
TestEra: A Novel Framework for Automated Testing of Java Programs

Darko Marinov and Sarfraz Khurshid
MIT Laboratory for Computer Science

200 Technology Square
Cambridge, MA 02139 USA

{marinov,khurshid}@lcs.mit.edu

Abstract

We present TestEra, a novel framework for automated
testing of Java programs. TestEra automatically generates
all non-isomorphic test cases, within a given input size, and
evaluates correctness criteria. As an enabling technology,
TestEra uses Alloy, a first-order relational language, and
the Alloy Analyzer. Checking a program with TestEra in-
volves modeling the correctness criteria for the program in
Alloy and specifying abstraction and concretization trans-
lations between instances of Alloy models and Java data
structures. TestEra produces concrete Java inputs as coun-
terexamples to violated correctness criteria. This paper dis-
cusses TestEra’s analyses of several case studies: methods
that manipulate singly linked lists and red-black trees, a
naming architecture, and a part of the Alloy Analyzer.

1. Introduction

Manual software testing, in general, and generation of
test data, in particular, are labor-intensive processes. Auto-
mated testing can signiÞcantly reduce the cost of software
development and maintenance [3].

TestEra is a novel framework that automates both gener-
ation of test data and evaluation of correctness criteria for
Java programs. As an enabling technology, TestEra uses
the Þrst-order relational language Alloy [15] and the Alloy
Analyzer (AA) [12,14]. AA provides automatic analysis of
Alloy speciÞcations by generating instances that satisfy the
constraints expressed in the speciÞcation.

The key idea behind TestEra is to use Alloy to express
the structural invariants of inputs and the correctness criteria
for a Java program, but not the program�s computation. In
previous work [17] on analyzing a naming architecture, we
modeled both inputs and computation in Alloy. We discov-
ered that manually modeling computation is complicated
due to Alloy�s declarative nature and lack of support for re-
cursion. Automatically modeling computation in Alloy was

performed [16] for a subset of Java, but the approach does
not seem to scale at present.

In TestEra, a speciÞcation of inputs to a Java program is
built in Alloy. TestEra uses AA to automatically generate,
for a given input size, all non-isomorphic [27] instances for
that speciÞcation. Next, TestEra uses a concretization to
translate these instances to Java inputs, which form the test
cases for the given program. The output produced by the
program is mapped back into Alloy using an abstraction.
Finally, TestEra uses AA to check the input and the output
against a correctness criteria given in Alloy.

TestEra aims at detecting as many errors as possible
without generating spurious error reports. This is achieved
at the expense of compromising completeness. Errors may
be missed, but reported errors are concrete counterexamples
to violated properties.

To analyze a program, TestEra requires the correctness
criterion for the program, as well as concretization (abstrac-
tion) translations for input (output) data structures. A pre-
cise correctness criterion is something that any correctness
checking method requires. We have found translations to be
straightforward to write, even for complex data structures.

Since TestEra automatically generates Java data struc-
tures from a description of the structural invariants, it is able
to test code at the concrete data type level. For example, in
order to test a method that performs deletion on balanced
binary trees, the input tree can automatically be generated
from its structural description, without the need to construct
it using a sequence of method calls.

In this paper, we present the core components and anal-
ysis architecture of TestEra. We also show various appli-
cations of our prototype implementation of TestEra. We
illustrate TestEra�s capabilities by showing its analyses of
not only intricate programs manipulating complicated data
structures, but also complex tools like AA itself. TestEra
was able to identify subtle bugs in a part of the AA.

The rest of the paper is organized as follows. Section 2
gives an example that illustrates the key steps of TestEra�s
analysis. In Section 3, we present the TestEra framework.

Section 4 discusses various case studies that we have per-
formed to evaluate TestEra. In Section 5, we discuss our
prototype implementation and its performance. We discuss
related work in Section 6 and conclusions in Section 7.

2. Example

In this section we present an example that illustrates the
key steps involved in TestEra�s analysis. We also introduce
the parts of Alloy notation that we use in this paper.

An Alloy speciÞcation is a sequence of paragraphs that
either introduce new types or record constraints on fields
of existing types. Alloy assumes a universe of atoms parti-
tioned into subsets, each of which is associated with a basic
type. Details of the notation can be found in [15] and of the
Alloy Analyzer in [12, 14, 27].

Consider the following Java declaration of acyclic,
singly linked lists and a (recursive) method for performing
merge sort.

class List {
int elem;
List next;

static List mergeSort(List l) {...}
}

Acyclic lists, the input to the method mergeSort, can
be modeled in Alloy with the following speciÞcation.

module list
import integer

sig List {
elem: Integer,
next: option List }

fun Acyclic(l: List) {
all n: l.*next | sole n.˜next // At Most One Parent
no l.˜next } // Head Has No Parent

static sig Input extends List {}

fact GenerateInputs {
Acyclic(Input) }

The declaration module names the speciÞcation, and
import includes existing speciÞcations into the current
one. The signature declaration List introduces this un-
interpreted type, along with functions elem � List �

Integer and next � List � List. next is a partial
function, indicated by the declaration option.

The Alloy function Acyclic, when invoked, constrains
its input l to be acyclic. The dot operator �.� represents
relational image; �˜� and �*� denote transpose and reßexive
transitive closure respectively.

The quantiÞer all stands for universal quantiÞcation.
For instance, the constraint all n:l.*next | F holds if
and only if evaluation of the formula F holds for each atom
in the transitive closure of next starting from l. Formulas
within curly braces are implicitly conjoined. The quantiÞer

sole stands for �at most one�. There are also quantiÞers
some and no with the obvious meaning.

The subsignature Input declares a subset of List that
has exactly one atom, as constrained by the declaration
static. Input models the input to mergeSort; the fact
GenerateInputs constrains the atom in Input to be al-
ways acyclic by invoking the function Acyclic with argu-
ment Input. The fact need not be invoked itself, since it is
required to always hold.

Given an Alloy speciÞcation, AA automatically Þnds in-
stances that satisfy the speciÞcation, i.e., the valuations of
relations and signatures that make all the facts in the spec-
iÞcation true. AA Þnds instances within a pre-speciÞed
scope�the maximum number of atoms in each basic signa-
ture. AA can also enumerate all non-isomorphic instances.

Given the Alloy speciÞcation above, TestEra in the Þrst
phase generates all non-isomorphic test cases within a given
input size: TestEra Þrst uses AA to generate all non-
isomorphic instances and then uses a concretization trans-
lation to translate Alloy instances to appropriate Java data
structures.

In the next phase, TestEra executes mergeSort on each
test case and abstracts the produced output using an abstrac-
tion translation. This abstracted output and the original in-
put instance valuate the relations and signatures in the in-
put/output Alloy speciÞcation. Finally, TestEra uses AA to
check that this is a valid valuation.

The abstraction and concretization translations that
TestEra uses are provided in Java. For the linked list data
structure above, the translations are straightforward; we dis-
cuss them in Section 3.2.

The following Alloy code speciÞes the correctness crite-
rion for mergeSort and is used in TestEra�s phase 2 anal-
ysis. Acyclic and Input are as deÞned above. The Alloy
operator �#� denotes cardinality (of sets).
fun Sorted(l:List) {

// every element (except last) is not greater than next
all n: l.*next | some n.next =>

n.elem <= n.next.elem }

fun Perm(l1:List, l2:List) {
// same # of occurences in l1 and l2 for each integer
all e: Integer | #(e.˜elem & l1.*next) =

#(e.˜elem & l2.*next) }

fun MergeSortOK(i:List, o:List) {
Acyclic(o)
Sorted(o)
Perm(i,o) }

static sig Output ext List {}

fact OutputOK {
MergeSortOK(Input, Output) }

The subsignature Output models the result produced by
an invocation of mergeSort. The correctness criterion is
expressed by the fact OutputOK, which essentially con-
strains the output to be acyclic, sorted, and a permutation
of the input.

Alloy
instances

Alloy
output

Java
outputinput

Alloy Java
input

Alloy
Analyzer

tester
Java

concretization

counter
example

abstractionrun code

fail

pass

TestEra

input
Alloy

spec

Alloy
I/O

spec

check
correctness

spec

Figure 1. Basic TestEra framework

With phase 2 speciÞcation above, TestEra checks
mergeSort and reports that there are no counterexamples
for the correct implementation. However, if we erroneously
reverse a comparison in the method for merging from
(l1.elem <= l2.elem) to (l1.elem >= l2.elem),
TestEra detects violation of the correctness criterion and
generates counterexamples, one of which is the following:

Counterexample found:
Input List: 1 -> 1 -> 3 -> 2
Output List: 3 -> 2 -> 1 -> 1

Most shape analysis techniques [19,20,22] are either un-
able to handle operations like mergeSort or require com-
plicated invariants to be speciÞed by the user for loops and
method calls. We discuss this further in Section 6.

3. TestEra framework

TestEra is a novel framework for automated testing of
Java programs. We have built TestEra upon Alloy and the
Alloy Analyzer (AA) with the aim of checking actual Java
implementations, without having to model Java computa-
tions in Alloy.

3.1. Framework Outline

There are Þve key parts in testing a Java program with
TestEra:

� Identifying a sequence � of method calls to analyze.

� Creating an Alloy speciÞcation �� of inputs to �.

� Creating an Alloy speciÞcation ���� of the correct-
ness criteria for � by relating an input to � with the
output of �.

� DeÞning a concretization translation a2j from an Al-
loy instance of �� to a Java input for �.

� DeÞning an abstraction translation j2a from a Java
output to a (partial) Alloy instance of ����.

Figure 1 illustrates the main components of TestEra. A
TestEra speciÞcation consists of a combination of Alloy and
Java code. Three source Þles are extracted from this speci-
Þcation. Two of these Þles consist of Alloy speciÞcations:
one speciÞcation is for the inputs and the other speciÞcation
is for the correctness criteria. The third Þle consists of Java
code that translates input instances from Alloy to Java, runs
the sequence of Java methods to test, and translates Java
output back to Alloy.

TestEra�s analysis has two phases:

� In the Þrst phase, TestEra uses AA to generate all non-
isomorphic instances of the Alloy input speciÞcation.

� In the second phase, each of the instances is tested in
turn. It is Þrst translated, using concretization, into a
Java input, which forms the test case for the sequence
of method calls. Next, the output produced by the exe-
cution of this test case is translated, using abstraction,
back into Alloy. This output Alloy instance and the
original Alloy input instance valuate the signatures and
relations of the Alloy input/output speciÞcation. AA
then quickly evaluates if this valuation is valid. If the
evaluation fails, TestEra reports a counterexample. If
the evaluation passes, the next Alloy input instance is
used for further testing.

3.2. Abstraction and Concretization Translations

We next discuss abstraction and concretization transla-
tions in TestEra. A concretization, abbreviated a2j, trans-
lates Alloy instances to Java data structures. An abstraction,
abbreviated j2a, translates Java data structures to Alloy in-
stances. In the current version of TestEra, all translations

between Alloy instances and Java data structures are actu-
ally written in Java.

Concretization a2j typically operates in two stages. In
the Þrst stage, a2j creates for each atom in the Alloy in-
stance, a corresponding object of the Java classes, and stores
this correspondence in a map. In the second stage, a2j es-
tablishes the relationships among the Java objects created in
the Þrst stage and builds the actual data structures.

Recall the singly linked list example introduced in Sec-
tion 2. We next give a2j translation for List, using pseu-
docode to simplify the presentation. In the pseudocode, we
use foreach instead of Java for loops that iterate over col-
lections, and we omit downcasting. We also use the pat-
tern matching shorthand �a,b� to denote the Java object
that represents a pair p, whose Þelds can be accessed us-
ing p.first() and p.second().

InputsAndMapAJ a2j(Instance i) {
MapAJ map = new MapAJ();
foreach (atom in i.getSigAtoms("List"))

map.put(atom, new List());
foreach (atom in i.getSigAtoms("Integer"))

map.put(atom, new Integer(atom));
List input = map.get("Input");
foreach (<l,t> in i.getRelationMappings("elem"))

map.get(l).elem = map.get(t).intValue();
foreach (<l,t> in i.getRelationMappings("next"))

map.get(l).next = map.get(t);
return new InputsAndMapAJ(new Object[]{input}, map);}

For the input Alloy instance i, Þrst a Java object cor-
responding to each atom in the signature List is cre-
ated. Next, for each atom in signature Integer, a new
java.lang.Integer object is created with the appropri-
ate value. List variable input is then set to the appropriate
object. This completes the Þrst stage of a2j.

In the second stage, for each tuple in the Alloy relation
elem, the corresponding Þeld is appropriately set for the
Java objects, and likewise tuples in relation next are pro-
cessed. This completes the a2j translation.

Translations use the class MapAJ to store bi-directional
mapping between Alloy atoms and Java objects. This class
behaves like java.util.HashMap. For an object mapAJ

of MapAJ, mapAJ.get(atom) returns the Java object cor-
responding to atom; mapAJ.getAtom(object,sig) re-
turns the Alloy atom corresponding to (Java) object if
there is such an atom in the mapping; if there is no atom,
getAtom creates a new atom for the signature sig, adds it
to the mapping, and returns it.

// execution of a test case
List output = mergeSort(input);

For each test case, TestEra invokes mergeSort. This
simple execution is given above in Java. Below, we give the
abstraction.

Instance j2a(Object output, Instance ret, MapAJ map) {
List l = (Object) output;
if (l==null) {

ret.setSig("Output", null);
return ret; }

ret.setSig("Output", map.getAtom(l, "List"));
Set visited = new HashSet();
while ((!visited.contains(l)) && (l!=null)) {

ret.addRelationMapping("elem",
map.getAtom(l, "List"),
map.getAtom(new Integer(l.elem), "Integer"));

if (l.next!=null)
ret.addRelationMapping("next",

map.getAtom(l, "List"),
map.getAtom(l.next, "List"));

visited.add(l);
l = l.next; }

return ret; }

The parameter ret represents an input instance that is
modiÞed by j2a to include the output so that AA can check
the correctness criteria. setSig updates the given signa-
ture by inserting the given atom; addRelationMapping

behaves in a similar fashion for updating relations. If the
output list is null, Output is set to be the empty set.
Otherwise, the while loop is used to traverse the list and
valuate the relations elem and next.

The set visited keeps track of the nodes that have been
traversed in the loop. This is necessary to prevent the trans-
lation to enter an inÞnite loop if mergeSort erroneously
produces an output list that is not acyclic.

The abstraction and concretization translations are sim-
ple for most data structures. It is possible to easily automate
the generation of translations whenever there is a direct cor-
respondence between the description in Alloy and the Java
declaration. However, when the correspondence is not ob-
vious, TestEra requires user-speciÞed translations.

4. Case Studies

We have used TestEra to check a variety of programs, in-
cluding methods of some classes in the java.util pack-
age. Most of these programs manipulate non-trivial data
structures. We have also tested a part of the Alloy Analyzer
with TestEra. In this section, we illustrate some of the anal-
yses performed by TestEra and the bugs that it detected.

4.1. Red-Black Trees (java.util.TreeMap)

We Þrst outline TestEra�s analysis of the red-black tree
implementation given in java.util.TreeMap from the
standard Java libraries (version 1.3).

Red-black trees [2] are binary search trees with one extra
bit of information per node: its color, which can be either
�red� or �black�. By restricting the way nodes are colored
on a path from the root to a leaf, red-black trees ensure that
the tree is �balanced�, i.e., guarantee that basic dynamic set
operations on a red-black tree take���� �� time in the worst
case.

A binary search tree is a red-black tree if:

1. Every node is either red or black.

2. Every leaf (NIL) is black.

3. If a node is red, then both its children are black.

4. Every simple path from the root node to a descendant
leaf contains the same number of black nodes.

All four of these red-black properties are expressible in
Alloy. We use TestEra to test the implementation of red-
black trees in java.util.TreeMap. In particular, we il-
lustrate TestEra�s analysis of the deleteEntry method in
class java.util.TreeMap$Entry, which is responsible
for deleting a given node from the tree. Deletion is the most
complex operation among the standard operations on red-
black trees and involves rotations. Together with the aux-
iliary methods, deletion in java.util.TreeMap is about
300 lines of Java code.

Part of the java.util.TreeMap declaration is:

public class TreeMap {
Entry root;
...
static final boolean RED = false;
static final boolean BLACK = true;
static class Entry implements Map.Entry {

Object key;
Object value;
Entry left;
Entry right;
Entry parent;
boolean color;
...

}
public void deleteEntry(Entry p) {...}
...

}

TestEra automatically generates input red-black trees as
test cases for deleteEntry using the Alloy speciÞcation
of the red-black properties presented below. Since red-
black trees in java.util.TreeMap implement a mapping
between keys and values, an Entry has two data Þelds:
key and value. The Þeld value represents the value
that the corresponding key is mapped to. We abstract the
Þeld value, because it is irrelevant for the deleteEntry

method. In the actual speciÞcation, we also omit key and
identify an entry with its data, i.e., treat the name of the
entry atom, assigned by AA, as its key. For clarity of pre-
sentation, we leave key in here.

module redBlackTree
import integer

sig Color {}
partition static sig Red, Black ext Color {}

sig Entry {
key: option Integer,
color: Color,
left: option Entry,
right: option Entry,
parent: option Entry }

sig Root ext Entry {}

static sig NIL ext Entry {} // models leaf nodes

deleteEntry(Input) = Output

Output

3 3

11

0

22

Input

Figure 2. A counterexample for deleteEntry

fact ParentDefn {
all e1, e2: Entry |

e1 in e2.parent <=> e2 in e1.left + e1.right }

fun HasNILChild(e: Entry) { NIL in e.left + e.right }

fact RedBlackFacts {
// every node is red or black -- holds by construction
// leafs are black
NIL.color = Black
// red has black children
all e: Entry | e.color = Red =>

(e.left + e.right).color = Black
// paths from root to NIL have same # of black nodes
all e1, e2: Entry |

HasNILChild(e1) && HasNILChild(e2) =>
#(e1.*parent & Black.˜color) =

#(e2.*parent & Black.˜color) }

fact BinaryTreeFacts {
// root has no parent
no Root.parent
// acyclic
all e: Entry | e !in e.ˆ(˜parent)
// unique children
all e: Entry - NIL |

e.left != e.right ||
e.left + e.right = NIL

// internal nodes
all e: Entry - NIL |

some e.left && some e.right && some e.key
// leaf nodes
no NIL.left && no NIL.right && no NIL.key }

fact SearchTreeFacts {
// left subtree has smaller keys
all e: Entry - NIL |

all el: e.left.*(˜parent) - NIL | el.key <= e.key
// right subtree has larger keys
all e: Entry - NIL |

all er: e.right.*(˜parent) - NIL | e.key <= er.key }

The four red-black properties are simply described in
the fact RedBlackFacts. Since red-black trees are binary
search trees, we also describe basic structural invariants that
hold for binary trees in BinaryTreeFacts and the prop-
erty that for any node, the elements in its left sub-tree are
smaller than itself and those in the right sub-tree are larger
than itself in SearchTreeFacts. (�ˆ� denotes transitive
closure, and �||� is logical or.)

To complete the phase 1 speciÞcation, we include the
following declarations that model the input parameters of
the deleteEntry method:

Lookup−Name (Database, Query) = {R0}

service

camera

building

NE−43

servicebuilding

NE−43
camera printer

R0

R1

Query Database

A1

V1

V0

A0

A1

R0

IDatabase

V1

*

A0

A1

V1

IQuery IQueryNoWC

Lookup−Name (IDatabase, IQuery) = {R0}
Lookup−Name (IDatabase, IQueryNoWC = {}

R1 R0

A0

V1

A1

V0

IDatabase

A0

V1

A1

V0

IQuery

Lookup−Name (IQuery, IDatabase) = {}
Conforming−Services = {R0, R1}

(b)

(c)
(a)

Figure 3. (a) Intentional names in INS, (b) and (c) counterexamples for Lookup-Name

static sig InputTreeRoot ext Root {}

static sig RemoveEntry ext Entry {}

After generating the test cases using the above speciÞ-
cation, TestEra in phase 2 of its analysis tests deleteEn-

try. The Alloy speciÞcation for phase 2 contains con-
straints similar to the ones above and the correctness con-
straint that the set of keys in the output is equal to those in
the input except for the key to delete.

As expected, TestEra�s analysis of the original imple-
mentation provided in java.util does not produce any
counterexamples. However, if we erroneously swap BLACK
with RED in the following code fragment:

if (p.color == BLACK)
fixAfterDeletion(p);

TestEra detects violation of structural constraints on red-
black trees and produces concrete counterexamples. Fig-
ure 2 presents a counterexample. Nodes are labeled with
the keys of the entries. Round Þlled nodes represent en-
tries colored black and empty nodes represent entries col-
ored red. Square Þlled nodes represent NIL nodes and are
colored black. The entry with key 0 is to be deleted from
the input red-black tree. The output tree is not balanced;
more precisely, property 4 is violated.

The close correspondence between the Java data struc-
tures and the Alloy declarations in this case gives straight-
forward translations for abstraction and concretization. We
do not present them here.

It should be noted here that Alloy provides an expressive
notation for expressing properties of data structures. This is
evident from the fact that the fourth property of red-black
trees is not expressible in the logics used in [4, 22]. Simi-
larly, [20] cannot check the deleteEntry method above.

4.2. Intentional Naming System

The Intentional Naming System (INS) [1] is a recently
proposed naming architecture for resource discovery and
service location in dynamic networks. In INS, services are
referred to by intentional names, which describe properties
that services provide, rather than by their network locations.
An intentional name is a tree consisting of alternating levels
of attributes and values. The Query in Figure 3(a) is an ex-
ample intentional name; hollow circles represent attributes
and Þlled circles represent values. The query describes a
camera service in building NE-43. A wildcard may be used
in place of a value to show that any value is acceptable.

Name resolvers in INS maintain a database that stores
a mapping between service descriptions and physical net-
work locations. Client applications invoke resolver�s
Lookup-Name method to access services of interest. Fig-
ure 3(a) illustrates an example of invoking Lookup-Name.
Database stores description of two services: service R0

provides a camera service in NE-43, and service R1 pro-
vides a printer service in NE-43. Invoking Lookup-Name

on Query and Database should return R0.
To illustrate the variety of TestEra�s analyses, we discuss

some ßaws identiÞed by TestEra in the Java implementation
of INS [26]. These ßaws actually existed in the INS design,
and we Þrst corrected the design. We then modiÞed the
implementation of INS and checked its correctness using
TestEra. Details of our INS case study with TestEra can be
found in [18]. The original Java implementation of INS [26]
consists of around 2000 lines of code.

Our checking of INS using TestEra focuses on the
Lookup-Name method. Lookup-Name returns the set of
services from the input database that conform to the in-
put query. To investigate the correctness of Lookup-Name,
we test its soundness (i.e., if it returns only conforming

services) and completeness (i.e., if it returns all conform-
ing services). The INS inventors did not state a formal
deÞnition of conformance, but only certain properties of
Lookup-Name.

The published description of Lookup-Name claims:
�This algorithm uses the assumption that omitted attributes
correspond to wildcards; this is true for both the queries and
advertisements.� TestEra disproves this claim; Figure 3(b)
illustrates a counterexample. IQueryNoWC is the same as
IQuery, except that the wildcarded attribute A0 is removed.
Different results of the two invocations of Lookup-Name

contradict the claim.
TestEra also shows that addition in INS is not mono-

tonic, i.e., adding a new service to a database can cause
existing services to erroneously become non-conforming.
Figure 3(c) illustrates such a scenario: both services R0 and
R1 are considered conforming to IQuery by the semantics
of INS, but their co-existence in IDatabase makes both
of them erroneously non-conforming to IQuery. This ßaw
points out that INS did not have a consistent notion of con-
formance. Both preceding ßaws exist in the original design
and implementation of INS.

We deÞne a service � as conforming to a query � if �
is a subtree of the name of �, where the wildcard matches
any value. This means that a service is conforming to � if
it provides all the attributes and (non-wildcard) values men-
tioned in � in the right order. TestEra�s analysis of the orig-
inal implementation of Lookup-Name with respect to this
deÞnition of conformance reports several counterexamples.
We modiÞed the implementation and re-evaluated the cor-
rectness of Lookup-Name using TestEra. This time TestEra
reports no ßaws, increasing the conÞdence that our changes
have corrected the problems with INS. The corrected algo-
rithm now forms a part of the INS code base.

4.3. Alloy Analyzer

The main design goal for TestEra is that it efÞciently an-
alyzes complex data structures. But, TestEra can be applied
also to test various other kinds of programs. As an illustra-
tion, we show how we used TestEra to uncover subtle bugs
in the Alloy Analyzer.

The bugs appear in AA because it generates instances
that, for the user�s convenience, retain the names that the
user gives for static signatures. The problems only ap-
pear in the rare case when the user explicitly declares a
static subsignature with the same name as the one that AA
picks for an atom of a basic signature. These bugs have
simple Þxes and will be corrected in the upcoming release
of the new version of AA.

Recall that the basic signatures in Alloy introduce new
types. Therefore, distinct basic signatures must not share
atoms, and the atoms within each signature must be also

unique. We test the conjecture that instances produced by
AA satisfy these properties.

We build an Alloy (meta-)speciÞcation of a simpliÞed
Alloy speciÞcation that consists only of basic signature and
subsignature declarations. In phase 1, TestEra generates
all non-isomorphic instances of this speciÞcation. Each of
these instances � essentially represents an Alloy speciÞca-
tion� . In phase 2, TestEra takes each instance � in turn and
build the corresponding Alloy speciÞcation � . The testing
next invokes AA again to generate all instances of � and
Þnally checks whether each such instance � � satisÞes the
uniqueness properties stated above.

The following Alloy code models an Alloy speciÞcation
that consists only of signature declarations, with some of
their atoms explicitly named (as static subsignatures).

sig SigName {}
sig Prefix {}
sig Suffix {}
sig Atom {

namePrefix: Prefix,
nameSuffix: Suffix }

fact AtomsHaveUniqueNames {
all disjoint a1,a2:Atom |

a1.namePrefix != a2.namePrefix ||
a1.nameSuffix != a2.nameSuffix }

sig Sig {
name: SigName,
staticAtoms: set Atom }

fact SignaturesHaveUniqueNamesAndAtoms {
all disjoint s1,s2:Sig |

s1.name != s2.name &&
no s1.staticAtoms & s2.staticAtoms}

partition static sig Signature, Test ext SigName {}
partition static sig S, T ext Prefix {}
partition static sig Zero, One ext Suffix {}

Basic type SigName denotes signature names, and Pre-

fix and Suffix build atom names. The fact AtomsHave-

UniqueNames speciÞes that names of distinct atoms differ
in either the preÞx or the sufÞx. A Sig has a name and
can have several atoms declared explicitly (i.e., its static

subsignatures). The fact SignaturesHaveUniqueName-

sAndAtoms constrains distinct signatures to have distinct
names and atoms.

For the sake of simplicity, we let the pool for signature
names be only �Signature,Test�, for preÞxes �S,T�,
and for sufÞxes �Zero,One�. (Zero and One are place-
holders for symbols 0 and 1, since these symbols without a
leading alphabetic character are not allowed as subsignature
names in Alloy.)

An example instance � that AA generates for the above
speciÞcation is:

SigName = {Signature, Test}
Prefix = {S, T}
Suffix = {Zero, One}
Atom = {A1, A2}
Sig = {Sig1, Sig2}
namePrefix={(A1, S), (A2, S)}
nameSuffix={(A1, One), (A2, Zero)}
name = {(Sig1, Test), (Sig2, Signature)}
staticAtoms = {(Sig1, A1), (Sig2, A2)}

Max size Phase 1 Phase 2
Case Study Property/Method Tested of a sig #Tests t[sec] #Passed t[sec]
Singly Linked Lists mergeSort 4 42 10 42 (100%) 7

mergeSort (erroneous) 4 42 0 0 (0%) 7
Red Black Trees deleteEntry 5 54 31 54 (100%) 13
java.util.TreeMap deleteEntry (erroneous) 5 54 0 30 (56%) 13
INS published wildcard claim 3 12 9 10 (83%) 6

monotonicity of addition 4 160 14 150 (93%) 9
Lookup-Name (original) 3 16 8 10 (62%) 6
Lookup-Name (corrected) 3 16 0 16 (100%) 6

AA disjoint sigs, unique atoms 2 12 5 6 (50%) 25

Table 1. Summary of TestEra’s analyses

This instance represents the Alloy speciÞcation � :

sig Test {}
sig Signature {}
static sig S1 extends Test {}
static sig S0 extends Signature {}

As stated earlier, for any instance generated by AA,
the valuations of signatures (and relations) in the instance
must satisfy the uniqueness properties for the analyzer to be
sound.

TestEra�s analysis of this conjecture produces a coun-
terexample. In particular, TestEra detects the following in-
stance � � of � as produced by AA:

Signature = {S0, S1}
Test = {S1}

This instance violates the property that atoms in distinct
signatures must be distinct.

Another counterexample that TestEra generates is:

Signature = {S0,S0}
Test = {S1}

This instance also violates the property that atoms in a
signature must be distinct. Both violations of the unique-
ness properties also affect the visualization part of AA. As
mentioned, though, the violations can be easily Þxed.

5. Implementation and Performance

We have implemented a prototype version1 of TestEra
in Java. Table 1 summarizes the performance of our im-
plementation on the presented case studies; analyses were
conducted on a Pentium III, 700 MHz processor. (All times
are in seconds; 0sec in phase 1 indicates reusing already
generated tests.) In all the cases, TestEra takes less than
a minute to complete both the automatic generation of in-
stances and the veriÞcation of correctness.

1We have presented the speciÞcations in the new version of Alloy [15].
The analyzer for this version has not been released yet. We performed
the actual analyses on speciÞcations written in an earlier version [13] and
available at http://www.mit.edu/˜sarfraz/testera/.

In phase 1, TestEra typically generates several test cases
per second. Among the studies we have presented, the most
complex structural invariants are those for red-black trees.
This is indicated by the time TestEra takes to generate test
cases. It should be noted, though, that the number of pos-
sible states to consider for generating red-black trees with
Þve nodes is over ���. Of course, AA prunes away [14]
most of these states, and that is why the test cases are gen-
erated fairly quickly.

In phase 2, TestEra�s performance depends on the com-
plexity of the code being executed. The is indicated by the
last row in TestEra�s analysis of AA, when it takes 25 sec-
onds to test the 12 test cases. Each of these test cases re-
quires using AA to generate instances and then checking
those instances.

Writing abstraction and concretization translations in
Java is straightforward in most cases. In all the cases we
have presented, the translations were written within a few
hours. We are also considering to introduce a special pur-
pose language to ease development of these translations.
For cases when there is a direct correspondence between
an Alloy model and Java class declaration, we would like to
automatically infer these translations. However, when the
correspondence is more involved, such as for INS and AA,
the translations may need to be speciÞed by hand.

When TestEra detects a violation of the property being
tested, TestEra generates concrete counterexamples. In case
no violation is detected, we can increase our conÞdence in
the implementation by generating test cases using a larger
number of atoms in basic signatures. Simply increasing the
scope and regenerating instances produces some test cases
that have already been used in the smaller scope. TestEra�s
performance in such a case can be enhanced by ruling out
instances that can be found in a smaller scope. As an illus-
tration, we have ruled out some instances in the presented
case studies. For example, we only considered linked lists
with at least three integers and red-black trees with at least
two nodes.

6. Related Work

There is a large body of research on speciÞcation-based
testing. An early paper by Goodenough and Gerhart [8]
argues its importance.

Horcher [11] presents a technique for software testing
based on Z [28] speciÞcations. This technique provides au-
tomated test execution and result evaluation. However, con-
crete input test data need to be selected manually from an
automatically generated set of test classes.

The UMLTest tool [23] automatically generates tests
from UML [24] statecharts and enabled transitions, but re-
quires all variables to be boolean, among other limiting as-
sumptions it makes about the UML input Þle. Applied to
a C implementation of a cruise control, it detects several
faults that were inserted by hand.

Chang et al. [5] present a technique for deriving test
conditions�a set of boolean conditions on values of
parameters�from ADL [25] speciÞcations. These test con-
ditions are used to guide test selection and to measure com-
prehensiveness of existing test suites.

Alloy has previously been used to analyze Java pro-
grams [16,17]. These techniques involve modeling both the
input data structures and computation in Alloy. An Alloy
model of the core computation of the Intentional Naming
System is manually built in [17]. This manual translation
of non-trivial imperative code into a declarative language
is extremely subtle, and required a week of careful think-
ing. In this approach, modiÞcations to an implementation
require manual remodeling of computation.

The approach for analyzing bounded initial segments
of computation sequences manipulating linked lists in [16]
presents a way to automatically build an Alloy model of
computation. This technique, however does not appear to
scale. This is because Alloy does not have built in sup-
port for recursion, control ßow, or sequencing of operations,
which makes it hard to model imperative code.

The Pointer Assertion Logic Engine (PALE) [22] can
verify partial speciÞcations of data structures that can be
expressed as graph types, and produce counterexamples for
violated properties. However, this technique requires com-
plicated, explicitly stated invariants, since its automatic ver-
iÞcation works only for loop free code. Graph types cannot
express arbitrary graphs. For example, it is not possible to
say that every node in a graph has a pointer to some other
node�a property easily expressible in Alloy. Also, the no-
tation used in PALE lacks expressivity to state various in-
teresting properties of data structures. For example, it is not
possible to directly state the fourth invariant of red-black
trees in that notation, as noted by the inventors of PALE.

The Three-Valued-Logic Analyzer TVLA [20] performs
Þxed point iterations on abstract descriptions of the store,
and can verify various shape properties. TVLA, however,

cannot produce concrete counterexamples when programs
fail to verify. TVLA has been used to verify sorting pro-
grams [19]. But it neither handles recursive sorting pro-
grams, nor can verify (due to data abstractions) if the data
values in the output list are the same as those in the input
list. Most shape analysis techniques, including PALE, lack
the ability to check correctness of properties regarding data
values. However, the partial correctness properties they ver-
ify hold for all inputs to the program.

We reported our initial experience with TestEra at the
recent Software Model Checking Workshop [18]. We pre-
sented there only the INS case study. This paper describes
TestEra in more detail and presents several case studies.

There has been a lot of recent interest in applying model
checking to software. The Bandera project [6] provides
automated support for reducing a program�s state space
through program slicing and data abstraction. It allows
users to analyze properties of Java programs by model-
ing them into the input language of one of several exist-
ing model checkers like SPIN [10] and SMV [21]. JavaP-
athFinder [9] and JCAT [7] transliterate Java programs into
Promela programs. They handle a signiÞcant portion of
Java including dynamic object allocation, object references,
exception processing, and inheritance.

Most of the work on applying model checking to soft-
ware has focused on analyzing event sequences and not data
structures. Where data structures have been analyzed, the
purpose has been to simplify the state machine to be ana-
lyzed and not to provide the user feedback about the data
structures themselves.

7. Conclusions and Future Work

TestEra is a novel framework for automated testing of
Java programs. The key idea behind TestEra is to use
structural invariants on input data to automatically generate
test cases and then test the output produced by a program
against a correctness criteria.

As an enabling technology, TestEra uses the Þrst-order
relational notation Alloy and the Alloy Analyzer. The auto-
matic constraint solving ability of AA is used in conjunction
with a concretization translation to generate inputs to a pro-
gram. The program is executed and each output produced
is abstracted using an abstraction translation. Finally, each
input-output pair is automatically veriÞed against a correct-
ness criteria expressed in Alloy. A precise statement of a
desired input-output relationship is something that any ver-
iÞcation method requires.

We presented several programs that were efÞciently an-
alyzed by TestEra. In all the cases, the analysis completed
in a couple of seconds. When a property is refuted, TestEra
generates concrete counterexamples.

We believe that the approach taken by TestEra promises

scalability and wide application since computation is not
modeled and can be arbitrarily complex. The translations
required for input and output are usually straightforward.
The same translation is used for testing any program manip-
ulating inputs of a particular datatype. We are considering
exploring the correctness properties of the translations and
even to automate them.

To help the user decide that the program is tested enough,
we are planning to extend TestEra�s analysis to report func-
tional coverage. We would also like to evaluate TestEra on
other programs.

Acknowledgements

We would like to thank Glenn Bruns and Patrice Gode-
froid for their comments and support. We would also like
to thank Daniel Jackson, Viktor Kunÿcak, Martin Rinard,
and Ilya Shlyakhter for helpful discussions. This work was
funded in part by ITR grant #0086154 from the National
Science Foundation. The work of the second author was
done partly while visiting Bell Laboratories.

References

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lil-
ley. The design and implementation of an intentional nam-
ing system. In Proc. 17th ACM Symposium on Operating
Systems, Kiawah Island, Dec. 1999.

[2] R. Bayer. Symmetric binary B-trees: Data structure and
maintenance algorithms. Acta Informatica, 1, 1972.

[3] B. Beizer. Software Testing Techniques. International Thom-
son Computer Press, 1990.

[4] M. Benedikt, T. Reps, and M. Sagiv. A decidable logic for
describing linked data structures. In Proc. European Sympo-
sium on Programming, Amsterdam, The Netherlands, Mar.
1999.

[5] J. Chang, D. Richardson, and S. Sankar. Structural
speciÞcation-based testing with ADL. In Proc. Third Inter-
national Symposium on Software Testing and Analysis, Jan-
uary 1996.

[6] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby,
S. Laubach, and H. Zheng. Bandera: Extracting Þnite-state
models from Java source code. In Proc. 22nd International
Conference on Software Engineering, June 2000.

[7] C. Demartini, R. Iosif, and R. Sisto. A deadlock detection
tool for concurrent Java programs. Software - Practice and
Experience, July 1999.

[8] J. Goodenough and S. Gerhart. Toward a theory of test data
selection. IEEE Transactions on Software Engineering, June
1975.

[9] K. Havelund and T. Pressburger. Model checking Java pro-
grams using Java PathFinder. International Journal on Soft-
ware Tools for Technology Transfer, 1999.

[10] G. J. Holzmann. The model checker SPIN. IEEE Transac-
tions on Software Engineering, 23(5), May 1997.

[11] H.-M. Horcher. Improving software tests using Z speciÞca-
tions. In Proc. 9th International Conference of Z Users, The
Z Formal Specification Notation, 1995.

[12] D. Jackson. Automating Þrst-order relational logic. In Proc.
ACM SIGSOFT Eighth International Symposium on Foun-
dations of Software Engineering, San Diego, CA, Nov. 2000.

[13] D. Jackson. Alloy: A lightweight object modeling notation.
ACM Transactions on Software Engineering and Methodol-
ogy, 2001. To appear.

[14] D. Jackson, I. Schechter, and I. Shlyakhter. ALCOA: The
Alloy constraint analyzer. In Proc. International Conference
on Software Engineering, Limerick, Ireland, June 2000.

[15] D. Jackson, I. Shlyakhter, and M. Sridharan. A micromodu-
larity mechanism. In Proc. 9th ACM SIGSOFT Symposium
on the Foundations of Software Engineering, Vienna, Aus-
tria, September 2001. To appear.

[16] D. Jackson and M. Vaziri. Finding bugs with a constraint
solver. In Proc. International Symposium on Software Test-
ing and Analysis (ISSTA 2000), Portland, OR, Aug. 2000.

[17] S. Khurshid and D. Jackson. Exploring the design of an in-
tentional naming scheme with an automatic constraint ana-
lyzer. In Proc. 15th IEEE International Conference on Auto-
mated Software Engineering, Grenoble, France, Sept. 2000.

[18] S. Khurshid and D. Marinov. Checking Java implementa-
tion of a naming architecture using TestEra. In Post-CAV
Workshop on Software Model Checking, volume 55(3) of
Electronic Notes in Theoretical Computer Science (ENTCS),
Paris, France, July 2001. Elsevier Science.

[19] T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting
static analysis to work for veriÞcation: A case study. In
Proc. International Symposium on Software Testing and
Analysis, 2000.

[20] T. Lev-Ami and M. Sagiv. TVLA: A system for implement-
ing static analyses. In Proc. Static Analysis Symposium,
Santa Barbara, CA, June 2000.

[21] K. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[22] A. Moeller and M. I. Schwartzbach. The pointer asser-
tion logic engine. In Proc. SIGPLAN Conference on Pro-
gramming Languages Design and Implementation, Snow-
bird, UT, June 2001.

[23] J. Offutt and A. Abdurazik. Generating tests from UML
speciÞcations. In Proc. Second International Conference on
the Unified Modeling Language, October 1999.

[24] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Mod-
eling Language Reference Manual. Addison Wesley Object
Technology Series, 1998.

[25] S. Sankar and R. Hayes. Specifying and testing software
components using ADL. Technical Report SMLI TR-94-23,
Sun Microsystems Laboratories, Inc., Mountain View, CA,
April 1994.

[26] E. Schwartz. Design and implementation of intentional
names. Master�s thesis, MIT Laboratory for Computer Sci-
ence, Cambridge, MA, June 1999.

[27] I. Shlyakhter. Generating effective symmetry-breaking pred-
icates for search problems. In Proc. Workshop on Theory
and Applications of Satisfiability Testing, June 2001.

[28] J. M. Spivey. The Z notation: A Reference Manual. Prentice
Hall, second edition, 1992.

