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LABORATORY EXERCISE IN REACTOR PHYSICS (I) 

PA R A M E T E R S  F O R  N E U T R O N  
T R A N S P O R T  

Instructor:  
Jitka Žáková, jitka.zakova@neutron.kth.se 

INTRODUCTION 

Neutron transport refers to the phenomena (motions and interactions) that take place during a neutron’s 
journey from the point where it is created to the point where it is absorbed or leaks out of the system. 
The neutron transport in a medium can be described by macroscopic parameters such as diffusion 
length, slowing-down length and relaxation length. In the current exercise, these parameters will be 
measured for water, using Californium-252 as a neutron source. 

Neutrons can be created in nuclear fission, which can be either spontaneous (a decay mode of some 
heavy nuclei) or neutron-induced (as in a nuclear reactor). In a fission event, one or a few neutrons are 
released. These neutrons are emitted with a high average kinetic energy. In subsequent collisions with 
the surrounding medium, the neutrons keep losing their energy (are being slowed down) until they reach 
the thermal energy of the medium- they become thermalized. Once the neutrons become thermalized, 
they keep moving randomly as they are constantly undergoing collisions with surrounding nuclei. This 
random motion is called diffusion. During the diffusion, the average energy of the neutrons does not 
change (energy gains are as probable as energy losses), because the neutrons are in thermal equilibrium 
with the surroundings. The process of diffusion is finished when the neutrons are finally absorbed.  

Because of the similarity between the behaviour of the neutrons and gas atoms, the mathematical model 
developed for the kinetic theory of ideal gases may be used to describe the neutron motion. In this 
exercise, the basics of this theory are going to be employed together with experimental equipment to 
determine the following parameters: 

 Diffusion length L, proportional to the average straight distance thermal neutrons 
travel before they are absorbed. 

 Slowing-down length LS, proportional to the average straight distance fast neutrons 
travel from the point where they are born to the point where they become thermalized. 

 Relaxation length , is the attenuation of uncollided (fast) neutrons in their “first 
flight.” At each relaxation length, the uncollided flux falls by a factor of e. 
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EXPERIMENTAL SET-UP 

Figure 1 shows the experimental setup. The setup consists of a water-filled stainless steel tank, which 
contains both the neutron source (marked by a red dot in the centre of the figure) and the detector 
(marked by a blue box close to the side of the tank). The distance of the detector and the source (r) can 
be varied with help of a precise ruler mechanism, which is mounted on the top of the tank. Figure 1 also 
shows an optional hollow cadmium sphere, which can be mounted around the source in order to “filter 
out” thermal neutrons. The details of this procedure are given below. 

 

Figure 1: The water tank with the neutron source 

 

The neutron source employed in this lab is a pellet, which contains 50 g of Californium-252 
encapsulated in steel. 252Cf is unstable and decays mainly by emission of -particles, with a half-life of 
2.73 years. About 3% of the decays occur by spontaneous fission, where neutrons with an average 
kinetic energy of about 2 MeV are emitted.  
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Figure 2 shows the data acquisition system. The signal is generated in a Li-6 scintillator detector. Since 
neutrons cannot be detected directly, the detector employs a nuclear reaction 6Li(n,)3H, which yields  
detectable alpha particle and  triton. The detector incorporates a matrix of a lithium compound enriched 
to 95% in 6Li dispersed in a transparent phosphor powder. 6Li features a high capture cross-section 
(c=940 b) for thermal neutrons. This means that if a thermal neutron passes through the Li matrix, it is 
most likely to be captured in 6Li . Furthermore, there is Europium is added to the crystal to serve as 
scintillator. The resulting alpha particle and triton raise the europium atoms to excited states. These 
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excited states rapidly emit visible light. The crystal is optically coupled to a photomultiplier (PM) tube, 
from where the pulses are guided towards a multi-channel analyzer. 

 

 

Figure 2: The detection system 

 

A part of this laboratory exercise is dedicated to determining a parameter called diffusion length. 
Remember, that the process of diffusion takes place when the neutrons are in the equilibrium with their 
surroundings - they are thermalized. It is therefore reasonable to assume that to obtain the diffusion 
length a thermal neutron flux is going to be needed. However, there is nothing like a thermal neutron 
source in the nature, so we are going to use so called Differential Measurement to create a virtual 
thermal neutron source instead.  

In the differential measurement technique, two separate measurements are performed, one with a bare 
neutron source and one with the source covered with a 1 mm thick, hollow cadmium sphere, 9 cm in 
diameter. The principle of this technique is outlined in figure 3. The detector is sensitive only to thermal 
neutrons. These detected neutrons can either be born thermal (yes, the source emits neutrons of all 
energies, the 2 MeV mentioned above is just the average!) or they become thermalized somewhere on 
the way between the source and the detector.  

If the source is covered by something that efficiently captures thermal neutrons (for example Cd- see the 
cross-section in figure 4), only the portion of the neutrons that got thermalized outside the sphere ( out ) 

gets detected. All the neutrons that were born thermal or got thermalized within the sphere ( in ) are 

effectively captured in Cd and they do not reach the detector.  The result of the flux measurement with 

the Cd sphere around the source is )2(  in figure 3 and it is equal to out . If the source is not covered by 

the Cd sphere, both the neutrons that were thermal from the very beginning ( in ) and the neutrons that 

got thermal on their way to the detector ( out ) contribute to the measured count rate. In figure 3, this 

total flux is denoted by )1( .  The difference between these measurements ( )2()1(   inth ) 

represents the fraction of the source neutrons that have been born as thermal or slowed down to 
thermal energy within the cadmium sphere. This “virtual” source of thermal neutrons can be 
approximated by a point source.  
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Figure 3: The differential measurement 

 

 

 
Figure 4: Capture cross-section for neutrons in cadmium. 
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1 .  DETERMINING THE DIFFUSION LENGTH -  DIFFUSION THEORY 

Even though most of the neutrons start their life with a higher energy than the energy of the 
surrounding media, subsequently they undergo slowing down until they reach a kinetic energy 
comparable to that of the surrounding nuclei and then they diffuse, we start our exercise directly in the 
diffusion phase, by measuring the diffusion length. The other two parameters, which are related to 
higher-energy neutrons we look into later. 

Let us assume that we have successfully created a virtual source of thermal neutrons according to the 
description in the previous section. Now we have a set of data consisting of discrete values of distances 
and thermal fluxes at these distances. As said above, the thermal neutrons undergo collisions with the 
scattering nuclei in which the individual neutrons may gain or loose energy, but their average energy 
remains constant. The energy distribution of the thermal neutrons corresponds, like in the case of 
kinetic gas theory, to the Maxwell-Boltzmann distribution. The steady-state neutron distribution of 
the thermal neutrons in space is described by diffusion equation. In general, the energy group called 
“thermal neutrons” can be divided into several energy sub-groups. The number of the energy groups a 
user decides to employ depends on the problem he or she is trying to tackle and also, on the available 
computational power.  For the purpose of this exercise, a one-group diffusion equation is going to be 
sufficient. The diffusion equation formally expressed in the following way: 

(1) 2 ( ) ( ) ( )0 ( )a fD r r r S r        
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The constants in equation 1 are one-group constants, which means, that they are weighted average 
values over the whole thermal energy range. In our particular experiment, the fission term f(r) is zero, 
since there is no fissile material present. The source term, S(r), is also zero everywhere in the medium, 
except at the particular point where the neutron source is located (r=0). In the one-group approximation 
for thermal neutrons, the point neutron source is assumed to isotropically emit monoenergetic (thermal) 

neutrons of intensity Sth. With the definition of the diffusion length 
a

DL  , equation 1 is reduced 

to: 
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The general solution to this equation in an “infinite medium” is: 
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We have assumed a spherical symmetry and r is the distance enough from the source. The source is 
located at the centre of a spherical coordinate system. Mathematically, the source is specified as an 
appropriate boundary condition. The flux is assumed to be zero at the outer boundary of the system, 
which for simplicity is extended to infinity. That requires that B, in equation 3, is zero and the second 
term can be omitted (for a finite medium, B0 and the second term is obviously needed to satisfy a zero 
flux boundary condition at a finite radius). With the source intensity Sth, the constant A can then be 
determined to A=Sth/4D. The solution involves the limit of the neutron current expressed by Fick’s 
law (diffusion approximation). Fick’s law is an approximation in that it assumes that neutron motion 
develops out of the free back-and-forth diffusion of neutrons. There is a net transfer of neutrons from 
regions of high neutron population to regions of low population simply because the neutron 
concentration is different. The final solution to equation 2 is: 
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At r=0, the flux becomes singular. This physically unrealistic singularity results from the mathematical 
artifice of a point source, i.e. a source with no extension in space. It is seen that the spatial distribution 
of neutrons emanating from a point source (emitting only thermal neutrons), in an infinite homogeneous 
medium decreases with the distance r from the source as 1/r times an exponential function. The 
exponential function describes the attenuation governed by neutron absorption and scattering. If the 
macroscopic absorption cross-section would be zero, a=0, then L= and the exponential function is 
unity; only geometrical attenuation remains, resulting in a diffusion theory flux proportional to 1/r. Note 
that diffusion results in a smaller decrease of the neutron flux than the decrease during dispersion in free 
space, where the mere geometrical spread of neutrons leads to a 1/r2 dependency of the flux. This can 
be explained by the fact that in a scattering medium, some neutrons may recoil “backwards”, but in a 
vacuum all neutrons travel in the “forward” direction. 

It should be recognized that since Fick’s law is applied to the solution of equation 2, equation 4 is 
somewhat inaccurate for distances less than a few mean free paths away from the source (What is the 
mean free path in water?). In regions of strong absorption, or at boundaries between materials with very 
different neutron transport properties, or at a neutron source, the assumption of free diffusion does not 
apply. 

Physical interpretation of the diffusion length 

The flux solution derived in equation 4 can be employed to develop a physical interpretation of the 

diffusion length. The mean square distance,
2

thr  travelled by neutrons from their point of thermalization 

to their final absorption can be expressed mathematically as the neutron normalized distribution 
function: 
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The source intensity is equal to the total rate of absorption of neutrons in the entire infinite medium; 

  2

0
4th a thS r r dr 


  . Substituting the relationship for the flux in equation 4, equation 5 becomes: 
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(7) 
2 21

6 thL r  

Therefore, the square of the diffusion length can also be interpreted as one-sixth of the mean square 
straight distance travelled by thermal neutrons from their point of thermalization to the location where 
they are absorbed. Inherent in this interpretation is that the diffusion occurs with constant neutron 
energy. 

By rewriting equation 4 in the form of a straight line and fitting a straight line to the obtained values of 
th(r), the diffusion length L can be determined.  

Figure 5 visualizes the concept of the mean straight distances. sr  is the mean straight distance a neutron 

travels from the point where it is born to the point, where it becomes in the thermal equilibrium with 
the surroundings (slowing down – therefore the index “s”).  thr is the mean straight distance a neutron 

travels during diffusion (thermal neutron – therefore the index “th”) and r denotes the total mean 

straight distance a neutron travels during its lifetime. Please, observe that the calculations in the 
following sections use the fact that sr  and thr  are orthogonal. Figure 6 explains this assumption. 

 

 

Figure 5: The mean straight distances a neutron travels during its lifetime and the related measurement types. 
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During the slowing down phase, a neutron travels in some direction, being scattered from this direction 
by an average angle  = 0. Once the neutron reaches the thermal equilibrium with the surrounding 
media however, the direction of travel vanishes. All directions become equally probable, as the neutron 
is being scattered in collisions with surrounding nuclei. Therefore, the average angle between the straight 
track travelled during the slowing down and during diffusion is 90 degrees. 

 

Figure 6: The orthogonality property. 

DETERMINING THE SLOWING DOWN LENGTH L S  

Analogically to the diffusion length in equation 5, the slowing down length, Ls may be calculated as an 
average over the neutron population: 
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The flux in equation 8 is the flux that is undergoing the slowing down. The detector detects the thermal 
neutrons that were either born thermal or got thermalized on the way, or- if the source is covered by the 
Cd sphere, the detector detects only the portion of flux that was slowed down between the sphere and 
the detector. Either way, the detected flux also contains the neutrons that had been undergoing 
diffusion.  Instead of trying to separate the slowing-down flux, let us define another quantity, which we 
can easily obtain from out measurements. This will help us to calculate the desired Ls. This quantity is 
called the migration area or a square of the migration length. It is related to the mean straight 
distance a neutron travels during its lifetime ( r in figure 5). 
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(9) 
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Containing information about both the slowing down and the diffusion phase, the flux from an 
uncovered neutron source can be used to calculate the migration area.  
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(r) is the intensity measured by the detector at position r. To arrive to the final shape of the equation 
10, following approximation was employed for resolving the energy dependency of the cross-section 
(equation 11). The absorption cross-section of water is negligible for neutrons with higher then thermal 
energy. For the neutron energies lower than the thermal threshold, the absorption cross section is 
constant, can it be taken out of the integral and cancelled. 
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A correction arises from the circumstance that the flux cannot be measured at large enough distances. It 
is necessary to make some theoretical or empirical estimate of how the flux behaves, and extrapolate 
from the measurement region to large r. One possibility is that the flux at large r goes as 

(12)   2
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This corresponds to attenuation of the uncollided flux from a point source, with an average relaxation 
length, .  

To evaluate the M from the corrected data, r2(r) is plotted, the area under the extrapolated portion 
determined analytically, and the remaining area calculated by some numerical integration scheme, e.g. 
Simpson’s rule. The r4(r) may be determined from the smoothed or fitted r2(r) curve, and integrated 
similarly. Then Ls is determined from equation 9. 
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DETERMINING THE RELAXATION LENGTH 

The effect of the neutrons that have suffered no collisions is neglected in the simple age-diffusion 
theory. The “fast” neutrons are those produced in fissions that have not been moderated by collisions. 
Physically, this comes about because age theory refers to neutrons that experience a continuous average 
deceleration. The number of such fast neutrons will decrease with distance from the source as: 

(13)   2

1 r

r e
r




  

That is, a simple exponential decrease combined with an inverse square characteristic of a point source 
in an infinite medium. Equation 13 describes the “first flight intensity” of fast neutrons. Fast neutrons 
travel, on the average, a certain mean free path  before undergoing a collision. The mean free path 
appears in the exponential and for this reason it is sometimes called the “relaxation length,” i.e., the 
exponential decreases by a factor e for every mean free path away from the source. For that reason, the 
scattering cross-section of these fast neutrons is referred to as the removal cross-section, removal. The 
concept of the “removal cross section” is based on the assumption that there is exponential removal of 
fast neutrons.  

If ln((r)r2) is plotted against r, there will be a linear portion with slope –. 

In this calculation, a flux measured without Cd sphere in distances r15cm is to be used. 
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PREPARATORY EXERCISES 

1) Which general rules apply when handling radioactive objects? 

2) Of what order of magnitude is the neutron mean-free path in water? 

3) When 252Cf- undergoes fission, neutrons are released. Why does nucleus fission? What 
energy do the neutrons have? 

4) What is the energy distribution of the neutrons that pass through the cadmium sphere? 

5) What would the relation 
r

e

D

S
r

L
r

th







4

)( 0  look like if it was written so that its plot 

became a straight line? 

6) How does a scintillation detector with a photo-multiplier work? Why is 6Li used? 

7) Using the point source solution (equation 14) for q(r,) to derive the relation 62 sr . 
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8) Can gamma radiation disturb our measurement? What are the possible sources of 
gamma radiation in the lab? 
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ABOUT THE REPORT –  SPECIFIC TO THIS LAB 

This section is a guideline specific to the Neutron Transport lab report. It is complementary to 
the general report guidelines presented on the website; both guidelines are to be followed. The 
division into the sections presented below serves merely as a suggestion, however the 
information content is mandatory. A report that lacks any of the information below will not be 
corrected. 

 Abstract – the abstract should summarize your results and methods. It should be short 
(maximum seven sentences) but precise. 

 Introduction – give a short introduction (maximum one page) to the experiment 
making it possible for a fellow student who has not performed this laboratory exercise 
to understand the rest of the report and to relate the result to what he or she already 
knew.  

 Methods and tools – describe briefly, what equipment and theoretical framework you 
used.  

 Results   

o Present the measured data from the experiment in a tidy table(s). The number 
of counts will be listed in form of value ± error.  

o Show the calculated count rates (counts per second) and the thermal flux, also 
accompanied by the error. 

o Present in sufficient detail all calculations and intermediate steps that lead to 
your results. Sufficient detail means that a reader understands quickly how you 
proceeded from one step to another.  

o Plot your data and show the fitting as you performed it when applicable. Show 
the values of the integrals you calculated. 

o Accompany all your results with appropriate unit. Optional: accompany your 
results with an error.  

 Conclusions and discussion – Summarize and discuss your results and compare them to 
the literature. Use references. Suggest a possible explanation for the discrepancies. 

 Preparatory exercises – Present the solutions of your preparatory exercises, preferably 
as an appendix to your report. 
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APPENDIX –  PRACTICAL TIPS ,  USEFUL INFORMATION 

Least Square Method: 

An approximation according to the least square method should be performed when a straight line (or a 
curve) is to be fitted to a number of measured values. Assume that ),( 11 yx , ),( 22 yx , ... ),( nn yx  

represent the values obtained in the measurements and that you are looking for a linear relation on the 
form lkxy  . k and l should now be determined so that the quadratic sum 

(15)      22
22

2
11 )(...)()( lkxylkxylkxyS nn   

becomes as small as possible. This is done according to: 
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(17) xkyl   

The sum S is related to the standard deviation for the measurement and it is a measure of the 
discrepancies between the measured values and the fitted straight line. 

Flux or count rate? 

While the theory uses the neutron flux-  , the detector shows a count rate. The flux can be 
calculated from the count rate if the efficiency of the detection system is known. That is not our 
case. However, we can assume that the efficiency is constant through all the measurements and 
as you may verify yourself, such a constant efficiency cancels out through the mathematical 
operations. Therefore you may refer to the measured values as a count rate or flux. However, 
try not to mix the terminology, once you decided. 

How long does a measurement take? 

In order to be able to subtract the values of the flux measured with and without the Cadmium sphere, a 
sufficient measurement precision is needed. The standard deviation associated with a measurement that 

is performed on a Poison-distributed process is N , where N is the number of detected events. 
Assuming, that the distance and the time are measured with 100% accuracy, the relative error in the 
measurement is:  

(18) NN

N
rel

1
  

In this experiment, the relative error should be  0.3%. The number of counts needed to achieve this 
level of relative error is going to be rather fast-achieved in the positions close to the source. However, 
for larger r, long measurements time can be expected.  
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Deadline 

The deadline for the report is one week from the day of the laboratory exercise. Send your report to 
your instructor via email in pdf format. 

Deadline 

The report is to be prepared in a team of two people. In case there are an odd number of people in the 
group, three students may produce one report. 

 

 


