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Abstract

Effective formal verification tools require that robust implementations of automatic procedures for
first-order logic and satisfiability modulo theories be integrated into expressive interactive frame-
works for logical deduction, such as higher-order logic theorem provers. This paper states some
pragmatic requirements for implementations of decision procedures that make them well-suited to
integration into such frameworks. The aim is to open a dialogue with the designers of decision pro-
cedure software that will lead to greater and easier uptake of their implementations by verification
users.
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1 Introduction

A range of proof technologies for formal verification of high-performance pro-
cessor designs are employed at Intel Corporation [13]. The verification frame-
work, currently known as forte3, 4 is built around the reFLect functional pro-
gramming language [7]. Several verification technologies are integrated into
the forte3 framework—including BDDs, SAT procedures, model checkers, and
a higher-order logic theorem prover similar to HOL [6]. The reFLect language is
used to coordinate deployment of the integrated tools to solve large and chal-
lenging verification problems, as well as to explore specifications and hardware
designs by symbolic execution. It is also the underlying term language of the
higher-order logic theorem prover.

There are many applications for first-order reasoning in this framework,
and a few experiments with integrating decision procedures into reFLect have
already been done. Our aim is to provide support for first-order proof automa-
tion (modulo theories) within the system’s higher-order logic theorem prover.
For example, we have integrated an implementation of Harrison’s model elim-
ination procedure [8] and have found it to be an invaluable workhorse for
first-order proof support. We have also integrated CVC Lite [2] and used it
in an experimental project.

Based on this experience, and without claiming originality, we give an
account of some pragmatic requirements for smooth integration of decision
procedure implementations into a system like reFLect. We begin by examining
our application context: the nature of the forte3 tool and how we use first-
order solvers within it. We then comment on the design of first-order languages
for communication with decision procedure components. We then present our
requirements for supporting an in-memory integrations through an application

program interface (API).

We are aware that some of our requirements are competing, and perhaps
seemingly contradictory. Some of them are therefore stated more tentatively as
‘desires’. But we hope that by raising these issues we might open a dialogue
with the designers of decision procedure software that will lead to greater
and easier uptake of their implementations by verification users. We also
offer these observations as a contribution to discussion of SMT-LIB [12], an
initiative to produce a standard language for benchmark problems in first-
order satisfiability modulo theories.

4 forte3 may be downloaded for academic use.
http://www.intel.com/software/products/opensource/tools1/verification
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2 Application Context

We are interested in applying solvers and simplifiers for first-order logic in the
context of an interactive reasoning tool for higher-order logic. In our case, the
tool is the theorem prover developed at Intel, but the general scenario is a com-
mon one. Commercially valuable verifications exceed the reach of automatic
tools, so an interactive proof construction framework and an expressive, gen-
eral logic are required. Just as importantly, however, these verification efforts
are too large to be done entirely manually, so automated reasoning applied to
selected subproblems is also essential.

In such a setting, some variant of typed higher-order logic is commonly
adopted for the interactive reasoning tool because it helps to capture require-
ments and designs abstractly. The logic’s type system facilitates data model-
ing, and type checking prevents trivial errors. On the other hand, the most
successful automated reasoning tools are for first-order logic. Fortunately, ver-
ification problems are typically expressed in the first-order fragment of higher-
order logic or reduce to first-order subproblems. And even higher-order prop-
erties can sometimes be proved by first-order reasoning when appropriately
encoded [9]. This clearly leads to the desire to integrate first-order solvers
into interactive higher-order reasoning tools.

2.1 In-Memory Integrations

In our interactive proof system, a user may invoke a solver to attempt a proof
of a formula manually reduced to what appears to be a solvable form. For such
applications, a command to check the validity of a formula could be written to
a file in the concrete syntax of an external tool, which could then be invoked
on that input. This method of communication, however, is less tenable when
we consider more automated and speed sensitive applications.

For example, the rewriting subsystem of our theorem prover traverses ex-
pressions, searching for sites where it may apply a rewrite from a collection of
conditional equations supplied by the user. Having found a match with the
left-hand side of an equation, it attempts to check the condition under the
assumptions it has accumulated from the context of the matching site. If the
condition is solved the rewrite is performed. Either way, the process continues
until some user specified criteria are met, usually when no more rewrites ap-
ply. This kind of application can produce many calls to a solver, with a high
degree of commonality in sub-terms and formulas from call to call. File based
communication does not seem suitable here.

Requirement 1 We need an in-memory API to terms and formulas in the

native data-structures of a tool for first-order logic. The API must also allow
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us to invoke solving and simplification routines on the terms and formulas so

constructed.

2.2 State in the Interface

Interactive reasoning tools are usually implemented in functional program-
ming languages, and those for higher-order logic invariably in some dialect
of ML. Our higher-order proof tool, for example, is implemented in reFLect,
a dialect of ML with reflection features similar to those of LISP. Functional
languages commonly employ an eager evaluation strategy and support both
purely functional and stateful programming. But in practice, the simplicity
afforded by the functional style gives the tool designers a bias towards inter-
faces that minimize the number of operations modifying visible state. Our
preference for functional style is even stronger in reFLect because it uses lazy
evaluation, making the order in which state changes occur hard to predict.

Desire 2 The API to a first-order tool should minimize the number of oper-

ations modifying the visible state. Where applicable, it should be possible to

undo a state modifying operation.

If presented with a state-modifying API we can always restore transparency to
our code by providing a monadic interface to it [14], as we do in our integration
with CVC Lite. But the overhead of the monadic style only emphasizes our
preference for an API that minimizes state modifications.

If an API provides a facility to undo state changing operations then we
can create pure functions that perform state updates internally, only to revoke
them before returning their result. Consider the contextual rewriting scenario
described in the previous section. As the rewriter traverses a term, it passes
through contexts where local assumptions may be used to solve the conditions
of a rewrite. The CVC Lite API includes state-modifying operations to add
an assumption to the proof state and to roll-back to an earlier state. As the
rewriter enters a context, it can add local assumptions to the CVC Lite proof
state, and drop them again as it exits. There are contexts within contexts, of
course, but the assumptions exhibit a last-in-first-out behavior that fits with
the CVC Lite interface and minimizes the number of operations that need to
be done during rewriting. When rewriting terminates, CVC Lite is returned
to its original state, and so the rewriter may be treated as a pure function.

3 Logic Design Issues

Most well-known decision procedures and the available SMT solvers imple-
menting them are based on first-order logic. Consequently, the SMT-LIB
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standard language is many-sorted first-order logic with equality, enhanced
with a handful of non-standard constructs such as conditionals and local lets.
On the other hand, the logic in which hardware and its properties are captured
for formal verification at Intel (and elsewhere) is a variant of higher-order logic
with a parametrically polymorphic type system. The need for a smooth and
sound transition between the two logical systems raises some issues, of which
we mention just two.

3.1 Typing and Polymorphism

Hurd has proposed a translation scheme from higher-order logic to first-order
logic that can represent any higher-order expression [9]. The scheme compiles
λ-terms into combinatory form and replaces all function applications by ap-
plications of a binary uninterpreted function •. Take, for example, the term
‘n + m’. In higher-order logic, the two-place function + is curried and has
higher-order type int → (int → int), so our term is really ‘(+ n) m’, and so
gets translated into the first-order term ‘• (• (+, n), m)’.

In general, Hurd’s scheme treats all functions, except equality, as uninter-
preted. In reality, we need a mix of interpreted and uninterpreted translation:
when the first-order prover has a suitable interpretation for a function symbol
(like + in the example above), we should use a direct translation; otherwise,
we translate into •-terms.

Type information is simply dropped in this translation scheme, making the
approach generally unsound. The danger is that the first-order tool may find a
proof for the translated formula using an expression untypable in higher-order
logic. Hurd guards against this by attempting to replay any proof discovered
for the translated formula in the higher-order logic. He estimates that proofs
fail to replay in fewer than one in a hundred attempts. He has also explored
a more elaborate translation, in which type information is encoded in first-
order logic. This takes care of any logical problems, but at the cost of larger
first-order terms.

Hurd’s encoding assumes an untyped first-order logic. This is convenient,
because the operator ‘•’ can then be used for translation of function applica-
tion terms of arbitrary types. On the other hand, if the target first-order logic
is monomorphically typed (as is the many-sorted SMT-LIB), then there will
be problems representing • as a single operator. We would need to introduce
a family of operators, one for each distinct function type that occurs in the
expression to be translated. Note, however, that if our first-order logic came
with parametric polymorphism, it would be possible to encode the ‘•’ oper-
ator and there would be no need to replay proofs or encode types to ensure
soundness.
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let RND pc rc s sgf =
let L = Lsb pc sgf in
let G = Guard pc sgf in
let RS = RoundS pc sgf in
let rbit = (rc ’=’ TO_ZERO) => F

| (rc ’=’ TO_POS_INF) => ((NOT s) AND (G OR RS))
| (rc ’=’ TO_NEG_INF) => (s AND (G OR RS))
| (rc ’=’ TO_NEAREST) => (RS => G | (L AND G))
| F in

Result rbit pc sgf;

Fig. 1. Local lets give increased clarity in specifications.

Requirement 3 The input logic of first-order prover components should ei-

ther be untyped or, preferably, support parametric polymorphism.

There is also a simpler motivation for this requirement. An industrial veri-
fication problem will typically have several structurally similar data types in
play at once—multiple kinds of lists (integer lists, Boolean lists) or different
flavors of arrays. Encoding all these as special cases into a monomorphically
typed logic is inconvenient and can be avoided with polymorphism. CVC Lite
allows some interpreted functions, e.g. array operations, to behave as if para-
metrically typed, presumably to accommodate such practical concerns. But
we would prefer general support for such types.

3.2 Local Lets

In higher-order logic, formulas are just terms of boolean type, not a distinct
syntactic category, as in the first-order logic. A single let construct like ‘let v =
t in u’, where t and u range over terms suffices for all local variable definitions.

We wish to have such a construct in the first-order logic we are translating
into, for at least two reasons. First, it provides a concise form of expression,
which is important in any tool that allows user interaction in the reasoning
process. With reFLect, we make liberal use of local lets for readability, as in
the specification given in Figure 1 of the float-point rounding operation used
in an actual processor verification [1]. Second, having local lets facilitates
space-saving sharing in off-line (textual) representations of otherwise large
formulas.

Desire 4 The logic should include let constructs for introducing local terms

and local formulas in both terms and formulas.

With a similar motivation, SMT-LIB has (separate) let constructs for intro-
ducing local terms and formulas in formulas. However, there is no construct
to introduce locally-defined terms in terms, so translation from the freer syn-
tax of higher-order logic into this language might be awkward. On the other
hand, adding two further let constructs to SMT-LIB, for terms in terms and
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terms in formulas, seems rather messy. We briefly consider an alternative in
section 4.3.

4 Logical API Requirements

In this section we give some guidance on the design of an API for construct-
ing and manipulating terms and formulas, and consider consequences for the
description of the logic itself.

4.1 Constructing Logical Structures

Because of their different strengths, multiple first-order solvers—additional to
CVC Lite—will be considered for integration with forte3. We expect SMT-
COMP may make the field resemble that of SAT solvers, with rapid arrival of
tools and shifts in relative performance of existing ones. This is exciting but
worrying; we relish the prospect of increasingly powerful tools to integrate,
but what if they all have different APIs?

The SMT-LIB standard addresses this by providing a common textual for-
mat for communicating with first-order tools. We would like a standard to
address the need for a common API for in-memory communication. The in-
ternal data-structures of a solver will vary from tool to tool, and will change
as people explore optimizations, but the abstract syntax of the logic imple-
mented should remain the same. It is therefore the best guide for a standard
API.

Requirement 5 We need a standard API for in-memory communication

with first-order solvers. The API for constructing terms and formulas should

follow the abstract syntax of the logic.

Consider the experience of developers from the HOL family of theorem
provers [6]. The abstract syntax of the logic implemented by the various
versions of HOL—including HOL88, HOL90, HOL98, HOL4, HOL-Light and
Proof Power—is identical, and essentially the same as in Church’s original
formalization of the simple theory of types. Those systems have all retained
the same API for manipulating terms, based on the common abstract syntax of
those terms. They have done this despite being implemented in four different
dialects of ML (and some LISP in the case of HOL88) and exploring various
underlying optimizations to the representation of terms, including de Bruijn
vs. name carrying representations and a delayed substitution mechanism.

In contrast to this, the API for manipulating terms in CVC Lite is influ-
enced not only by the abstract syntax of the logic, but also by the theories
and decision procedures used for reasoning in that logic. The way a function
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application is constructed, for example, depends on whether the function is a
tuple construction, update or selection; a record construction, update or selec-
tion, an uninterpreted function, or one of the primitive interpreted functions.
As a consequence, the CVC Lite term manipulation API undergoes signifi-
cant change between versions of the tool, and is unlikely to be duplicated in
another first-order logic tool.

4.2 Inspecting Logical Structures

We are particularly interested in tools that can act as simplification engines
as well as solvers. Our integration with CVC Lite packages the CVC Lite
simplifier as a conversion, a general form of trusted expression transformation
that users of our theorem prover can pass into our rewrite engine [11]. The
user can simplify a goal by replacing every subexpression that CVC Lite can
simplify with the result of the simplification.

To implement simplifications, we traverse an expression in our logic and
construct a translation in the logic of the first-order tool, invoke the first-
order simplifier, and traverse the simplified expression to translate the result
back. To translate back, we must be able to distinguish each syntactic form of
the terms and formulas of the first order tool, and access any sub-terms and
formulas of those forms.

Requirement 6 The API should also support the discrimination and de-

struction of terms and formulas.

The interface should follow the style described by McCarthy for the construc-
tion and manipulation of abstract syntax trees [10]. McCarthy’s approach
uses functions to construct each syntactic form of expression, discriminate
expressions based on their syntactic form, and destruct an expression of a
particular syntactic form into its components. Developed with the advent of
the functional programming in LISP, McCarthy’s approach to abstract syntax
fits cleanly with the functional meta-languages used to implement interactive
theorem provers. It can fit just as well into the object-oriented style often used
to implement first-order solvers, with subclasses of an expression class used
for each syntactic form, and dynamic casting used to discriminate syntactic
forms and then access their components.

4.3 A Simple Abstract Syntax

Syntactic complications can be left to a concrete syntax and its translation
into the abstract syntax. This guiding principle for designing an abstract
syntax is especially important for us as tool integrators. To construct and
manipulate integrated data structure values with ease, we want the simplest
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possible interface to them, wanting at the same time the interfaces to follow
the abstract syntax of the logic.

Desire 7 The abstract syntax of the logic should be as simple as possible.

The abstract syntax proposed for SMT-LIB strives for simplicity, but per-
haps could be simpler still. In particular, the ‘if then else ’ formula
construction does not seem to offer value over adding a three-place operation
with this meaning to the family of connectives. In some regards the CVC Lite
abstract syntax is simpler than that proposed for SMT-LIB, and more closely
resembles the higher-order logic of our host tool by not making a distinction
between formulas and terms. This neatly removes the need for a multiplicity
of let constructions as considered in section 3.2.

5 Data API Requirements

In this section we discuss some low-level operations on terms and formulas
required for in-memory integrations to support the more obvious high-level
operations discussed until now.

5.1 Memory Management API Requirements

Consider again using an integrated first-order tool to discharge conditions in
our rewriter. Multiple calls to the solver exhibit a high degree of commonality
of sub-terms and formulas. To avoid rebuilding common structures, we must
retain references to them between calls. This demands some exposure of the
memory management strategy of the first-order tool.

Requirement 8 The API to the first-order tool must allow us to communi-

cate that we are retaining a reference to a term or formula, and also when we

cease to retain it.

This requirement has a number of implications depending upon the garbage
collection strategy employed by the first-order tool. The simplest case oc-
curs when the tool uses a reference counting scheme. We need only have the
ability to increment and decrement reference counts. If references are com-
municated via smart pointers encapsulating reference counting then the API
is particularly easy to use. The CVC Lite API works in this way.

Several propositional tools integrated with reFLect use mark-and-sweep
garbage collection. Such tools require APIs that expose, separately, calls to
initiate the mark and sweep operations, allowing us to mark the structures
reFLect references as well as the structures the tool references before sweeping.
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We assume that mark-and-sweep will be invoked by the reFLect based inte-
gration framework. Integrated tools must provide an API to register a method
to inform reFLect that it desires a garbage collection. If an integrated tool may
require immediate garbage collection, then it must provide routines through
which we can register methods for it initiate the mark-and-sweep operations
of reFLect.

5.2 Data Indexing API Requirements

When integrating first-order tools with support for simplification, we translate
higher-order terms into first-order terms and formulas, and translate back after
simplification. On the way back, we wish to avoid re-translating unchanged or
common sub-terms and formulas. We also wish to generate sharing. We can do
this via tables relating higher-order terms and their first-order translations. To
translate in either direction, we lookup the result of any previous translation,
only if there was none do we perform the translation and store the result for
reuse. We do this recursively for sub-terms and formulas.

Requirement 9 We require syntactic equality test and hashing functions for

terms and formulas. Hashes should not be recomputed for shared structures.

A lookup-based translation can minimize both translation time and the size
of the translated value. The CVC Lite system provides functions to hash
terms and formulas, which it uses to ensure maximal sharing. But, relying on
a feature like this alone will not ensure minimal re-translation effort. Even
minimal re-translation will not ensure minimal translation time. The time to
compute a hash and the time to perform a translation are both proportional to
the size of the structure to be translated. No saving is realized unless hashing
is faster than translation. To achieve a saving, the first-order tool must store
hash codes with terms and formulas at their time of construction, or cache
hash codes so they are not recomputed for shared structures.

It may be useful to consider including arbitrary total ordering functions for
terms and formulas in the API, allowing them to be used as keys in tree based
structures. Of course, a hash trivially generalizes this since we can compare
the hash codes, but if hashes are not precomputed then it may be faster to
just test two terms for their relative ordering.

Desire 10 We desire total ordering functions on the syntax of terms and

formulas.

Hashing and comparison functions may identify some semantically equal
terms and formulas, provided the functions behave consistently. For example,
if alpha-equivalent formulas are considered identical, then they should share
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the same hash. While a tool may identify some semantically equal terms and
formulas, it should not expand the collections of such structures it identifies
as it makes deductions. Doing so would invalidate the translation information
accumulated.

Requirement 11 The results of syntax-based hashing and comparison func-

tions should not change.

6 Conclusion

We have stated some pragmatic requirements for integrating first-order solvers
into verification tools. We write from the perspective of developing verifi-
cation tools at Intel, concentrating on integrating first-order solvers into a
higher-order logic theorem prover written in a functional language. But the
issues raised apply to more generally; many were encountered and addressed
in the design of the Prosper toolkit [5], an integration framework for both
in-memory and distributed communication of higher-order logic data. Others
have had similar experiences, starting with Boyer and Moore [3] and more re-
cently with PVS [4]. This paper serves to emphasize and offer precise guidance
in line with this other work.

Our requirements have focused on the need for a suitable API to the data
structures representing a first-order language for solvers. Ideally, the API to
be part of a standard such as SMT-LIB. One could imagine the standard
including a parser that uses the API and can be linked against a proof tool
supporting it. Entries to a competition like SMT-COMP would be submitted
as libraries to be linked against a stock benchmark parser and test bench.
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