually by the user
and must be proved correct.

Some refinement steps are more or less routine. For example, there are certain stand-
ard concrete ways of representing common abstract data types like stacks and queues,
and there are standard ways of converting recursive algorithms to iterative ones. If the
refinement process is taken to include the process by which inefficient programs are trans-
formed into efficient programs, then the techniques used by optimizing compilers (constant
propagation, loop jamming, etc.) can be viewed as refinement steps as well. Such refine-
ment steps can typically be described schematically; for example, replacement of a simple
form of recursion by iteration is described as follows:

Replace: f(x) = if e;(x) then e,(x) else f(es(x))

by: f(z) = begin
var «;
a = x;

while not ¢,(a) do a := e;(a);
return e,(a)
end

Any refinement obtained by instantiating this transformation rule will be correct. Rather
than proving correctness separately for each instantiation, the rule itself can be proved
correct (with respect to a given notion of refinement) and then applied as desired without
further proof. Sometimes such a rule will be correct only provided certain conditions
are met by the program fragments matching the schematic variables or by the context in
which the rule is applied; in this case the proof obligation is reduced to checking that these
conditions are satisfied.

Research on program transformation aims at developing appropriate formalisms and
notations, building computer-based systems for handling the bookkeeping involved in
applying transformation rules, compiling libraries of useful transformation rules, and
developing strategies for conducting the transformation process automatically or semi-
automatically. See [PS 83] for a survey of this work. Two program transformation ap-
proaches are discussed in sections 4.1 and 4.2.

The entire program development process as presented in section 1.2 can be captured
within the program transformation paradigm, given the following transformation rule:

Replace:  SP
by: SP'
provided: SP ~~> SP' is a correct refinement

This transformation rule cannot be regarded as satisfactory because its schematic content
is completely trivial; the work involved in using this rule is just the same as that involved
in the direct use of the notion of refinement as described in section 1.2. In practice,
most transformation rules lie somewhere between the extremes represented by the two
transformation rules given above. Some invention on the part of the user is required
before the schematic transformation can be applied and a proof that certain conditions
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hold is needed to ensure that the transformation is sound.

Schematic rules have mostly been applied at the level of programs rather than spe-
cifications, for transforming algorithms to increase efficiency rather than for developing
an algorithm from scratch. Spectacular speedups far in excess of those achievable by an
optimizing compiler are possible; an example in [PB 82] shows how a simple program
running in exponential time can be transformed to one running in logarithmic time.

Transformation rules provide a way of generating correct refinement steps automatic-
ally. But it is still necessary for the person developing the program to select an appropriate
rule to apply and in many cases considerable ingenuity is required to supply appropriate
expressions and function definitions to substitute for the schematic variables in the rule.
Program synthesis attempts to automate this process, thereby generating programs from
specifications automatically. Two approaches to program synthesis are presented in sec-
tions 4.3 and 4.4.

4.1 Burstall, Darlington and Feather

The first work on program transformation was done by Burstall and Darlington in Ed-
inburgh in the mid-1970’s. In [BD 77] they describe a set of seven simple rules which
can be used to transform programs written in a HOPE-like [BMS 80] language. These
rules include fold (replace an expression e(a) by a function call f(a) where f is defined by
flz) = e(x)); unfold (dual to fold, expand a function call into the body of the function’s
definition); definition of new functions; and rewriting of expressions using the algebraic
properties of primitive operations. Individual applications of these rules do not lead to
improvements in efficiency, but certain sequences of rule applications can produce spee-
dups. An example from [BD 77] is the following transformation of a simple program for
generating Fibonacci numbers which runs in exponential time to a slightly more complic-
ated linear-time program:

original program
original program

1
1
+2) = flz+1)+ f() original program
= 1

A

g(x) = (f(x+1), f(x)) definition
g(0) = (f(1), f(0)) instantiation of 4
=(1,1) unfold with 1 and 2
6. gla+1) ={fla+2),f(x+1)) instantiation of 4
=(fle+1)+ flx), flz+1)) unfold with 3
= (u+ v,u) where (u,v) = (f(x +1), f(x)) unfold with 3
= (u + v,u) where (u,v) = g(x) fold with 4
7. flz+2) =u+v where (u,v) = (f(x+1), f(z)) abstract 3
= u 4 v where (u,v) = g(x) fold with 4

Successtul transformation sequences typically involve one or more creative so-called eureka
steps in which a new function is invented or a critical rewriting is done. The eureka step
in the above example is step 4 where the new function ¢ is defined which proves crucial in
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transforming f in step 7.

Darlington and Burstall built a system which automatically transformed small pro-
grams by applying these transformation rules. Feather [Fea 82] built a system which
allowed the user to supply a pattern indicating the overall form of the desired result. This
allowed his system to handle much larger examples because of the resulting reduction in
the search space.

Strictly speaking, the rules in [BD 77] do not preserve equivalence of programs under
a call by value semantics; unfolding may lead to a program which terminates more often
than the original program whereas folding has the opposite (and much less desirable)
effect. Scherlis [Sch 81] proposes an alternative set of primitive transformation rules which
do preserve equivalence.

4.2 CIP and PROSPECTRA

The CIP project and the CIP-L wide spectrum language have already been introduced in
section 2.5.2.

The intention of the CIP project was to support program development by transforma-
tion all the way from the original high-level specification to a final efficient program. This
typically includes the following stages of development [Par 86], [Mdl 87]:

e Descriptive formal problem specification;
o Modified (still descriptive) specification;
e Non-deterministic implicitly recursive solution;

e Non-deterministic explicitly recursive solution;

Deterministic tail-recursive solution;

Further modified applicative program;
o Efficient imperative program.

A library of transformation rules has been developed to support all the stages of this
process under the supervision of the system CIP-S [Bau 87]. For example, in transforming
specifications the embedding rule is often useful (I simplify a little and use a different
notation in all rules in this section):

/

Replace:  function f(z:1) =€, : ¢
by: function f(x:1) =
function g(y:t") = ¢, : t
k(g(h(x))):#'

provided: h:t — " Nkit" — ¢ AVy:t.k(g(h(y))) = f(y)

Using this rule involves inventing h, k£ and e, in such a way that the condition is satisfied.

n

22



Burstall/Darlington-style folding and unfolding rules (modified to ensure that folding
does not introduce non-termination) are used to derive theorems about the specification
which can be read as recursion equations.

The recursive form is improved by applying rules which convert recursion equations
to tail-recursive form, combine common sub-expressions, eliminate function composition,
memo-ize functions, etc. For example, here is a rule which can be used to perform a general
form of strength reduction in which recomputation of an expression on each recursive call
is replaced by computing its value incrementally from one call to the next:

Replace:  function f(x:t) =
if e, then e, else f(e;5)
()
by: function g(z:t,y:t') =
if ¢,y c] then e,[y/e] else glealy/el, elea/o]ly/c])
9(z.¢€)
provided: determinate(e) A defined(e) A newvar(y)
(a]b/c] denotes the result of substituting b for every occurrence of ¢ in a.) In applying this
rule, e should be chosen so that the result is simpler to compute than the original form.

Finally, conversion from tail-recursive to imperative form is accomplished by transform-
ation rules like the one at the beginning of section 4. For more general types of recursion
(for example, mutual recursion) transformation rules are provided which yield programs
containing gotos [BW 82].

These techniques are applicable mainly to developing the individual functions of a pro-
gram. Another form of transformation is change of data structure via a form of refinement
[BMPW 86] similar to the algebraic approaches discussed in section 3.3.

The ESPRIT project PROSPECTRA [Kri 87] is attempting to apply methods similar
to those developed in the CIP project to the development of Ada programs by trans-
formation from specifications written in the language Anna [LHKO 87]. Apart from the
attempt to scale up the ideas to work in the context of Ada (which involves considering
concurrency aspects, etc.), there is some work on an algebraic formalization of the trans-
formation process itself so as to allow the transformation strategy itself to be developed
by transformation [Kri 88].

4.3 Manna and Waldinger

The DEDALUS system [MW 79] was developed to synthesize LISP programs automatically
from specifications written in a simple LISP-like notation. A goal-directed deductive
approach is used whereby the reduction of a goal (to synthesize a program satisfying a
given specification) to one or more subgoals by means of a transformation rule results in the
generation of a program fragment which computes the desired result once it is completed
with program fragments corresponding to the subgoal(s). So, for example, reducing a goal
to two subgoals by means of a case analysis corresponds to the introduction of a conditional
expression.

23



An idea corresponding to Burstall and Darlington’s fold rule is used to introduce recurs-
ive function calls. This is done if a goal is produced which matches the original top-level
goal, provided termination can be guaranteed. Auxiliary recursive functions are formed if
a goal 1s encountered which matches some lower-level goal.

The system incorporates an automatic theorem prover and includes a number of strategies
designed to direct it away from rule applications unlikely to lead to success. If a dead end
is encountered then the system backtracks and tries another rule. This system has been
used to generate a few simple list-processing functions such as the intersection of two lists
and functions like the greatest common divisor of two numbers.

A later approach [MW 80] is based on a sequent-based system for theorem proving
in first-order logic. In this system, a sequent consists of a number of assumptions and
goals in first-order logic and a LISP-like expression attached to each goal. The meaning
of a sequent is that if all the assumptions are true then some instance of some goal is
true and is satisfied by the corresponding instance of the attached expression. Logical
rules, resolution rules, transformation rules and rules like those in DEDALUS are used
to operate on sequents. [MW 81] shows how this approach could be used to derive a
unification algorithm but the example was not done automatically.

4.4 Nuprl

Nuprl [Con 86] is an interactive system for proving theorems in a constructive logic based
on [Mar 82]. As a theorem-proving system it has many similarities with the LCF system
[GMW 79], allowing the user to conduct proofs by constructing and applying goal-directed
proof strategies (tactics) as programs in ML.

A consequence of the use of a constructive logic means that proofs embody construc-
tions. A construction can be automatically extracted from a proof to yield a program. So
for example, given a proof in Nuprl for the theorem

Vo, y:int.3g, rint(y = (¢*x +r) A0 <r < )

one can extract a program for finding the quotient and remainder of two integers. In
general, a conjecture (unproved theorem) of the form VYa.3y.R(x,y) may be viewed as
a specification of a program which, given a value for x, computes a value for y such
that R(x,y) is true. Proving the theorem gives rise to a program which satisfies this
specification. A proof which appeals to a lemma which has not yet been proved can be
seen as a verified refinement step.

There are strong similarities with the work of Manna and Waldinger on program syn-
thesis discussed above. The most important differences are that the logic underlying Nuprl
is more expressive, including higher-order functions and dependent types, and that there
is no real attempt to automate the synthesis process since programs are obtained dir-
ectly from proofs which are performed interactively. But because of the flexible way that
proof strategies may be added to the Nuprl system, the possibility of developing an auto-
matic theorem prover based on Nuprl (which is then able to perform program synthesis
automatically) is not excluded. Proof strategies for Nuprl based on the ones used in the
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Boyer/Moore theorem prover [BM 79] are being studied in an Alvey project at Edinburgh
[Bun 88].
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