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Preface

Digital signal processing (DSP) can be considered simply to be the capture, analysis and manipulation
of an analog signal by a digital computer. The integration of DSP software and hardware into products
across a wide range of industries has necessitated the understanding and application of DSP by
engineers and technicians.

The aim of this book is to introduce DSP from a practical point of view using a minimum of
mathematics. The emphasis is on the practical aspects of DSP, implementation issues, tips and tricks
and pitfalls and practical applications. Intuitive explanations and appropriate examples are used to
develop a fundamental understanding of DSP theory. The coverage in the book is fairly broad from
process control to communications.

Some of the DSP techniques included in the book include:

e Digital filtering for cleaning a signal from noise

e Discrete Fourier transforms for finding a particular frequency component
e Correlation techniques to find a signal buried in noise

¢ Industrial control with digital controllers

¢ Instrumentation and test for better accuracy

e Vibration analysis for identifying frequency signatures

¢ Image and video processing for enhancing images

e Communications especially for filtering out noise

At the conclusion of the reading of the book we hope that you will gain the following:

e A clear understanding of digital signal processing (DSP)

¢ Benefits and application of DSP technology to improve efficiency

¢ An understanding of frequency analysis of signals and the application of these
techniques

¢ Information about and actual design of digital filters

¢ Ability to analyse the performance of DSP systems

e A knowledge of the key issues in designing a DSP system

¢ An understanding of the features and capabilities of DSP applications

Typical people who will find this book useful include:

e Electrical engineers

e Control system engineers

e Communication system engineers

e Electronic engineers

e Instrumentation engineers

¢ Condition monitoring engineers and technicians
e Design engineers

A basic knowledge of first year college mathematics is essential to grasp the basic principles in this
book; but beyond this the contents are of a fundamental nature and are easy to comprehend.
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The structure of the book is as follows.

Chapter I: Introduction. This chapter gives a brief overview of the benefits of processing
signals digitally as well as an overview of the book.

Chapter 2: Converting analog to digital signals and vice versa. A review of a
typical DSP system, analog to digital converters and digital to analog converters.

Chapter 3: Time domain representation. A discussion on typical discrete-time
signals, operations on discrete time signals, the classification of systems, convolution and auto and
cross correlation operations.

Chapter 4: Frequency domain representation. A detailed review of the discrete
Fourier and inverse Fourier transform operations with an extension to the Fast Fourier transform and
implementation of this important algorithm in software.

Chapter 5: DSP application examples. A review of periodic signal generation using
wavetables, a wireless transmitter implementation, speech synthesis, image enhancement and active
noise control.

Chapter 6: FIR filter design. An examination of the classification of digital filters, the filter
design process, characteristics of FIR filters, the window, frequency sampling and Parks-Mclelland
methods.

Chapter 7: Infinite impulse response (lIR) filter design. A review of the
characteristics of IIR filters, review of classical analog filter approximations, IIR filter derivation from
analog filters and a comparison of the FIR and IIR design methods.

Chapter 8: Digital filter realizations. A review of the direct, cascade, parallel forms and
software implementation issues together with finite word-length effects.

Chapter 9: Digita/ signa/ Processors. An examination of common features, hardware

architectures, special instructions and addressing modes and a few suggestions on choosing the most
appropriate DSP processor for your design.

Chapter 10: Hardware and software development tools. A concluding review
on DSP system design flow and development tools.






1.1

Introduction

Digital signal processing (DSP) is a field which is primarily technology driven. It started
from around mid 1960s when digital computers and digital circuitry became fast enough
to process large amounts of data efficiently.

When the term ‘digital’ is used, often it loosely refers to a finite set of distinct values.
This is in contrast to ‘analog’, which refers to a continuous range of values. In digital
signal processing we are concerned with the processing of signals which are discrete in
time (sampled) and in most cases, discrete in amplitude (quantized) as well. In other
words, we are primarily dealing with data sequences — sequences of numbers.

Such discrete (or digital) signals may arise in one of the following two distinct
circumstances:

e The signal may be inherently discrete in time (and/or amplitude)
e The signal may be a sampled version of a continuous-time signal

Examples of the first type of data sequences include monthly sales figures, daily
highest/lowest temperatures, stock market indices and students examination marks.
Business people, meteorologists, economists, and teachers process these types of data
sequences to determine cyclic patterns, trends, and averages. The processing usually
involves filtering to remove as much ‘noise’ as possible so that the pattern of interest will
be enhanced or highlighted.

Examples of the second type of discrete-time signals can readily be found in many
engineering applications. For instance, speech and audio signals are sampled and then
encoded for storage or transmission. A compact disc player reads the encoded digital
audio signals and reconstructs the continuous-time signals for playback.

Benefits of processing signals digitally

A typical question one may ask is why process signals digitally? For the first type of
signals discussed previously, the reason is obvious. If the signals are inherently discrete in
time, the most natural way to process them is using digital methods. But for continuous-
time signals, we have a choice.
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Analog signals have to be processed by analog electronics while computers or
microprocessors can process digital signals. Analog methods are potentially faster since
the analog circuits process signals as they arrive in real-time, provided the settling time is
fast enough. On the other hand, digital techniques are algorithmic in nature. If the
computer is fast and the algorithms are efficient, then digital processing can be performed
in ‘real-time’ provided the data rate is ‘slow enough’. However, with the speed of digital
logic increasing exponentially, the upper limit in data rate that can still be considered as
real-time processing is becoming higher and higher.

The major advantage of digital signal processing is consistency. For the same signal,
the output of a digital process will always be the same. It is not sensitive to offsets and
drifts in electronic components.

The second main advantage of DSP is that very complex digital logic circuits can be
packed onto a single chip, thus reducing the component count and the size and reliability
of the system.

Definition of some terms

DSP has its origin in electrical/electronic engineering (EE). Therefore the terminology
used in DSP are typically that of EE. If you are not an electrical or electronic engineer,
there is no problem. In fact many of the terms that are used have counterparts in other
engineering areas. It just takes a bit of getting used to.
For those without an engineering background, we shall now attempt to explain a few
terms that we shall be using throughout the manual.
e Signals
We have already started using this term in the previous section. A signal is
simply a quantity that we can measure over a period of time. This quantity
usually changes with time and that is what makes it interesting. Such
quantities could be voltage or current. They could also be the pressure, fluid
level and temperature. Other quantities of interest include financial indices
such as the stock market index. You will be surprised how much of the
concepts in DSP has been used to analyze the financial market.

e Frequency
Some signals change slowly over time and others change rapidly. For
instance, the (AC) voltage available at our household electrical mains goes up
and down like a sine function and they complete one cycle in 50 times or 60
times a second. This signal is said to have a frequency of 50 or 60 hertz (Hz).

e Spectrum

While some signals consist of only a single frequency, others have a
combination of a range of frequencies. If you play a string on the violin, there
is a fundamental tone (frequency) corresponding to the musical note that is
played. But there are other harmonics (integer multiples of the fundamental
frequency) present. This musical sound signal is said to have a spectrum of
frequencies. The spectrum is a frequency (domain) representation of the time
(domain) signal. The two representations are equivalent.

e Low-pass filter
Filters let a certain range of frequency components of a signal through while
rejecting the other frequency components. A low-pass filter lets the ‘low-
frequency’ components through. Low-pass filters have a cutoff frequency
below which the frequency components can pass through the filter. For
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instance, if a signal has two frequency components, say 10 hz and 20 hz,
applying a low-pass filter to this signal with a cutoff frequency of 15 hz will
result in an output signal, which has only one frequency component at 10 hz;
the 20 hz component has been rejected by the filter.

e Band-pass filter
Band-pass filters are similar to low-pass filters in that only a range of
frequency components can pass through it intact. This range (the passband) is
usually above the DC (zero frequency) and somewhere in the mid-range. For
instance, we can have a band-pass filter with a passband between 15 and
25 Hz. Applying this filter to the signal discussed above will result in a signal
having only a 20 Hz component.

e High-pass filter
These filters allow frequency components above a certain frequency (cutoff)
to pass through intact, rejecting the ones lower than the cutoff frequency.

This should be enough to get us going. New terms will arise from time to time and they
will be explained as we come across them.

DSP systems

DSP systems are discrete-time systems, which means that they accept digital signals as
input and output digital signals (or information extracted). Since digital signals are simply
sequences of numbers, the input and output relationship of a discrete-time system can be
illustrated as in Figure 1.1. The output sequence of sample y(n) is computed from the
input sequence of sample x(n) according to some rules, which the system (H) defines.

There are two main methods by which the output sequence is computed from the input
sequence. They are called sample-by-sample processing and block processing
respectively. We shall encounter both types of processing in later chapters. Most systems
can be implemented with either processing method. The output obtained in both cases
should be equivalent if the input and the system H are the same.

Sample-by-sample processing

With the sample-by-sample processing method, normally one output sample is obtained
when one input sample is presented to the system.

For instance, if the sequence {yo, yi, ¥2,..., ¥ ---} 18 Obtained when the input sequence
{x0, X1, X2, ..., X, ...} 1S presented to the system. The sample y, appears at the output when
the input x, is available at the input. The sample y; appears at the output when the input
X1 is available at the input, etc.

Input Sequence Output Sequence

> H >

{xo,x1,x2 ..... } {YO,Y1,Y2 ----- }

Discrete-time
System

Figure 1.1
A discrete-time system

The delay between the input and output for sample-by-sample processing is at most one
sample. The processing has to be completed before the next sample appears at the input.
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Block processing

With block processing methods, a block of signal samples is being processed at a time. A
block of samples is usually treated as a vector, which is transformed, to an output vector
of samples by the system transformation H.

Xy Yo
X y
x=|™M H 1 —y

The delay between input and output in this case is dependent on the number of samples
in each block. For example, if we use 8 samples per block, then the first 8 input samples
have to be buffered (or collected) before processing can proceed. So the block of 8 output
samples will appear at least 8 samples after the first sample x, appears. The block
computation (according to H) has to be completed before the next block of 8 samples are
collected.

Remarks

Both processing methods are extensively used in real applications. We shall encounter
DSP algorithms and implementation that uses one or the other. The reader might find it
useful in understanding the algorithms or techniques being discussed by realizing which
processing method is being used.

Some application areas

Digital signal processing is being applied to a large range of applications. No attempt is
made to include all areas of application here. In fact, new applications are constantly
appearing. In this section, we shall try to describe a sufficiently broad range of
applications so that the reader can get a feel of what DSP is about.

Speech and audio processing

An area where DSP has found a lot of application is in speech processing. It is also one of
the earliest applications of DSP. Digital speech processing includes three main sub-areas:
encoding, synthesis, and recognition.

Speech coding

There is a considerable amount of redundancy in the speech signal. The encoding process
removes as much redundancy as possible while retaining an acceptable quality of the
remaining signal. Speech coding can be further divided into two areas:
e Compression — a compact representation of the speech waveform without regard
to its meaning.
e Parameterization — a model that characterizes the speech in some linguistically
or acoustically meaningful form.

The minimum channel bandwidth required for the transmission of an acceptable quality
of speech is around 3 kHz, with a dynamic range of 72 dB. This is normally referred to as
telephone quality. Converting into digital form, a sampling rate of 8 k samples per second
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with a 12-bit quantization (2'> amplitude levels) is commonly used, resulting in 96 k bits
per second of data. This data rate can be significantly reduced without affecting the
quality of the reconstructed speech as far as the listener is concerned. We shall briefly
describe three of them:

e Companding or non-uniform quantization

The dynamic range of speech signals is very large. This is due to the fact that
voiced sounds such as vowels contain a lot of energy and exhibit wide
fluctuations in amplitude while unvoiced sounds like fricatives generally have
much lower amplitudes. A compander (compressor—expander) compresses the
amplitude of the signal at the transmitter end and expands it at the receiver
end. The process is illustrated schematically in Figure 1.2. The compressor
compresses the large amplitude samples and expands the small amplitude
ones while the expander does the opposite.

Transmitter Receiver

SIGNAL —-—— COMPRESSOR [——#— - - - - - - - - +—» EXPANDER [—> RECOVERED

x(t)

Figure 1.2

y(t) SIGNAL

x'(t)

0 1 x(t) 0 1 ')

Schematic diagram showing the companding process

The p-law compander (with p = 255) is a North American standard. A-law
companding with A = 87.56 is a European (CCITT) standard. The difference
in performance is minimal. A-law companding gives slightly better
performance at high signal levels while p-law is better at low levels.

¢ Adaptive differential quantization
At any adequate sampling rate, consecutive samples of the speech signal are
generally highly correlated, except for those sounds that contain a significant
amount of wideband noise. The data rate can be greatly reduced by quantizing
the difference between two samples instead. Since the dynamic range will be
much reduced by differencing, the number of levels required for the quantifier
will also be reduced.

The concept of differential quantization can be extended further. Suppose we
have an estimate of the value of the current sample based on information from
the previous samples, then we can quantize the difference between the current
sample and its estimate. If the prediction is accurate enough, this difference
will be quite small.
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Figure 1.3 shows the block diagram of an adaptive differential pulse code
modulator (ADPCM). It takes a 64 kbits per second pulse code modulated
(PCM) signal and encodes it into 32 kbit per second adaptive differential
pulse code modulated (ADPCM) signal.

Adjust
"|step size > A(n)
+~ Error "
x(n) =Q signal Quantizer Encoder | ¢(n)
« Predictor ¥
+
Figure 1.3

Block diagram of an adaptive differential pulse code modulator

Linear prediction
The linear predictive coding method of speech coding is based on a
(simplified) model of speech production shown in Figure 1.4.

Impulse
train

speech

Vocal tract

For unvoiced

speech

Figure 1.4

For voiced\

X  |Time-varying Synthesized
< Filter Speech

Voiced / unvoiced
decision

A model of speech production

The time-varying digital filter models the vocal tract and is driven by an
excitation signal. For voiced speech, this excitation signal is typically a train
of scaled unit impulses at pitch frequency. For unvoiced sounds it is random
noise.

The analysis system (or encoder) estimates the filter coefficients, detects
whether the speech is voiced or unvoiced and estimates the pitch frequency if
necessary. This is performed for each overlapping section of speech usually
around 10 milliseconds in duration. This information is then encoded and
transmitted. The receiver reconstructs the speech signal using these
parameters based on the speech production model. It is interesting to note that
the reconstructed speech is similar to the original perceptually but the physical
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appearance of the signal is very different. This is an illustration of the
redundancies inherent in speech signals.

Speech synthesis

The synthesis or generation of speech can be done through the speech production model
mentioned above. Although the duplication of the acoustics of the vocal tract can be
carried out quite accurately, the excitation model turns out to be more problematic.

For synthetic speech to sound natural, it is essential that the correct allophone be
produced. Despite the fact that different allophones are perceived as the same sound, if
the wrong allophone is selected, the synthesized speech will not sound natural.
Translation from phonemes to allophones is usually controlled by a set of rules. The
control of timing of a word is also very important. But these rules are beyond the realm of
DSP.

Speech recognition

One of the major goals of speech recognition is to provide an alternative interface
between human user and machine. Speech recognition systems can either be speaker
dependent or independent, and they can either accept isolated utterances or continuous
speech. Each system is capable of handling a certain vocabulary.

The basic approach to speech recognition is to extract features of the speech signals in
the training phase. In the recognition phase, the features extracted from the incoming
signal are compared to those that have been stored. Owing to the fact that our voice
changes with time and the rate at which we speak also varies, speech recognition is a very
tough problem. However, there are now commercially available some relatively simple
small vocabulary, isolated utterance recognition systems. This comes about after 30 years
of research and the advances made in DSP hardware and software.

Image and video processing

Image processing involves the processing of signals, which are two-dimensional. A
digital image consists of a two dimensional array of pixel values instead of a one
dimensional one for, say, speech signals. We shall briefly describe three areas of image
processing.

Image enhancement

Image enhancement is used when we need to focus or pick out some important features of
an image. For example, we may want to sharpen the image to bring out details such as a
car license plate number or some areas of an X-ray film. In aerial photographs, the edges
or lines may need to be enhanced in order to pick out buildings or other objects. Certain
spectral components of an image may need to be enhanced in images obtained from
telescopes or space probes. In some cases, the contrast may need to be enhanced.

While linear filtering may be all that is required for certain types of enhancement, most
useful enhancement operations are non-linear in nature.

Image restoration

Image restoration deals with techniques for reconstructing an image that may have been
blurred by sensor or camera motion and in which additive noise may be present. The
blurring process is usually modeled as a linear filtering operation and the problem of
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image restoration then becomes one of identifying the type of blur and estimating the
parameters of the model. The image is then filtered by the inverse of the filter.

Image compression and coding

The amount of data in a visual image is very large. A simple black-and-white still picture
digitized to a 512 x 512 array of pixels using 8 bits per pixel involves more than 2 million
bits of information. In the case of sequences of images such as in video or television
images, the amount of data involved will be even greater. Image compression, like
speech compression, seeks to reduce the number of bits required to store or transmit the
image with either no loss or an acceptable level of loss or distortion. A number of
different techniques have been proposed, including prediction or coding in the (spatial)
frequency domain. The most successful techniques typically combine several basic
methods. Very sophisticated methods have been developed for digital cameras and digital
video discs (DVD).

Standards have been developed for the coding of both image and video signals for
different kinds of applications. For still images, the most common one is JPEG. For high
quality motion video, there is MPEG and MPEG-2. MPEG-2 was developed with high
definition television in mind. It is now used in satellite transmission of broadcast quality
video signals.

Adaptive filtering

A major advantage of digital processing is its ability of adapting to changing
environments. Even though adaptive signal processing is a more advanced topic, which
we will not cover in this course, we shall describe the basic ideas involved in adaptive
signal processing and some of its applications.

A basic component in an adaptive digital signal processing system is a digital filter
with adjustable filter coefficients — a time-varying digital filter. Changing the
characteristics of a filter by a change in the coefficient values is a very simple operation
in DSP. The adaptation occurs through an algorithm which takes a reference (or desired)
signal and an error signal produced by the difference between the current output of the
filter and the current input signal. The algorithm adjusts the filter coefficients so that the
averaged error is minimized.

Noise cancellation

One example of noise cancellation is the suppression of the maternal ECG component in
fetal ECG. The fetal heart rate signal can be obtained from a sensor placed in the
abdominal region of the mother. However, this signal is very noisy due to the mother’s
heartbeat and fetal motion.

The idea behind noise cancellation in this case is to take a direct recording of the
mother’s heartbeat and after filtering of this signal, subtract it off the fetal heart rate
signal to get a relatively noise-free heart rate signal. A schematic diagram of the system is
shown in Figure 1.5.
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Noise
Primary Signal from + Xt - Adjustable | Reference signal
Abdominal Sensor + Filter from chest sensor
[Filter Coefficient
Adjustment
Adaptive

g Algorithm ‘

— Qutput

Figure 1.5
An adaptive noise cancellation system

There are two inputs: a primary and a reference. The primary signal is of interest but
has a noisy interference component, which is correlated with the reference signal. The
adaptive filter is used to produce an estimate of this interference or noise component,
which is then subtracted off the primary signal. The filter should be chosen to ensure that
the error signal and the reference signal are uncorrelated.

Echo cancellation

Echoes are signals that are identical to the original signals but are attenuated and delayed
in time. They are typically generated in long distance telephone communication due to
impedance mismatch. Such a mismatch usually occurs at the junction or hybrid between
the local subscriber loop and the long distance loop. As a result of the mismatch, incident
electromagnetic waves are reflected which sound like echoes to the telephone user.

The idea behind echo cancellation is to predict the echo signal values and thus subtract
it out. The basic mechanism is illustrated in Figure 1.6. Since the speech signal is
constantly changing, the system has to be adaptive.

near-end
signal

far-end | 4 wire to 2 wire Near-end signal
signal | Junction Hybrid and echo of far-end

signal.

+

Adjustable 4-,65
Filter

1Filter Coefficient
Adjustment

Adaptive s
Algorithm

to far end Cleaned
near-end signal

Figure 1.6
An adaptive echo cancellation system

Channel equalization

Consider the transmission of a signal over a communication channel (e.g. coaxial cable,
optical fiber, wireless). The signal will be subject to channel noise and dispersion caused,
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for example, by reflection from objects such as buildings in the transmission path. This
distorted signal will have to be reconstructed by the receiver.

One way to restore the original signal is to pass the received signal through an
equalizing filter to undo the dispersion effects. The equalizer should ideally be the inverse
of the channel characteristics. However, channel characteristics typically drift in time and
so the equalizer (a digital filter) coefficients will need to be adjusted continuously. If the
transmission medium is a cable, the drift will occur very slowly. But for wireless
channels in mobile communications the channel characteristics change rapidly and the
equalizer filter will have to adapt very quickly.

In order to ‘learn’ the channel characteristics, the adaptive equalizer operates in a
training mode where a pre-determined training signal is transmitted to the receiver.
Normal signal transmission has to be regularly interrupted by a brief training session so
that the equalizer filter coefficients can be adjusted. Figure 1.7 shows an adaptive
equalizer in training mode.

Training R
Signal » Delay
+ Adjustable +
» Channel O o "Filter >
:\f (equalizer)

Noise
| Adaptive | Error
" Algorithm  |signal

Figure 1.7

An adaptive equalizer in training mode

Control applications

A digital controller is a system used for controlling closed-loop feedback systems as
shown in Figure 1.8. The controller implements algebraic algorithms such as filters and
compensatory to regulate, correct, or change the behavior of the controlled system.

Reference rror » Output
Signal — T ignal CONTROLLER SYSTEM > P
Adaptive j Controller
Algorithm Adjustment
Figure 1.8

A digital closed-loop control system

Digital control has the advantage that complex control algorithms are implemented in
software rather than specialized hardware. Thus the controller design and its parameters
can easily be altered. Furthermore, increased noise immunity is guaranteed and parameter
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drift is eliminated. Consequently, they tend to be more reliable and at the same time,
feature reduced size, power, weight and cost.

Digital signal processors are very useful for implementing digital controllers since they
are typically optimized for digital filtering operations with single instruction arithmetic
operations. Furthermore, if the system being controlled changes with time, adaptive
control algorithms, similar to adaptive filtering discussed above, can be implemented.

Sensor or antenna array processing

In some applications, a number of spatially distributed sensors are used for receiving
signals from some sources. The problem of coherently summing the outputs from these
sensors is known as beamforming. Beyond the directivity provided by an individual
sensor, a beamformer permits one to ‘listen’ preferentially to wave fronts propagating
from one direction over another. Thus a beamformer implements a spatial filter.
Applications of beamforming can be found in seismology, underwater acoustics,
biomedical engineering, radio communication systems and astronomy.

In cellular mobile communication systems, smart antennas (an antenna array with
digitally steerable beams) are being used to increase user capacity and expand geographic
coverage. In order to increase capacity, an array, which can increase the carrier to
interference ratio (C/I) at both the base station and the mobile terminal, is required. There
are three approaches to maximizing C/I with an antenna array.

e The first one is to create higher gain on the antenna in the intended direction
using antenna aperture. This is done by combining the outputs of each
individual antenna to create aperture.

e The second approach is the mitigation of multipath fading. In mobile
communication, fast fading induced by multipath propagation requires an
additional link margin of 8 dB. This margin can be recovered by removing the
destructive multipath effects.

e The third approach is the identification and nulling of interferers. It is not
difficult for a digital beamformer to create sharp nulls, removing the effects of
interference.

Direction of arrival estimation can also be performed using sensor arrays. In the
simplest configuration, signals are received at two spatially separated sensors with one
signal being an attenuated, delayed and noisy version of the other. If the distance between
the sensors is known, and the signal velocity is known, then the direction of arrival can be
estimated. If the direction does not change, or changes very slowly with time, then it can
be determined by cross-correlating the two signals and finding the global maximum of the
cross-correlation function. If the direction changes rapidly, then an adaptive algorithm is
needed.

Digital communication receivers and transmitters

One of the most exciting applications of DSP is in the design and implementation of
digital communication equipment. Throughout the 1970s and 80s radio systems migrated
from analog to digital in almost every aspect, from system control to source and channel
coding to hardware technology. A new architecture known generally as ‘software radio’
is emerging. This technology liberates radio-based services from dependence on
hardwired characteristics such as frequency band, channel bandwidth, and channel
coding.
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1.5

1.5.1

The software radio architecture centers on the use of wideband analog-to-digital and
digital-to-analog converters that are placed as close to the antenna as possible. Since the
signal is being digitized earlier in the system, as much radio functionality as possible can
be defined and implemented in software. Thus the hardware is relatively simple and
functions are software defined as illustrated in Figure 1.9.

Software definable channel modulation across the entire 25 MHz cellular band has
been developed.

Mobile unit
REAL-TIME
Speech A/D Programmable Wide band || RF

Video D/A Processor (s) A/D - D/A Conversion
Data
Base station /\/
OFFLINE ONLINE REAL-TIME
S -
Devglgvgf:?ent Programmable| Programmable| | Wide band | | RF

Software Processors Processor (s) A/D - D/A Conversion

Public Switched
Network

NOTE: Hardware is simple and functions are software-defined

Figure 1.9
Software radio architecture

In an advanced application, a software radio does not just transmit; it characterizes the
available transmission channels, probes the propagation path, constructs an appropriate
channel modulation, electronically steers its transmit beam in the right direction for
systems with antenna arrays and selects the optimum power level. It does not just receive;
it characterizes the energy distribution in the channel and in adjacent channels, recognizes
the mode of the incoming transmission, adaptively null interferers, estimates the dynamic
properties of multipath propagation, equalizes and decodes the channel codes. The main
advantage of software radio is that it supports incremental service enhancements through
upgrades to its software. This whole area is not possible without the advancements in
DSP technology.

Objectives and overview of the book

Objectives

The main objective of this book is to provide a first introduction to the area of digital
signal processing. The emphasis is on providing a balance between theory and practice.

Digital signal processing is in fact a very broad field with numerous applications and
potentials. It is an objective of this book to give the interested participants a foundation in
DSP so that they may be able to pursue further in this interesting field of digital signal
processing.

Software exercises designed to aid in the understanding of concepts and to extend the
lecture material further are given. They are based on a software package called
MATLAB®. It has become very much the de facto industry standard software package for
studying and developing signal processing algorithms. It has an intuitive interface and is
very easy to use. It also features a visual-programming environment called SIMULINK.
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Designing a system using SIMULINK basically involves dragging and dropping visual
components on to the screen and making appropriate connections between them.

There are also experiments based on the Texas Instruments TMS320C54x family of
digital signal processors which provide the participants with a feel for the performance of
DSP chips.

Brief overview of chapters

An overview of the remaining chapters in this manual is as follows:

e Chapter 2 discusses in detail the concepts in converting a continuous-time
signal to a discrete-time and discrete-amplitude one and vice versa. Concepts of
sampling and quantization and their relation to aliasing are described. These
concepts are supplemented with practical analog-to-digital and digital-to-analog
conversion techniques.

e Digital signals and systems can either be described as sequences in time or in
frequency. In Chapter 3, digital signals are viewed as sequences in time. Digital
systems are also characterized by a sequence called the impulse sequence. We
shall discuss the properties of digital signals and systems and their interaction.
The computation of the correlation of these sequences is discussed in detail.

e The discrete Fourier transform (DFT) provides a link between a time sequence
and its frequency representation. The basic characteristics of the DFT and some
ways by which the transform can be computed efficiently are described in
Chapter 4.

e With the basic concepts in digital signals and systems covered, in Chapter 5 we
shall revisit some practical applications. Some of these applications have
already been briefly described in this chapter. They shall be further discussed
using the concepts learnt in chapters 2 to 4.

e The processing of digital signals is most often performed by digital filters. The
design of the two major types of digital filters: finite impulse response (FIR)
and infinite impulse response (IIR) filters are thoroughly discussed in chapters 6
and 7.

e The different ways by which these FIR and IIR digital filters can be realized by
hardware or software will be discussed in Chapter 8. Chapters 6 to 8 combined
gives us a firm understanding in digital filters.

e Finally, in chapters 9 and 10, the architecture, characteristics and development
tools of some representative commercially available digital signal processors are
described. Some popular commercial software packages that are useful for
developing digital signal processing algorithms are also listed and briefly
described.

Since this is an introductory course, a number of important but more advanced topics in
digital signal processing are not covered. These topics include:

e Adaptive filtering

e Multi-rate processing

e Parametric signal modeling and spectral estimation

e Two (and higher) dimensional digital signal processing
e Other efficient fast Fourier transform algorithms
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Converting analog to digital
signals and vice versa

A typical DSP system

In the previous chapter, we mentioned that some signals are discrete-time in nature, while
others are continuous-time. Most of the signals encountered in engineering applications
are analog. In order to process analog signals using digital techniques, they must first be
converted into digital signals.

Digital processing of analog signals proceeds in three stages:

e The analog signal is digitized. Digitization involves two processes: sampling
(digitization in time) and quantization (digitization in amplitude). This whole
process is called analog-to-digital (A/D) conversion.

e The appropriate DSP algorithms process the digitized signal.

e The results or outputs of the processing are converted back into analog signals
through interpolation. This process is called digital-to-analog (D/A) conversion.

Figure 2.1 illustrates these three stages in diagram form.

Analog - to - Digital .
Conversion Analog Reconstruction

I

| I

| 011...01 |
I

Digital to
Alrr:alotg —p1 Sampler »| Quantizer Analog p| Low-pass —l—} Analog
pu | Digital Digital Converter Filter Output

| Input Output

Discrete-time
signal |

Figure 2.1
The three stages of analog—digital-analog conversions
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Sampling

We shall first consider the sampling operation. It can be illustrated through the changing
temperature through a single day. The continuous temperature variation is shown in
Figure 2.2. However, the observatory may only be recording the temperature once every
hour.

20

10

Temperature, (°C)

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (hours)

Figure 2.2
Temperature variation throughout a day

The records are shown in Table 2.1. When we plot these values against time, we have
a snapshot of the variation in temperature throughout the day. These snapshots are called
samples of the signal (temperature). They are plotted as dots in Figure 2.2. In this case the
sampling interval, the time between samples, is two hours.

Hour | Temperature
0 13
2 12
4 10
6 11
8 13
10 16
12 19
14 23
16 22
18 20
20 16
22 15
24 12

Table 2.1
Temperature measured at each hour of a day
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2.21

Figure 2.3 shows the diagram representation of the sampling process.

Ideal Sampler

|
|
Analog o X(t) A ?i
|
|

x(n(T))  Discrete-time
Sampled Signal

Signal

Figure 2.3
The sampling process

The analog signal is sampled once every T seconds, resulting in a sampled data
sequence. The sampler is assumed to be ideal in that the value of the signal at an instant
(an infinitely small time) is taken. A real sampler, of course, cannot achieve that and the
‘switch’ in the sampler is actually closed for a finite, though very small, amount of time.
This is analogous to a camera with a finite shutter speed. Even if a camera can be built
with an infinitely fast shutter, the amount of light that can reach the film plane will be
very small indeed. In general, we can consider the sampling process to be close enough to
the ideal.

It should be pointed out that throughout our discussions we should assume that the
sampling interval is constant. In other words, the spacing between the samples is regular.
This is called uniform sampling. Although irregularly sampled signals can, under suitable
conditions, be converted to uniformly sampled ones, the concept and mathematics are
beyond the scope of this introductory book.

The most important parameter in the sampling process is the sampling period 7, or the
sampling frequency or sampling rate f;, which is defined as

1
fS_T

Sampling frequency is given in units of ‘samples per second’ or ‘hertz’. If the sampling
is too frequent, then the DSP process will have to process a large amount of data in a
much shorter time frame. If the sampling is too sparse, then important information might
be missing in the sampled signal. The choice is governed by sampling theorem.

Sampling theorem

The sampling theorem specifies the minimum-sampling rate at which a continuous-time
signal needs to be uniformly sampled so that the original signal can be completely
recovered or reconstructed by these samples alone. This is usually referred to as
Shannon’s sampling theorem in the literature.



Converting analog to digital signals and vice versa 17

Sampling theorem:

If a continuous time signal contains no frequency components higher than W hz, then it
can be completely determined by uniform samples taken at a rate f; samples per second
where

fozow

or, in term of the sampling period

r< L
2w

magnitude
VN

[

(o) w " frequency

(a) a low-pass spectrum

magnitude
VN

o 2f. - w f

c

w frequency

(b) a band-pass spectrum

Figure 2.4
Two bandlimited spectra

A signal with no frequency component above a certain maximum frequency is known as
a bandlimited signal. Figure 2.4 shows two typical bandlimited signal spectra: one low-
pass and one band-pass.

The minimum sampling rate allowed by the sampling theorem (f; = 2W) is called the
Nyquist rate.

It is interesting to note that even though this theorem is usually called Shannon’s
sampling theorem, it was originated by both E.T. and J.M. Whittaker and Ferrar, all
British mathematicians. In Russian literature, this theorem was introduced to
communications theory by Kotel’nikov and took its name from him. C.E. Shannon used it
to study what is now known as information theory in the 1940s. Therefore in mathematics
and engineering literature sometimes it is also called WKS sampling theorem after
Whittaker, Kotel’nikov and Shannon.
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2.2.2

Frequency domain interpretation

The sampling theorem can be proven and derived mathematically. However, a more
intuitive understanding of it could be obtained by looking at the sampling process from
the frequency domain perspective.

If we consider the sampled signal as an analog signal, it is obvious that the sampling
process is equivalent to very drastic chopping of the original signal. The sharp rise and
fall of the signal amplitude, just before and after the signal sample instants, introduces a
large amount of high frequency components into the signal spectrum.

It can be shown through Fourier transform (which we will discuss in Chapter 4) that
the high frequency components generated by sampling appear in a very regular fashion.
In fact, every frequency component in the original signal spectrum is periodically
replicated over the entire frequency axis. The period at which this replication occurs is
determined by the sampling rate.

This replication can easily be justified for a simple sinusoidal signal. Consider a single
sinusoid:

x(t) =cos(2x £,t)

Before sampling, the spectrum consists of a single spectral line at frequency f,.
Sampling is performed at time instants

t=nT, n=0,12,...
where 7 is a positive integer. Therefore, the sampled sinusoidal signal is given by
x(nT)=cos(2r f,nT)
At a frequency
f=1+
The sampled signal has value

x'(nT)=cos[2n(f, + f.)nT]
=cos[2nf,nT +2rf nT]
=cos[2xf,nT +2nn)
=cos[2nf,nT]

which is the same as the original sampled signal. Hence, we can say that the sampled
signal has frequency components at

J =1+,
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This replication is illustrated in Figure 2.5.

=frequency

f2f  f-f.  f.  f+ f+2f " frequency

a a

Figure 2.5
Replication of spectrum through sampling

Although it is only illustrated for a single sinusoid, the replication property holds for an
arbitrary signal with an arbitrary spectrum. Replication of the signal spectrum for a low-
pass bandlimited signal is shown in Figure 2.6.

Xl
A
W 0 w :frequency
Replicated Spectrum (f; = 2w)
-5w -3w -w 0 w 3w 5w frequency
Figure 2.6

The original low-pass spectrum and the replicated spectrum after sampling

Consider the effect if the sampling frequency is less than twice the highest frequency
component as required by the sampling theorem. As shown in Figure 2.7, the replicated
spectra overlap each other, causing distortion to the original spectrum. Under this
circumstance, the original spectrum can never be recovered faithfully. This effect is
known as aliasing.
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A Aliasing

[

p—— »
frequency

Figure 2.7
Aliasing

If the sampling frequency is at least twice the highest frequency of the spectrum, the
replicated spectra do not overlap and no aliasing occurs. Thus, the original spectrum can
be faithfully recovered by suitable filtering.

Aliasing

The effect of aliasing on an input signal can be demonstrated by sampling a sine wave of
frequency f; using different sampling frequencies. Figure 2.8 shows such a sinusoidal
function sampled at three different rates: f; = 4f,, fs =2f., and f; = 1.5f,.

In the first two cases, if we join the sample points using straight lines, it is obvious that
the basic ‘up—down’ nature of the sinusoid is still preserved by the resulting triangular
wave as shown in Figure 2.9.

If we pass this triangular wave through a low-pass filter, a smooth interpolated function
will result. If the low-pass filter has the appropriate cut-off frequency, the original sine
wave can be recovered. This is discussed in detail in section 2.5.

Amplitude
V'S

\\l/ \\ >frequency

\)/ K >frequency
Figure 2.8

A sinusoid sampled at three different rates
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Figure 2.9
Interpolation of sample points with no aliasing

For the last case, the sampling frequency is below the Nyquist rate. We would expect
aliasing to occur. This is indeed the case. If we join the sampled points together, it can be
observed that the rate at which the resulting function repeats itself differs from the
frequency of the original signal. In fact, if we interpolate between the sample points, a
smooth function with a lower frequency results, as shown in Figure 2.10.

Amplitude
V' N

»time

Figure 2.10
Effect of aliasing

Therefore, it is no longer possible to recover the original sine wave from these sampled
points. We say that the higher frequency sine wave now has an ‘alias’ in the lower
frequency sine wave inferred from the samples. In other words, these samples are no
longer representative of the input signal and therefore any subsequent processing will be
invalid.

Notice that the sampling theorem assumes that the signal is strictly bandlimited. In the
real world, typical signals have a wide spectrum and are not bandlimited in the strict
sense. For instance, we may assume that 20 kHz is the highest frequency the human ears
can detect. Thus, we want to sample at a frequency slightly above 40 kHz (say, 44.1 kHz
as in compact discs) as dictated by the sampling theorem. However, the actual audio
signals normally have a much wider bandwidth than 20 kHz. We can ensure that the
signal is bandlimited at 20 kHz by low-pass filtering. This low-pass filter is usually called
anti-alias filter.
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2.2.4

2.2.5

Anti-aliasing filters

Anti-aliasing filters are always analog filters as they process the signal before it is
sampled. In most cases, they are also low-pass filters unless band-pass sampling
techniques are used. (Band-pass sampling is beyond the scope of this book.)

The sampling process incorporating an ideal low-pass filter as the anti-alias filter is
shown in Figure 2.11. The ideal filter has a flat passband and the cut-off is very sharp.
Since the cut-off frequency of this filter is half of that of the sampling frequency, the
resulting replicated spectrum of the sampled signal do not overlap each other. Thus no
aliasing occurs.

Input Signal Filtered Replicated
Spectrum Spectrum Spectrum
A A A
AN 4l YTYY;
0 di e 0z T T2 0 12 >
Analo LO'V‘V’e;;SS Band-limited Sa:r‘]z'er _ Digital
Signal . Signal " : " Signal
g Filter g Quantizer g

T2 0 2 f

Figure 2.11
The analog-to-digital conversion process with anti-alias filtering

Practical low-pass filters cannot achieve the ideal characteristics. What are the
implications? Firstly, this would mean that we have to sample the filtered signals at a rate
that is higher than the nyquist rate to compensate for the transition band of the filter. The
bandwidth of a low-pass filter is usually defined as the 3 dB point (the frequency at which
the magnitude response is 3 dB below the peak level in the passband). However, signal
levels below 3 dB are still quite significant for most applications. For the audio signal
application example in the previous section, it may be decided that, signal levels below
40 dB will cause insignificant aliasing. The anti-aliasing filter used may have a band-
width of 20 kHz but the response is 40 dB down starting from 24 kHz. This means that
the minimum sampling frequency has to be increased to 48 kHz instead of 40 kHz for the
ideal filter.

Alternatively, if we fix the sampling rate, then we need an anti-alias filter with a
sharper cut-off. Using the same audio example, if we want to keep the sampling rate at
44.1 kHz, the anti-aliasing filter will need to have an attenuation of 40 dB at about
22 kHz. With a bandwidth of 20 kHz, the filter will need a transition from 3 dB at down
to 40 dB within 2 kHz. This typically means that a higher order filter will be required. A
higher order filter also implies that more components are needed for its implementation.

Practical limits on sampling rates

As discussed in previous sections, the practical choice of sampling rate is determined by
two factors for a certain type of input signal. On one hand, the sampling theorem imposes
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a lower bound on the allowed values of the sampling frequency. On the other hand, the
economics of the hardware imposes an upper bound. These economics include the cost of
the analog-to-digital converter (ADC) and the cost of implementing the analog anti-alias
filter. A higher speed ADC will allow a higher sampling frequency but may cost
substantially more. However, a lower sampling frequency will put a more stringent
requirement on the cut-off of the anti-aliasing filter, necessitating a higher order filter and
a more complex circuit, which again may cost more.

In real-time applications, each sample is acquired (sampled), quantized and processed
by a DSP. The output samples may need to be converted back to analog form. A higher
sampling rate will mean that there are more samples to be processed within a certain
amount of time. If 7}, represents the total DSP processing time, then the time interval
between samples T will need to be greater than T,,.. Otherwise, the processor will not be
able to keep up. This means that if we increase the sampling rate we will need a higher
speed DSP chip.

Mathematical representation

A mathematical representation of the sampling process (and any other process involved in
DSP for that matter) is needed so that we can describe precisely the process and will help
us in the analysis of DSP.

The sampling process can be described as a multiplication of the analog signal with a
periodic impulse function. This impulse function is also known as the dirac delta function

and is usually denoted by &¢). It is shown in Figure 2.12.

5(t)

Figure 2.12
The dirac delta function

It can be considered as a rectangular pulse with zero duration and infinite amplitude. It

has the property that the energy or the area under the pulse is equal to one. This is
expressed as

[ ande=1

Thus, a weighted or scaled impulse function would be defined as one that satisfies

| A&0)de= 4

The weighted impulse function is drawn diagrammatically as an arrow with a height
proportional to the scaling factor.
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The periodic train of impulse functions is expressed as

s(@) =+ &t =2T)+ &t = T) + &)

+0t+T)+ &t +2T )+
=Y &i-n1)

where T is the amount of time between two impulses. In terms of sampling, it is the
sampling period.
If the input analog signal is denoted by f'(¢), then the sampled signal is given by

YO = £ () s5(0)
=3 f()-&t-nT)

n=—oo

or the samples of the output of the sampling process are
y(nT,) = f(nT)-6(t —nT,)

Sometimes the sampling period is understood and we just use y(n) to denote y(nT5).
This mathematical representation will be used again and again in later chapters of this
course.

2.3 Quantization

2.3.1 Sample-and-hold

The next step in the process of converting an analog signal into digital form is the
discretization of the sampled signal amplitude or quantization. In practice, because the
quantization process takes a finite amount of time, the sampled signal amplitude has to be
held constant during this time. The sampling process is usually performed by a sample-
and-hold circuit, which can be logically represented as in Figure 2.13. The analog-to-
digital converter performs the quantization process.

Analog o 2& oSampled

Signal T Signal
. Hold

—T— Capacitor

Figure 2.13
Sample and hold circuit

The hold capacitor holds the sampled measurement of the analog signal x(n7) for at most
T seconds during which time a quantized value xq(n7) is available at the output of the
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analog-to-digital converter, represented as a B-bit binary number. The sample-and-hold
and the ADC may be separate modules or may be integrated on the same chip. Typically,
the very fast ADCs require an external sample-and-hold device.

Uniform quantization

The ADC assumes that the input values cover a full-scale range, say R. Typical values of
R are between 1 to 15 volts. Since the quantized sampled value x(nT) is represented by
B-bits, it can take on only one of 2® possible quantization levels. If the spacing between
these levels is the same throughout the range R, then we have a uniform quantizer. The
spacing between quantization levels is called quantization width or the quantizer
resolution.

For uniform quantization, the resolution is given by

The number of bits required to achieve a required resolution of Q is therefore
R
B=log, —
Q

Most ADCs can take bipolar inputs, which means the sampled values lie within the
symmetric range

R
——S)c(nT)<£
2 2

For unipolar inputs,
0<x(nT)<R

In practice, the input signal x(f) must be preconditioned to lie within the full-scale
range of the quantizer. Figure 2.14 shows the quantization levels of a 3-bit quantizer for
bipolar inputs.

For a review of the possible binary representations for the quantized output value, see
Appendix A.

Output Amplitude
-~

A4
A4

N Input Amplitude

Figure 2.14
A uniform 3-bit quantizer transfer function
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Quantization error is the difference between the actual sampled value and the quantized
value. Mathematically, this is

e(nT)=x(nT)—x,(nT)
or equivalently,
e(n)=x(n)—x,(n)

If x(n) lies between two quantization levels, it will either be rounded up or truncated.
Rounding replaces x(#) by the value of the nearest quantization level. Truncation replaces
x(n) by the value of the level below it.

For rounding, the error is given by

0 0

—E<e<=
2 2

where as for truncation, it is
0<e<Q

It is obvious that rounding produces a less biased representation of the analog values.
The average error is given by

which means that on average half the values are rounded up and half rounded down.
The mean-square value of the error gives us an idea of the average power of the error
signal. It is given by

e_z—ijg/z e*de
- 04-on
QZ
12

The root-mean-square error is therefore

Sle
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The signal-to-quantization-noise ratio is

R
SONR =20log,, | —
¢ o [Q]

=20log,, (ZB)
=20Blog,, 2
=68 dB

Thus if we increase the number of bits of the ADC by one, the signal to quantization
noise ratio improves by 6 dB. The above equation gives us the dynamic range of the
quantizer.

Example: 2.1
The dynamic range of the human ear is about 100 dB. If a digital audio system is required
to match this dynamic range, it will require

10% —16.67 bits

A 16-bit quantizer will achieve a dynamic range of 96 dB.

If the highest frequency the human ear can hear is 20 kHz, then a sampling rate of at
least 40 kHz is required. If the actual sampling rate is 44 kHz, then the bit rate of this
system will be

16.44 =704 kbits/sec

This is the typical bit rate of a compact disc player.
Since the quantization error is a random number within the range given, it is usually
modeled as a random signal (or noise) with a uniform distribution as shown in Figure 2.15.

Probability Distribution
p(e)

A

>(e)
0 > Quantization error

N O

Figure 2.15
Uniform distribution of quantization error

The quantized signal is then modeled as the analog sampled signal with additive
quantization noise as in Figure 2.16. This quantization noise is generally assumed to be a
zero-mean, uniformly distributed white noise that is uncorrelated with the input signal.
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This assumption is generally true for signals that vary through the entire full-scale range
and the quantizer has a large number of levels.

x(n)—> Quantizer —»XQ(n)
Random Noise
e(n)
x(n) ‘AI JXa(n)
AL
Figure 2.16

Mathematical model of quantization noise

Non-uniform quantization

One of the assumptions we have made in analyzing the quantization error is that the
sampled signal amplitude is uniformly distributed over the full-scale range. This
assumption may not hold for certain applications. For instance, speech signals are known
to have a wide dynamic range. Voiced speech (e.g. vowel sounds) may have amplitudes
that span the entire full-scale range, while softer unvoiced speech (e.g. consonants such as
fricatives) usually have much smaller amplitudes. In addition, an average person only
speaks 60% of the time while she/he is talking. The remaining 40% are silence with
negligible signal amplitude.

If uniform quantization is used, the louder voiced sounds will be adequately
represented. However, the softer sounds will probably occupy only a small number of
quantization levels with similar binary values. This means that we would not be able to
distinguish between the softer sounds. As a result, the reconstructed analog speech from
these digital samples will not nearly be as intelligible as the original.

To get around this problem, non-uniform quantization can be used. More quantization
levels are assigned to the lower amplitudes while the higher amplitudes will have less
number of levels. This quantization scheme is shown in Figure 2.17.

Quantized
Output 4
Xq(N)

L4

A

Input x(;)

Figure 2.17
Non-uniform quantization
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Alternatively, a uniform quantizer can still be used, but the input signal is first
compressed by a system with an input—output relationship (or transfer function) similar to
that shown in Figure 2.18.
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Figure 2.18
L-law compression characteristics

The higher amplitudes of the input signal are compressed, effectively reducing the
number of levels assigned to it. The lower amplitude signals are expanded (or non-
uniformly amplified), effectively making it occupy a large number of quantization levels.
After processing, an inverse operation is applied to the output signal (expanding it). The
system that expands the signal has an input—output relationship that is the inverse of the
compressor. The expander expands the high amplitudes and compresses the low
amplitudes. The whole process is called companding (COMpressing and exPANDING).

Companding is widely used in public telephone systems. There are two distinct
companding schemes. In Europe, A-law companding is used and in the United States, LL-
law companding is used.

l-law compression characteristic is given by the formula:

o]

where
) +1, x=0
ol =
SEmE -1, x<0

Here, x and y represent the input and output values, and X, and yu., are the maximum
positive excursions of the input and output, respectively. i is a positive constant. The
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North American standard specifies u to be 255. Notice that g = 0 corresponds to a linear
input—output relationship (i.e. uniform quantization). The compression characteristic is
shown in Figure 2.18.

The A-law compression characteristic is given by

PIREL N
X 1
== Zsgn(x), O0<—<—
e 1+1In A4 gn(x) X A
y:
L+ tnl 4f 1X1
max 1 |x]
sgn(x), —<——x<I1
_ymax 1+In 4 gn(x) A o

Here, A4 is a positive constant. The European standard specifies 4 to be 87.6. Figure 2.19
shows the characteristic graphically.

A=87.6

Figure 2.19
The A-law compression characteristics

234 Dithering

Another assumption we have made in analyzing quantization noise is that, it is assumed
to be uniformly distributed over the quantization width. If the noise is not uniformly
distributed quantization distortion results.

We shall illustrate quantization distortion through an example. A low amplitude
sinusoid is being sampled and quantized. The samples of the sinusoid are given by

x(n) = Acos(2r f,n)
where A is less than the quantization resolution. Let

/. =40 samples per cycle

and

A=0.750
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So for a 1 kHz sinusoid, the actual sampling rate is 40 kHz. Figure 2.20(a) shows the
original and the quantized signals.

Undithered Quantization
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Figure 2.20 (a)
The original and quantized signal

Note that the quantized signal only occupies three of the available quantization levels.
The frequency spectrum of this quantized signal is shown in Figure 2.20(b).
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Figure 2.20 (b)
The quantized signal spectrum
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It has peaks at f;, and the odd harmonic frequencies 3f, 5f;, etc. Clearly, the odd
harmonics are artifacts of the quantization process and can be considered as the spectrum
of the quantization noise signal, which in this case, is not white.

This problem can be overcome by adding a dither v(n) to the original sampled signal
so that

y(n)=x(n)+v(n)

Various types of dither can be added. Two of them, which are of practical interest, are
rectangular and triangular dither. They are so called because the distribution of the
random signal samples is rectangular and triangular respectively. The distributions are
shown in Figure 2.21.
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(a) Rectangular dither distribution
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S
4
e 5 a >V

(b) Triangular dither distribution

Figure 2.21
Amplitude distributions of rectangular and triangular dither

The addition of dither to the original signal will increase its average quantization noise
power. Recall that the average noise power for uniform quantization is Q*/12. The
addition of rectangular dither will double this average noise power and the addition of
triangular dither will triple it. However, if we look at the frequency spectrum of the
dithered and quantized signal of the example we have been considering (Figure 2.22), we
will notice that the noise spectrum now appears to be white and the odd harmonic
artifacts are not there any more.
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Figure 2.22(a)
The dithered signal and its quantized version

It must be emphasized that in general, the sampling process will cause all the odd
harmonics that lie outside of the Nyquist interval (out-of-band harmonics) to be aliased
back into the interval (in-band non-harmonic frequencies). Therefore, the overall
spectrum will contain peaks at frequencies other than the odd harmonics.

Dithered Spectrum
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Figure 2.22(b)
Quantization noise spectrum with dithering
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Analog-to-digital converters

We have covered the fundamental process of converting analog signals to digital format
so that it can be digitally processed. The analog signal is first low-pass filtered to half the
sampling frequency to prevent aliasing. It then goes through a sample-and-hold device
and the sampled amplitudes are quantized and converted to binary values. This binary
number is represented by n bits where 7 is typically 8, 10, 12 and 16. Appendix B reviews
the three main types of binary representation.

Now we shall take a brief look at some commercially available analog-to-digital
converters (ADCs). There are many varieties of ADCs available on the market. Most of
them contain the sample-and-hold circuitry. They cover a wide range of conversion
speeds, resolution (number of bits representing the output) and input voltage range. Some
are general purpose and others are for specific applications such as video signals.
Different methods of quantization are used. Four most common methods are discussed
here.

Successive approximation

The successive approximation ADC is built from three main blocks: an analog-to-digital
converter (DAC), a successive approximation register (SAR) and a comparator. Figure
2.23 shows how these three blocks are connected.
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Figure 2.23
Successive approximation converter

The conversion process is as follows. Initially all # bits are reset to zero in the SAR.
Starting with the most significant bit (MSB) b, ;, each bit is set to 1 in sequence. The
DAC converts the newly formed binary number into a corresponding voltage, which is
compared with the input voltage. If the input voltage exceeds the DAC output, then that
bit will be left on. Otherwise, it will be reset to zero (off). After n cycles, the SAR will
hold the correct bit pattern, which is then latched on to the output lines. This technique
thus keeps splitting the voltage range in half to determine where the input voltage lies.
Alternatively, we can say that the successive approximation algorithm performs a binary
search through the quantization levels.
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Example: 2.2
Convert analog values x =0.2 and x =—0.7 volts to their offset binary representations
using successive approximation. Assume a 3-bit quantizer with a range R =2 V.

For 3-bit quantization the conversion will be done in 3 cycles. The bit that is tested, the
corresponding quantized value of the intermediate bit pattern and the test results are
tabulated below forx = 0.2 V.

Cycle | Test bit | bobiby | xg Test result
1 by 100 0.00 | 1
2 b 110 0.50 | 0
3 by 101 02510

For the test result column, a ‘1’ indicates the input is larger than or equal to the DAC
output and a ‘0’ otherwise. In cycle 2, the test result is a ‘0’; thus the SAR will reset b,
back to zero. Similarly in cycle 3, by is reset to zero, resulting in the output of 100
representing the quantized voltage of 0.00.

The following table reflects the conversion process for x =—0.7 V.

Cycle | Test bit | babi1bo | xg Test result
1 by 100 1 0.00 [0
2 by 010 |-0.50]0
3 bo 011 —0.75 11

The resulting quantized value is —0.75 V and is encoded as ‘011°.

Notice that in the example, both values are truncated down to the lower level. If
rounding to the nearest level is desired, then the input value x must be shifted by half the
spacing (resolution) between levels. That is, obtain the shifted value y by

y=x+gé

and quantize y by successive approximation.

Many ADCs also give a two’s complement output. If this is the output format required,
the successive approximation algorithm has to be slightly modified. This is because the
MSB (i.e. the sign bit) must be treated separately from the other bits. If the input value is
greater than zero, the MSB must be set to ‘0’; otherwise, it is a ‘1. Note that this is the
opposite of the offset binary case. The remaining bits are tested in the usual manner.

Example: 2.3

Perform the quantization as in the previous example but use two’s complement
representation.

For x = 0.2, the process is illustrated in the following table:
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Cycle | Testbit | bybiby | xg Test result
1 b, 000 0.00 |1
2 by 010 050 |0
3 bo 001 0.25 |0

The resulting binary value is ‘000°.
The following table illustrates the quantization of x = —0.7 to two’s complement:

Cycle | Test bit | babi1bg | xq Test result
1 b 000 000 |0
2 b 110 -0.50 |0
3 bo 101 -0.75 | 1

The two’s complement representation is ‘101°.

Notice that complementing the MSB (sign bit) will give us the offset binary
representation.

A large number of ADCs that operate at sampling frequencies of 1 MHz or less make
use of successive approximation.

Dual slope ADC

If high resolution is desired, then the dual slope conversion technique can be employed. A
key element of the dual slope ADC is a capacitor. At the start of the conversion cycle, the
capacitor is totally discharged (i.e. the capacitor voltage is zero). It is then charged for a
certain set time by the input voltage. After this set time the capacitor is switched to a
known negative reference voltage and is slowly discharged until the capacitor voltage
reaches zero volt. The time taken for the discharge process is recorded using a digital
counter. With the counter initially set to zero, the final counter value is proportional to the
input voltage. The binary counter value is the converted binary output.

High-resolution conversion can be achieved by simply using a more accurate counter,
which is relatively easy to implement. Another advantage of this process is that
component value variations will have no effect on the accuracy. For instance, the
capacitance may change due to temperature variation. But since the charging and
discharging processes are done through the same capacitor, the net effect of this
capacitance variation is negligible.

The major disadvantage is that the charging and discharging of capacitors takes a
relatively long time. So, this process is normally reserved for high resolution, low
sampling frequency ADCs.

Flash ADC

For n-bit quantization, the successive approximation technique requires n cycles. If fast
conversion time is required, the comparisons will have to be performed in parallel and at
the same time. In flash ADCs, the input voltage is compared with a set of reference
voltages at the same time. A ladder of resistors with equal resistances sets these reference
voltages.

For an n-bit converter, we need 2" resistors. The voltages tapped from the terminals of
these resistors are then compared with the input voltage and the digital output encoded.
Figure 2.24 shows a 2-bit flash ADC.
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Figure 2.24
A 2-bit flash ADC

In practice, each resistor in the ladder must be matched and laser trimmed to the same
value for accuracy. This is a very costly process. Thus flash ADCs are usually expensive
and are available only up to 8 bits (with 256 resistors).

Sigma-delta ADC

The concept of sigma-delta converters is significantly different to the above three
techniques. Sigma-delta ADC features a very low-resolution quantizer but operates with a
sampling rate much higher than the Nyquist rate. Two important techniques, called over
sampling and quantization noise shaping, are being used in sigma-delta converters to
trade the quantizer resolution with sampling rate. These techniques cleverly apply the
theory and concepts we have discussed earlier in this chapter.

Oversampling

Oversampling refers to a sampling rate that is higher than the minimum required, which is
the Nyquist rate. Usually power of 2 multiples of the Nyquist rates are being used. If the
sampling rate used is R times the Nyquist rate:

f; = RfNyquist

Then R is called the oversampling ratio. We shall look at the two main advantages of
oversampling.

Now consider a particular audio system that uses a sampling frequency of 48 kHz. In this
case, we need an anti-aliasing filter that attenuates all frequencies above 24 kHz by, say, 96
dB that is equivalent to a full 16-bit resolution. The cut-off frequency of the filter has to be
lower than 24 kHz. Let’s assume that we design the filter cut-off to be at 18 kHz.

Figure 2.25(a) shows the frequency response of this filter.
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Figure 2.25(a)
Frequency responses of the initializing filters for the critically sampled
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Figure 2.25(b)
Frequency responses of the initializing filters for the 4 times oversampled systems

If we oversample the signal by 4 times, then the sampling frequency becomes 192 kHz.
The required attenuation of the anti-aliasing filter is now 96 dB at 96 kHz, instead of
24 kHz. If the cut-off frequency remains at 18 kHz, then the roll-off of this filter is much
more gradual than the one before. The frequency response of the filter in this case is
shown in Figure 2.25(b).

This means that if the sampling frequency is increased, then the requirements on the
anti-aliasing filter are relaxed. In other words, a lower order filter can be used. Recalling
that the anti-aliasing filter is an analog filter, a lower order filter translates to less
complex analog circuitry and is therefore much easier to maintain.

The second advantage of oversampling is that the quantization noise power is now
spread over a much larger frequency range. More precisely, if f; is the sampling
frequency, noise power is spread from O to f;/2. Figure 2.26 shows the quantization noise
levels of the previous system with and without oversampling. If the numbers of
quantization levels remain the same, the same amount of quantization noise is present in
both systems. However, in the oversampled system, this amount of quantization noise is
spread over a much wider frequency range. Since the input signal occupies a frequency
band much narrower than this range, the noise power affecting the input signal is lower.
Furthermore, the quantization noise beyond the signal spectrum can now be filtered out
using an appropriate digital filter.
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Figure 2.26
Quantization noise levels of the critically sampled and oversampled systems

The amount of quantization noise that remains after digital filtering is now reduced by
a factor equal to the oversampling ratio. Thus with 4 times oversampling, the quantization
noise is 1/4 of what was before.

Q — QNyquisl
0S 4
In decibels, this is

Qos,db = QNyquisl,db -10 log 4

and so the quantization noise is reduced by 10log4 = 6.02 dB. Recall that if we increase
the quantizer resolution by 1 bit, quantization noise is reduced by about 6 dB. So
oversampling by a factor of 4 is equivalent to increasing the quantizer word size by 1 bit.

In the example that we have been considering, the digital filter can be a high-order one
with sharp cut-off at 24 kHz. Thus, the quantization noise between 24 kHz and 96 kHz is
now filtered out. Since the significant portion of the spectrum is now between 0 and
24 kHz, the output of the digital filter can now be decimated by a factor of 4. This is
achieved by retaining only 1 out of 4 samples at the output of the digital filter. In this
way, the remainder part of the DSP system will be operating only at the nyquist rate, not
at the oversampling rate, reducing the computational requirements.

The use of oversampling method in sigma-delta converter is illustrated in Figure 2.27.

. Digital
Analog Analog Oversampling
Input > Anti-alias Filter ADC LO;viitp;SS > > o DSP system

A Downsampler

\ 4
\ 4

Oversampling
rate =R

Figure 2.27
Oversampling method in DSP front end
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245 Quantization noise shaping

The second important technique that sigma-delta converters use is quantization noise
shaping. The idea is to high-pass filter the quantization noise, so that the required
oversampling ratio is reduced for a certain increase in resolution.

Integrator
. Digital i
Analog __t j .| One-bit / o : : Digital
> » Decimation —/—>
!/
Input \ ADC ’ Filter n Output
One-bit |
DAC |
Figure 2.28

A first order sigma-delta ADC

A block diagram of a sigma-delta converter is shown in Figure 2.28. The term ‘sigma-
delta’ comes from the fact that there is a summation point (sigma) and a delta modulator
(integrator and 1-bit quantizer). One-bit quantization is assumed here. It is called delta
modulation. It quantizes the difference between successive samples of the signal rather
than the absolute value of each sample.

Digital integrator

Quantizer model
(accumulator)
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Figure 2.29

Linearize first order sigma-delta converter model

Analysis of this system can be quite involved. The noise performance is frequency
dependent. The loop acts as a low-pass filter for the input signal and a high-pass filter for
the quantization noise. To appreciate the noise shaping function, the system can be
linearized (see Figure 2.29) by replacing the quantizer by the model we have discussed
before. In this model, a signal independent white noise source represents the quantization
noise. The input and output are now digital and the analog integrator is replaced by a
digital integrator such that

2k =u(k)— z(k —1)
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Some manipulation of the difference equations gives us the output sample in terms of
the input and the quantization noise

y(k)=x(k)+n(k)—n(k-1)

The noise terms on the right-hand side of this equation are simply a difference between
the present and the previous samples of the noise. If this difference is small, which means
that the noise signal is changing slowly, the combined noise terms will give a small value.
If the difference is large the value of the combined noise terms is large. A slowly
changing signal has low frequency components while a rapidly changing signal has high
frequency components. Thus n(k)—n(k—1) acts as a high-pass filter of the noise.

In Figure 2.26 we have illustrated the effects of oversampling on the quantization noise
level. But so far we have assumed that the noise is uniformly distributed over the
frequency range. With high-pass filtering of the noise, the distribution of noise will no
longer be uniform. It will now be lower at the low frequency end, with the level
increasing towards the high frequency end as shown in Figure 2.30. Recalling that the
noise above the Nyquist frequency will eventually be filtered out, the overall quantization
noise level within the signal spectrum will be further reduced by the sigma-delta loop.

Spectral .
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Density

Baseband signal spectrum

Quantization noise spectrum
shaped by sigma-delta loop

> Frequency (kHz)

96

Figure 2.30
Quantization noise spectrum shaped by the sigma-delta technique

As a rule-of-thumb, the first order sigma-delta loop will increase the effective
resolution of the system by 0.5 bits.

The 1-bit output of the quantizer is decimated, which is a reduction in sampling rate.
This rate reduction is performed by averaging a block of n-bits to produce a one-bit
output. This averaging process is illustrated in Figure 2.31. This rate reduction is
equivalent to filtering in the frequency domain and is discussed at a later chapter.
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2.5

Output from One-bit ADC :

0010110 0101011 1110101 1101010

4x0, 3 x 1 3x0,4 x1 2x0, 5x1 3x0,4 x1
=0 =1 =1 =1

Output from Decimation Filter (—7 ) :

Figure 2.31
Averaging a block of 7 bits to produce 1 bit

As we have seen, the majority of the processes involved in sigma-delta conversion are
digital processes. This means that the chip contains mostly of digital circuitry as opposed
to the other three techniques, which have a significant portion of analog circuitry. Thus,
sigma-delta ADCs are generally more reliable and stable. It is also possible for this type
of ADC to be integrated with the DSP core, reducing the chip count, enhancing system
reliability, and reducing overall cost.

Analog reconstruction

There are applications where the information that we are looking for can be extracted
from the digitally processed signal. In this case, there is no need to produce an output that
is analog. Therefore, stage 3 in Figure 2.1 does not exist. An example is a receiver for
digitally modulated signals. The aim of the receiver is the detection of digital symbols
being transmitted. The input to the receiver is the carrier modulated signal and the output
is the sequence of detected symbols.

However, there are many applications that require the construction of analog wave-
forms or signals from the digital signal in the form of a sequence of numbers. Intuitively
what we want is to ‘fill in the gaps’ or interpolating between the sampled values so that a
continuous-time signal results. An analog reconstructor as shown in Figure 2.32 performs
this.

Sampled > Analog , Reconstructed
Input, y(n) Reconstructor Analog Output, y(t)
Figure 2.32

Analog signal reconstruction

Generally speaking, any form of interpolation will do the job. However, there are some
interpolation methods that are easier to implement and are, in some ways, more desirable
than others.

We shall discuss two kinds of reconstructors. The first one is ideal. As the name
suggests, this kind of reconstructor is not practical and in fact not physically
implementable. But it reflects the ideal situation and will help us to understand the
process better. The second type is called staircase reconstructors. They are simple to
implement and are in fact most commonly used in practical analog-to-digital converters.
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Ideal reconstructor

Let us consider an analog signal x(f) with a frequency spectrum X( /) that has been
sampled at the rate of 1/T samples per second. The sampled signal x(r) will have a
spectrum that consists of replica of X( /) shifted by integer multiples of f;. Assume that
the spectrum X(f) is bandlimited and the sampling rate is sufficiently high so that its
replica does not overlap. Then a low-pass filter can recover X( /') with a cut-off frequency
of f; /2.

Ideally, this low-pass filter will have frequency characteristics

T, for |f|<f./2
0, otherwise

H(f)={

so that there is no distortion to the spectrum in the Nyquist interval and no frequency
component outside this interval is included. H( /') is shown graphically in Figure 2.33(a).
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Figure 2.33
An ideal low-pass filter and its impulse response

The time-domain characteristic corresponding to H( /') is given by

h(t) = sin;7zj;T)

. V1)
=smc| —

=sinc(mf t)

which is known as the sine function. It is shown in Figure 2.33b.

Notice that A(?) is not physically realizable. This is because it is non-causal. A causal
system is one that if excited at # = 0 will produce a response starting from ¢ = 0. Since
h(?) is non-zero in the negative frequency axis, it is non-causal. It means that if this low-
pass filter is excited by a single impulse at ¢ = 0, the response will have started even
before the excitation arrives at the input. Clearly, this is not possible for a real system.
Therefore, we cannot implement an ideal reconstructor.
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2.5.2 Staircase reconstructor

The reconstructor that is often used in practice is the staircase reconstructor or zero-order
holds (ZOH). This reconstructor simply holds the value of the most recent sample until
the next sample arrives. So, each sample value is held for 7 seconds. This is illustrated in

Figure 2.34(a).
The ZOH can be characterized by the impulse response:

b ()= I, for 0<t<T
ZoRY 0, otherwise

This means that if the reconstructor is excited by an impulse at ¢ = 0, the output of the
reconstructor will be a rectangular waveform with amplitude equal to that of the impulse

with duration of 7 seconds.

It is obvious that the resulting staircase output will contain some high frequency
components because of the abrupt change in signal levels. In fact, the spectrum of /zou(?)

is a sine function that is decaying exponentially in amplitude.

sin(zf T) o T

Hyon(N)=T——— 2T

It is shown in Figure 2.34(b) in comparison to the spectrum of the ideal reconstructor.

It is obvious that parts of the replicas of the baseband spectrum are included in the output

of the ZOH. Figure 2.35 shows the spectra at the input and output of the ZOH.
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Figure 2.34
Analog reconstruction using zero order holds
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Figure 2.35
Spectra at the input and output of the zero order hold

Image-rejection postfilters

The inclusion of some of the replicas of the baseband spectrum will lead to distortion. It
is therefore desirable that they be removed. Since the sampling rate is sufficiently high,
low-pass filtering can isolate the baseband spectrum.

A low-pass filter that removes the remaining replicated spectra is also known as an
image-rejection filter. The cut-off frequency of this filter should clearly be f;/2. It is very
similar to the anti-aliasing filter in characteristics.

Even though the replicated spectra are completely removed (rejected), the baseband
spectrum is still slightly distorted by both the ZOH and the image-rejection filter. At the
frequency f;/2, the ZOH introduces an attenuation of about 4 dB and the image-rejection
filter another 3 dB. While this may be acceptable for some applications, it is highly
undesirable for other applications such as high quality digital audio.

This problem can be overcome by equalization. The equalizer has a frequency
characteristic Hgq( /) so that the combined frequency response of the equalizer, staircase
reconstructor, and the image-rejection filter will be the ideal response H( /) in section
2.5.1. That is,

HEQ(f)HZOH(f)Hpost(f)zH(f)

where H,o.( /') is the frequency characteristics of the image-rejection filter.

The advantage of using DSP is that the equalizer can actually be implemented digitally.
In other words, the original digital signal samples are first digitally pre-compensated
before being converted to analog signal.
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2.6

2.6.1

Digital-to-analog converters

Digital-to-analog converters (DACs) are the implementations of the reconstructors. Since
DACs are much simpler than ADCs, they are correspondingly cheaper. A digital binary
code is converted to an analog output, which may be a current or voltage. Figure 2.36
shows the schematic of an n-bit DAC.

. e DAC —>XQ
bits Analog output

R (reference)

Figure 2.36
An n-bit DAC

An important parameter for ADC is the conversion time — the time it takes for the
device to obtain a stable quantized value from the time the conversion starts. For DAC,
the corresponding parameter is the settling time — the delay between the binary data
appears at the input and a stable voltage is obtained at the output.

Multiplying DAC

The most common DACs are multiplying DACs. It is so called because the output is the
sum of the products of the binary code and current sources. Each bit of the binary code
turns on or off a corresponding current source. The sum of all the currents available can
be converted to a voltage for output or remain as is. Figure 2.37 shows such a current
source multiplying DAC. The current sources are normally on and are grounded when not

in use.
VCC

1 mA 0.5 mA 0.25 mA 0.125 mA

MSB LSB

Figure 2.37
A current source multiplying DAC
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A voltage source can be used instead of current sources. The voltage source is applied
to a series of scaled resistors. The voltages at one end of the resistors are switched either
‘on or off’ as shown in Figure 2.38. The ‘on’ voltages are summed. The output is
proportional to the weighted sum of the input voltages. Some devices have a built-in
reference voltage source. Other ones allow the user to provide an external reference
voltage, thereby setting the accuracy of the output.
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>—ar 8R N
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Figure 2.38

A voltage source multiplying DAC

Nearly all commonly used DACs are ZOH devices and therefore image-rejection filters
are needed. The settling time of multiplying DACs is short because the conversion is
done in parallel.

Bit stream DAC

A disadvantage of multiplying DAC is that the most significant bit (MSB) must be very
accurate. This accuracy will be required for the whole range of temperatures specified for
the device. Furthermore, it is to be consistent over time.

For an 8-bit DAC, the MSB must be accurate to one part in 2° = 256. The MSB of a 16-
bit DAC will need to be accurate to one part in 2'° = 65 536. Otherwise, some of the least
significant bits will be rendered useless and the true resolution of the DAC will diminish.
Maintaining voltage and current sources to this level of accuracy is not easy.

One way of overcoming this problem is to use bit stream conversion techniques. The
concept is similar to sigma-delta ADCs. In bit stream DACSs, a substantially higher
sampling frequency is used in exchange for a smaller number of quantization levels.

n-bits (Nn-2)-bits
Digital + »| One-bit » Digital
Input Quantizer Output
@ f, - @ 4f,
4 times
per input cycle
Dela
1 Y -
4f,
Figure 2.39

The oversampling stage of a bit stream DAC
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2.7

Figure 2.39 shows the input oversampling stage of a particular bit stream DAC. The input
to this stage is an »-bit digital input sampled at a frequency f, and the output is an (n—2)
bit data sequence sampled at 4f,. The difference between the current digital input and the
digital output is computed. The integrator is digital and simply adds the previous value to
the present one. The output of the integrator is quantized into (n—2) bits by truncating the
two least significant bits. This loss of resolution is compensated for by the feedback of
the output to the input and also the fact that this operation is performed four times for
each digital input sample.

In general, for an n-bit input and a g-bit quantizer, the oversampling frequency will
need to be 2™ times the original sampling rate. For some practical DACs, the output of
this oversampling stage is a 1-bit representation of the input signal. This bit stream if
plotted against time and with sample points joined together, is equivalent to a pulse
density modulated (PDM) waveform as shown in Figure 2.40. This bit stream is
converted to an analog signal by a 1-bit DAC and subsequently low-pass filtered.

Al
A

14+ — —

Figure 2.40
A pulse density modulated waveform

Owing to the fact that the original digital signal is being requantized into a small
number of levels, the output can sometimes be ‘stuck’ at an incorrect value. This happens
most often when there is a long sequence of the same input value. This ‘hang-up’ will
persist until the next change in input value. The result of this ‘hang-up’ is that the output
will have a substantially different DC (or average) value to that of the input signal.

To overcome this problem, a dithering signal can be added. The effect of dithering has
been discussed in section 2.3.4. In this case, dithering lowers the probability of long
sequences of any one value.

A further problem with bit stream techniques is the high oversampling frequency. For
instance, if we want to resample a CD quality audio to one bit, then we need a frequency
of 2'°x 44.1 x 10° (approximately 3 GHz). This is a very high sampling frequency and is
very difficult to implement using present silicon technology. In these cases, 1-bit DAC is
not practical. Eventually, the design is a compromise between sampling rate and the
number of bits required for the DAC.

To probe further

Sampling and data conversion is an extensive topic. We can only cover the basics here.
There are some very good books describing the analog-to-digital and digital-to-analog
conversion techniques in detail. Two of them are listed below:
e D.H. Sheingold (ed.). Analog-digital conversion handbook, 3™ edition. Prentice-
Hall, 1986.
¢ G.B. Clayton. Data converters. Wiley, 1982.
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We have discussed the sampling of a low-pass signal. The minimum sampling
frequency is twice that of the bandwidth of the signal. If the signal to be sampled is a
bandpass signal, we do not normally want to sample at twice the frequency of the highest
frequency component of this signal, since much of the lower frequency components are
useless. This leads to the topic of band-pass sampling. Band-pass sampling is of particular
interest to applications in carrier modulated communication systems. A good survey of
results can be found in the following paper.

e R.G. Vaughan and N.L. Scott, ‘The theory of bandpass sampling’, /EEE
Transactions on Signal Processing, Vol.39, n0.9, September 1991, pp.1973—
1983.

For those who want to understand dithering further, the following two papers are
suggested.
e L. Schuchman, ‘Dither signals and their effect on quantization noise’, /EEE
Transactions on Communications, vol. COM-12, pp.162.165, 1964.
e S.P. Lipshitz, R.A. Wannamaker and J. Vanderkooy, ‘Quantization and dither: a
theoretical survey’, Journal of the Audio Engineering Society, Vol.40, 1992,

Many semiconductor manufacturers produce ADCs and DACs. They come in a variety
of configurations. Product information can be obtained from the relevant databooks and
the manufacturer’s web sites. Some of them provide customers with product information
on CDs. They can usually be obtained from the locate distributors.

Below is a very incomplete list of manufacturers and their web sites:

e Analog Devices, Inc. http://www.analog.com
e Motorola, Inc. http://www.motorola.com
e National Semiconductors, Inc.  http://www.natsemi.com

e Texas Instruments, Inc. http://www.ti.com
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Time-domain representation of
discrete-time signals and systems

3.1 Notation

A discrete-time signal x consists of a sequence of numbers denoted by x(n), or x(nT),
where n is an integer index. The latter notation is usually reserved for sampled data
sequences with a uniform sampling period of T seconds. The sampling process is
discussed in more detail in a later chapter. If the sampling period is known or is not
relevant to the interpretation of results, the subscript notation will be used.

3.2 Typical discrete-time signals

Several discrete-time signals are considered basic and important. More complex signals
can be constructed from these elementary ones.

3.2.1 Unit impulse

3(n)
A
1¢
® o e ® e o
_  o—e—0—0—0—o——0—0—0—0—0—0— >
-3 -2 -1 0 1 2 3 n

Figure 3.1
The unit impulse sequence
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The unit impulse function, usually denoted as ¢ (), is shown in Figure 3.1. It consists of a
single unit-valued sample at the instant n=0, surrounded on both side by zeros.
Mathematically, it is described by the formula

5n) 1, n=0
n)=
0, n#0
or
o(n)=1{...,0,0,1,0,0,...}
Unit step

The unit step sequence is defined as

{Q n<0
u(n)=

1, n=20
or
u(n)={...,0,0,1,1,1,1,...}

It is shown graphically in Figure 3.2. The unit step sequence is used to make an
arbitrary sequence zero for all indices less than zero by multiplying the arbitrary sequence
with the unit step. It can thus indicate the start of an event.

3 -2 -1 0 1

n

Figure 3.2
The unit step sequence

Random

In some applications it is useful to consider a signal as a random signal rather than a
deterministic signal. Random signals are in fact statistical models that obey some
specified statistical distribution. Examples of this type of model include white gaussian
noise commonly encountered in communication systems analyses. These signal models
are very useful for performance analysis. However, we shall focus exclusively on the
processing of deterministic signals in this introductory course.
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3.3

3.3.1

3.3.2

Operations on discrete-time signals

Delay or shift

An important operation on a sequence is a delay or shift by a number of samples, ny. For
example, Figure 3.3 shows the delayed versions of the unit impulse sequence, § (n—1/) and
6 (n=2).

d(n-1)
N
1

(a)

—— T T "

S(Nn-2)
N

(b)

Figure 3.3

The impulse sequence delayed by one and two sample instants

Scalar addition and multiplication

Scalar addition adds a scalar value to each element of the sequence to produce another
sequence. Scalar addition thus changes the average value of the signal by the amount of

the scalar value. Figure 3.4 shows the addition of a scalar a = —0.5 to the unit step
sequence. The resulting sequence has an average value of zero.

u(n) + a

Figure 3.4
Scalar addition of the unit step sequence by a = —0.5
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Multiplication of a sequence by a scalar results in a sequence that is scaled by that
scalar. The unit sequence is multiplied by a scalar a = —0.5 in Figure 3.5.

a u(n)
y N
1
-3 -2 -1 0 1 2 3 o
—_— o —0—0—0—© L
B E
® ® o
—O.5T
Figure 3.5

Multiplication of the unit step sequence by a = —0.5

Any arbitrary sequence can be represented by a summation of scaled and shifted unit
impulses. For instance,

{3, 0.5, -1 =25 0 1 2}
30(n—3)+0.50(n—-2)—10(n—1)—2.50(n)+05(n+1)+15(n+2)+20(n+3)

x(n)

3.33 Vector addition and multiplication

Vector addition is the element-by-element summation of two sequences. Some useful
sequences can be produced from the elementary impulse and step sequences. For
example, a (finite-duration) rectangular signal sequence of unit amplitude can be
produced from the (vector) summation of two delayed unit step sequences:

y(n)=u(n—n)—u(n—n,)

In this case, the first and last non-zero elements are at indices n; and (n,—1)
respectively, with n, > n,.

3.3.4 Block diagram representation

The above basic operations on discrete-time signals and sequences can be represented in
block diagram form. They are shown in Figure 3.6.

x(nN) x(n-1)
;I =" I—P

Delay of 1 sample period

x(n) x(Nn) + w(n)

wi({n)

Adder / Accumulator

x(N) J{ K x(n)
- = >

Multiplier

Figure 3.6
Block diagrams of the basic operations on a discrete-time sequence
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3.4

3.4.1

3.4.2

3.4.3

Classification of systems

If some operation is performed on a sequence x(n) to produce another sequence y(n), we
may view these sequences as input and output, respectively, of a discrete-time system.

Linear vs non-linear

The most important class of systems is perhaps the linear systems. Linear systems have
the nice property that if y,;(n) and y,(n) are the system responses to inputs x;(7) and x,(n)
respectively, then for input

x(n) =a,x,(n)+ a,x,(n)

where a; and a, are some arbitrary constants, the output of the linear system will be a
similar summation of the individual responses:

y(n) =a,y, (n)+a2y2(n)

This property is sometimes called the superposition principle. This property implies
that if we know the system’s responses to some typical inputs such as impulse and step
functions, and an arbitrary input can be expressed as a linear combination of these
elementary functions, then the system’s response to this arbitrary input is known.

A non-linear system is one that is not linear. In other words, the superposition principle
does not hold. In real life, all systems are non-linear. However, a non-linear system can
usually be approximated as linear within some constraints.

Time-variant vs time-invariant

A time-invariant (or shift-invariant) system has the property that if x(n) produces y(n),

then x(n—ng) produces y(n—nq) for all n and any ny. That is, a delay of input samples
implies a corresponding delay in the output.

Linear time-invariant (LTI) systems also have the commutative property. This means
that if subsystems are arranged in series (or cascade), then the order in which they are
arranged can be changed without affecting the final output. This re-arrangement of
subsystems sometimes offers advantages such as reducing complexity of the
implementation.

A linear time-invariant system can be completely characterized by its impulse
response. The impulse response /i(n) of a system is the output of the system obtained
when the input is an impulse function. Previously we have shown as an example how a
sequence can be expressed as a summation of the delayed and scaled impulse functions.
For a linear system, therefore, the output can be expressed as a summation of the system’s
impulse response correspondingly scaled. The impulse response of a system can be of
finite duration or of infinite duration. But in practice, impulse responses that are very long
are truncated in an appropriate way.

In the rest of this course, we shall consider only linear time-invariant systems unless
otherwise stated.

Causal vs non-causal

In a causal system, the output depends only on the present and/or previous values of the
input. This seems to be an obvious property since we simply cannot anticipate the future.
However, if the data is recorded and processed offline, the algorithm operating on this
data set need not be causal since ‘future’ data are available too.
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Stable vs unstable

A stable system produces a finite, or bounded, output in response to a bounded input.
This implies that if the system in its equilibrium state is disturbed by a finite amplitude
signal, the output will not diverge or grow without limit. In practice, the output of an
unstable system will eventually be limited through numerical overflow or saturation of
the electronic devices concerned. Systems with feedback have the potential to become
unstable.

A stable linear time-invariant system is invertible. For an invertible system, knowledge
of the output allows us to find the input uniquely. That means if an input x(n) to a system
S produces an output y(n), then the inverse system S~ will produce output x(n) if the input
is y(n).

The concept of convolution

Convolution is the process by which an input interacts with a linear system to produce an
output. The input and output of a linear time-invariant system can be easily related
through the impulse response of the system. The process is best illustrated by an example.

The impulse response h(n) of a system is shown in Figure 3.7. For the sake of
simplicity, it is a triangular function with duration of 5 samples. An input x(n) expressed
as a weighted combination of impulse functions is given by

x(n) = ix(k)é(n —k)

The sequence indices are from O to N.

h(n)

A

1@

0.8

0.6

® & & 0'4 ® ® ©
0.2
——eo—e—o—o—0—o—
-3 -2 -1 0 1 2 3 4 5 ©6 n

Figure 3.7
Impulse response, h(n), of a system

Since the system is LTI, by time-invariance, the input § (n—k) will produce output
h (n—k) as shown in Figure 3.8.

h(n-k)

Py Py Py Py :n

K k+2 k+4
k+1 k+3 k+5

Figure 3.8
Response of the system to § (n—k)
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By linearity, the output corresponding to the weighted sum is the combination of the
impulse responses. This is shown graphically in Figure 3.9.

x(N) = u(n)

S
1 &
[ X [ N N N -
3 2 -1 0 1 2 3 n
y(n) = h(n) * x(n)
y(n)
h(O)X(‘l)\ h(0)x(2)
h(0)x(0) h(O)x(3)
h(1)x(1)
1 h(1)x(2)
h(hHx—1T" h(2)x(1 )
h(2)x(0)>
h(3)x(0)] -
-3 2 -1 n

Figure 3.9
Response of the system to x(n)

The output at time instant n = 0 is given by
y(0) = h(0)x(0)

At instant n = 1, the output has two components. The first one is the effect of the
current input x(1), given by A(0)x(1). The second is the delayed effect of the impulse x(0)
atn = 1, given by h(1)x(0). Thus,

y(1) = h(1)x(0) +h(0) x(1)

Similarly, subsequent outputs are

y(2) = h(2)x(0)+h1)x(D)+h(0)x(2)
vy3) = h@B)x(0)+h(2)x()+h1)x(2)+ h(0)x(3)
y(n) = hn)x(0)+h(n-1)x1)+ -+ +h(0)x(n)

In general,
N
y(n) =Y x(k)h(n—k)
k=0
Alternatively, it can be written as (by a change of variables)

y(n) =Y h(k)x(n—k)
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This is known as the convolution sum relating the input and output of a discrete-time
system. The value of N is usually chosen to be the length of the impulse response
sequence. Notice that each output sample is computed from a product of terms involving
a sample of the impulse response sequence and a previous input sample.

Convolution will be denoted by the symbol * and the above two equations then become

y(m) = x(n)*h(n)
= h(n)* x(n)

respectively. This implies that the convolution operation is commutative. It is also
distributive

[w(n) + x(n)]* h(n) =[w(n) * h(n)]+[x(n) * h(n)]
and associative

[w(n) *x(n)]* h(n) = w(n) *[x(n) * h(n)]

y(n)= i x(k)h(n—-k)= i h(k)x(n—k)

k=—c0 k=—c0

These equations can be generalized to data sequences of infinite duration:
This convolution operation is also called linear convolution.

Autocorrelation and cross-correlation of sequences

In a lot of DSP applications we need to compare the similarity between one set of data
with another. These data sets are typically sampled values of two signals. In other words
the correlation between these data sets need to be established.

1o (k) :%Nzi)ﬁ (m)x,(n+k)

A formula for computing the cross-correlation function for two discrete-time signals is

Note that correlation is evaluated with one of the signals shifted by k samples. In this
definition x; is shifted to the left by k samples and products of the corresponding pair of
points are summed. This is necessary because two signals may be completely correlated
but are out of phase with one another. An example is given in Figure 3.10 where one
signal is a delayed version of another. The correlation when k = 0 is zero, indicating no
correlation between them.

., (1)

>z(1)

o

Figure 3.10
Two completely correlated but out of phase signals
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It is important to note that correlation coefficients are computed using block-processing
techniques. This means that the accuracy is dependent on the size of the block chosen.
The finite amount of data that are used to evaluate the correlation gives rise to another
problem. As x; is shifted further and further to the left the ends of the signals no longer
overlap. This means that the actual number of product pairs will decrease as k increases,
leading to a corresponding decrease in r5(k). This is known as the end effect.

x,(n)
A

r2(k)

0.75
0.5
0.25
Figure 3.11

The end effect on the cross-correlation of two constant amplitude signals

N—e
ol
Y

To overcome the end effect, a correction has to be made to the values computed by
equation 9. Assuming that we have two constant valued sequences of finite duration. The
decrease in ry,(k) purely as consequence of the end effect can be observed. It is shown in
Figure 3.11. Thus the corrected values are given by

k
ri2 (k)corrected = riZ(k) +N I/iZ(O)

These cross-correlation values depend on the absolute values of the data considered. In
order to obtain a measure of likeness of two sequences, a normalized definition is needed.

1y (k)

ngf(mgxi(n)}

These values are known as the cross-correlation coefficients.

Py, (k)=
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A signal sequence can also be correlated with itself. In this case, the coefficients are
called autocorrelation coefficients. Note that the unnormalized autocorrelation coefficient
at zero shift (or lag) is the energy of the signal.

m@:%fﬁw

n=0

It is also true that
5, (0)2n,(k) fork>0

It should also be noted that cross-correlation and autocorrelation functions are not
unique. Therefore we cannot deduce the waveform from these functions. However, these
functions highlight some of the properties of these signals, which are sometimes not
obvious.

Periodic sequences

In the above discussions on correlation and convolution, we considered general
procedures that apply to all sequences that are of finite length. If the sequences we are
dealing with are periodic in nature, more care has to be taken, especially if the two
sequences are of unequal length.

Suppose we have two sequences:

x={2,3,1,4)
y=1{1,2,3}

that are periodic with periods of four and three samples respectively. The cross-
correlation function (unnormalized) is shown below:

Lag (k) rxy(K)
0 3.75
5.5
5.75
3.75
5.5
5.75

N[N |

The cross-correlation sequence is computing using equation 9 with N=4, the longer
period of the two sequences. It is obvious that ry(k) is periodic, with a period of three
samples. Since the result does not reflect the full periodicity of the longer sequence, it
must be incorrect.

If we use N=6, and append 2 zeros to sequence x and 3 zeros to sequence y, the cross-
correlation function becomes:
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3.6.2

Lag (k) Ru(k)
0 11/6
1 7/6
2 3/6 =0.5
3 4/6
4 9/6
5 17/6
6 11/6

The linear cross-correlation of the two sequences has a period of 6.

As a general rule, if the periods of two sequences are different, say N; and N,, then
N;—1 augmenting zeros must be appended to the sequence with period N, and N,—1
augmenting zeros appended to the one with period N;. Both sequences are now of length
N1+N,—1 and the correct linear cross-correlation result will be obtained. This technique is
called zero padding.

Convolution can be viewed as the cross-correlation of one sequence with the reverse of
a second sequence, the above is also valid for computing linear convolution. Zero
padding should be applied if the two periodic sequences are of unequal periods.

Implementation

The correlation and convolution procedures require N multiplications and N—1 additions
per output sample. For large values of N, it is very computationally expensive. They can
generally be much more efficiently implemented by transforming the time sequence into
the frequency domain. This will be considered in the next chapter.
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Frequency-domain representation of
discrete-time signals

So far we have been looking at signals as a function of time or an index in time. Just like
continuous-time signals, we can view a time signal as one that consists of a range of
frequencies. A signal can be observed as a trace on an oscilloscope or we can observe it
through a spectrum analyzer, which displays the strength of the frequency components
that make up that signal. Analytically, Fourier analysis provides us with the connection
between the time-domain and frequency-domain view of the signal. It tells us that
provided some conditions are satisfied; the two views are equivalent. Thus sometimes it
is more convenient to describe a signal in the time-domain whereas the frequency-domain
description will be more effective in other circumstances.

As we shall discover in this chapter, the frequency-domain (Fourier) representation not
only gives us an alternative view of discrete-time signals, it also provides us with a way
to compute certain time-domain operations like convolution and correlation more
efficiently. Tools for Fourier analysis consist of the discrete Fourier series (DFS) for
periodic signals and the discrete Fourier transform (DFT) for aperiodic signals.
Transforming signals from the time to the frequency domain through the DFT is
computationally expensive. In the early 1960s, Cooley and Tukey discovered an efficient
algorithm for the computation of DFTs, called the fast Fourier transform (FFT). This
discovery made real-time computation of convolution and filtering a reality. Some would
say that this is when digital signal processing as a discipline was established. Since then a
large variety of similar algorithms were proposed and studied. Some of them improve on
the original algorithm while others tackle situations that the FFT is not designed for.
Today, all DSP processors are able to compute the FFT in software sufficiently fast for
most but the most demanding applications. In those situations, specific VLSI devices are
available commercially.
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4.1

Discrete Fourier series for discrete-time periodic signals

Any periodic discrete-time signal, with a period of N, can be expressed as a linear
combination of N complex exponential functions.

N-1
k=0
where
j=-1
and

e’ =cosO+ jsin@

Equation 1 is called the discrete-time Fourier series (DTFS).
Given the signal x(n), the Fourier coefficients can be calculated by

N-1
c = % Z x(n)e PN (2)
n=0

Note that these Fourier coefficients are generally complex-valued. They provide a
description of the signal in the frequency domain. The coefficient ¢, has a magnitude and
phase associated with a (normalized) frequency given by

@ =27mk/N

These Fourier coefficients form the (discrete) frequency spectrum of the signal. This
normalized frequency can be de-normalized if we know the sampling frequency (F;), or

@=2mT

the time lapse (7) between two samples which are related by
Since

0<q@ <2rm
The denormalized frequency wtakes on values in the range
0<q@<q
It is easy to verify that the sequence of coefficients given by equation (2) is periodic

with a period of N. This means that the frequency spectrum of a periodic signal is also
periodic.

Example: 4.1
Determine the discrete spectrum of a periodic sequence x(n) with a period N=4 given by

x(my={0, 1, 1, 0}  7=0,1,2,3

Solution:
From equation (2), we have

3
C, = %z x(n)e ™ k=0,...,3
n=0

= l x(l)e_j”]d2 + x(2)e_j“k
4
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and

| 1
C =Z[1+1]:5

e :%[e_j“/z +e_j“] = i(—l—j)

¢, = l|:e_j” + e_jz’[] =0

4
¢ = l[e_ﬂ“/z +e_j3"] = l(—l-i-j)
4 4
The magnitude of this discrete spectrum is shown in Figure 4.1.
IX(K)I?
4
4
i
8 A A
1
>
0] 1 2 3 k
Figure 4.1
The discrete magnitude squared spectrum of the signal in Example 4.1.
4.2 Discrete Fourier transform for discrete-time aperiodic

signals

When a discrete-time signal or sequence is non-periodic (or aperiodic), we cannot use the
discrete Fourier series to represent it. Instead, the discrete Fourier transform (DFT) has to
be used for representing the signal in the frequency domain. The DFT is the discrete-time
equivalent of the (continuous-time) Fourier transforms. As with the discrete Fourier
series, the DFT produces a set of coefficients, which are sampled values of the frequency
spectrum at regular intervals. The number of samples obtained depends on the number of
samples in the time sequence.

A time sequence x(n) is transformed into a sequence X(w) by the discrete Fourier
transform.

N-1
X(k)= Zx(n)e—iz“““m k=0,1,..,N-1 (3)
n=0
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4.3

4.4

4.41

This formula defines an N-point DFT. The sequence X(k) are sampled values of the
continuous frequency spectrum of x(n). For the sake of convenience, equation 3 is usually
written in the form

N-1
X(k)=2x(n)W§“ k=0,1,...,N-1 (4)
n=0

where

W — e—jZn/N

Note that, in general, the computation of each coefficient X(k) requires a complex
summation of N complex multiplications.

Since there are N coefficients to be computed for each DFT, a total of N* complex
additions and N* complex multiplications are needed. Even for moderate values of N, say
32; the computational burden is still very heavy. Fortunately, more efficient algorithms
than direct computation are available. They are generally classified, as fast Fourier
transform algorithms and some typical ones will be described later in the chapter.

The inverse discrete Fourier transform and its computation
The inverse discrete Fourier transform (IDFT) converts the sequence of discrete Fourier
coefficients back to the time sequence and is defined as

N-1 N-1
x(n) = iZX(k)e”“kmN = iZX(k)W;I‘“ k=0,1,..,N-1 (5)
NiS NiS

The formulas for the forward and inverse transforms are identical except for the scaling
factor of 1/N and the negation of the power in the exponential term (Wx ™" instead of
WA™). So any fast algorithm that exists for the forward transform can easily be applied to
the inverse transform. In the same way, specific hardware designed for the forward
transform can also perform the inverse transform.

Properties of the DFT

In this section, some of the important properties of the DFT are summarized. Let
x(n) < X(k)

denote the DFT between x(r) and X(k) in the discussions below.

Periodicity of the DFT
Consider X(k+N) which is given by

N-l
X(k+N)= zx(n)e—jann/Ne—jZnNn/N

n=0

N-1 A

— Zx(n)e—Jann/N
n=0

=X (k)



442

4.4.3

4.4.4

4.4.5

4.4.6

Frequency-domain representation of discrete-time signals 65

This implies that X(k) is periodic with a period of N, even though x(n) is aperiodic.
Thus for a discrete-time signal, we cannot obtain the full spectrum (frequencies from
negative infinity to infinity).

Linearity
If both x1(n) and x,(n) are of the same length and
x(n) e X,(k) and x,(n) < X, (k)
then
x(n)=ax,(n)+bx,(n) <> X(k)=aX,(k)+bX,(k)

where a and b are arbitrary constants.

Parseval’s relation

This relationship states that the energy of the signal can be calculated from the time
sequence or from the Fourier coefficients.

> [xmf = %2|X(k)|2

Real sequences
If x(n) is real, then
x(n)=x*(n) and
X(k)=X*(-k)
i.e. the real part of X(k) is an even function or is symmetrical about £ =0 and the

imaginary part is odd function. This kind of symmetry in X(k) is also known as hermitian
symmetry.

Even and odd functions

If x(n) is an even function or has even symmetry about n = 0, i.e. x(n) = x(-n), then X(k)
will also be an even function. If x(n) is an odd function, i.e. x(n) = x(n), then X(k) will
also be an odd function.

Furthermore, if x(#n) is real and even, then X(k) is real and even. If x(n) is real and odd,
then X(k) is imaginary and odd.

Convolution
x(n) = x, (1) * x, (n) > X(k) = X,(k) X,(k)

Convolution in the time domain becomes a point-by-point multiplication in the frequency
domain. Thus a convolution operation can be performed by first performing the DFT of
each time sequence, obtain the product of the DFTs, and then inverse transform the result
back to a time sequence. This is called circular convolution, which is somewhat different
from the linear convolution discussed in the previous chapter. The computation of linear
convolution using DFT is explored in more detail in a later section.

ha(n) = i X, (k)x(k —n) & 8,,(k) = X,(k) X,(=Fk)

fr=—o0
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4.4.10

Correlation

S12(k) is called the cross-energy density spectrum. In the case where x;(n) = x,(n), it is
called the power spectrum. In other words, the power spectrum of a signal is the DFT of
its autocorrelation sequence.

Time delay
x(n—m) & W X(k)

A delay in the time domain is equivalent to a multiplication by a complex exponential
function in the frequency domain.

Frequency shifting

W™x(n) < X(k-1)

This is the frequency domain equivalent of the previous property. A shift (or delay) in the
frequency sequence is equivalent to the multiplication of the time sequence by a complex
exponential function. Alternatively, we can say that if the time sequence is multiplied by
a complex exponential, then it is equivalent to a shift in the frequency spectrum.

x(n)cos(2min/ N) H%X(k+l)+%X(k—l)

Modulation

In the above frequency shifting property, if the complex exponential function is replaced
by a real sinusoidal function, then the multiplication in the time domain is equivalent to
shifting the half the power of the spectrum up and half of it down by the same amount.
Multiplication by a sinusoid is the modulation operation performed in communication
systems. This is illustrated in Figure 4.2.

IX(K)]
A original spectrum
) N'—'I » Kk
X'(K)|
modulated
spectrum
+ A
/>
y, N-¢-1 0 ‘ N+e1 o K

Figure 4.2
The effect of modulation on the discrete frequency spectrum
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4.4.11 Differentiation in the frequency domain

dX (@)

Differentiation in the frequency domain is related to the multiplication of the time signal
by a ramp. This property is useful in the computation of the group delay of digital filters.
Details can be found in the chapter on FIR filters.

4.5 The fast Fourier transform

The DFT is computationally expensive. In general, an N-point DFT requires N complex
multiplications and N—1 complex additions. If N=2', where r is a positive integer, then an
efficient algorithm called the fast Fourier transform (FFT) can be used to compute the
DFT. Cooley and Tukey first developed this algorithm in the 1960s.

The basic idea of the FFT is to rewrite the DFT equation into two parts:

N/2-1 N/2-1
X(k)y= Y x@uW +w* Y xQn+)WI*  k=0,1,.,N-1
n—0 n=0 (6)

= X,(k) + W X, (k)

The first part,

(N/2)-1
X(k)y= Y xQ@nw
n=0
(N/2)-1

= Y, xQnWy,

n=0

is the DFT of the even sequence and the second part, X,(k), is the DFT of the odd
sequence. Notice that the factor W*™ appears in both DFTs and need only be computed
once. The FFT coefficients are obtained by combining the DFTs of the odd and even
sequences using the formulas:

X(k)=X,(k)+ WX, (k) for k=0, 1,...,%—1

X(k+%)=Xl(k)—W§Xz(k) for k=0,1....5 -1

The complex factor Wy is known as the twiddle factor.

These subsequences can be further broken down into even and odd sequences until
only 2-point DFTs are left. So each N/2-point DFT is obtained by combining two N/4-
point DFTs, each of that is obtained by combining two N/8-point DFTs, etc. There are a
total of r stages since N=2".
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Computation of two-point DFTs is trivial. The basic operation is illustrated in Figure
4.3.

v

——— (+) Wiy = a W

Wk
b= X+ ) D - >@

Figure 4.3
The butterfly operation of the decimation-in-time FFT

X1'+ jy1' =a- ka

v

It is usually known as a butterfly operation. Figure 4.4 illustrates the three stages
required in the computation of an 8-point FFT. The twiddle factors are usually pre-
computed and stored in memory.

X0) = 2-point X(0
K4) — DFT Combine 0
2-point
X(2) —  2-point DFTs '
——  DFT !
X(6) Combine |
4-point
DFTs
X(1) = 2-point
x(5) —  DFT Combine — X(7)
2-point
X8) = 2-point DFTs
Xx(7) —  DFT
stage 1 stage? staged
Figure 4.4

The three stages in an 8-point decimation-in-time FFT
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Note that if we want the DFT coefficients to come out at the natural order, the input
sequence has to be rearranged. This reordering is known as bit reversal. We can see why
it is called bit reversal if we represent the index sequence in binary form. The following
table illustrates this.

Natural Binary form Bit reversed Reordered
order index
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

Compare the bit-reversed indices with that of Figure 4.4.

An efficient algorithm for bit reversal will be discussed later.

This FFT algorithm is also referred to as the radix-2 decimation-in-time FFT. Radix 2
refers to the fact that 2-point DFTs are the basic computational block in this algorithm.
Decimation-in-time refers to the breaking up (decimation) of the data sequence into even
and odd sequences. This is in contrast to decimation-in-frequency a little later.

4.5.1 Computational savings

An N-point FFT consists of N/2 butterflies per stage with log, N stages. Each butterfly
has one complex multiplication and two complex additions. Thus there are a total of
(N2)log, N complex multiplications compared with N* for DFT, and N log, N complex

additions compared with N(N—1) for the DFT. A substantial saving when N is large.
45.2 Decimation-in-frequency algorithm

Partitioning the data sequence into two halves, instead of odd and even sequences can
derive another radix 2 FFT algorithm. Thus,

(N/2)-1 . N-1 .
X(ky= Y x(mWwy+ D, x(nwy
n=0 n=N/2
(N/2)-1 ) o G No .
= 2 x(mW{ +Wy 2 x(n +?)WNH
n=0 n=0
(N/2)-1 N
= x(n)+ (=D x| n+= |[|W¥
n=0 2
The FFT coefficient sequence can be broken up into even and odd sequences and they have the form
(N/2)-1 .
X@2k)= Y, gmWwy,
n=0
(N/2)-1

XQk+1)= Y, gm0y,

n=0
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where

g/ (n)= x(n)+x(n+%)

g, (n)= [X(n)—x(m%ﬂm n=0,1,..,(N/2)-1

The computation of the g;(n) and g,(n) sequences involves the butterfly operation as
shown in Figure 4.5. It is similar to the butterfly for the decimation-in-time FFT except
for the position of the twiddle factor.

a=x,tjy, s =@ > Xty =ath

b =Xty v > =@—'D—> X'y, = (a-b)W!

Figure 4.5
Butterfly computation in the decimation-in-frequency FFT

The even and odd coefficient sequences can each be divided into the first and second
halves and the same procedure repeated until only 2-point DFTs are required. Figure 4.6
shows the three stages of an 8-point radix-2 decimation-in-frequency FFT. Note that the
data sequence appears in its natural order whereas the FFT output occurs in bit reversed
order.

The computational complexity is the same as the decimation-in-time algorithm.

X(1)

x(0)
WO\\ /N\/><
N \\//><>< B o
W1 W2
x(2) > X(2)
x(3) £ > X(6)

x(4) ‘> 5 X(1)

x(5) — > — > X(5)
NN T

x(6) —= > X(3)
w/ w? ><

x(7) £ > ey > X(7)

Figure 4.6
The three stages in an 8-point decimation-in-frequency FFT
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Other fast algorithms

There are literally tens of different variations of the basic radix-2 FFT algorithms. Some
further computational saving can be obtained by using radix-4 or mixed-radix (split-
radix) variants. Other algorithms deal with cases where the number of data points is not a
power of two, typically when N is a prime number. One of the most well known in this
category is the Winograd Fourier transform (WFT). It does not make use of the butterfly
and the idea is completely different from the Cooley and Tukey algorithm. It is very fast
in the sense that it requires fewer multiplications and is particularly useful for short length
transforms. But both the mathematics involved and the implementation are considerably
more complex. Thus they are outside of the scope for this introductory course.

Practical implementation issues
Bit reversal

As shown above, bit reversal is required for both the decimation-in-time and decimation-
in-frequency FFT algorithms. A simple algorithm for generating a list of bit reversed
numbers is attributed to Bruneman. It goes as follows:

e Start with {0,1}. Multiply by 2 to get {0,2}.

e Add 1 to the list of numbers obtained above. In this case, it is {1,3}.

e Append the list in step 2 to that in step 1 to get {0,2,1,3}.

e The list obtained in step 3 now becomes the starting list in step 1. The steps are

repeated until the desired length of the list is obtained.

0 1
\_Y_l

lx2

——
0 281 3

\

Y

lx2

P S

le

08412210614i19513311715

Figure 4.7
Bit reversal using Bruneman’s algorithm

J

Figure 4.7 illustrates the above steps in diagram form to obtain a 16-point bit reversed
list. It should be pointed out that more efficient algorithms have been developed for bit
reversal. But we shall not cover them here.
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4.6.2

4.6.3

Fixed point implementations

Fixed point implementations of the FFT algorithms are quite common as a number of
commercially available DSP processors do not have hardware floating point multipliers.
The ones that do have floating point hardware integrated on chip are usually several times
more expensive than fixed point ones.

Consider first the butterfly calculations. It involves a complex multiplication, a
complex addition and a complex subtraction. These operations can potentially cause the
data to grow by 2 bits from input to output. For example, in Figure 4.3, if x, is 07FFH
where xxxxH represents a hexadecimal number, then x,” could be 100FH. Precautions
must be taken to avoid data overflow because of this bit growth. We shall describe three
techniques to prevent overflow in an FFT.

One way to ensure that overflow does not occur is to include enough extra sign bits,
called guard bits, in the FFT input data to ensure that bit growth does not result in
overflow. Data can grow by 2 bits in a butterfly but a data value cannot grow by this
maximum amount in two consecutive stages. The number of guard bits necessary for an
N-point FFT is log,N+1. For example, each of the input samples of a 32-point FFT must
contain 6 guard bits. In a 16-bit implementation, the remaining 10 bits will be available
for data (one sign bit, nine magnitude bits). This method requires no data shifting and is
therefore very fast. The disadvantage is that the number of bits available for data will be
severely limited for large N.

Another way to avoid data overflow is to scale the outputs down by a factor of two
unconditionally after each stage. This approach is called unconditional block floating
point scaling. Initially, two guard bits are included in the input data to accommodate the
maximum bit growth in the first stage. In each butterfly of a stage calculation, the data
can grow into the guard bits. To prevent overflow in the next stage, the guard bits are
replaced before the next stage is executed by shifting the entire block of data one bit to
the right and updating the block exponent. This shift is performed after every stage except
the last. The input data therefore can have 14 bits. In total, (log,N)—1 bits are lost because
of shifting. Thus unconditional block floating point-scaling results in the same number of
bits lost as in input data scaling. But it produces a more accurate result because the FFT
starts with more accurate input data. The tradeoff is a slower FFT calculation because of
the extra shifting of the output of each stage.

The third method is called conditional block floating point scaling. As the name
suggests, it differs from the previous method in that output data is shifted only if bit
growth occurs. If one or more output grows, the entire block of data is shifted to the right
and the block exponent updated. For example, if the original block exponent is 0 and data
is shifted three positions, the resulting block exponent is +3.

Computation of real-valued FFTs

Most data sequences are sampled continuous signals and are therefore real-valued. The
FFTs are therefore performed on real data instead of complex-valued data assumed
earlier. Since the imaginary part will be zero, some computational savings can be
achieved.

One way to achieve computational saving is by computing two real FFTs
simultaneously with one complex FFT. Suppose x;(n) and x,(n) are two real data
sequences of length N. We can form a complex sequence by using x;(n) as the real part
and x,(n) as the imaginary part of the data.

x(n) = x,(n)+ jx,(n)
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Alternatively, the original sequences can be expressed in terms of x(n) by
1
x(n) = 5 [x(n) +x*(m)]

|

xy(n) == [x(n) = x*(n)]
2j

Since the DFT is a linear operation, the DFT of x(#) can be expressed as

X(k) = X\(k) + jX, (k)

where

X, (k)= %{DFT [x(n)]+ DFT [x*(n)]}

X, (k)= %{DFT [x(n)]+ DFT [x* (n)]}
J
Since the DFT of x*(n) is X*(N—k),

X0 = [X W)+ X ¥V -]

1 ™
X, (k) =2—j[X(k)—X*(N—k)]

In this way, we have computed the DFT of two real sequences with one FFT. Apart
from the small amount of additional computation to obtain X;(k) and X(k), the
computational requirement is halved.

Another way of achieving computational savings on real sequences is to compute 2/N-
point DFT of real data with one N-point complex FFT. First, subdivide the original
sequence g(n) into two sequences

x,(n) = g(2n)
x,(n)=g2n+1)

with x,(n) the even and x,(n) the odd data elements of the sequence. Then form a complex
sequence as before and perform the FFT on it. The DFT of x,(n) and x,(n) are given by
equation 7. Notice that separating a sequence into odd and even sequences is basically
what is done with the decimation-in-time FFT algorithm. Hence the 2N-point DFT can be
assembled from the two N point DFTs using the formulas given by the decimation-in-
time algorithm. That is,

G(k)= X (k)+ Wy X, (k) k=01,.,N-1
G(k+N)=X,(k)+ Wi X, (k) k=0,1,...,N—-1

Computational complexity

The measure of computational complexity is given in terms of the number of complex
multiplications and additions. In some older books, only the number of complex
multiplications is compared. This is because conventionally, a multiplication requires
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substantially more CPU cycles than additions. This is no longer true with the advent of
digital signal processors that are optimized for this kind of DSP computations. The
amount of time required for a multiplication is roughly the same as that for additions.
Therefore we should compare the total amount of computation needed. Also, the
overhead computations become more significant as the basic operations are optimized.

We shall discuss the architectures of DSP devices in more detail in a later chapter. But
note that most DSP operations we have encountered so far involve the basic operation
called multiply-and-accumulate (MAC). Typically, there are loops involving the
multiplication of two numbers, which means that the results of the multiplications are
added together. The looping overhead is also optimized.

Some processors have bit reversal-addressing capability built in. So other overhead
operations like those involved in the computation of real data discussed above become
more significant. These factors should be noted when comparing computational
complexity.

Computation of convolution using DFT

It has been pointed out in the previous section that convolution can be performed using
DFT. Each convolution involves two forward DFTs and one IDFT. Convolution is
important because filtering of discrete-time signals using finite impulse response (FIR)
digital filters is basically a linear convolution of the signal sequence with the impulse
response sequence of the filter. It is also a very fundamental operation in DSP and
therefore deserves more detailed study.

Circular convolution

When we compute and multiply the N-point DFTs of two N-point sequences, we obtain N
DFT coefficients. Inverse transforming these N coefficients using IDFT gives us an N-
point sequence. From the previous chapter we understand that, in general, the linear
convolution of two N-point sequences will result in a sequence longer than N. Obviously,
convolution via DFT is not exactly the same as linear convolution. It is called circular
convolution.

The convolution is circular because of the periodic nature of the DFT sequence. Recall
that an N-point DFT of an aperiodic sequence is periodic with a period of N. Also recall
that the IDFT is essentially a DFT with a small difference. Therefore, the N-point IDFT
operation will also produce a periodic sequence with period N. Thus the resulting time
domain sequence is periodic or circular.

Mathematically, we can define circular convolution as follows:

y(n)=x(n)®h(n)= NZ_I x(m)h [(n —m)mod N] (8)

m=0

where (m mod N) is the remainder of m/N and is called ‘m modulo N’.

Notice that the operations involved in circular convolution are similar to linear
convolution. The only differences are in the limits of the summation (from 0 to N—1) and
in the ‘modulo N’ of the index of one of the sequences.

Linear convolution, as computed using the equation given in Chapter 3, is essentially a
sample-by-sampling processing method. However, circular convolution, computed using
DFT and IDFT is a block processing method.
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Example: 4.2
Perform the circular and linear convolution of the following sequences:

Xm={, 2, 1, 2}
X,(m)={1, 2, 3, 4}

Solution:
Linear convolution of the two sequences gives:

y(n)=x,(n)*x,(n)
={l, 4, 8 14, 15 10, 8}

Circular convolution using DFT:
DFT {x1 (n)} = {6, 0, -2, O}
DFT{x,(n)}={10, -2+,2, -2, -2-2j}
The product is
X(k)=DFT{x,(n)}- DFT{x,(n)}
={60, 0, 4, 0}

and inverse transform gives
x(n)=IDFT{X(k)}
= {16, 14, 16, 14}

In the above example, linear convolution produces a sequence of length 7. Recall from
the previous chapter that, in general, two sequences with lengths L and M respectively,
will produce a convoluted sequence of length L+M-1. So a DFT of length

Nz2L+M-1

will be needed to represent the correct linear convolution result. In order to use N point
DFTs, we need to increase the original sequences to length V. The simplest way to do it is
to pad these sequences with zeros. This will not affect the spectra of these sequences
since they are aperiodic. But by sampling the frequency spectra at N equally spaced
points we have sufficient points to represent the result in the time domain after IDFT. So
a circular convolution is equivalent to linear convolution of two finite length aperiodic
sequences provided the number of points A is sufficiently long.

Example: 4.3

Find the linear convolution of the two sequences given in Example 4.2 by using DFT
techniques.

Solution:

We need N=7 point DFTs. Therefore

X(m={, 2, 1, 2, 0, 0, 0}
x(m={, 2, 3, 4 0, 0, 0}
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The forward DFT of these sequences are

6
0.2225— j3.4064
0.9010+ j0.0477
DFT{x](n)} =| —0.6235— j2.0358
~0.6235+ j2.0358
0.9010— 0.0477
| 0.2225+ j3.4064 |

10
—2.0245— j6.2240
0.3460 + j2.4791

DFT{x,(n)} =| 0.1784— j2.4220
0.1784 + j2.4220
0.3460— j2.4791
| —2.0245+ j6.2240 |

Inverse transform the point-by-point product of these two DFT sequences gives
x'(n)=IDFT{DFT (x{(n))- DFT (x,(n))}
={l, 4, 8§, 14, 15, 10, 8}

which is the linear convolution result obtained in Example 4.2.

Convolution of long data sequences

If the data sequence is long, it is computationally very expensive to perform convolution
or filtering using a single DFT. Even if this is possible, it may not be desirable as the
delay between the first input sample and the full result is generated becomes prohibitively
long. In this case, it is better if the data sequence is divided up into subsequences and
shorter DFTs are performed on each subsequence. The question is how to combine the
results from these subsequences so that the correct result is obtained.

Two methods will be described: overlap-add and overlap-save.

Overlap-add method

Assume that the length of the impulse response sequence is of length M. The data
sequence is divided into non-overlapping subsequences of length L. The size of the DFTs
and IDFT is therefore N=L+M-1. Hence M-1 zeros will need to be appended to the data
subsequence. The impulse response sequence is appended with L—1 zeros.
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If xn(n) and X.(k) represents the mth (zero-padded) subsequence and its DFT
respectively, and H(k) is the DFT of the zero-padded impulse response sequence, then the
output of the mth segment is

Y, (k)= H(k) X, (k)

The IDFT of Y,,(k) gives ym(n) which is of length N. Since the original subsequences
are of length L (<N), the last M—1 points of y,,(n) must be overlapped and added to the
first M—1 points of the next subsequence yy. (7). An illustration of the overlap save
method for three subsequences (or blocks) of data is shown in Figure 4.8.

le—L—>le—L—>le—L—>]

Input
Sequence
I 1 I I
1 | M-1 1 1
X,(n) zeros |1 I
!
: X5(N) {zeros :
' ' M-1
' ! : I, xy(n) 1 zeros
I I
I 11
I 1o !
I 1o I :
2100 B L
Output !
I+ 1 yz(n) 1 :
+ 1 ys(n)
Figure 4.8

Hllustration of the overlap-add method

Overlap-save method

With this method the size of each subsequence is N=L+M-1. The first M—1 points in
each subsequence comes from the previous subsequence. For the first subsequence, M—1
zeros will be added in its place. The size of DFTs and IDFT is N. The output of each
processed subsequence yn(n) will have N points. The first M—1 points of y,(n) are
discarded, leaving it with L points.

This method is called overlap-save because the last M—1 points of each subsequence
are saved for the processing in the next block. Figure 4.9 illustrates this method
graphically.
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[—L—>l¢—L —>jla—L—>]
Input I
Sequence
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v X,(n) ! !
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M -1 T X,(N) |
zeros™ | I
Ll M- I Xs(n)
I | pointsy |1
11 11 I |
1 1 1 1 1!
oy, (n) 1 | ;!
Output | ;!
J y.(n) 1 !
1
Discard . I
M -1 N
points Discard
M -1
points Discard
M -1
points
Figure 4.9
Hllustration of the overlap-save method
4.8 Frequency ranges of some natural and man-made signals

The table below gives us an idea of the sampling frequency and the computational speed
required for some typical signals.

Type of Signal Approx. Frequency
Range (Hz)
Voiced speech (e.g. vowels) 100—4000
Speech (fricatives) 100-8000
Electrocardiogram (ECG) 0-100
Electroencephalogram (EEG) 0-100
Earthquake and seismic signals 0.01-10
Radio broadcast 3x10*-3x10°
Microwave 3x10*-3x10"
Infrared 3x10''-3x10'"

Gamma and X-rays 3x10'"-3x10"®




DSP application examples

It may be useful at this point to discuss in considerable detail some common DSP
applications. Some of the contents of this chapter will be better appreciated after learning
about digital filter design and implementations. However, these examples will help us re-
capture the broad picture of the usefulness of DSP in a variety of engineering areas.

The first application is on periodic signal generation using wave tables. Wave table
generation techniques have become more popular with some of the new audio cards
available for PCs. It is a very flexible way to generate periodic waveforms like sinusoidal
waves. Wave table synthesis lies at the heart of many computer music application
programs. This example also serves to illustrate the important concepts learnt in previous
chapters on sampling.

The second application is in the area of communication systems. We shall describe the
implementation of a certain wireless transmitter using DSP techniques. The specific
advantages of this approach will be discussed. This example will illustrate the choice of
sampling frequency or ADC resolution and the effects of these choices on the spectral
characteristics of the generated signal.

The third application is in the area of speech synthesis. Speech synthesis is a very
broad area that requires understanding of the characteristics of speech signals, phonetics,
and at a higher level, linguistics. A simple way to model and synthesize speech signals by
a model of the human vocal tract will be described. This application illustrates the
filtering of some simple signals to create signals with certain desired spectral
characteristics. The filtering required is in fact time varying.

We shall also describe some applications of DSP in image processing. Image (and
video) processing is one of the major applications of DSP. Some photographic outlets
offer instant photo enlargements and cropping, enhancement of old photographs, and
other imaging services. None of these would be possible without the aid of DSP.

Finally, the application of active noise control will be discussed. Active noise control
(ANC) is based on the simple physics of destructive interference of propagating acoustic
waves. DSP systems are now powerful to enable real-time ANC systems to be developed
with applications in air conditioning ducts, aircraft, cars and magnetic resonance imaging
(MRI) systems.
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Periodic signal generation using wave tables

Many DSP applications require the generation of periodic waveforms such as sinusoids,
periodic square waves, sawtooth signals, etc. An example application is the generation of
dual-tone multi-frequency (DTMF) signals for touch-tone telephone handsets.

Figure 5.1 shows the two frequency groups of a DTMF keypad.

High Group
1209Hz 1336Hz 1477Hz 1633Hz

697Hz 1 2 3 A

770Hz 4 5 6 B

Low
Group

852Hz 7 8 9 C

941Hz * 0

+E
O

Figure 5.1
Frequencies for a DTMF keypad

When a key on the keypad is pressed, a signal, which is the sum of two audible
sinusoidal tones, is generated. Each key on the keypad is uniquely defined by a frequency
pair {fi, fu}, one from the low and one from the high frequency group. The digitally
generated signal is mathematically given by

y(n)=cos(@ n)+cos(q,n)
where

a{=27th/fs
%Zzﬂfn/fs

/s 1s the sampling frequency, and # is the integer time index.
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Digital waveform generation using wave tables

One approach to generate such periodic waveforms is to design a digital filter with an
impulse response A(n) corresponding to one period of the waveform, one wishes to
generate. The periodicity is generated by exciting this digital filter with a train of impulses
separated by the fundamental period of the waveform. This process is shown in Figure 5.2.

Df!lgltal
Impulse train ilter Periodic output
‘,,,‘,,,‘,,,, “Tv“Tr“Tn
0 4 8 n 0 4 8 on
01 2 3n
Impulse response
of digital filter
Figure 5.2

Periodic digital waveform generation using digital filters

A more efficient approach is to pre-compute the samples of the waveform and store
them in the system’s memory (RAM or ROM). The data are arranged as a circular buffer
and accessed when needed. The period of the waveform can be controlled by either
varying the speed of cycling around the table or by accessing a subset of the table at a
fixed speed. This approach is called wave table synthesis, which is used very successfully
in computer music. Many audio cards available for PCs now use wave table generators.

Sampling frequency

A sinusoidal signal does not necessarily remain periodic when sampled at a given frequency.
In order that y(n) remains periodic in the time index »n with a period of, say, D samples, it is
necessary that one whole period of the sinusoid fit within the D samples. This requires that the
sampling frequency is an integral multiple of the analog frequency /. That is,

f.=0f

Due to the periodicity, only the samples for one period of the signal need be calculated
and stored. f'is now the fundamental frequency of the wave table. A typical sampling
frequency for DTMF generation is 8 kHz.

There are sinusoids of 8 different frequencies that need to be generated for DTMF
signals. One way to do it is to have 8 wave tables. Since there are only a few entries per
table, this approach is not impractical. Another way is to change the fundamental
frequency using a single table. This is the approach that we shall examine in more detail.

Generating integer multiples of the fundamental frequency

The frequency f can be changed either by changing the sampling frequency f; or by
changing the effective length D of the basic period. The first approach is not practical in
our application since we need to deal with two different frequencies each time. Thus the
second approach will be used.
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The fundamental frequency generated from a wave table with D entries and a sampling
frequency is given by

r=L
D
Replacing D by a smaller value, d will increase the frequency of the sinusoid. For
instance, if d=D/2, the frequency is doubled. This also means that only every other entry
in the wave table will be accessed for each period. So the new generated frequency will
be

S A S
f_d D/2 21) 2f

Given the desired frequency f; and a table length D, we will be using only ¢ regularly
spaced samples from the full wave table and c is given by

c=D£
A

Now we have assumed that d and ¢ are integers. This clearly restricts the choices of
frequencies we can generate. We shall now consider how we can generate other
frequencies where both d and ¢ are real numbers.

Generating arbitrary frequencies

Any frequency fthat we want to generate must be within the nyquist interval

A
<2

This requires that ¢ satisfies the condition

d<3
2

Negative values of ¢ correspond to negative frequencies. This is useful for introducing
180° phase shifts in waveforms.

Since ¢ is no longer an integer, some truncation or rounding will have to be done in
order to get values from the wave table.

Alternatively, we can interpolate between sample values from the wave table for more
accurate synthesis. Linear interpolation is usually sufficient. Let w(i) and w(j) be the i and
j entries in the wave table and we need a sample with a real-valued index g which is
between i and j. The linearly interpolated value is given by

y=w(i)+(q=D[w(j) - w(@)]
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This interpolation is shown in Figure 5.3.

Figure 5.3
Linear interpolation between two samples

Interpolation naturally produces the most accurate results with rounding coming next.
Truncation is the most inaccurate of the three methods. The inaccuracies become smaller
as the length of the wave table D increases. In computer music applications, wave table
sizes vary between 512 and 32 768.

DTMF example

Coming back to the generation of the DTMF frequencies. Assume that the sampling
frequency is 8 kHz and the size of the wave table is 200. The fundamental frequency is
therefore 400 Hz.

For the low frequency group, the values of ¢ are given by

. _ (200)(697)

1 =17.425
8000
¢, = 200T70) _ 14 5
8000
¢, =200@%2) _,, 5
8000
¢, = 20001 _ 3 555
8000

Similarly, the values of ¢ for the high frequency groups are found to be 30.225, 33.4,
36.925 and 40.825.

Wireless transmitter implementation

A paging systems standard has been created in Europe in 1989 by the ETSI (European
Telecommunications Standards Institute). It is called the ERMES (European radio
message system). The main objective is to allow roaming throughout Europe and to
guarantee receiver compatibility.

There is an older system called POCSAG, which transmits at 512 or 1200 bits per
second. With new service needs foreseen in the most populated areas of Europe, ERMES
was designed to transmit at 6250 bits per second. The modulation format that has been
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chosen is called 4-PAM/FM modulation. Since each symbol is encoded by two bits, the
actual symbol rate is 3125 symbols (bauds) per second.

It is desirable to design a transmitter that can transmit using the older POCSAG system
and the newer ERMES system. Such a flexible system will have the benefit of reduced
system design cost. One way to achieve this flexibility is to implement it using DSP
techniques.

Since radio spectrum is scarce, specifications for radio transmitters are very tight. The
transmitters designed should be very precise and stable. Again, this is one of the major
advantages of digital techniques and this points to DSP implementation.

Specifications

All the specifications of the modulation method can be found in
e ‘European radio message system — part 4: air interface specification’, ETSI
DE/PS 2 01-4, version 0.2.1, November 1990.
e ‘European radio message system — part 6: base station conformance
specification’, ETSI DE/PS 2 01-4, version 0.2.1, November 1990.

The modulated signal generation process is illustrated in block diagram form in Figure
5.4.

Binary 4-level .| Pre-modulation .| Frequency RF
data stream PAM filter modulator sinal
Figure 5.4

Generation of 4-PAM/FM signals

Using this technique, the communication of two data bits is achieved by the
transmission of one of four signaling frequencies. The modulated signal is required to
have a continuous phase (no sudden jumps in phase). This and the pre-modulation pulse
shaping (or filtering) of the data stream constrain the transmitted radio frequency (RF)
spectrum. The four signal frequencies are as shown below.

Nominal frequency Symbol
f0+4687.5Hz 10
f0+1562.5 Hz 11
f0—-1562.5Hz 01
f0—-4687.5 Hz 00

Here f0 is the intended operating frequency. In a data stream, the most significant bit
shall be transmitted first. The transmission rates are
Data rate: 6.25 kbits per second
Symbol rate: 3.125 kbauds
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The binary signal is filtered by the pre-modulation filter to create a smooth signal
rather than one with sudden jumps in levels. The specifications for this filter are shown in
Figure 5.5.

The specifications are given in terms of frequency characteristics with upper and lower
limits. Apart from the amplitude spectrum, the phase spectrum is also specified as group
delay characteristics. Group delay is defined as the negative rate of change of phase. So a
constant group delay implies a linear phase function. In most cases for data transmission,
this is the ideal. These specifications are derived from a 10th order low-pass Bessel filter
with a 3 dB bandwidth of 3.9 kHz.

The rise or fall time for the frequency transition between two successive symbols shall
be 88 microseconds with a tolerance of 2 microseconds.

The RF spectrum of the output of the transmitter shall conform to the mask shown in
Figure 5.6.
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Figure 5.5
Specifications of the premodulation filter in ERMES
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In-channel RF spectrum
10

10+
dB -207
-30+4

-50 + + + +
-10 -5 (0] 5 10
Frequency from carrier (kHz)

Figure 5.6
Specifications of the RF signal spectrum for ERMES

The center frequency of the transmissions shall not exceed 15 Hz either way from the
intended operating frequency (fp). The intended operating frequency may be forced to
differ from the nominal channel frequency by up to 185 Hz (frequency offset). The
difference between any two adjacent symbol frequencies shall be 3125 + 15 Hz.

These specifications are very difficult to meet using conventional analog circuitry,
especially the center frequency stability and the accuracy of the difference between two
adjacent symbol frequencies.

DSP implementation

A classical way to generate a signal of this kind is to use an analog pre-modulation filter
followed by an FM modulator. However, this approach presents problems regarding the
stability of the parameters. It is very difficult to achieve a precision of 0.1% in the
frequency deviation.

In the DSP implementation, the 4-PAM coder and the pre-modulation filter are
implemented in the following manner. Since we have four possible symbols in the
alphabet, there are a total of 16 possible transitions between symbols. These transitions
are being smoothed by the filtering performed by the pre-modulation filter. All these 16
transitions and their corresponding results after filtering can be pre-calculated and stored
in a ROM. In this way, the samples of the filtered signal are a function of the current and
last symbol and can be looked up from the ROM.

In Figure 5.7, the transition between the symbol 00 and the symbol 10 is shown. The
stored transition consists of 64 samples per symbol, 16 bits per sample.

4687.5
3125.01
1562.51
0.01
-1562.51
-3125.01

-4687 .51
(0] 16 32 48 64

Sample number

Frequency Deviation (Hz)

Frequency Transition 00 — 01

Figure 5.7
Frequency transition between two symbols in ERMES
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The FM modulator block diagram is shown in Figure 5.8. The frequency samples
obtained from the previous process are passed to an integrator, which is simply an
accumulator of all past values.

anti-alias
filter

A 4
A 4
A 4

DAC

P cosine

RF
signal

4-PAM
pre-modulation—] f
filtered signal

v
Quadrature
modulation

Integrator anti-alias N

filter

sine » DAC >

Figure 5.8
Block diagram of frequency modulator using DSP

This generates the phase samples corresponding to the intended frequencies. The
output from the integrator becomes the arguments of the sine and cosine tables. The
cosine table gives the in-phase (I) component of the modulated signal and the sine table
gives the quadrature (Q) component. The tables are quantized with 8-bit resolution. These
samples are converted to analog signals using two DACs and a quadrature modulator,
which can be obtained commercially as a chip, is used to generate the RF signal.

The specification allows frequency offsets that can be introduced intentionally. A very
precise offset can be introduced by adding or subtracting a certain constant from the filter
output samples.

POCSAG can also be implemented using the same scheme by including a different
transition table corresponding to the POCSAG specification. In this way, the transmitter
can switch between the two systems by simply getting its samples from a different table.

The symbol rate is low enough to allow us to choose the very high sampling rate of 64
samples per symbol. This high oversampling rate implies that very simple anti-aliasing
filters can be used after the DAC. High sampling rate also reduces the time uncertainty of
the transitions.

Figure 5.9 shows the analog I and Q signals generated with input symbols (10, 00, 10,

00).
| |
\/\/\/\/\/ !
| [
| |
\/\/\:/\:/\/ Q
input binary signal
Figure 5.9

The in-phase and quadrature signals
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Other advantages

There are some other advantages in using the DSP approach that may not be obvious
initially. Two major ones are briefly discussed below:
¢ Quadrature modulator compensation
The quadrature modulator can process the I and Q signals to produce the RF
output is an integrated circuit that consists of analog circuitry. Hence there are
potential frequency offsets, and imbalance between the two channels. The
result of these defects is generally a spread in the frequency spectrum. Since
there are tight specifications on the allowable out-of-band power (at least
72 dB for ERMES), this spread in the spectrum may mean that these
specifications are violated. If these imperfections can be modeled and the
parameters of the model can be measured on-line or off-line, then
compensation can be applied to the discrete-time signal before modulation so
that the resulting modulated signal is near perfect.

e Power amplifier linearization
The most efficient power amplifiers have non-linear transfer characteristics. If
the modulation format depends on the amplitude of the signal, then this non-
linearity introduced by the power amplifier will severely distort the original
signal. This is the reason why constant envelope type of modulations such as
FM, is used in radio systems.

On the other hand, the most efficient modulation schemes do not produce constant
envelope signals. Hence they require linear amplifiers which are much less efficient. By
using DSP implementations, we can pre-compensate for the amplifier non-linearity by
pre-distorting the discrete-time signal. In this way, the most efficient modulation schemes
can be used with the most efficient power amplifiers. This is obviously not possible with
analog implementations.

Speech synthesis

Digital speech processing has been one of the most important areas of DSP. It is the
application of digital speech and image (including video) processing that leads to the
explosion of multimedia communication that we are experiencing at the moment.

Speech production mechanism

Speech signals consist of a sequence of sounds. These sounds and the transition between
them carry the information that needs to be conveyed. These sound sequences obey
certain rules. Linguistics is the study of such rules for a certain language. The study of the
classification of the basic sounds is in the realm of phonetics.

In order to come up with a model of speech production, we need to have an
understanding of the human vocal system. It consists of two main parts: the vocal cords
(or glottis), and the vocal tract. The vocal tract in turn consists of three main parts:

e The pharynx — connection from the esophagus to the mouth.
e The oral cavity — the mouth.
e The nasal tract — begins at the velum and ends at the nostrils.

The source of energy comes from the air pressure exerted by the lungs, bronchi and
trachea. Speech is produced when an acoustic wave is radiated from this vocal system
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when air is expelled from the lungs and the air flow is perturbed by constrictions
somewhere in the vocal tract. When the velum is lowered, the nasal tract is acoustically
coupled to the vocal tract to produce nasal sounds.

Classification of sounds

The basic units of speech sounds in the English language are called phonemes. There are
two main types of phonemes: vowels and consonants. More detailed classifications are
also available. But for our discussions, we shall assume only these two types of sounds.

Vowels are produced when the vocal tract is excited by pulses of air caused by the
vibration of the vocal cords. The vibration is periodic in nature and the period is the pitch
of that sound. The shape of the vocal tract determines the resonant frequencies of the
tract, called formants. For vowels, there are typically three formants between the
frequencies 200 Hz and 3 kHz. The exact frequencies of the formants vary from person to
person. Figure 5.10 shows a typical frequency spectrum of a vowel.

A

power

0 i ? 3
frequency (kHz)
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Figure 5.10
Typical spectrum of a vowel

In the production of consonants, the vocal cord is totally relaxed in general, although
there are exceptions. In this way, air flows into the vocal tract without the periodic
excitation generated by the vocal cord. Consonants can be broadly classified into:

e Nasals
Nasals are produced when the vocal tract is totally constricted at some point
along the oral cavity. The velum is lowered and the air flows through the
nasal tract, radiating through the nostrils.

¢ Fricatives
Fricatives are produced when the steady air flow becomes turbulent in the
region of a constriction in the vocal tract.

e Stops
Stops are transient sounds produced by building up pressure behind a total
constriction somewhere in the oral tract, and suddenly releasing the pressure.
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Speech production model

In order to synthesize speech sounds artificially; we need a model of the speech
production system described above. We have looked at one briefly in Chapter 1. Figure
5.11 shows a more detailed model.

Impulse train Impulse train
generator generator
Vocal tract
f parameters
Pitch G
period
Vocal tract Radiation
model model » speech
Voiced / unvoiced
switch
Random noise
generator
Figure 5.11

A speech production model

The glottal pulse model, the vocal tract model, and the radiation model are linear
discrete-time systems. They are therefore essentially discrete-time filters. In order to
synthesize speech, the voiced/unvoiced switch will switch to the source for the sound at
that particular time. The vocal tract parameters will also need to vary with time.

One of the most successful glottal pulse models is the Rosenberg model. Its impulse
response is given by
%l—cos il 0<n<N,

1

n(n—N,)
g(n)=<cos T N, <n<N,+N,

0 otherwise

The vocal tract model is usually a linear predictive model. It is so called because the
current speech sample is generated from a number of past samples plus the current

s(n)= zy: a,s(n—k)+u(n)

excitation. This can be described in equation form as

Here qy is the coefficient for the model and it changes from one phoneme to another,
and u(n) is the input sample to the vocal tract model. The prediction order, p, is typically
10 to 12.

In most cases, the radiation model is ignored.

In the practical sessions, there will be an opportunity to experiment with the model.
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Image enhancement

In this course, we only deal with the processing of one-dimensional signals and images
are inherently two-dimensional. However, image processing is a very important DSP
application area. We shall consider briefly the application of DSP techniques to the
enhancement of images. This will give us some insights into what this area is about.
Some operations are also non-linear as opposed to linear operations we have discussed so
far.

Image enhancement is the processing of images to improve their appearance. There are
a variety of methods, which are suitable for different objectives. Some objectives are to
improve the image quality and visual appearance to a human viewer. Other ones include
the sharpening of an image to aid in the automatic machine recognition of objects. But the
overall objective is to make the processed image better in some sense than the
unprocessed one.

We shall consider two types of enhancement: contrast and dynamic range
enhancement, and noise reduction. For simplicity, we shall only use gray-scale images.

Contrast enhancement

A simple way to improve the contrast or the dynamic range of image pixel intensities is
by a technique called gray-scale modification. It applies a transformation 7 to the original
image to produce the enhanced image. This transformation is often represented by a table.
Consider an image of 5x5 pixels represented by 3 bits. There are a total of eight levels
with 0 being the darkest to 7 being the brightest. The pixel values are shown in Figure
5.12. We can see that the pixel values are between 2 and 5. So only 4 out of 7 possible
levels are used. Making use of the full range of values can produce a better contrast.
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Figure 5.12
Pixel values of a 5 X 5 pixel region
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The problem is how we can find a suitable transformation that will do a good job.
Computing the histogram of the image and studying its characteristics can identify a
suitable transformation. The histogram is just a tabulation or a graph of the number of
pixels that have specific intensities. The histogram of Figure 5.12 is shown in Figure

5.13.
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Figure 5.13

Histogram of the image in Figure 5.12

This histogram showed us that the dynamic range is not well utilized as discussed
above. A transformation that will improve the contrast is shown in Figure 5.14 and the
resulting output image after the transformation is in Figure 5.15.
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Figure 5.14
A contrast enhancement transformation
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Figure 5.15
Image of Figure 5.12 after contrast enhancement transformation
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The transformation can be obtained automatically by defining a desired histogram. In
most cases, the desired histogram is usually a uniform distribution of gray level values
within the image. This will make the number of pixels at any one gray level about the
same as another. The transformation 7 must be monotonically non-decreasing like the one
in Figure 5.14. It is given by

T, = M—l n;
N 3

where A is the total number of pixels in the image, n; is the number of pixels at gray level
i, and M is the total number of gray levels possible.

This simple procedure often produces significant improvements in image quality or
intelligibility to the viewer.

Noise reduction

There are two main types of noise in images. One is the uniform random noise similar to
those for one-dimensional images. Another type one is known as impulse noise or salt-
and-pepper noise. They appear as isolated bright or dark pixels in the image. They can
occur due to random bit error during transmission.

The energy of a typical image is primarily in the low frequency region. Therefore,
(two-dimensional) low-pass filtering will be quite effective in removing a substantial
amount of uniform random noise. This is done at the expense of removing some details of
the image. It should be noted that edges that exist in the image produce high frequency
components. If these components are removed or reduced in energy, then the edges will
become fuzzier.

Median filters are very effective in removing impulse noise while preserving edges.
They are non-linear filters however, and therefore the process cannot be reversed. In
median filtering, a window or mask slides along the image. This window defines a local
area around the pixel being processed. The median intensity value of the pixels within
that window becomes the new intensity value of the pixel being processed.

Figure 5.16(a) shows a 3x3 window. The pixel being processed in the middle of this
window. The numbers within the window are the intensity levels of the pixels in that
window. Figure 5.16(b) indicates the processed output. Note that the intensity of the pixel
in the middle is now replaced by the median value.

1114 111] a4
71(2)| 6 71(3)| 6
9| 3|1 9| 3] 1

median value = 3

(a) (b)

Figure 5.16
Median filtering using a 3 X 3 window

An important parameter in median filtering is the size of the window. Different results
can often be obtained by using different window sizes. The choice also depends on the
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characteristics of the image and the noise. As a rule of thumb, images with lots of
variations require the use of smaller windows while larger windows can be applied to
images that have more uniform intensity areas.

Active noise control

Active noise control (ANC) is based on the simple physics of destructive interference of
propagating acoustic waves. The concept that acoustic wave interference can be
controlled to produce zones of quietness has been known since sounds waves were first
modeled by linear equations. In fact, a US patent was granted in the 1930s for an analog
ANC system. DSP devices are now powerful enough to allow us to design and implement
digital ANC systems that operate in real-time.

6 — "

r(k)
«—
Reference \
microphone y, (k) H. (2) 6.(2) Zone of quietness

ADC
DSP
Active Noise DAC >
x(k) Controller | Y(K)

1 Secondary

loudspeaker

ADC
e(k) = d(k) + ye (k)
Figure 5.17

A single channel ANC system

Figure 5.17 illustrates the subsystems involved in a single channel digital ANC system.
The secondary loudspeaker produces an acoustic signal, which on arrival at the error
microphone, is a 180° phase-shifted version of the original signal d(k). If

(k) =~d(k)

then the resulting error signal e(k) obtained through the error microphone is zero and a
zone of quietness is setup around the error microphone. Owing to the complex nature of
even the simplest acoustic environment, in practice zero error is unlikely to be achieved.
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Figure 5.18
Model block diagram of ANC system

Figure 5.18 shows a system block diagram, which models the system in Figure 5.17.
Here H(z) models the acoustic path from the loudspeaker to the error microphone, and
H,(z) models that from the loudspeaker to the reference microphone. The reference
microphone provides the noise controller with an input signal whose spectral content is
similar to that of d(k). The reference microphone signal is linearly filtered to produce an
appropriate loudspeaker output (k). The active noise controller is modeled by W(z).

If we want e(k) = 0, without going into the details, the transfer function of the ANC
filter is required to be as follows:

(2) = e

G, (2)H (2) -G (2)H (2)

This is an analytical solution to the problem provided we have full knowledge of the
characteristics of the acoustic paths. This is generally not the case. Furthermore, acoustic
path characteristics may change with time since they are affected by events such as
movements of objects within the location concerned. Most practical ANC systems
therefore use adaptive filtering techniques, which allows the system to adaptively model
the acoustic paths. It also has the advantage that the adaptation algorithm can devote its
efforts to solve for W,(z) only for those frequencies, which are actually contained in the
noise signal. In this way, more efficient use of the filter coefficients can be obtained.

It should be noted that many adaptation algorithms require prior knowledge of the
acoustic path H(z) in order to solve for Wy(z). Fortunately, the impulse response is
usually well defined and easily measurable.

The inherent filter inside the active noise controller can either be an FIR or an IIR
filter. As we shall see in the next two chapters, there are advantages and disadvantages for
each type of filter in this application. FIR filters are stable and the equations for solving
for the filter coefficients are easier to handle compared with IIR filters. But the order of
FIR filter required is much higher compared to an IIR filter with similar spectral
characteristics.
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The filter weights are usually adapted or updated using a least-mean-squared (LMS)
type of algorithm. This type of algorithm basically attempted to minimize the mean of the
error signal squared, i.e. €*(k). At each iteration £, the filter coefficient w(k) are updated
using the currently available information. The simplest updating formula is given
below:

w(k +1) = w(k) — 2ue(ku(k)

In this formula, the parameter u affects how fast the coefficients are changing. U is
typically much less than 1 to ensure stability of the algorithm.

Block diagram of an LMS adaptive algorithm for an IIR filter system is shown in
Figure 5.19. A(z) and B(z) are the transfer functions related to filter coefficients.
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Figure 5.19

Adaptive IIR system for ANC

The order of the filter used is dependent on the complexity of the acoustic path H.(z)
that is reflected by the impulse response of this path. Filter orders between 100 and 200
are not uncommon. Naturally, the filter order is also dependent on the sampling frequency
since it affects the total delay that the filter can model. For instance, a sampling frequency
of 2 kHz has a sampling period of 5 ms, so a filter order of 100 can model an acoustic
path delay of 500 ms or half a second.
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To create a larger or multiple zones of quietness, we can use a multi-channel noise
controller similar to the one illustrated in Figure 5.20.

reference
microphones

error
) signal

error
microphones
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Noise
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Figure 5.20
A multi-channel ANC system

To get a feel of the values of the parameters used, let’s consider a MRI system. MRI
scanners produce very high levels of low frequency acoustic noise, which can make the
scanning procedure very traumatic and also interfere with patient-operation
communication. A two-channel ANC system could be used with a 120th order FIR filter
operating at a sampling frequency of 2 kHz. Frequencies below 350 Hz are reduced by
around 10-20 dB but those frequencies above 350 Hz are not reduced so that voice
communication between patient and operator is not affected.

To probe further

We can only touch on a few applications in several areas that may be of interest to our
readers. As indicated in chapter 1, DSP application areas are very broad. A good source
of review articles can be found in ‘IEEE signal processing magazine’

Other popular electronics magazines also feature practical projects using DSP
techniques.
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Finite impulse response
filter design

Classification of digital filters

Digital filters are discrete-time systems. The type of digital filters that we shall design in
this course is linear. Therefore, they possess all the properties of linear discrete-time
systems discussed in Chapter 3. All linear discrete-time operations on an input sequence
can be viewed as a filtering of the sequence to produce an output sequence. This is the
reason why digital filters are so important in DSP.

Non-linear filters are also commonly used, especially in areas such as image
processing. The median filter discussed in section 5.4 for image enhancement is a typical
non-linear digital filter.

Linear systems are characterized by their impulse responses. An impulse response can
either have a finite or an infinite duration. A finite impulse response /(n) has its non-zero
values extending over a finite time interval and is zero beyond that interval. The
following finite impulse response

h(n)={hy, b, hy,.... 1y, 0,0,0,..}

has non-zero values in the interval
0<n<N

and is referred to as a finite impulse response (FIR) filter or system of order N. So an Nth
order FIR digital filter has an impulse response with a length of (N+1) samples. The
samples of the impulse response function (4, 4, etc) are usually called filter coefficients,
filter weights, and filter tap coefficients/weights.

If the impulse response function has an infinite duration, we have an infinite impulse
response (IIR) filter. It is obvious that IIR filters cause computational problems since we
cannot compute an infinite number of terms. But the type of IR filters that are designed
have their input and output samples interrelated through a linear difference equation. The
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output sequence can then be computed recursively. This is the reason why IIR filters are
also known as recursive filters and FIR filters as non-recursive filters.

In this chapter, we shall concentrate on FIR filters. IIR filters will be discussed in detail
in the next chapter.

6.2 Filter design process

The general digital filter design process can be broken up into four main steps:
e Approximation
e Synthesis and realization
e Performance analysis
e Implementation

These steps are illustrated in diagram form in Figure 6.1.

Filter
Specifications

A 4

Approximation

Filter Transfer

Function
y
Synthesis
> and
Choose Realization
alternative l
struic;ture Performance
necessary Analysis
Stability
quantization and overflow errors
A 4
Implementation
Filter realized
as hardware and/or
software
Figure 6.1
The filter design process

6.2.1 Approximation

The design process normally starts with the specifications and requirements of the filter,
which are intimately related to the application at hand. These specifications may include
frequency domain characteristics such as magnitude and phase responses. There may also
be some time domain requirements such as maximum delay.
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Most specifications define the upper and lower limits to each of these characteristics.
Typical examples can be found in many communication system standards documents.
The pre-modulation filter of the ERMES standard for paging systems is shown in Figure
6.2. Alternatively, a desired or ideal response may be given with the maximum amount of

deviations from the ideal specified.
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Figure 6.2

Pre-modulation filter specifications in the ERMES system

Given the filter specifications, the first step of the design process is to find a filter
transfer function that will satisfy these specifications. This process is called
approximation. It is so called because what we are doing is in fact finding a transfer
function that approximates the ideal response that is specified.

The methods for solving the approximation problem for digital filters can be classified
as direct or indirect. With direct methods, the problem is solved in the discrete-time (and
hence discrete-frequency) domain. For indirect methods, a continuous-time transfer
function is first obtained using well-established methods in analog filter design. This
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transfer function is then transformed into a discrete-time transfer function. Indirect
methods are more commonly used for IIR filters, whereas FIR filter design methods are
mostly direct ones.

These solution methods can also be classified as closed-form or iterative. Closed form
methods make use of closed-form formulas and are usually completed in a definite
number of steps. Iterative methods make use of optimization techniques that start with an
initial solution and the solution is refined progressively until some pre-determined
performance criteria are satisfied. The number of iterations is unknown and depends on
the initial solution and the effectiveness of the optimization techniques employed.

Synthesis and realization

Once the transfer function has been determined, it has to be realized into a discrete-time
linear network. This procedure is analogous to the filter realization procedure for analog
filters where suitable circuit topology and circuit element values are chosen to realize a
certain filter transfer function. A number of realization methods has been proposed and
studied in the past. The best realization of a given transfer function depends very much on
the application. General considerations include the number of adders and multipliers
required, and the sensitivity of the network to finite precision arithmetic effects.
Digital filter realization will be discussed in detail in Chapter 8.

Performance analysis

Even though the filter coefficients are determined to a high degree of precision in the
approximation step, digital hardware has a finite precision. The accuracy of the output
will depend on the type of arithmetic used: fixed-point or floating-point. This is
particularly so for fixed-point arithmetic. The designer must ensure that the error
introduced by finite precision will not cause violations of the filter specifications.
Furthermore, arithmetic overflow and underflow effects must be examined.

It cannot be over-emphasized how important this design step is, especially for IR
filters. While FIR filters are guaranteed to be stable, IIR filters can exhibit instability due
to quantization errors introduced in the computational process.

Finite precision effects in digital filters will be discussed in detail in Chapter 8.

Implementation

Digital filters can be implemented either in software or hardware or a combination of
both. Software implementations require a decision to be made on the type of computer or
microprocessor the software will eventually run on. DSP chips, which are designed
specifically for DSP type of operations, are very effective. In Chapter 9 we shall outline
the architectures and characteristics of some of the more commonly used and
commercially available devices on the market.

Note that the ease of software development depends very much on the quality of the
development tools. While the performance of some DSP chips may be similar, the quality
of tools available may be very different. The DSP designer should be aware of this fact.
Some software tools are developed by the DSP chip manufacturers while others are third
party. Some of these tools are described in Chapter 10.

In very demanding applications, the filter may need to be hard-wired or implemented
as an application specific integrated circuit (ASIC) in order to obtain the speed required.
It may also be necessary that some of the other functions such as analog-to-digital
conversion and digital-to-analog conversion be integrated on the same device. However,
development time will generally be longer and the cost is much higher.
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6.3

6.3.1

Characteristics of FIR filters

Since FIR filters are linear discrete-time systems, the output sequence is related to the
input and the impulse response of the filter by the convolution sum:

M

y(n) =Y x(m)h(n—m)

m=0

This equation indicates that any particular output sample is only dependent on & input
samples for an Nth order filter. Therefore FIR filters are also known as non-recursive
filters. Also note that the summation on the right-hand side is a convolution between x(n),
the input sequence and /(n), the impulse response of the filter. Hence they are also called
convolution filters. From the statistical viewpoint, the output sample is a weighted
average of the N input sample values. Thus the name moving-average (MA) filter is also
used. But the name ‘FIR’ is most commonly seen in publications.

One of the major advantages of FIR filters is the ease with which exact linear phase
filters can be designed. A filter with linear phase characteristics will not distort the input
signal and is desirable in a number of applications such as digital communications.
Design methods for FIR filters are generally linear and efficient. Another important
property of FIR filters is that they are guaranteed to be stable. Furthermore, they can be
efficiently realized on general and special purpose hardware. For instance, most DSP
chips have special instructions to facilitate the implementation of an FIR filter.

Frequency response
The frequency response of an Nth order FIR filter is given by

H(w)= NZI h(n)e

where ® is in radians per second. Strictly speaking, the exponent should be (—jw7n)
where T is the sampling period. But we shall assume that 7= 1 for simplicity, unless
otherwise stated.

Notice that even though the filter is a discrete-time system, the frequency variable is
continuous and is periodic with period 2m. This is an important point to remember
especially if we are evaluating the frequency response using DFT. For a length-N impulse
response, the DFT equation will give us N frequency points. If N is small, we may not get
an accurate picture of the response. In these cases, the original impulse response 4(n) may
need to be padded with an appropriate number of zeros in order to provide us with a more
accurate frequency response curve.

Recall that the frequency response of a digital system is generally complex valued and
consists of a magnitude and a phase. The function can be written as

H(o)= A(e)e””

where A( ) is the amplitude function/response and & @) is the phase function/response.
The magnitude response is therefore given by

M (o) =|H(0)|=|4(o)
The DFT of a length-N impulse response /(n) is defined as

N-1
Clky=Y h(n)ye ™V k=0,1,.,N-1

n=0
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An FIR filter has impulse response

h(n)={1,3,5.3,1}

The magnitude and phase responses are shown in Figure 6.3.
The five DFT coefficients are given by

13.00,

~4.2361- j3.0777,
C(k)=10.2361+ j0.7256,
0.2361— j0.7256,
|—4.2361+ j3.0777 |

14L

12

10

Magnitude Response

:0,_.
)

Phase Response

-12

Figure 6.3

=)

Magnitude and phase responses in Example 6.1
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6.3.2

Linear phase filters

Linear phase refers to the phase response being a linear function of frequency. The FIR
filter in the example given in the previous section has linear phase characteristics as
shown in the phase response in Figure 6.4.

Phase
O(w)

V' N

Figure 6.4
A linear phase response

Another way of saying that a filter has linear phase response is to say that it has a
constant group delay response.

It can be shown mathematically that an FIR digital filter possesses exact linear phase
properties if its impulse response is either symmetric (with even symmetry) or anti-
symmetric (with odd symmetry) about the midpoint. Since the length of the impulse
response of a digital filter can either be odd or even, there are in total four types of linear
phase FIR filters.

e Type 1:
The impulse response has odd length (V is odd) and is even symmetric about
its midpoint. Thus

h(n)=h(N—-n-1)
The amplitude response has even symmetry about w=0 and w= 7. It is also
periodic with period 27. That is,

A(o) = A(-0)

A+ o) = A(rt— o

A(w+21m) = A(w)

Figure 6.5 shows the impulse response and amplitude spectrum of a typical
type 1 linear phase FIR filter.

C1 e

o 1 2 3 4 TN
(a) Impulse Response

A(x)
- 7T (0} 7T 27T 37T 47t >

(b)) Amplitude Spectrum

Figure 6.5
Type 1 linear phase responses
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e Type 2:
The impulse response has even length and is even symmetric about its

midpoint M. Note that in this case M is not an integer. The amplitude
spectrum is even about =0 and odd about w=m. The spectrum is also

periodic with a period of 4w, instead of 2.
A(o) = A(-)
A+ ) = A(n— )
A(w+271) = A0

An example is shown in Figure 6.6.

I

(@) 1 2 3 n
(a) Impulse Response

A(w)
-7t O 7T Wsﬂ 47T

(b)) Amplitude Spectrum

\

Figure 6.6
An example of type 2 linear phase responses

The frequency response of this type of filter must be zero at @ = m. They will
make good low-pass filters but are unsuitable for high-pass designs.

e Type 3:
The impulse response has odd length and odd symmetry about the midpoint.

The amplitude spectrum is odd about @ = 0 and w = . It has a period of 27.
A(o) = A(-0)
A(r+ o) =—A(n— o)
A(w+4n) = A0

Figure 6.7 shows an example.

\ ]

N

o 1 3 1
(a) Impulse Response

A(w)

Y
e

L/’“\ N\
*X__—0 _7~ B

(b) Amplitude Spectrum

Figure 6.7
An example of type 3 linear phase responses
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Note that this type of filter has frequency responses which must be zero at
zero frequency (0= 0) and at ® =r. They are therefore not suitable for low-
pass and high-pass designs. Furthermore, they introduce a phase shift of 90°.

e Type 4:
The impulse response has even length and odd symmetry about the midpoint.
The amplitude spectrum is odd about @= 0 and even about w= . It has a
period of 4.

A(&)=—A(-0)
A7+ &) =—A(n— o)
A(o+27) = A(0)

See Figure 6.8 for an example.

(a) Impulse Response

A(w)

L7

(b) Amplitude Spectrum

v

Figure 6.8
Example of type 4 linear phase responses

The frequency response of this type of filters must be zero at zero frequency
but not necessarily so at ® = n. Therefore they should not be used for low-
pass designs but they can make good high-pass filters. Like type 3 filters, they
also introduce a phase shift of 90°.

6.4 Window method

The window method is particularly useful for designing filters with simple desired
frequency response curves, such as an ideal low-pass, high-pass, band-pass and band-
reject filters. Examples of these four ideal filter responses are shown in Figure 6.9.

Notice that in Figure 6.9, the filter frequency responses are only specified over the
frequency interval

TS WST

This is because for digital filters, the frequency response is periodic in @ with a period of
2m. This interval is also called the Nyquist interval in the literature.
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D) D(w)
A A
1 o 1 -
T -0 0 O T 0 T[ -O¢ 0 Oc o
(a) Ideal Low-pass (b) Ideal High-pass
D) D(w)
A A
1 1
@, -0, 0 ®, @ T % T, -0, 0 ®, © T %
(c) Ideal Band-pass (b) Ideal Band-reject
Figure 6.9

Four ideal filter frequency responses

The (continuous) frequency response and the (discrete-time) impulse response are
related by the discrete-time Fourier transform (DTFT) relationships:

D(ay=" d(k)e"™

fr=—oo

So, given the desired frequency response, the filter impulse response can be obtained
by using the inverse DTFT equation. The filter coefficients will simply be the impulse
response samples. However, the impulse response obtained by using the inverse DTFT
will in general have two undesirable properties: non-causal and infinite duration. For
instance, consider a desired low-pass filter response given by

{1, if |[d<a
D(a) = .
0, if o SMS T
D)
1
-7 -M¢ 0 ®c 7C %o

Figure 6.10
An ideal low-pass filter response
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6.4.1

This is shown in Figure 6.10. The impulse response will be

d(k)= %{ j_ﬂﬂD(a))ej“kdw

=L “1eda
2mi-a
_ 1 [ o/ak _ e—Jazvk]
2mjk
M —o< k<
mk
with
a’(O):%

This impulse response is plotted in Figure 6.11.

Sinc Function

d(k)

Figure 6.11
Impulse response of the ideal low-pass filter

In order to truncate the impulse response to a finite duration, a window function can be
used. The ideal impulse response d(k) is multiplied by a window function, which has a
finite duration, resulting in a truncated impulse response. A number of different window
functions have been proposed. We shall examine four of them in order to illustrate the
effects of windowing and the relative merits of these functions.

It is worth pointing out that in the above example, the frequency response is symmetric
about @= 0 and is real. This results in an even symmetric impulse response that is also
real-valued. The phase response is zero for all frequencies.

Rectangular window

The most direct and simple way to truncate the ideal impulse response d(k) is to keep the
values of d(k) within a certain interval, say, —M to M. This is equivalent to multiplying
d(k) by a rectangular function given by

{1, |n| <M
w(n) = .
0, otherwise
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as shown in Figure 6.12.

®
oo e oo e ‘ooo e oo
5 o—0

Figure 6.12
A rectangular window

The resulting impulse response 4,,(#n) has either N = 2M or N = 2M+1 non-zero values.
In our following discussions, we shall assume that N is odd. The arguments can easily be
extended to the case where N is even.

hy(n)=[d sy dyyd,,.ndyy,dyy ]

The windowed impulse response /,(n) is still non-causal, i.e. it has non-zero values
before the time origin n = 0. To make it causal we can simply shift the time origin to the
first non-zero sample and re-index the entries. The impulse response (and hence the filter
coefficients) of the FIR filter is therefore

h(n)=d, (n—M) n=0,1,...,N-1

This process is illustrated in Figure 6.13.

5 4 -3 -2 -1 0 1 5 "k
N=9 M=4
rectangular
h(n) window
AL ________ |
I
I
I
® I
I
- o le o o o o .
210 1 2 3 45 6 7 8 9 n

Figure 6.13
Rectangular windowed impulse response
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Example 6.2
Find the rectangularly windowed impulse response of an ideal low-pass filter with cut-off
frequency
0, =74
Assume N=11.
Solution:
Since N =11, M = (N-1)/2 = 5.
in(nn/4
dw(n):L”) _5<p<5
n

V221 V2121 V2 V2

3

“l10n” en 2n 2n 4 2 2w 6m 10z
The filter impulse response /4(n) is plotted in Figure 6.14.

N

0.25
®

0.225

0.16

0.075
0.045T T T
3

5 4 -3 -2 -1 0 1

N

Figure 6.14
Filter impulse response of Example 6.2

6.4.1.1 Performance evaluation

How good is the design using rectangular windows? In other words, how close is the
resulting FIR filter frequency response approximation, to the original ideal response
D(w)?

To answer this question, we performed the DTFT of A(n), denoted by H(w) and plotted
the magnitude response against D(®) in Figure 6.15. Note that since /(n) is no longer
symmetric about the origin, its DTFT will be complex-valued. Hence we only compare
the magnitude response in the frequency range 0 to 7.

Notice the ripples in both the passband and the stopband. This can be more clearly seen
if we re-design the filter using large values of N. Figures 6.16 and 6.17 show the
rectangularly windowed impulse responses and the corresponding magnitude responses
for N=51and N = 101.
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Magnitude Response, N=11
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Figure 6.15
Magnitude response of rectangular windowed filter with N=11
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Impulse Response, N=51
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Impulse Response, N=101
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Magnitude Response, N=101

1.4

1.2

0.8

Magnitude

0.6

0.4

0.2

0 Aok o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency (Nyquist==1)

Figure 6.17
Impulse and magnitude responses of truncated ideal LPF with N=101

One would expect that as NV increases, the approximation would become better. This is
indeed the case except for the region close to the transition between passband and
stopband. This area corresponds to a discontinuity in the ideal desired frequency
response. The truncation of the Fourier series introduces ripples in the frequency response
due to the non-uniform convergence of the Fourier series at a discontinuity. This
phenomenon is known as the Gibb’s phenomenon. For this reason, the approximation at
the band edge will always be poor for the rectangular window design regardless of how
large N is.
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6.4.1.2

Another interpretation

We can interpret the magnitude response of the FIR filter by using our knowledge of
linear systems discussed in the earlier chapter. This is illustrated in Figure 6.18.

Linear
System

R()

Figure 6.18
Frequency domain interpretation

The original desired magnitude spectrum (or response) is the input to a linear system
having the magnitude response of a rectangular window. The output of this system is then
the magnitude response of the FIR filter. According to linear system theory, the output is
the product of the input and the system responses:

H(®)=R(0)=D(e)

But the magnitude response of a rectangular window has the form shown in Figure
6.19. This interpretation shows that the rectangular window introduces the ripples and
ringing in the FIR filter response.

If we want to design filters with better approximation in the transition region, this
interpretation tells us that we need to use a window with better magnitude response. This
is the reason why a number of different window functions with different frequency
characteristics are proposed.

60
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Magnitude
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0 W\W CNINANNAN N

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency

Figure 6.19
Magnitude response of a rectangular window
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Summary of filter characteristics

e The ripple size decreases with increasing filter order N. Approximation well
within the passband and stopband becomes better as the filter order increases.

e The transition width decreases with increasing filter order. For any order N, the
filter response is always equal to 0.5 at the cut-off frequency.

e Ripple size near the passband to stopband transition remains roughly the same
as N increases. The maximum ripple size is about 9%. This is known as the
Gibb’s phenomenon.

Hamming window

Since discontinuities in the time function give rise to ringing in the frequency response,
we can replace the rectangular window with a window function that tapers off smoothly
at both ends. This will reduce the ripple effect. The Hamming window is a popular one in
this class of window functions.

The Hamming window is defined mathematically as

w(n)=0.54—0.46c0s(;]7m ) n=0,1,...,N—1

Figure 6.20 plots this window function.

Hamming Window, N=100

1 1 1 1 1 ] ] 1 1

0.9

0.8

0.7

0.6

0.4

0.3

0.2

0.1

Figure 6.20
The Hamming window
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Notice that this equation defines the window samples as already shifted (indices from 0
to N-1). So the impulse response of the FIR low-pass filter designed using the Hamming
window is

h(n)=wmn)d(n—M)

= |:0.54— 0.46 cos( 2 ﬂ sin [(n _M)a%]

(n—-M)r

Figure 6.21 shows a length-51 low-pass filter with cut-off at 774 as in the example in
the previous section.

Comparing this response with that shown in Figure 6.16, which was designed using the
rectangular window, it is obvious that the Hamming window design is better. The ripples
in the both the passband and the stopband are virtually eliminated. The cost involved is a
wider transition width.

The Hamming window function has the same form as the raised cosine function
familiar to digital communication engineers. The only differences are in the scalar value
in the constant and cosine terms. The Hamming window does not taper to end values of
zero. Instead it goes to a value of 0.08. The maximum stopband ripple is about 53 dB
below the passband gain.

N=51

1.4

1.2

RNl
RN
\

0 0.1 02 03 04 0.5 06 0.7 0.8 0.9 1
Normalized Frequency

Magnitude

Figure 6.21
Hamming windowed magnitude response
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Blackman window

The Blackman window exhibits an even lower maximum stopband ripple (about 74 dB
down) in the resulting FIR filter than the Hamming window. It is defined mathematically

as
w(n):0.42—0.5c0s(§]7m )+0.08( 4n ) n=0,1,...N-1

- N-1

Its magnitude and impulse responses are plotted in Figure 6.22. Note that the width of
the main lobe in the magnitude response is about 50% wider than that of the Hamming
window.

A length-51 low-pass FIR filter is designed using this window and the responses shown

in Figure 6.23. This can be compared to the one designed using Hamming window in
Figure 6.21.

N=100

0 10 20 30 40 50 60 70 80 90 100

Figure 6.22
The Blackman window
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Figure 6.23
Low-pass FIR filter designed using the Blackman window
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6.4.4

Kaiser window

The main advantage of the previous three window functions is that they are simple to
apply and the resulting filter characteristics are reasonably good. For a large number of
applications, Hamming or Blackman window designs will be sufficient to satisfy the
specifications. The major drawback of these window functions is that its characteristics
such as maximum stopband attenuation and the amount of overshoot are basically fixed.
So if the filter specifications include the amount of overshoot and passband-to-stopband
transition width, for instance and if the above window functions do not produce designs
that can satisfy them, then we are stuck.

4 Ideal low-pass
1+8p355\ / filter |D(f)|
1 Designed
1 Filter
i- Spass/v [H()|
Stop
6Slop__
I/\_/\,\_A } >
0 fpass \rstop fSIZ f
f.
e ol »le »l
I passband NI stopband L
transition
bandwidth

Figure 6.24
Magnitude response characteristics of a low-pass filter

Consider the magnitude response characteristics of a low-pass filter as shown in Figure
6.24. The ideal cut-off frequency is at the midpoint between the passband and stopband
edge frequencies.

1
f; = E (fpass + f;top )
The transition width is defined as

Af = f;top - f;)ass

The normalized frequencies are the digital frequencies:

27rf;)ass
Wpss = T
27rf;lop
aglop =
A
_2nf,
A
_ 2y

Aw

S



6.4.4.1

Finite impulse response filter design 119

The maximum passband and stopband ripples are usually expressed in decibels (dB) in
practice:

=201 —1 =
4, 0
ass g 10 1 5

pass

‘Astop = _20 1OgIO 6

stop

These equations relate the two sets of specifications {fpass, fsop Apass 4stop) and {fc, Af,
5pass; 6slop}-

If Ouss 1s small, then we can use a first order approximation to get

A, =17.37248

pass pass

Note that it is a property of all window designs that &, and &, are equal in the filter
designed. Therefore, instead of dealing with two variables, we can choose the maximum
ripple to be the smaller of the two:

5: mln( 6pass > 5slop )

Practical choices of passband and stopband attenuation will usually result in the
stopband ripple being smaller than the passband one.

Kaiser window design

Kaiser has developed a flexible family of window functions. This family of window
functions has adjustable shape parameters that allow the designer to achieve the specified
ripple and attenuation. It is mathematically defined as

I, (,B\/l—(n—M)z/Mz)
1,(B)

1, (BJn2M —n)/ M)

B 1,(B)

w(n) =

for n =0,1,...,N—1 where Iy(x) is the zero-th order modified Bessel function of the first
kind. Here we assumed as before that V is odd. The second format is more convenient for
numerical computations. 3 is called the shape parameter.

The Kaiser window is symmetric about its midpoint and has a maximum value of 1 at

that point. Since /o(0)=1, the end-points have the value 1//,(B). Typical values of 3 are in
the range of

4<B<9
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Figure 6.25 shows three Kaiser windows with N = 51 and B = 5,7,9.

N=51

1 T T T T T T T T T

Figure 6.25
Kaiser windows

The Kaiser window is reduced to a rectangular one for B =0. It resembles the
Hamming window for B = 5, except near the end-points.

Table 6.1 compares the transition bandwidth and the maximum stopband ripple for
various values of the shape parameter.

B Transition bandwidth Max. stopband ripple

(dB)
4.0 2.6 —45
5.0 3.2 -54
6.0 3.8 —63
7.0 4.5 72
8.0 5.1 —81
9.0 5.7 -90

Table 6.1
Comparison of transition bandwidth and maximum stopband ripple

The filter order N and the shape parameter can be calculated from the specifications.
Kaiser has derived empirical design formulas as follows:

0.1102(A4-8.7), A>50
B =10.5842(A4-21)"* +0.07886(A—21), 21< A<50
0, A<21

where 4 is the ripple in dB.
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The filter length or order is inversely related to the transition bandwidth:

af =2 o yo1=2h
N-1 Af

where D is a factor computed from A4:

A-7.95
D=1 1436
0.922 A<21

A>21

6.4.4.2 Design steps

e Compute f, and Af and then the normalized digital frequencies.
e Compute the passband and stopband ripples and hence dand 4.
e Compute 3 and D.
e Compute the filter length required and round it up to the next odd integer.
e Compute the window function w(n).
e Compute the windowed impulse response /(n).
Note that the parameters N and 3 depend only on 4 and Af and not on f.. However, /(n)

does depend on f;.
Example 6.3
Design a low-pass FIR filter using Kaiser windows with the following specifications:
f.=44.1kHz
Joass =12kHz
Jeop =18kHz
4., =02dB
Ay, =50dB
Solution:

Now we have A = 50. Therefore,
B=0.1102(A-8.7)

=0.1102(50—8.7)

=4.55126
and
D= A-7.95
14.36
=2.9283
Since

Afzf;top _f;)ass
=18-12
=6 kHz
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we have
No1=2h
Af
_ 2.9283(44.1)
6
=21.5
and so the order of the filter is
N=225

We can try touse N =22 or N = 23.

MATLAB functions provide a better approximation for 8 and N. Figure 6.26 shows the
magnitude response of the resulting filter.

N=22, beta=4.522
10

0 ——

10 \"
20 \
30 \
\
60 \ mn
. \

-80 | |
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-90

0 2 4 6 8 10 12 14 16 18 20 22
Frequency (kHz)

Figure 6.26
Magnitude response of Kaiser window designed FIR filter

6.4.4.3 High-pass filter design

High-pass filter design using Kaiser windows is very similar to low-pass filter design.
The only change in the steps is simply define

Af = f;)ass - fstop
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since the role of fy,.s and fqp are interchanged.
The ideal high-pass impulse response is obtained from the inverse DTFT of the ideal
high-pass frequency response. It is given by

() = & - L)

The windowed filter impulse response is therefore
sin((n—M)aw)
h(n)=w(n)-|dn—M)— S
(n) ()[6( Ty
sin((1-M)@)
(n-M)rx

=dn—M)—w(n)

The second term on the right-hand side of this equation is the impulse response of the
low-pass filter with the same cut-off frequency.

Note that with the same value of ., the low-pass and high-pass filters are
complementary. That is,

ho(n)+ by, (n)=8n—M) n=0,1,.,N-1

Example 6.4

Two-way crossover filters. Conventional loudspeakers make use of an analog crossover
network to split the audio signal into its low frequency and high frequency components.
The low frequency signal drives the woofer and the high frequency one drives the
tweeter. Digital loudspeaker systems use digital filters to perform the same function on
the incoming digitized audio signal. The digital signals in the two frequency bands are
then converted to analog signals, amplified and drive the corresponding parts of the
loudspeaker.

Let the crossover frequency be 1 kHz. The low-pass filter has specifications:

Jonss =800Hz
fiop =1200Hz
4,.=0.1dB
A,,, =60dB

Note that we only need to design the low-pass filter. The high-pass filter is
complementary.
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The resulting low-pass and high-pass filter magnitude responses are shown in Figure

6.27.
Loudspeaker Crossover Filters, N=182
20
0 Y
-20 \\
-40
m
=
© -60
©
=2
S 80—
©
=
-100 i I
'120 L} I | I
-140
-160
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency
Figure 6.27

Crossover filter responses

The complementary relationship between the two filters leads to a very efficient
implementation shown in Figure 6.28.

audio »  H. woofer
in
M sample +
—> >
delay tweeter
Figure 6.28

Implementation of complementary relationship between two filters

In fact, only one filter is needed; the high-pass output is obtained by combining the
low-pass output and the input delayed by M sampling instants.



Finite impulse response filter design 125

6.4.4.4 Band-pass filter design

N Desired |deal
45, fiter [D(7)|
1“ Tttt TT = - _| Apass
L | T
- |
1 8Pass/v- M: M A_f|
Ao ‘2>;<2> 5!
|
<—Allfa—n ‘ qlfb >
6Slop : |
0 fsa fa 1.pa fpb fb fsb fS/Z f
Figure 6.29

Typical specifications for a band-pass filter

Typical specifications for a band-pass filter are shown in Figure 6.29. There are two
stopbands and two transition bands. The final design will have equal transition

bandwidths. If the transition bandwidths of the original specifications are not equal, the
smaller one will be used.

The ideal cut-off frequencies are defined in the same way as in the low-pass case:

1
o=t _EAf

1
fb _fpb +5Af

The window parameters can then be calculated. The band-pass impulse response is
given by

h(n) = w(n)- sin ((n —M)((:l%)_;;i)nn((n -M)am)

for n=20,1,...,N—1 where

hM)=2"4 ;aa
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Example 6.6
Five-band graphic equalizer. The crossover frequencies of the 5 bands are 3 kHz, 7 kHz,
11 kHz, and 15 kHz.

The resulting filter magnitude responses are shown in Figure 6.30.

5-Band Graphic Equalizer Filters
14 T 1 T T T T T T T

1.2 .
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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5-Band Graphic Equalizer Filters
20 1 1 1 T 1 T 1 1 1
)
A=)
2 ' 3
c . ﬁj‘ ] I
o AL AW | nl”f ‘Er .
8 AW ““‘ “M lll l “\ i I I
-100fF .
_120 1 1 1 1 1 1 1 1 1
0 0.2 0.4 06 0.8 1 1.2 1.4 1.6 1.8 2
Frequency (Hz) X 104
Figure 6.30

Magnitude responses of the five filters in the graphic equalizer
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The final high-pass filter is complementary to the sum of the first 4 filters. An
implementation using four filters is shown in Figure 6.31.

Variable
Gain

‘/2\ . Audio

" out

Audio
in

A
T
A 4

L4

T
)
v

A 4
T

]
A 4

H,

Y
Y

M sample R z':\
delay + \&/

Y
Y

Figure 6.31
An implementation of the 5-band graphic equalizer

In practice, the digital filters employed for digital graphic equalizers are typically
second order IIR filters.

Remarks

This is a particular example of a filter bank where the input is split into a number of non-
overlapping frequency bands. Filter banks have been used very successfully in speech
coding — a technique known as sub-band coding. The output of each filter is quantized to
a different resolution. The allocation of bits in each band is usually governed by
psychoacoustic perceptual criteria. To put simply, fewer bits are assigned to bands that
are less audible.

There have been a lot of research activities in the design of filter banks in the last
decade. This research has led to the development of wavelet transformation and wavelet
filter banks, which is still a very active research area. However, it is beyond the scope of
this introductory course.

Computation of Bessel functions

To complete our discussions on Kaiser window design method, we shall consider the
computation of the Bessel function. The zero-th order Bessel function of the first kind can
be defined by its Taylor series expansion:

gl

=0
Evaluation of /y(x) is over the range limited by the shape parameter and

0<x<p
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6.5

The Taylor series can be recursively computed to a desired level of accuracy. Define

the partial sum
5,=3 [(x/z)" ]

i k!

and the term

Algorithm:

e Initialize
S, =1
D, =1

e Forn>1, compute

2
Dn :(i) Dn—l
2n
S =8 _,+D,

e Above step is repeated for successive values of n until the ratio

D — Sn _Sn—l

n

S S

n n

<E&
where € is a small number (say, 107°).

Frequency sampling method

The window method of FIR filter design requires the inverse DTFT of the desired
frequency response. While the calculations may be straightforward for simple ideal low-
pass, band-pass and high-pass responses, it may not be the case for an arbitrary filter
response such as the ERMES pre-modulation filter specifications described in the
previous chapter. Instead of considering the continuous frequency response, we can take
samples of it and deal with the discrete spectrum.

Samples of the desired frequency response D(w) are taken at N uniformly spaced
frequencies m, within the interval (0,2m). If N is also the order of the FIR filter to be
designed, then the coefficients A(n) can be found by solving the N simultaneous
equations:

N-1
Y h(n)e 2N =D(ﬁ) k=0,1,..,N—1
n=0 N

This approach makes sure that the frequency response of the FIR filter will pass
through those sampled frequency points.
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The disadvantage of this direct approach is the computational complexity. Solving N
simultaneous equations requires on the order of N° arithmetic operations. While this is
acceptable for small values of &, it becomes prohibitive when N increases.

Recalling that the relationship between the uniformly spaced discrete frequency
samples and the discrete-time impulse response is given by the DFT, the inverse DFT
(IDFT) of the frequency samples will give the impulse response. IDFT only requires
approximately N* arithmetic operations. If FFT is used, the number of operations is
reduced to N log V.

Design formulas

Explicit formulas can be derived for the four types of linear phase FIR filters described in
section 6.3.2. These formulas are simplified from the IDFT equation by making use of the
fact that the impulse responses of linear phase FIR filters are real-valued and symmetric
(or anti-symmetric).
e Type 1
N is odd and M = (N-1)/2.

where Ay are the equally spaced DFT samples at frequencies
21k

k=0,1,..,N-1
N
If no sample at ® = 0 is included, then
G L S A
N

and the design formula becomes

1
= 27t(n—M)(k+]
h(n)=— 24, cos + A, cosm(n—M
(n) NZ X v \ COSTT(n—M)
e Type 2
N is even.

If a zero frequency sample is available, the design formula is:

h(n) :%[AO +N/szk COS(M)]

This formula is essentially the same as that for type 1 filters except for the
upper limit of the summation and

AN/Z =0

If no zero frequency sample is available, the design formula becomes

1
|| e 27t(n—M)(k+2]
h(n)=— 2 24, cos
N1 i%

N



130 Practical Digital Signal Processing for Engineers and Technicians

h(n) =%[A0 +iz,4k COS(M]]

k=1

e Type3
The design formulas for anti-symmetric impulse responses involve terms with
the sine function instead of the cosine function. The design formulas are

h(n):% ﬁ:2Ak sin Wﬂ

i 27t(M—n)(k+;)
h(n)=— 24, sin
N|i= N

S

=
I

respectively for the cases where a zero frequency sample is and is not
available.

e Type 4
The corresponding design formulas when N is even are

[N /2-1 _
h(n)=% 2 24, sin M)
| k=1

+ Ay, sint(M — n)]

1
1 N/2-1 277:(M—n)(k+2]
h(n)=— 2 24, sin
N| S

N

6.5.2 Transition region

Let us consider the design of a linear phase FIR filter to approximate the ideal low-pass
response with a passband from 0 to 0.4w (normalized). The frequency samples are given
by
|D( )| 1, k=0,1,..,P
Y0, k=pP+1.aM
With N =40, P = 8. The DFT samples are therefore

4= (-D'/N, k=0,1,.,P
“ o, k=P+1,..,.M
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Choosing type 2 design since N is even and a zero frequency sample is available, we
arrive at a FIR filter with magnitude response shown in Figure 6.32.

N=40

Magnitude
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Normalized Frequency

Figure 6.32
FIR filter designed using frequency sampling

The resulting filter response is very similar to the one we arrived at using the
rectangular window. The amount of overshoot is relatively large near the band edge and
the minimum stopband attenuation is particularly disappointing (at around —20 dB). The
reason is that the transition bandwidth is too narrow. If a transition sample is added which
has a magnitude that is halfway between the passband and stopband

— —_1P
4,=0.5(-1)"/N
then the magnitude response is greatly improved as shown in Figure 6.33.

N=40 with Transition Sample

Magnitude
o
> h
/

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency

Figure 6.33
Re-design of the same filter as Figure 6.32
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The stopband attenuation is now about —30 dB. Adjusting the value of 4p can make
further improvements. With

A =04(-1)"/N

a stopband attenuation of around —40 dB can be achieved.

This example shows that a transition region is very important in the resulting filter
performance. In practice, the transition bandwidth is usually dictated by other
considerations. However, if there is a freedom of choice, it can be adjusted to give
optimal performance given a certain filter length.

Example 6.6

Consider one more filter design with the following specifications:

Passband: 0 to 0.087

Stopband: 0.2mto

Minimum stopband attenuation is 40 dB

The transition bandwidth in this case is 0.12 &, the minimum spacing between frequency
samples is 0.06 . Hence the length of the filter is

N> 2 34
0.06

The minimum spacing is not sufficient since the stopband will have to start at the
fourth sample (0.18m). In order to put a sample at 0.2x, a frequency spacing of 0.057 can
be chosen which corresponds to N = 40. The passband will be extended to 0.1z and the
transition sample will be at 0.15m.

The DFT samples are:

1
:A:—
4, =4, 20
__
40
3=—9f=—0m
40
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Type 2 design with zero frequency samples results in a filter response shown in Figure
6.34. The filter specifications are satisfied.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6.34
Filter response of Example 6.7

Alternatively, we can choose not to include a zero frequency sample. If the frequency
sample spacing of 0.067 is used, the passband will be extended to 0.097 but the stopband
edge will be at 0.21x, which is too high. Setting

@, =3.5Aw=0.2r1

where A is the sample spacing, we arrive at

Aw=0.0571x
or
52 _3s
0.0571rx
The passband edge is now at 0.08577. The DFT samples are now
1
4=33
__L
'35
_o04
? 35

A4 =0 fork=3
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6.6

The resulting filter magnitude response is shown in Figure 6.35. All specifications are
satisfied.

Figure 6.35
Filter response

We can see that in this case a more efficient filter (in terms of filter length) can be
obtained by not including a sample at zero frequency. In general, for each design, we
need to examine alternative design methods. By comparison, the most efficient
windowing design is obtained through the Kaiser window with a minimum length of 38.

Parks-McClelland method

Early in the chapter we said that the first step in the filter design process is
approximation. The frequency sampling design method discussed above is, strictly
speaking, not an approximation approach but an interpolation approach. It produces a
filter with frequency response that passes through the frequency sample points exactly but
there is no constraint on the response between sample points. Consequently we cannot
guarantee the behavior of the frequency response apart from that at the sample points.
Peaks and overshoots can occur at various parts of the response. For low-pass filters,
examples have shown that the transition bandwidth affects the resulting design to a large
extent. By carefully optimizing the placement and values of the samples at the transition
region, better designs are obtained. The question is how far can the maximum error be
reduced?

The answer to this question lies in a technique that was used widely for analog filter
approximation, known as Chebyshev approximation. This approximation, when applied
to filter design, minimizes the maximum error over a set of frequencies. This type of filter
exhibits equiripple behavior in the frequency responses. Thus the filter designed using
this approximation are called equiripple FIR filters. They are also called optimum and
minimax filters.
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Closed form design formulas are not available for these filters, however. An iterative
algorithm has to be used. A very efficient one is the Remez exchange algorithm. It was
first developed in the early 1970s.

6.6.1 The approximation problem
A typical specification for a low-pass filter suitable for Chebyshev approximation is
shown in Figure 6.36.
A
p o]
passband '
1+, \
+F 25, Y ¥
A 4
|« N|
-8, ™ stopband
5,4 -
} 25, ——
-5, 1 A

Figure 6.36
Typical low-pass filter specification for Chebyshev approximation

In the passband, the maximum deviation of the magnitude response from unity is £9;.
In the stopband, it is £0,.

The desired frequency response D() is assumed to be zero phase which means it is
purely real-valued. The form of the frequency response of the final filter is

H(0 = 0(@ 3 h(h) cos(%)

where

1, for Type 1 filters

cos(w/2), for Type 2 filters
Q)= .

sin @ for Type 3 filters

sin(w/2), for Type 4 filters

The approximation problem is to minimize the maximum of the weighted error
function

| £ = max ¥ (a)| D(e)— H (o)
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6.6.2

for all (k) by choosing a suitable H(w). Here Q is the entire frequency range of interest,
which is [0,rt]. W(®) is a user-defined weighting function so that more importance can be
placed on certain frequency intervals compared with others. For instance, a zero weight
can be assigned to the transition frequencies so that the shape of the response in this
region will not affect the performance in the passband and stopband which are usually
much more important.

The equiripple solution

Solution to the above approximation problem can be found by making use of a theorem,
called the alternation theorem, from the theory of approximation. It basically states that
the design is optimized for minimum ripple, if and only if, there are at least N/2+2 or
(N-1)/2+2 extrema (for N even and odd respectively) of equal weighted amplitudes and
alternating signs in the pass and stopbands. Such extrema are called alternations.

Figure 6.37
A length-13 equiripple FIR filter

Figure 6.37 shows a solution for a length-13 equiripple FIR filter. Since N=13, the
number of extrema is 8. These eight extrema are also indicated in the figure.

It should be pointed out that the best equiripple design is also unique. For a given set of
specifications, the unique best solution may have more than the minimum number of
extrema as stated above. Let NV be even and r = (N/2+2). If the unique best filter has r+2
extrema, then there cannot be another filter with only »+1 or r extrema for the same set of
specifications. In other words, using the Chebyshev approximation, optimality is
guaranteed.

The alternation theorem is useful in that it helps us to establish the form of the optimal
solution so that it can be recognized once we have found it. But it does not tell us how to
arrive at the optimal solution. One approach is to identify the extremal frequencies. Once
the extrema are found, the filter coefficients can be obtained by using the frequency
sampling method. Thus the filter design problem becomes one of finding the extrema
given a set of specifications. The Remez exchange algorithm is an efficient one for
finding these extrema.
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The Remez exchange algorithm

Given the order N of the filter, we do not know beforchand the minimum amount of
ripples, &, and §,, that can be achieved. So they become the additional variables, apart
from the filter coefficients, that need to be determined. There are two main ways to
handle this.

Parks and McClelland introduced a weight XK to the stopband specification so that

K8,=6,=6

Hence instead of two variables, only & will need to be determined together with the
filter coefficients. They are evaluated iteratively for a given filter order. If the
specifications are not met, then the filter order is increased and the optimization is
repeated.

Another method, proposed by Hersey, Lewis and Tufts, is to let  be equal to either 9,
or O,. In this way the algorithm will still only need to deal with one additional variable but
either the passband or stopband constraint will be satisfied exactly.

The Remez exchange algorithm makes use of the fact that the error function

N-1
E(&)=D(0)— Y h(k)coskw
k=0
with 0<wsr will always take on values of £d for a given set of (N+1) normalized
frequency points denoted by @, for m=1,2,..., N+1. Therefore we have a set of linear
equations

N-I
D(q,) = h(k)coskay, +(-1)"8 ~ m=12,..,N+1
k=0

There are N+1 equations with N+1 unknowns (N filter coefficients and the ripple
amplitude) which we can solve. If the extremal frequency @, is known, then the equations
can be easily obtained and no iteration is needed.

Obviously the algorithm cannot deal with a continuum of frequencies, even within the
Nyquist interval. Parks and McClellan suggested the use of a set of frequencies, which
are equally spaced, with a size of about 10 times the order of the filter. Since the number
of frequencies is larger than N+1, we cannot directly solve the set of equations set out
above. The Remez exchange algorithm starts with a trial set of frequencies and
systematically exchange frequencies until the set of extremal frequencies is found.

Remez exchange algorithm:
e Choose an initial set of N+1 frequencies:

7 ={a§°), o, 011}

e Solve the set of linear equations for T". The error function has a magnitude of
& for the i-th iteration.

¢ Find the frequency response at the whole set of frequencies.

e Search the entire set of frequencies to see where the magnitude of error is larger
than that found in the second step. If none exists, then stop.

e Update the set of trial frequencies to be the N+1 frequencies where the errors
are largest among the errors computed for the whole set of frequencies.

T(i+l) ={af“), af“),..., aﬂ)

e Repeat from the second step.
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6.6.4

It should be pointed out that in the above discussion, we have assumed that the weight

function W(®) is unity for all frequencies. But the results apply to a general positive
weight function.

Design formulas

For low-pass filters, Kaiser has developed some empirical formulas that helps in
estimating the order of the filter required for a given set of specifications.

N = —10log,,(6,6,) 41
14.6Af

where Afis the normalized transition bandwidth given by

g —(Dp

v 2r
and m, o, are the passband and stopband edge frequencies respectively. This formula
gives a good estimate when the bandwidth is neither extremely wide nor extremely
narrow.
For filters with very narrow passbands, the stopband behavior governs the filter order
and the following formula can be used for estimation:

0.22-20log,,6,/27
Af

For very wide passband filters, such as notch filters, the following equation can be used
instead:

N =

_0.22-20log,, 6, /27
Af
A more accurate estimate can be obtained by:

N= f(6,,6,)—g(8,,8,)(4f)°
I

N

where

£(8.8)=(0.005309x; +0.07114x, —0.4761)x, - (0.00266x; +0.594Lx, +0.4278)
g(d4,8)=11.012+0.51244(x, — x,)

and
x, =log,, é
x, =log,, &
Example 6.7

An FIR low-pass filter with the following specifications is designed using the Remez
exchange algorithm:

Passband: 0 —0.66m

Stopband: 0.74mw -7

81 = 82 =0.1
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Figures 6.38 and 6.39 show an odd length and even length filter response that satisfied
these specifications.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6.38
0dd length filter response
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Figure 6.39
Even length filter response
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For the length-21 filter, there are 12 extrema as expected, including the two band edges.
Note that one of these two band edges will always be an extrema frequency, but not
necessarily both. The frequency response is not forced to be zero at either =0 or ® = .
The even length filter has a slightly smaller resulting error than the length-21 filter.
There are 11 extrema. Since this is a type 2 filter, ® = &t is always zero.
Next we shall design two length-21 bandpass filters. The specifications are:
Passband: 0.361 — 0.667
Stopband: 0 — 0.28w and 0.74n — &t
The two transition bandwidths are identical and are the same as in the previous low-
pass example. The magnitude response is shown in Figure 6.40.

10 T T T T T T T T T

70 ! ! ! ! ! ! ! ! !

Figure 6.40
Magnitude response of length-21 bandpass filter

If the specifications are altered as below:

Passband: 0.5w—0.74n

Stopband: 0 — 0.16w and 0.8t — &

The transition bandwidths are now unequal. The resulting length-21 filter has an error,
which is only slightly larger than the previous equal transition bandwidth case.
Examining the filter’s magnitude response (Figure 6.41) indicates that it behaves well
within the passband and stopbands. But the behavior in one of the transition bands is
entirely unexpected. This behavior has been studied extensively.
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B T |

-80

Figure 6.41
Length-21 FIR bandpass filter response

One way of reducing the possibility of transition band peaks is to calculate the following

N = —10log,,(6,6,)—13 N

1
' 14.6Af,
—-101log,,(5,6,)—13
, = +1
14.6Af,

where Af; and Af; are the two transition bandwidths. If N, > N, then Af; can be reduced
by moving the stopband edge frequency closer to the passband edge so that N is
approximately equal to N..

Alternatively, the weighing function can be used to control the maximum amount of
error in the transition band. However, the appropriate amount of weighing is usually
obtained by experience and trial-and-error.

A much better way to control the behavior in the transition band is to use the linear
programming design method.

Linear programming method

One of the most recent approaches to linear phase FIR filter design makes use of the well-
known linear programming method. In this case, the desired frequency response is
composed of two parts: the upper limit function and the lower limit function. For a set of
frequency points (approximately 10 times that of the filter order), the constraints are
denoted as

H(g)+x<U(q)
H(@)-x2L(q) or -H(q)+x<-L(@)
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6.8

where U and L are the upper and lower limit functions respectively. x is a parameter,
which represents the distance between the upper and/or lower constraints. x can be zero if
we allow the final response to ‘hug’ one of these two limit functions. Otherwise, the
algorithm will maximize x.

With these constraints, we arrive at the linear programming problem:

max x
subject to
C'h+ax<b

The matrix C is determined from the sampled trigonometric functions. Vector 4
contains the filter coefficients. Vector b contains the limits (or bounds) and vector a is 1
where the parameter x is used and zero where it isn’t. The variables 4 and x are
unconstrained in sign. This is called the primal problem.

A form, which is more convenient for numerical solution, is the dual of the primal
problem:

min b'y
subject to
Cy=0, a'y=1, and y=0
Using the well-known simplex algorithm can easily solve the dual problem. The
algorithm will terminate under one of the following conditions:
e Negative cost is obtained which implies that the original design problem is
feasible.
e Optimal solution is reached with non-negative cost, which means that the design
problem has a feasible solution.
e The dual is unbounded which means that the primal problem is infeasible.

e Dual is infeasible which implies that the primal problem is infeasible or
unbounded.

Design examples

A computer program called METEOR is publicly available which implements this
approach. A low-pass filter is designed using METEOR and the result is shown in Figure
6.42. The solid lines are the constraints.
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Figure 6.42
Low-pass filter designed using METEOR
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Figure 6.43 shows the magnitude response of a length-25 bandpass filter with unequal

transition bandwidths.
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Figure 6.43
Length-25 bandpass filter designed using METEOR

This solution is essentially the same as that obtained using the Parks-McClelland
method. The behavior in the first transition band is undesirable. This problem can be
overcome by placing an upper limit on the first transition band. The resulting filter

response is found in Figure 6.44.
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Figure 6.44
Limiting the overshoot in the first transition band

A better response can be obtained by the stopband very much similar to the solution
proposed previously.
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6.9

To probe further

We have only covered the design of linear phase FIR filters. Obviously, non-linear phase
FIR filters can be designed as well. Basically, this means that the desired frequency
response is no longer real-valued; it is complex-valued. The optimization will become
more complex as a result. This has been the subject of much research in the 1980s and a
number of good methods have been proposed. However, it is beyond the scope of this
course to cover these topics. The interested reader should consult technical articles
appearing in, for instance, IEEE transactions on signal processing in recent years.

Another very interesting topic for filter design is the design of filter banks. Filter banks
have been found to be very useful in signal compression, particularly speech and image
compression. A specific class of filter bank called perfect reconstruction filter banks
(PRFB) guarantee that the signal reconstructed will be exactly the same as the one being
decomposed. These filter banks are later found to be linked to the theory of wavelet
transformation. Wavelet transformations are essentially Fourier transforms, which are
better in capturing local behavior. Since Fourier transformation integrate (or sum) over
the entire time axis (from negative infinity to infinity), all local (in time) information will
be lost. It essentially ‘averages’ over all time. If local behavior becomes important,
wavelet transforms can be used. This is still a very active area of research and technical
articles appear with great regularity in most major technical journals.
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Infinite impulse response (lIR) filter
design

Infinite impulse response (IIR) filters have impulse responses that are infinite in duration.
This is in contrast with the impulse responses of FIR filters, which are non-zero for only a
finite number of samples. The relationship between the input and output of an IIR filter is
given by the recursive formula:

y(n) == a(k)y(n=k)+ Y b(k)x(n—k)

The current output sample is computed from the past M inputs and the current input
sample plus the previous N output samples. The second term on the right-hand side is of
the same form as FIR filters. The first term is the feedback or recursive part of the
equation, which causes the response to an impulse to last forever, at least theoretically.
This is the reason why IIR filters are also called recursive filters.

$n) = 3 h(k)x(n- )

Since the IIR filter is a linear system, the output and input are related by the
convolution sum.

What makes it different from FIR filters is that the upper limit of the summation is
infinity because the impulse response /(n) has infinite duration. Obviously computation
using the convolution sum is impractical. The recursive relationship defined in the first
equation is much more efficient and practical. It requires N+M+1 multiplications and
N+M additions if implemented directly.

We shall first discuss the characteristics of IIR filters with an emphasis on relating the
recursive equation to its spectral properties. This will be followed by description of
design methods for IIR filters. A most common approach to the IIR filter approximation
problem is via classical analog filter approximations. Thus a review of some analog filter
approximations are discussed. Design formulas are set out in detail. The relatively large
number of equations in the later sections should not deter the reader; they are simply
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included for completeness. The appropriate formulas can be identified and made use of
when needed.

Characteristics of IR filters

We have seen that the input and output samples of an IIR filter are related by the
recursive equation

y(1) == ak)y(n=k)+ 3 b(k)x(n k)
This equation can be re-arranged as
Y a(k)y(n—k)=> b(k)x(n—k)

with a(0)=1. Alternatively, we can write it as
N M
Ya)[ = ym) | =Y bk [ 2 x(m) ]
k=1 =0

where z™' can be considered as a unit delay operator, i.e. a delay of one sample interval.
So

z7*x(n) = x(n—k)

In this way, we can define a transfer function in terms of z:

ib(k)z_k
H(z)= y(n) _ =

x(n) S a(k)z*

b)Y +b)z DMz
= 1+a(1)2_1 +Cl(2)z_2 +...+a(N)Z—N

which is a ratio of two polynomials.

The reader should note that this explanation of the transfer function of the digital
system is not mathematically rigorous or strictly correct. But it is perhaps the most
intuitive way of arriving at the transfer function. The proper mathematical way to arrive
at this equation is through the Z transform. We shall not go into details of the Z transform
in this course. The interested reader should consult any textbooks on DSP or discrete-time
linear systems. All of them would have covered some aspects of the Z transform.

It suffices here to say that the z is generally a complex variable and so the polynomials
are complex polynomials. The frequency response H(w) is related to H(z) by

z=¢e"
assuming that the sampling period 7 is normalized to 1 second. Substitution of this
equation into H(z) will give us the normalized frequency response.

Unlike the FIR filter, exact linear phase is impossible to achieve using an IIR filter.
This is because exact linear phase implies that the filter impulse response must be
symmetric. From the input/output relation of the IIR filter, it can be observed that it is
impossible to have an impulse response that is zero for £<0 and non-zero for & from zero
to infinity. However, near-linear phase IIR filters do exist.
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Linear phase filters allow us to remove considerations of the phase response in our
design process. As we have seen with linear phase FIR filters, the approximation problem
is real-valued and thus is relatively simple to solve. Since IIR filters cannot have exact
linear phase, its design is therefore more complex. The equations that need to be solved
are generally non-linear. Complex optimization techniques are needed in this case. Most
of the common design techniques assume that the phase response is not important and
only approximate the magnitude response.

If phase response is not important, then for the same magnitude response
specifications, the required order for IIR filter is normally lower than that required for
FIR filters. This is a definite advantage since a lower order implies a lower computational
cost and a shorter delay.

Review of classical analog filter

Analog filter approximation has been studied very extensively in the past. There is a vast
amount of knowledge accumulated. One of the most successful approaches to IIR digital
filter design is to make use of this knowledge base. The design approach is illustrated in
Figure 7.1.

Digital Filter . Analog Filter
Specifications " Specifications
1
|
I
I P Analog Filter
I b Design Methods
I
I
Y A
Digital IR « Analog
Filter Transformation Filter
Figure 7.1

1IR filter design approach

The digital filter approximation problem is translated to an equivalent analog filter
approximation problem. This analog filter design problem is then solved using well-
known techniques. The resulting analog filter impulse response is then properly
transformed into a digital one, thus giving us the digital filter transfer function and the
filter coefficients.

Therefore in this section we shall review the most common analog filter
approximation techniques. Four approximation functions are considered standard:
Butterworth, Chebyshev, inverse Chebyshev and elliptic functions. They are presented in
terms of a normalized low-pass filter. The low-pass filter can then be transformed to high-
pass or band-pass if necessary.
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7.2.1

Butterworth function

The magnitude-squared function of the Butterworth approximation is

2 1
H(o)| =——,
| | 1+caw”
for an n-th order filter. The constant ¢ determines at which frequency ® the transition of
the passband to stopband occurs. For normalized Butterworth filters, this point is at @ = 1
and so ¢ = 1. This frequency is also referred to as the cut-off frequency. Figure 7.2 shows
the magnitude responses of several Butterworth filters of different orders.
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Figure 7.2
Magnitude responses of Butterworth filters

Butterworth filters are sometimes called maximally flat filters because the response at

both ® =0 and ® = o are completely flat (or horizontal). At these frequencies, the
Butterworth response is very close to the ideal. This flat passband and stopband response
is achieved at the expense of the transition bandwidth, which is considerably larger than
the other classical approximations. The roll-off from the passband to the stopband is
relatively slow and the phase response near the cut-off frequency is non-linear. At other
frequencies, the phase response is smooth.

Given the magnitude-squared function, the transfer function of a Butterworth filter can
be found by standard procedures, which we shall not dwell on. The most important part of
a Butterworth filter design is to determine the order of the filter required satisfying the
specifications. Once the filter order is determined, the filter coefficients can be found by
calculations or by simply looking up tables. Some good references on analog filter
approximation are listed in the last section of this chapter.
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(dB)

Magnitude Response, |H(w)|

v

Figure 7.3
Typical specification of the magnitude response

A typical specification on the magnitude response of a filter to be designed is shown in
Figure 7.3. The order of the required Butterworth filter is given by

0> log, M InM

" log, Q@ InQ
where
=2
@
1 00.1[(S _ 1
M=o
and K, K, is in decibels (dB).
Example 7.1
Determine the order of a Butterworth filter that meets the following specifications:
, = 1 rad/s
o, = 1.3 rad/s
K,=22 dB
K,=3.0103 dB
Solution:
Using the above equations:
1.3
Q=—=1.3
1.0

/ 107 -1

5 In(12.5495)
In(1.3)

=9.6419
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7.2.2

So we need at least a 10th order Butterworth filter. The filter response and the
specifications are shown in Figure 7.4.
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Figure 7.4
10th order Butterworth filter response

Chebyshev approximation

The Butterworth filter, while possessing some desirable properties, does not provide a
sufficiently good approximation near the passband edge. The roll-off from passband to
stopband is also relatively gradual. Hence for filters that have a narrow transition band, a
very high order Butterworth filter is required.

If the application can tolerate some ripples in the passband, the Chebyshev
approximation will overcome some of the problems associated with Butterworth filters
stated above. The magnitude-squared response of Chebyshev filters has the form
1

1+ CH (0)

where Cy(®w) is an N-th order Chebyshev polynomial and € is a parameter that is
associated with the size of the ripples. Figure 7.5 shows the magnitude response of 3
Chebyshev filters of different orders but the same €.
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Figure 7.5
Magnitude responses of Chebyshev filters
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We have already encountered Chebyshev approximation in FIR filter design in the
previous chapter. The N-th order Chebyshev polynomial is given by

C (w)=cos(ncos' @  for 0< w<1

Cn(a))=%|:(w+\/E)n+(a)—M)n:| for w>1

Alternatively, these polynomials can be defined recursively as
C(o=o0
C,(0)=2w -1
C,u(®=24C,(0)~C,,(0)

Figure 7.6 plots some of these polynomials for -1 <o <'1.
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Figure 7.6

Chebyshev polynomial functions
These polynomials have the properties that
0<ClHw)<1 for 0< w<1

Clw)=1 for w=>1

That is, they oscillate between +1 and —1 for —1 <®< 1 and increase monotonically
outside this interval.

As with FIR filters, the Chebyshev approximation minimizes the maximum error over
the passband and is optimal in that sense. The order N of the filter determines the
transition bandwidth and the number of oscillations within the passband.

Design of Chebyshev filters involves the determination of both the order NV and the
parameter £ We shall refer to Figure 7.3 as the generic specifications for the low-pass
filter. The procedures are as follows:

The maximum allowed passband variation is absolute value d or in decibels K,

d=1-10""

Calculate € from d or a.
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_ 2
K,=10log(l+€")

d=1-
Vi+g®
2d -d’ 1 1Ko /10
Nicaare VO
The order N of the filter is determined using the formulas
Q=2
@
105 —1
M = 100‘”(0 _ 1
Ne cosh™ M
cosh™ Q
Example 7.2
Determine the Chebyshev filter that satisfies the low-pass filter specifications:
o, = 1 rad/s
o, = 1.3 rad/s
K,=22dB
K,=3.0103 dB

which is the same as in the example for Butterworth filter design in the previous example.
Solution:
By substitution of the appropriate numbers into the design formulas, we have

Q=13
M =12.5495
-1
s Cosh 12,5495 32212

cosh”1.3  0.7564

Thus the minimum order of the Chebyshev filter is 5 with a passband ripple of about
3 dB. The filter response and constraints are shown in Figure 7.7.
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Figure 7.7
Filter response
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Inverse Chebyshev approximation

An alternative to the Chebyshev approximation is the inverse Chebyshev approximation.
As the name implies, the frequency response behavior is inverse to the Chebyshev
approximation. An inverse Chebyshev filter has a flat passband and ripples in the
stopband.

Inverse Chebyshev Filter Responses
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Figure 7.8
Inverse Chebyshev filter responses

The magnitude-squared responses of several filters with different orders are shown in
Figure 7.8. The magnitude-squared function is given by

»  £CI(1/ o)
[# (o) T 1+€CX 1/ o)

for an N-th order filter.
The design procedures are similar to that for Chebyshev filters except the formulas are
slightly different. The design formulas are given below:

1
K =10log| 1+—
= 10teg{1+7

1
10%'% —1

cosh™ \/(100-“% ~1)/(10"% ~1)

V= cosh™ (l/a%)
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Example 7.3
Determine the order of an inverse Chebyshev filter that satisfies the following
specifications:
o, = 0.5 rad/s
o, =1 rad/s
K,=0.5dB
K,=18dB
Solution:

By direct substitution of the numbers into the design formula for N, we have
cosh™ 22.5589  3.8088
cosh™ 2 1.3170

A third order filter will be sufficient. Figure 7.9 shows the filter response and the
constraints.
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Figure 7.9
Third order inverse Chebyshev response
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Elliptic function

For any set of low-pass filter specifications as shown in Figure 7.3, the elliptic filter is the
most efficient in the sense that, compared to the previous three filter approximations, it
requires the lowest order filter. It has equal ripple in the passband and in the stopband.
The magnitude response of some elliptic filters is shown in Figure 7.10.

Elliptic Filter Responses
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Figure 7.10
Elliptic filter responses

The design of elliptic filters is considerably more complex compared with the
procedures for Butterworth and Chebyshev filters. Its magnitude-squared response is
given by

which has the same form as a Chebyshev filter except that the function R, is now a
rational function with numerator and denominator polynomials. This rational function is
called the Chebyshev rational function.

Mathematically it is based on what are called Jacobian elliptic functions and is the most
complex of all the approximation functions we have discussed. Therefore we will not go
too deeply into the theory and just provide the design formulas so that the order of elliptic
filters can be determined.
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Again, we refer to the generic low-pass filter specification in Figure 7.3. To determine
the filter order N, first we calculate the quantities

Q=2
@
100.11(S _1
M = 100.1](0 _1

C(M)= ! 2(1+ 12]
16 M 2M
D(Q)zﬁ

2(Va+1)

The filter order is given by
N2 F,(C)F,(D)

where
|
F,(x)=—In(x+2x" +15x")
T
Example 7.4

Determine the elliptic filter order required for the specifications given in the examples in
sections 7.2.1 and 7.2.2.

Solution:

From the previous examples, we know that
Q=13
M =12.5495

Now we apply these quantities to the above design formulas to get
C(M)=0.0003981
D(Q)=0.03275

F,(C)= 71[ In(0.0003981) = —2.4920

F.(D)= Lin [0.03275+2(0.03275)° | =-1.0883
/4
N >(-2.4920)(—1.0883)=2.7119
Thus a third order elliptic filter will satisfy these specifications whereas we need a 10th

order Butterworth and a 5th order Chebyshev filter for the same specifications. The
responses of these three filters are plotted in Figure 7.11.
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3rd Order Elliptic Filter
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Figure 7.11
Comparison of several filters

Note that elliptic filters are also called Cauer filters and rational Chebyshev filters.

lIR filters from analog filters

One of the most efficient ways of designing IIR digital filters is via a corresponding
analog filter. This approach is illustrated in Figure 7.1. The magnitude response
specifications of the digital filter are translated to that for an analog filter. This analog
filter is designed using the approximation methods discussed in the previous section. A
suitable transformation then converts the analog filter into a digital IIR filter.

Most of the above steps are straightforward. The only step that requires more thought is
the transformation from the analog filter to digital filter. A number of different methods
have been proposed. We shall discuss two most common ones. They are called impulse
invariance and bilinear transformation.

Impulse invariant method

Let H,(®) be the transfer function of the analog filter that has been designed. The impulse
response /,(f) of this filter can be obtained through Fourier transformation. The idea
behind the impulse invariance method is that the impulse response of the digital filter 4(n)
is a sampled version of 4,(¢). Thus

h(n)=h,(nT)

where T 'is the sampling period.

As we have discussed in Chapter 2, the magnitude spectrum of a sampled signal is a
periodic continuation of the original spectrum of the analog signal. So the magnitude
response of the digital filter is periodic with a period of f;=1/T. It can be expressed
mathematically as
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J(o— an)]
T

Even though the impulse invariant method preserves the shape of the impulse response,
the frequency response may be significantly different from what we expected. This is
because the stopband magnitude response does not drop to zero at ® = w. This means that
H(w) will be an aliased version of H,(®) because of the periodic nature of the response.
This is illustrated in Figure 7.12.
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Figure 7.12
Effect of sampling an analog response

The stopband attenuation of the aliased version of H,(®w) may not be sufficient to
satisfy the original filter specifications. This will render the design useless. So we have to
make sure that the aliased parts of H(w) are small enough. The passband is also affected
but the effect is usually much smaller than for the stopband. A sufficiently high sampling
rate can be used to overcome this problem, the higher the sampling rate, the smaller the
error introduced by aliasing.

For this reason, Butterworth and Chebyshev filters are more suitable if impulse
invariant method is used. This is because both these filters do not have ripples in the
stopband and the response in this region is monotonically decreasing.

The analog filter transfer function can be expressed in terms of partial fractions.

YK
H (=) —

i=1 jw_ S;

where s; is generally complex-valued. In fact, it is usually given in terms of a variable s:

H(s)=3Y 2

i=0 § —S;

For those readers who are familiar with laplace transformation, the variable s is usually
used in the laplace transform domain. Those who are not familiar with laplace transform
can simply regard s as a complex variable which is called the complex frequency
variable. The usual frequency response in terms of the real frequency variable ® can be
obtained from any function H(s) by using the following substitution:

s=jw

Without going into the details of the mathematics, we shall simply state the relationship

between the transfer function of the digital filter H(z) and that of the analog filter H,(s):

H(z)= Z—Kf

T _-1
=1-e"z
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Thus the coefficients of the IIR filter can be obtained directly from H,(s) without
having to compute the impulse response first. The relationship between H(z) and the filter
coefficients can be found in section 7.1.

K, K,

_ es]TZ—l SZTZ—I

==y I—e
Characteristics of impulse invariance designed filters are:
e The IIR filter is stable if the analog filter is stable.
e The frequency response of the IR filter is an aliased version of the analog filter.
So the optimal properties of the analog filter are not preserved.
e The cascade of two impulse invariance designed filters is not impulse invariant
with the cascade of the two analog filter prototypes.
o The step response (the response of the filter to a unit step input) is not a sampled
version of the step response of the analog filter. Therefore, if the step response
of the final filter is important, then the impulse invariant method may not be a
suitable choice.

Example 7.5
A second order Butterworth filter has the following normalized transfer function:

1

H(s)=———
() 7 ++/2s5 +1

Design an IIR filter based on this analog filter using the impulse invariant method.
Solution:
First expand H(s) in terms of partial fractions:

H(s)=—2 4 K
s—S S5,
1 .

5) :—ﬁ(l—ﬂ
1 .

8 =—$(1+J)
J

K1=—$
J

Kz :ﬁ

Then
K K
H — 1 2
(2) l—e g ™ !

Using a normalized sampling period of 7=/, we have

B 0.2265z""
1-0.7497z"' +0.2431z

The frequency response is obtained by substituting

H(z)

— plo

z=e€
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7.3.2

and is plotted in Figure 7.13.
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Figure 7.13
Frequency response of filter design using impulse invariant

Bilinear transformation method

Bilinear transformation is a frequency domain method of converting the analog filter
transfer function H(s) into a digital one H(z). The transformation is performed by a
change of variables

2 z-1

: T z+1
It is called bilinear because both the numerator and denominator of this transformation
equation are linear. This transformation is reversible in that H(s) can be obtained from
H(z) by the substitution

_2/T+s

‘ 2/T—s
In order to understand the effects of this transformation let " and ® denote the analog
and digital frequencies respectively. The frequency response of the digital filter can be
obtained from H(z) by the substitution

— ploT

z=e

and that of the analog filter by the substitution
s=jd

into H(s). The analog and digital frequencies are related by

dzztan(ﬂ]
T 2
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which is plotted in Figure 7.14.
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Figure 7.14
Frequency warping

This figure shows that the relationship between ®”and w are approximately linear for
small values of ® but becomes increasingly non-linear as ® increases. This non-linearity
leads to a distortion (or warping) of the digital frequency response.

The figure also shows three passbands in analog frequency that is of constant width and
is regularly spaced. After applying the bilinear transformation, the passbands in digital
frequency are no longer of equal width and are not equally spaced. This effect can be
overcome by pre-warping the analog filter before applying the bilinear transformation.

Pre-warping or scaling of the analog frequency scale is done by replacing s with K
where K is some constant. Since bilinear transformation is itself a change of variables, the
two steps, pre-warping and bilinear transform, can be performed in a single step. The pre-

warping required is
2 T
u, =—tan 2L
T 2

where u, is the critical frequency of the analog filter and @, is the desired critical
frequency of the digital filter.
Combine the pre-warping with bilinear transformation, we have

and so
_ uyT
2tan(@T/2)
The bilinear transformation with pre-warping is therefore given by
u, z—1
S =
2tan(@T/2) z+1
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7.3.3

Example 7.6
The normalized third order Butterworth low-pass filter has transfer function given by

H(s)=——
(s+D(s"+s+1)

Design an IIR low-pass filter with a passband edge at 200 Hz based on this analog filter
response. Let the sampling rate be 1000 samples per second.

Solution:

The passband edge of the analog filter is

u, =1

The sampling interval is T = 0.001 seconds. Therefore, with a passband edge at 200 Hz,
the total pre-warped bilinear transformation is

s=1376382 221
z+1
The digital transfer function is
0.09853116(z+1)’

H(z)=
(z—0.158384)(2* —0.4188562 +0.355447

0.09853116(1+z"")’
(1—0.158384z" )(1—0.418856z" + 0.355447z-2)

The filter coefficients can be readily obtained by expanding H(z) and comparing it with
the expression given in section 7.1.
Characteristics of the bilinear transformation are summarized below:
¢ Provided that the analog filter is stable, the resulting digital filter is guaranteed
to be stable.
e The order of the digital filter is the same as the prototype analog filter.
e Optimal approximations to the analog filter transform into optimal digital
filters.
e The cascade of sections designed by the bilinear transformation is the same as
that obtained by transforming the total system.

The last characteristic is what makes bilinear transformation more useful than the
impulse invariant method. The cascade of sections that are of lower orders (typically first
and second order sections) are important for the realization of higher-order IIR filters to
maintain numerical stability. This point will be discussed in more detail in the next
chapter.

Frequency transformation

So far we have only considered low-pass filter designs. Designing high-pass and band-
pass filters requires a transformation to be performed on the low-pass filter. Two
approaches can be used for IIR digital filters. They are illustrated in Figure 7.15.
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Figure 7.15
Frequency transformation approaches for IR filters

In the first approach, the analog prototype filter is transformed to be appropriate high-
pass or band-pass analog filter. Then this analog filter is turned into an IIR filter by
bilinear transformation. Alternatively, the analog low-pass filter is first converted to a
digital low-pass filter. The digital high-pass or band-pass filter is then obtained by a
spectral transformation of the digital low-pass filter.

Transformations for the analog filter

The following substitutions should be made for the analog filter transfer function H(s).
e Low-pass to low-pass
If we have a low-pass filter with cut-off frequency at ®, and we wish to
convert it to another low-pass filter with a different cut-off frequency ,’, then
the transformation

%

’

@

N d

S

1s needed.

e Low-pass to high-pass
To convert a low-pass filter to a high-pass filter with cut-off frequency ,’,
we need the transformation

’

9%

S

N d

e Low-pass to band-pass
If the low-pass filter has a cut-off frequency of 1 rad/s, then it can be
converted to a band-pass filter by the transformation

s+ aqq
s(a,—q)

where @, and , are the lower and upper cut-off frequencies of the passband
respectively.

N d



164 Practical Digital Signal Processing for Engineers and Technicians

e Low-pass to band-reject
A band-reject filter can be obtained from a low-pass filter with a cut-off
frequency at 1 rad/s by the transformation

se—s(zaﬁ_%)
S +cq,cq

which is similar to the low-pass to band-pass transformation.

7.3.3.2 Transformations for the digital filter

The conversion from low-pass to other types of filters for the digital transfer function
H(z) is accomplished by replacing z™' by a suitable rational function g(z ™).
e Low-pass to low-pass

where

L sin[(c% —afp)/2]
sin[(a{) +a$p)/2:|

and m,, ,” are the original and new cut-off frequencies respectively.

e Low-pass to high-pass

4 z +a
% —
1+az

where

cos (a?) —afp)/2
cos (cq, +a5p)/2

e Low-pass to band-pass

-2 -1
-1 z —az a,
z —>—

-2 -1
a,z " —az +1
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where

2aK

a=-
K+1
K -1

a,=———
K+1

~ cos[(cq, +(q)/2:|

~cos[ (@ -a)/2]
K :cot(% )tan%

The cut-off frequency of the low-pass filter is at ..

e Low-pass to band-reject

-2 -1
O z —az a,
z —

-2 -1
a,z —az +1

where

_ 2o
K+l
1-K
a,=———
1+ K

_ cos[(cq, +(q)/2:|

“= cos[(a{l - @)/2]

K =tan (% )tan Q

2

The cut-off frequency of the low-pass filter is at ..

Direct design methods

The design methods based on transformation from analog filters are appropriate only if
the classical approximations (Butterworth, Chebyshev, etc) provide adequate solutions.
The desired filter characteristics are necessarily simple. If filters with arbitrary responses
are needed, then these transform methods cannot be applied.

There are a number of existing methods that design the digital filter directly. However,
some of these methods are mathematically much more involved. We shall attempt to
describe two of them in this section.

Frequency sampling method

The concept of the frequency sampling method for design IIR filters is basically the same
as that for FIR filters. The frequency response of the IIR filter will pass through the given
samples of the desired response. The difference here is that since IIR filters cannot have
linear phase, the samples have to be obtained from both the magnitude and phase
responses.
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7411

7.41.2

Calculation of IIR filter response

First, let us consider how the frequency response of an IIR filter can be calculated. We
know that L equally spaced samples of the frequency response H(w) can be
approximately calculated from a length-L DFT of the impulse response A(n). But this
direct calculation requires that the infinitely long A(n) be truncated to a length of L
samples.

If we have the IIR filter transfer function, then a better approach is to use DFT to
calculate the numerator and denominator separately. Recall that the transfer function is
given by a ratio of two polynomials

Y b(n)z™"
H(z)=20——

Z a(n)z™

DFT of the numerator of H(z) is performed by first appending L-M zeros to b(n)
followed by a length-L DFT. For the denominator, L-N zeros are appended to a(n) before
performing the transform. The sampled frequency response is given by

H, = H( 2k )Z DFT{b(n)} _ B,
L DFT{a(n)} A,

where the division is performed term by term for each of the L values of the DFTs as a
function of £. Since the order of IIR filter is usually low, direct DFT computations are not
computationally expensive.

Frequency sampling design

For the purpose of design, we can choose the number of equally spaced samples to be the
same as the number of unknown coefficients, i.e.

L=M+N+1

for (M+1) numerator coefficients and N denominator coefficients (ao=1).
The equation

can be expressed as

B, = HkAk

In other words, the sequence {b(n)} can be obtained by the cyclic convolution of the
sequences {/(n)} and {a(n)} where {h(n)} is the length-L inverse DFT of {H,}.

From Chapter 3, we understand that cyclic convolution can be expressed in matrix
form
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The lower L-M-1 equations are

0 /- hy - hyn || 4
= : [+
0 h By 5 o B || a9
This matrix equation can be denoted in more compact form by
0=h,+H,a
or equivalently by
h, =-H,a

where H, is a (L-M-1) by N matrix, A, is a vector of length (L—M-1) and a is of length V.
If L=N+M+1, then the matrix H, is square. Provided H, is non-singular, a can be solved
exactly using this set of equations.

The upper M+1 equations are

by hy B f| 1
by, hy, (N | L
or more compactly as
b=Ha

Since a has already been evaluated from the previous step, b can be easily calculated.

This method is relatively simple and can be applied to arbitrary frequency responses.
The main disadvantage is that we have no control over the stability of the designed filter.
It also suffers the same problem as the corresponding method for FIR filter design, which
sometimes gives poor approximation between the frequency sample points. A solution is
to increase the number of samples, which makes the solution of the system of
simultaneous equations more difficult to arrive at. The final design is also very sensitive
to the choice of frequency sample points.

Least squared equation error design

The above frequency sampling design method can be modified to allow us to minimize
the equation error. This converts the interpolation problem into an approximation
problem.

If number of frequency samples used, L, is made to be larger than the number of
coefficients to be determined. Therefore the matrix H, will not be square and we cannot
solve the equation

h,=-H,a

for the vector a. However, by introducing a length-L error vector e, we have

NECOES

0
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and the above equation then becomes

h,—e=-H,a

Without going into the details of the mathematics, we shall simply state that the solution
that minimizes e is given by

a=-[HIH,| Hlh,

provided the equations are not singular. In practice, this equation is not directly used for
solving for a since the equations are often numerically ill conditioned. Special algorithms
are commonly used.

With the values of a solved, b can be obtained in the same way as for the frequency
sampling method:

b=H,a

This makes the upper M+1 terms in e zero and the total squared error a minimum.

Note that minimizing the equation error is different from minimizing the squared error
of the frequency responses. The former is based on time-domain equations while the
latter is a frequency domain method. In general, with IIR filters, minimizing the squared
error of frequency responses leads to non-linear equations. However, minimizing the
equation error only requires the solution to linear simultaneous equations. If the desired
frequency response is close to what can be achieved by an IIR filter, then both error
minimization methods will lead to similar solutions. But if the specifications are not
consistent with the IIR filter order and characteristics, then large errors will result.
Sometimes the resulting filter may even be unstable.

Since it is not easy to set appropriate frequency responses, especially phase responses,
for IIR filters, trial-and-error is sometimes the best option. In this case, a good design
environment will allow the designer to experiment different specifications and designs
efficiently.

Example 7.7

A sixth order IIR low-pass filter is designed using the least square equation error method.
41 frequency samples are used. The desired response has a magnitude of 1 for 0 to 0.4n
and the magnitude is zero for frequencies larger than 0.4mw. The phase response was
adjusted by trial-and-error to give a good final magnitude response. The filter magnitude
response is shown in Figure 7.16.
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Figure 7.16
Sixth order IIR response designed using LS method

FIR vs lIR

At this point it would be useful to summarize the relative merits of FIR and IIR filters.
Some of the advantages have been discussed in this and the previous chapter; others will
be covered in the following chapter on realization and implementation.

e FIR filters can achieve exact linear phase. This means that the filter will not
introduce any distortion in the phase of the signal. Linear phase response is
important for applications in data transmission and image processing, for
instance. IIR filters generally have non-linear phase response, especially near
the band edges.

e FIR filters are guaranteed to be stable while no such guarantee exists for IIR
filters.

e [IR filters are more suitable if sharp cut-off (small transition bandwidth) is
required. The order of FIR filter needed for sharp cut-off can be very high. A
high order filter also implies long delays. The implication for implementation is
that higher order filters have more coefficients and therefore require more
storage and are computationally more expensive. It should be emphasized that
DSP chips are optimized to perform operations required by FFT and
convolutions and thus can implement FIR filtering very efficiently.

e It is relatively easy to design FIR filters with arbitrary frequency responses.
However, analog filters can be readily transformed into equivalent IIR digital
filters with similar specifications. This is an advantage for designers who want
to convert existing analog applications to digital. FIR filters have no analog
counterpart.

e [IR filters are more susceptible to round-off errors and quantization errors than
FIR filters.

Therefore, if we need a sharp cut-off filter with a high throughput (low delay), the IIR
filter is more suitable. It should be designed using analog elliptic approximation to give
fewer coefficients. On the other hand, if exact linear phase is very important, use FIR
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7.6

filters. FIR filters are the most common choice if the number of coefficients is not too
large because of their superior numerical properties.

To probe further

IIR filter design is substantially more difficult compared with FIR filter design. To
formulate the design problem and to solve it requires substantially more mathematical
background. This is one of the reasons why we have not covered IIR filter design in as
much detail as for FIR filters. The interested reader is encouraged to pursue the subject
further by consulting the following excellent classic DSP textbooks:
e L.R. Rabiner and B. Gold, Theory and application of digital signal processing,
Prentice-hall, 1975.
e A.V. Oppenheim and R.W. Schafer, Digital signal processing, Prentice-hall,
1975.
e J.G. Proakis and D.G. Manolakis, Digital signal processing: principles,
algorithms and applications, second edition, Maxwell Macmillan, 1988.
e A. Antoniou, Digital filters: Analysis, design and applications, second edition,
McGraw-Hill, 1993.
e More advanced design techniques continue to appear in the literature. The
reader should consult IEEE transactions on signal processing for the latest in
digital filter design.



Digital filter realizations

After the coefficients of a digital filter have been determined, the approximation problem
is solved. The next stage of the filter design process is called realization or
implementation of the filter. When we talk about realization here, we are talking about a
structure that relates the input and output of the filter, illustrated by block diagrams. They
are called filter structures. The blocks within these block diagrams can be implemented
either as a piece of digital hardware or as a program to be executed by a DSP chip.

We shall describe several filter structures. Considerations for the choice of a filter
structure include ease of programming on a particular DSP chip, and the regularity of the
VLSI (very large scale integrated) design. Some structures are more sensitive to
(quantization) errors in the coefficients. In some cases, such as IIR filters, the stability of
the filter may depend on an appropriate realization.

8.1 Direct form

8.1.1 IIR filters

Consider a simple second order IIR filter with transfer function
B(z) _ b’ +bz" +b,z7
A(z) l+az ' +ayz”

H(z)=

The input and output samples are related by
y(n)=-a,y(n-1)—a,y(n—2)+byx(n)+bx(n—1)+b,x(n-2)

Direct form realization is simply a realization based on the direct implementation of
this difference equation. This is illustrated in Figure 8.1.

In the figure, the z' symbol represents the delay of one sample. In actual
implementations, it would represent shift registers or a memory location in RAM. The
three basic elements of the structure are illustrated in Figure 8.2.
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Figure 8.1
Direct form realization of the IIR filter

x(Nn)

x(n-1)

N
>z |

Delay of 1 sample period

x(Nn) ‘/-I-\ x(n):— w(n)

!

w(n)

Adder / Accumulator

!

x(N) ‘{ k x(n)
/ g

Multiplier

Figure 8.2
Three basic elements in the realization

This structure involves 4 unit delays, 5 multiplications and 4 additions. Notice that the
right-hand side of the equation consists of two main operations: multiplications and
additions. Each sample of the output y or input x is multiplied by a coefficient. The result
is then stored or accumulated for addition. We call these two basic operations of the
direct form structure multiply-and-accumulate (MAC).

Figure 8.1 also illustrates the two parts of the filter structure. All the numerator terms
shown on the left-hand side of the adder block are the feed-forward elements. The
denominator terms that depend on the previous output samples are feeding back. This
direct form is called direct form I or simply direct form.
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Canonical form

There is also a direct form II structure. It is also known as the canonical form. To see how
we can arrive at a different direct form structure, consider the difference equation of the
second order filter. The terms on the right-hand side of the equation is being regrouped as

y(n)= [box(n) +bx(n—=1)+b,x(n— 2)] + [—aly(n - —a,y(n—- 2)]

x(n)

——>» B(2)

Y
\4
>
—~~
N
=

H.(2) i H.(2)

Figure 8.3
Alternative direct form structure

This regrouping is depicted in Figure 8.3. There are now two adders in the diagram
instead of one as in Figure 8.1. We can view this structure as a cascade of two filters: one
with only feed-forward terms and one with only feedback terms. The digital transfer
functions of these two filters are then

H,(z)=B(z)
1
H,(z)= A(2)

so that their cascade is

1
A(z)

H,(2)- H,(2) = B(2)- =H(z)

which is the original transfer function.
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The order of the two filters can be interchanged without affecting the overall transfer
function since they are both linear systems. Figure 8.4 depicts the cascade of the filters
with the order interchanged.

A4
I
N

Figure 8.4
Interchanging the cascade

The output of the filter Hy(z) is now the input to the filter H,(z). The output of H,(z),
denoted by w(n), is being delayed in the same way by the two filters. Therefore we do not
need two separated sets of delays; they can be merged into one as shown in Figure 8.5.
This is the canonical form.

b,

x(n) y(n)

Figure 8.5
The canonical form
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It is not difficult to see that the canonical form implements the original IIR difference
equation. We have, from the first adder on the left,

w(n) = —i aw(n—k)+x(n)

=—aw(nh—1)—a,w(n-2)+x(n)

The output of the second adder is

y(n)= Zka(n—k)

=byw(n)+bw(n—1)+b,w(n—-2)

Substituting the expressions for w(n), w(n—1) and w(n—2) into the above equation, we
have

y(n)=b, [—alw(n - —a,w(n- 2)] +b,x(n)
+b, [~a,w(n—2)—a,w(n—3)]+bx(n—1)
+b, [—aw(n—3)—a,w(n—4)]|+b,x(n—2)

DM

b,x(n—k)

>~
Il

—-a, [bow(n -D+bw(n—-2)+b,w(n— 3)]
—a, [byw(n—2)+bw(n—3)+b,w(n—4)]

= ibkx(” —k)—ay(n-1)—a,y(n—2)

which is the original difference equation.
Although we have been using the second order IIR filter as example, the structures can
easily be generalized to filter transfer functions of higher orders.

Example 8.1
Given the digital filter transfer function

_ 2-3z"'4477
1402z -0.3z7+0.5z"*

H(z)

Draw the direct form I and II realizations of this filter.
Solution:
See Figures 8.6 and 8.7.
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2
x(n) :{/ ~/D > y(n)
[z]
[z]
[z]
Figure 8.6

Direct form [ realization

x(n) y(n)

Figure 8.7
Direct form Il realization

8.1.1.2 Relative merits

The canonical form is commonly used because of the following properties:
e Requires a minimum of storage space
¢ Good round off noise property.

The disadvantage is that it is susceptible to internal numeric overflow. The input to the
filter can be scaled to avoid overflows. On the other hand, the direct form I structure does

not require scaling because there is only one adder. Thus if scaling is not desirable, direct
form I realization is preferred.
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8.1.1.3 Transposed structures

An alternative structure based on the canonical form can be obtained by a transposition.
The result is a transposed structure as shown in Figure 8.8.

x(n) y(n)

P
N

Figure 8.8
Transposed canonical structure

It is obtained by:
e Reversing all the signal flow directions;
e Change nodes (connection points) into adders and adders into nodes
e Exchanging the input and output.

y(n) x(n)

Figure 8.9
Transposed direct form [
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8.1.2

A transposed direct form I structure can also be obtained in the same way. The result is
shown in Figure 8.9. In both cases, the transfer function remains the same after
transposition.

The finite wordlength effects of the original and transposed structures are different.
This again illustrate that, based on the same equations, different structures can be derived
that have implications on the implementation.

FIR filters

For an FIR filter, the denominator polynomial is simply equal to 1, i.e. A(z)=1. So only
the feed forward elements exist. It is usually drawn in a slightly different way as shown in
Figure 8.10.

— 0 = X(0-2)
"LZ | LZ_]

h(0) \ 7 h(1) h(2)

»y(n)

Figure 8.10
FIR filter structure

This corresponds to the FIR equation we have been using for a second order filter

y(n) = h(m)x(n—m)

m=0
where A(n) is the impulse response or the filter coefficient. Another name for the direct
form structure for FIR filters is the transversal structure or the tapped delay line structure.
For linear phase FIR filters, the filter coefficients are symmetric or anti-symmetric. So
for an N-th order filter, the number of multiplications can be reduced from N to N/2 for N
even and to (N+1)/2 for N odd. Figure 8.11 shows a direct form realization of an odd
order linear phase FIR filter that takes advantage of this saving.

Figure 8.11
Direct form realization of odd order linear phase FIR filter
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It is interesting to note that a transposed FIR direct structure can also be obtained using
the method discussed for transposing IIR structures. The resulting structure for a second
order filter is shown in Figure 8.12.

x(n)

h(2) K‘

Figure 8.12
Transposed FIR direct structure

Cascade form

A general transfer function H(z) of order N>2 can be factorized into K second order
functions so that

where K is N/2 for even N or is (N+1)/2 for odd N. We may view each second order
section with transfer function Hj(z) as a subsystem of the whole system H(z) and so the
full system is made up of a cascade of these subsystems as depicted in Figure 8.13.

X(n)—> H,(2) Hi(z) b—— - = — H.(2) —>y(n)

1\ J

A 4

Y
H(z) = Hy(z)H.(2)...H.(2)

Figure 8.13
Cascade of transfer functions

Note that when we say ‘second order section’ we really mean ‘up to second order
section’. Some of the b;, and a; can be zero. So the actual numerator and denominator
polynomial orders can be less than 2K. Also, the coefficients of each section are real-
valued.

Each second order section can be implemented using direct, canonical or transposed
forms we discussed in the previous section.
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8.2.1

8.2.2

FIR filters
For FIR filters, the transfer functions of the second order sections have the form
H(z)=b,+b,z"' +b,z”
since A(z)=1. The constant term of the complete filter transfer function is given by
by = byybyy--by

It may be equally distributed to each section or assigned to a single section.
To see how these second order transfer functions are obtained, we shall first factorize
H(z) into its root factors.

H(z)=b, l+ﬁz_l +b—zz_2 +---+b—NZ_N
b, b, b,

=By (1=rz " )1=rz?) (-2 ™)

Some of the roots r; are complex-valued while others are real-valued. The real-valued
roots can be combined in pairs or left as they are. The complex-valued roots will always
occur in complex conjugate pairs. For example, if | is a complex root, then

.
nL=n

the complex conjugate of 7, must also be a root. When we form the second order
sections, it is desirable to group pairs of these complex conjugate roots so that the
coefficients b;, and b;, are real-valued.

(=rz)A=1 2" =1=(r+1)z" 415727
=1-2Re(r)z"' + |r1 |2 z7

Here the real part of r, is necessarily real and the magnitude squared of r, is also real-
valued.

For exact linear phase FIR filters, some computational savings can be achieved by
using fourth order sections with symmetrical coefficients in each section.

_ -1 -2 -3 -4
H(z)=c¢y+c z +cyz  +cyz +z

By doing this, the number of multiplications for each section is reduced by half.

IR filters

Second order sections of the IIR transfer function can be formed in a way similar to that
for FIR filters. In this case, we have two polynomials B(z) and A(z). These two
polynomials can be factorized into second order (quadratic) terms separately. Each
quadratic term from the numerator can be paired with a quadratic term from the
denominator to form a second order section.

Note that the second order transfer functions Hi(z) formed are not unique. But the
overall transfer function H(z) remains the same. In practice, the pairing and ordering of
the second order sections may affect the numeric accuracy of the resulting filter. The
internal multiplication in each section may generate a certain amount of round-off error.
This error is then propagated to the next section. The round-off error of the overall output
is different for each combination of second order sections. Naturally we want to achieve a
minimum amount of round-off error. This is a difficult problem to solve. In practice,
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some trial-and-error would be needed. Fortunately, most IIR filters do not have a high
order so the number of possible combinations is not too large.

A rule of thumb is to pair the quadratic pairs with roots that are closest to one another.
Another one is to put the section with the denominator root having magnitudes that are
closest to one as the last section.

Parallel form

An alternative to cascade form for IIR filters is the parallel form. Here the transfer
function H(z) is expanded using partial fractions as

H(z2) =C+ZHk(z)

where
b
ay
A
H (z)=—"—
l-p,z

for an N-th order function. In this case, the individual subsystem transfer functions are
summed to form the overall transfer function. Thus the subsystems are connected in
parallel in contrast with the cascade form. This is shown in Figure 8.14. The whole IIR
filter now consists of a parallel bank of first order filters.

x(n) y(n)

Figure 8.14
Parallel form realization

Both Ay and pi can be complex valued. If py is complex, then its complex conjugate
will also appear. We can combine the pair of complex conjugate terms to avoid having to
deal with complex numbers. So the transfer function of the subsystems are second order
sections and can be implemented in the same way as discussed in the previous sections.
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H(z)=C+§k:Hk(z)

)
by +b,z

-1 -2
I+a,z +a,z

H,(2)=

where K is N/2 for even N and (N+1)/2 for odd N.
Note that in this case the numerator coefficient for z * in each second order section is zero.

The advantage of the parallel form compared with the cascade form for IIR filters is
that the ordering of the subsystems is unimportant since they are in parallel. Scaling is
easier as it can be carried out for each block independently. Furthermore, round-off errors
in each block are not propagated to the next block.

The cascade realization, however, is quite often still the preferred implementation
method. If the IIR filter is derived from classic analog filters using the bilinear transform,
then between 25% and 50% of the filter coefficients are actually simple integers (0, £1,
etc). This makes the computation a lot easier, especially if the processor is not very
powerful.

Example 8.2
Determine the cascade and parallel realizations of the IIR filter with transfer function

10(1—22_1 ](l—iz_l )(1+22_l)
H(z)=

T T

The cascade realization can be obtained by pairing the complex conjugate terms in the
denominator. The numerator terms can be paired in any way. One possible solution is:

l—gz_l
HI(Z)= 7 3
l—gZ_l +— =
1+§Z_1 -z
HZ(Z)Z 1
l—z"'+=27

with
H(z)=10H,(2)H,(2)

For parallel realization, we need to expand the transfer function in partial fractions. It has
the form
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The numerator constants are found to be
A4,=2.93
A4, =-17.68
A, =12.25-j14.57

They can be combined into second order sections as

—14.75-12.90z"" N 24.5+26.82z""
7 j
l-—z"+_—z

8 32

Obviously there are more coefficients in the cascade realization that are integers.

H(z)=

4 1 _
2 l—z"'+=27

8.4 Other structures

There are some more structures and forms by which FIR and IIR filters can be
implemented. We shall look briefly at some of them in this section.

8.4.1 Lattice structure

The lattice structure is most widely used in digital speech processing and in adaptive
filtering. To develop the lattice structure, let us consider a first order FIR filter. The
output of this filter is given by

y(n)=h(0)x(n)+h(l)x(n—-1)
=x(n)+o,(Dx(n-1)

Here we have assumed that A(0) =1 without loss of generality. The output can be
obtained by a single stage of a lattice structure as shown in Figure 8.15.

Figure 8.15
Lattice form realization

Notice that the lattice structure provides two outputs
Si(n) = x(n)+ K x(n—1)
g (n)=Kx(n)+x(n-1)

The first output fi(n) is the same as the output y(n) of the first order FIR filter if we
choose

K, =a (1)
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This parameter is called the reflection coefficient. It has the property that for a stable
filter.

K,|<1

Figure 8.16
Cascade of two lattice stages to form a second order filter

If we need a second order FIR filter, we can use two lattice stages as shown in Figure
8.16. The outputs at the second stage are

g, m)=K,fi(n)+g(n-1)

f(m)= fi(n)+K,g,(n—-1)
=x(n)+ K x(n—1)+K,[Kx(n—1)+x(n-2)]
=x(n)+K,(1+K,)x(n-1)+K,x(n-2)

The output f5(n) will be identical to the FIR filter output given by
y(n)=x(n)+o,(Dx(n-1)+o,(2)x(n—2)
if we choose
K, =0,(2)

_ o)
C140,(2)

1

The subscript to the coefficient ¢ indicates the order of the filter.

We can similarly extend this to an N-th order FIR filter by additional lattice stages and
choosing the correct values for the reflection coefficients. These reflection coefficients
have to be calculated recursively. If we denote the N-th order FIR filter equation as

y(n) =1+ A4y (z)
then we know immediately that
Ky =ay(N)

To obtain Ky_;, we need the polynomial Ay (z). So we have the following algorithm:
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For m=N -1 down to 1
begin

K, =0, (m)

o, (0)=1

for k=1 tom—1

begin

_ o, (k) — o, (m)og, (m —k)
R T

end

end

This algorithm is generally known as the Durbin-Levinson recursive algorithm.
A similar lattice structure can be derived for the IIR digital filter. If the numerator

coefficient of the IIR filter transfer function is equal to 1, then we have what is called an
all-pole filter. Figure 8.17 shows the lattice structure for an N-th order all-pole IIR filter.

W ) R N 0N ) y(n)

gu(n)

Figure 8.17
Lattice structure for IIR filters

Notice that we now have an upper path, which is a forward path, and a lower path,

which is a reverse path.
The more general IIR transfer function can be realized using a lattice-ladder structure

as shown in Figure 8.18.

x(n) o) fua(n) —— f(n) o) f,(n) o) fo(n)
fu(n)
gu(n)
4—
. (+
On
Figure 8.18

A more general IIR lattice filter
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8.4.2

8.4.3

8.44

8.5

8.5.1

The upper half is a lattice structure for the denominator polynomial and the lower half
is a ladder structure that realizes the numerator polynomial.

Lattice structures are generally less sensitive to coefficient quantization errors than the
direct forms. Inspecting the reflection coefficients can easily test the stability of the filter.

Wave digital filter

The wave digital filter structure is derived from analog lossless LC filters. There are a
variety of different types of wave digital filters with varying computational and storage
requirements. It is characterized by low sensitivity to coefficient quantization errors.

Generally speaking, the more complex the structure of the digital filter, the less
sensitive it is to coefficient errors. Wave digital filters are capable of operating with very
few bits for coefficient representation. If the number of bits available were at a premium,
then a complex structure would be needed to achieve the same level of accuracy.

Fast convolution

The fast convolution method applies to FIR filters. The FIR difference equation is in fact
a convolution between the input sample sequence and the filter impulse response
sequence. Instead of performing this convolution we can transform the two sequences
into the frequency domain by FFT. The two transformed sequences are multiplied
together and then the inverse FFT performed to obtain the output time sequence of the
filter. Both the impulse response and the input sequences must be suitably zero padded as
discussed in Chapter 4.

For high order FIR filters, the computational savings are quite substantial. This point
has already been discussed in some detail. The disadvantage is that there will be a
substantial delay between the instant when the input is presented to the filter and the
output is obtained. Some applications can tolerate this delay but others cannot.

Frequency sampling structure

The frequency sampling structure is another alternative for FIR filters. Instead of using
the impulse response /(n) of the digital filter, samples of the desired frequency response
D(w) are used. For FIR filters with a narrow passband, most of the samples of the desired
frequency response will be zero. So fewer computations will be needed.

Software implementation

We shall now briefly discuss some of the details of implementing the structures in the
previous section as software algorithms. We shall assume that we have a continuous
stream of input samples and describe the sample-processing algorithm — the algorithm for
processing a single input sample.

Sample processing algorithms

The sample-processing algorithm for the direct form I structure is the simplest. Consider
a general IIR filter transfer function with a numerator polynomial of order M and
denominator polynomial of order N.
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for each input sample x do:

Vo =X
Wy, ==aW, =+ —ayWy +b,v, + by, +---+byvy
Yy=w

v=v, i=N,N-1..,1

w=w_,, i=M,M-1,.,1

The input sample is denoted as x and output sample as y. b; and g; are the numerator
and denominator coefficients respectively. All the internal variables v; and w; are
initialized to zero. Note that the updating of the internal variables must be done in reverse
order to avoid overwriting of the previous values.

The sample-processing algorithm for the direct form II structure is also very
straightforward. Using the same notations as before, we have:

for each input sample x do:

Wy =X —aW, —a,W, — - —ayWy
y=byw, +bw, +---+ b wy
w=w,, =K, K-1,.,1
Here K is equal to M or N, whichever is greater. That is,
K =max(M,N)

Again, the internal variables w; are all initialized to zero and the updating must be
performed in reverse order. Notice that only one set of internal variables is needed
because of the simpler structure.

The way these sample-processing algorithms can be optimized on a DSP chip will be
deferred to the next chapter.

Representation of numbers

A brief review of some simple fixed-point representation of numbers has been presented
in Appendix B. In this section, we shall expand on that and discuss the fixed point and
floating point representation of numbers. The fixed number of bits allocated to represent
each number leads to finite numerical precision in computations. This implies that round-
off and truncation errors are unavoidable. The effects are particularly severe in fixed-
point implementations.

Fixed-point representation

The general fixed-point format is basically the same as the usual familiar decimal
representation of numbers. It consists of a string of digits with a decimal point. The digits
to the left of the decimal point are the integer part and those to the right are the fractional
part of the number.
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where b; are the digits and 7 is the radix or base.

Example 8.3
(12.34),, =1x10" +2x10° +3x10™ +4x107
(110.01), =1x2* +1x2' +0x2° + 0x 2~ +1x27

We shall focus on binary representations, as this is the format we need to deal with in
DSP. In this case, the digits are bits. b_, is the least significant bit (LSB) and bg is the
most significant bit (MSB). Naturally the binary point (as opposed to decimal point)
between b, and b_; does not physically exist and is up to the user to interpret.
Non-negative integers can easily be represented by an n-bit pattern (B = n—1, 4 = 0).
Since we need to deal with fractional numbers, the fraction format (B = 1,4 =n—1) is
normally used. This allows us to represent numbers in the range 0 to 1-2". This is because
multiplication of two numbers that are less than 1 will give us a result that is less than 1.
Positive fractions are given by

X=0bb,b, = b2
i=-1

i=—

=0bb,--b, =Y 52" X220
i=1

denoting the bits by a positive index for convenience.
Negative fractions can be represented by one of the following:
Sign-magnitude

X=1bb,-b  X<0

n
One’s-complement

X=1bb,---b, X<0

If X is a positive number, then the corresponding negative number is determined by
complementing all the bits.
Two’s-complement

X=155,--5,, (5, ®1)

This is the same as one’s-complement except the least significant bit is exclusive-OR’ed
(XOR) with 1. Alternatively, the LSB is added 1 modulo-2.

Example 8.4

=0.111

=1.111 sign-magnitude

0|3 oo

=1.000 one's-complement

=1.001 two's-complement
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Arithmetic operations

Addition (and hence subtraction) in one’s and two’s-complements are straightforward.
With 2’s complement, if a carry bit affects the MSB, then it is dropped. With 1’s
complement addition, the carry in the MSB, if it is present, is carried around to the LSB.
An important property of 2’s complement addition is that if the final sum of a sequence of
numbers Xj, Xa, ..., Xy is within the range of representation, it will be computed correctly
even though some of the individual partial sums result in overflows. We can tell there is
an overflow if the sum of two 2’s complement numbers with the same sign has a result
with an opposite sign. For instance,

l+§:0100+0011
2 8

=0111

l—§:OIOO+0011
2 8

=0001

Addition using the sign-magnitude format requires sign checking, complementing and
the generation of a carry. This is significantly more complex than that for the previous
two formats. This is the reason why 2’s complement is commonly used.

Multiplication of two fixed-point numbers each » bits in length will generally give a
product, which is 2 bits in length. The product therefore has to be truncated or rounded
off to n bits, producing truncation or round-off errors.

Floating-point representation

Floating-point representations cover a much wider range of numbers. They normally
consist of a mantissa M, which is the fractional part of the number, and an exponent E,
which can be either positive or negative. Hence a number X is given by

X=M:2F
with
1
—<M«<l1
2

Both the mantissa and the exponent require their individual sign bit.

Given a total number of bits available for representing a number, a number of different
floating-point formats can result. In the past, individual computer manufacturers used
their own format for their own products. A common standard floating point format has
been adopted by the Institute of Electrical and Electronic Engineers (IEEE), which is
usually referred to as the IEEE 754 standard. It defines the way zero is represented, the
choice of M and E, the handling of overflows and other issues. For a 32-bit
representation, the single precision floating point number is defined as

X = (_1)3 . QE-127 (M)
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where S is the sign bit, £ occupies 8 bits, and M is 23 bits long in a format as shown in
Figure 8.19.

01 89 31
El E | M |

Figure 8.19
1IEEE -754 floating point format

The following rules apply:
o [f £ =255 and M #0, then X is not a number (denoted NaNV).
o [f £ =255 and M = 0, then X is infinity (denoted /nF).
e if 0<E<255, then X = (—1)527"%%(1.M).
o If£E=0and M #0, then X = (=1)527"%%(0.M).
e If £ =0and M = 0, then X is zero.

Here 0.M is a fraction and 1.M is a number with one integer bit and 23 fractional bits.

Example 8.5

[o]J10000010[1010 eoe00]
S E M

The representation in above has the value

X =-1"%2"""x%1.1010...0
13

X_
8

=2°

=13

Floating point representations can naturally represent a much larger range of numbers
than a fixed point one with the same number of bits. However, it should be noted that the
resolution does not remain the same throughout this range. This means that the distance
between two floating point numbers increases as the number is increased. On the other
hand, the resolution of fixed-point numbers is constant throughout the range.

Arithmetic operations

When two floating-point numbers are multiplied, the mantissas are multiplied and the
exponents are added. But if we want to add two floating-point numbers, the exponents of
the two numbers must be equal. The one with the small exponent is adjusted by
increasing the exponent and reducing the mantissa. This adjustment could result in a loss
in precision in the mantissa.

Overflow occurs in multiplication when the sum of the two exponents exceeds the
dynamic range of the representation for the exponent.
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Finite word-length effects

The number of bits that is used to represent numbers, called word-length, is often dictated
by the architecture of DSP processor. If specialized VLSI hardware is designed, then we
have more control over the word-length. In both cases we need to tradeoff the accuracy
with the computational complexity. No matter how many bits are available for number
representation, it will never be enough for all situations and some rounding and truncation
will still be required.
For FIR digital filters, the finite word-length affects the results in the following ways:
e Coefficient quantization errors.
The coefficient we arrived at in the approximation stage of filter design
assumes that we have infinite precision. In practice, however, we have the
same word-length limitations on the coefficients as that on the signal samples.
The accuracy of filter coefficients will affect the frequency response of the
implemented filter.

¢ Round-off or truncation errors resulting from arithmetic operations.
Arithmetic operations such as addition and multiplication often give results
that require more bits than the word-length. Thus truncation or rounding of
the result is needed. Some filter structures are more sensitive to these errors
than others.

e Arithmetic overflow.
This happens when some intermediate results exceed the range of numbers
that can be represented by the given word-length. It can be avoided by careful
design of the algorithm scale.

For IIR filters, our analysis of finite word-length effects will need to include one more
factor: product round-off errors. The round-off or truncation errors of the output sample
at one time instant will affect the error of the next output sample because of the recursive
nature of the IIR filters. Sometimes limit cycles can occur.

We shall look at these word-length effects in more detail.

Coefficient quantization errors

Let us consider the low-pass FIR filter that has been designed by using Kaiser windows in
section 6.4.4. The coefficients obtained are listed in Table 8.1. The table also shows the
values of the coefficients if they are being quantized into 8 bits. The magnitude responses
of the filter, both before and after coefficient quantization, are shown in Figure 8.20.
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Effect of Coefficient Quantization
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Magnitude response of a low-pass FIR filter before and after coefficient quantization

N Coefficient
0 —0.0016
1,21 0.0022
2,10 0.0026
3,19 -0.0117
4,18 0.1270
5,17 0.0071
6, 16 —-0.0394
7,15 —0.0466
8, 14 0.0117
9,13 —0.1349
10, 12 0.2642
11 0.6803
Table 8.1

25

The quantized filter has violated the specification of the stopband. Clearly in this case,
more than 8 bits are required for the filter coefficients.

The minimum number of bits needed for the filter coefficients can be found by
computing the frequency response of the coefficient-quantized filter. A trial-and-error
approach can be used. However, it will be useful to have some guideline for estimating
the word-length requirements of a specific filter.



Digital filter realizations 193

The quantized coefficients and the unquantized ones are related by

h,(n) = h(n)+e(n), n=0,1,.,N-1
and shown in Figure 8.21.

. T T T
; » hm)

[

[

[

[

1 > e(n)

[

[

h.(n)
Figure 8.21

Model of coefficient quantization

This relationship can also be established in the frequency domain as in Figure 8.22.
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H,(w)

Figure 8.22

Frequency domain model of coefficient quantization

Here H(w) is the frequency response of the original filter and E(«) is the error in the
frequency response due to coefficient quantization.

If the direct form structure is used, assuming rounding, the following bounds for the
magnitude of the error spectrum are most commonly used:

|E(w|=N2"
|E(w)|=2""(N/3)"

|E()|=27" E(Nln N)]

where B is the number of bits used for representing the filter coefficients. The first bound
is a worst case absolute bound and is usually over pessimistic. The other two are based on
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the assumption that the error e(n) is uniformly distributed with zero mean. They generally
provide better estimates for the word-length required.

Example 8.6
For the low-pass filter designed in section 6.4.4, we have shown that 8-bit word-length is
not sufficient for the coefficients. The order of the filter is N =22. The stopband
attenuation is specified to be at least 50 dB down.

So we need at least 10 bits for the coefficients. The resulting magnitude response is
shown in Figure 8.23.

10-bit Coefficient Quantized Filter
20

—

N
\

A

|

-100
0

Meagnitude (dB)

5 10 15 20 25
Frequency (kHz)

Figure 8.23
Coefficient quantized filter response

For IIR filters, the coefficient quantization error may have one more effect: instability.
The stability of a filter depends on the location of the roots of the denominator
polynomial in the transfer function. Consider a second order section of an IIR filter (since
it is the basic building block of higher order filters) with transfer function

-1 -2
by+bz +b,z
2

H(z)=

l+az "' +a,z

The roots of the denominator polynomial, or poles of the transfer function, are located

1

)2 :EI:—al +«/a12 —4a2]
1

P :5[_511 _\]alz _4a2]

They may either be complex conjugate pairs or are both real. If they are complex
conjugate pairs, they can be represented as having a magnitude and an angle:

at
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where

For stability, the magnitude of these poles must be less than 1. This applies to both real
and complex poles. So the test for stability for the second coefficient is

0<|a,|<1

From the above equation for the angle, the arguments to the arc-cosine function must
have a magnitude that is less than or equal to 1. So the test for stability for the first
coefficient is

|al|S1+a2

Both these tests must be satisfied at the same time for the IIR filter to remain stable.

Rounding and truncation

It is inevitable that some numbers are being represented by less number of bits than what
is required to represent them exactly. For instance, when we multiply two n-bit numbers
we have a result that is at most 2n-bits long. This result will still have to be represented
using n-bits. Thus rounding or truncation will be needed. The characteristics of the errors
introduced depend on how the numbers are represented.

Consider the n-bit fixed point representation of a number x, which requires 7, bits to
represent exactly, with n <m, For positive numbers, both sign-magnitude and 2’s
complement representations are identical. The error introduced by truncation is

(2" =2"™)<E, <0

with the largest error discarding all (n,—n) bits, (all being 15s).
For negative numbers represented using sign-magnitude format, truncation reduces the
magnitude of the numbers and hence the truncation error is positive.

0<E <(@2"-2™")
So the truncation error for sign-magnitude format is in the range
-2 =2 <E <(27"=-2"™)

With 2’s complement representation, truncation of a negative number will increase the
magnitude of the number and so the truncation error is negative.

—(27"-2")<E <0
So the truncation error for 2’s complement format is still in the range

(2" =2"™)<E, <0
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8.7.3

Now consider round-off errors of the above fixed-point representations. In this case, the
error is independent of the type of representation and it may either be positive or negative
and is symmetrical about zero.

1 1
—— (2" —2)<E <—(27" -2
2( )SE, 2( )

In floating point representations, the resolution is not uniform as discussed before. So the
truncation and round-off errors are proportional to the number. It is more useful to
consider the relative error defined as

_0()-x
X

where Q(x) is the number after truncation or rounding.
If the mantissa is represented by 2’s complement using n-bits, then the relative
truncation errors has the bounds:

2" <e <0, x>0
0<e <27, x<0
The relative round-off error is in the range:
2" <e <27"

Overflow errors

Overflow occurs when two large numbers of the same sign are added and the result exceeds
the word-length. If we use 2’s complement representation, as long as the final result is
within the word-length, overflow of partial results is unimportant. If the final result does
cause overflow, it may lead to serious errors in the system. Overflow can be avoided by
detecting and correcting the error when it occurs. However, this is a rather expensive
approach. A better way is to try and avoid it by scaling the data or the filter coefficients.
Consider an N-th order FIR filter. The output sample at time instant #z is given by

y(n)= 2 h(m)x(n - m)

Assume that the magnitudes of the input and the filter coefficients are less than 1. Then
the magnitude of the output is

[y)|< X [hm)x(n=m)
In the worst case,
¥y =3 i)

A scaling factor G can be chosen as

6, =i, = Sl

The filter coefficients are all scaled by this factor
h(n)
G

h(n)=
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In this way, the maximum output magnitude of the filter will always be less than or
equal to 1 and overflow is completely avoided.

However, this scaling method is very conservative. The worst case signal will hardly
ever occur in practice. Two other less conservative scaling factors are usually chosen
instead. The first one is defined by

.=, =[] <P

This scaling improves the signal to quantization noise ratio. The trade-off is that there
is a possibility of overflow. Another scaling factor, given by

G, =|H]|, =max]|H (@) <[]

guarantees that the steady-state response of the system to a sine wave will not overflow.
This frequency domain-scaling factor is often the preferred method.

Scaling is even more important for IIR filters because an overflow in the current output
sample affects many output samples following that one. In some cases, overflow can
cause oscillation and seriously impair the usefulness of the filter. Only by resetting the
filter can we recover from these oscillations.

The same set of scaling factors described above can be used for IIR filters. However,
the frequency domain measure is more useful because the duration of the impulse
response in this case is infinite. The procedure is illustrated by an example.

Example 8.7
An IIR filter is designed based on a 4th order elliptic low-pass filter. The filter transfer
function is given by

H(z)= 1+1.621784z7" + 27 1407158956z +27
1-0.04030703z7" +0.2332662z 1+0.0514214z™' +0.7972861z~
= H\(2)H,(2)

which is decomposed into a cascade of two second order sections.
The transpose structure of section 1 is shown in Figure 8.24.

Figure 8.24
Transpose structure of section 1
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The impulse response and magnitude response of this section are as shown in Figure 8.25.

Impulse Response of Section 1

Sample

Figure 8.25
The impulse and magnitude responses of section 1

Table 8.2 shows the three different scaling factors that can be used.

Apart from the output of the section, the output of each internal adder within the
section has to be examined as well. The impulse response at y;; and y;; and their
frequency responses

Y,(2)
Hll(Z): );(Z_)
_ 0.766733805—0.781377681z""
1-0.4030702997z"" +0.766733805z°

Hy,(z)= };1;((22))

B 2.024854296 +0.766733805z™"
1-0.4030702997z"" +0.23326619532*

are shown in Figures 8.26 and 8.27 respectively.
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8.74

Their corresponding scaling factors are also given in Table 8.2. Having decided on the
particular type of scaling factor to be used, the largest one in that column should be
chosen for scaling.

Output G, G, G3

yi 5.30748 2.7843 4.38

Y 1.7715 09774 1.28

Yi2 4.30748 2.5985 3.67
Table 8.2

The same procedure can be followed to determine the scaling factor for the second
section.

Limit cycles

Although we have been treating digital filters as linear systems, the fact is that a real
digital filter is non-linear. This is due to quantization, round off, truncation, and overflow.
A filter designed as a linear system, which is stable, may oscillate when an overflow
occurs. This type of oscillation is called a limit cycle. Limit cycles due to round-
off/truncation and overflow are illustrated by two examples.

Example 8.8
A first order IIR filter has the following different equation:

y(n)=x(n)+oy(n-1)

For v = 0.75, the output samples y(n) obtained using initial condition y(0) = 6 and a zero
input x(n) = 0 for n >0 are listed in Table 8.3 and plotted in Figure 8.28(a). It shows that
the output quickly decays to zero. If y(n) is rounded to the nearest integer, then after some
time the output remains at 2. This is shown in Figure 8.28(b) and listed in Table 8.3.

d ]

y(n), infinite precision
< . Nt
N p————0
w p——0
N pP—0
o —0
o0
~ o
oo o
oo
FO
y
y(n), Rounding
LNt
N p—m—m—m————0

Figure 8.28
Output values before and after rounding
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n y(n), infinite y(n),
precision rounding

0 6 6

1 4.5 5

2 3.38 4

3 2.53 3

4 1.90 2

5 1.42 2

6 1.07 2

7 0.80 2

8 0.60 2

9 0.45 2

10 0.3375 2

Table 8.3
n y(n), infinite y(n),
precision rounding

0 6 6

1 —4.5 -5

2 3.38 4

3 -2.53 -3

4 1.90 2

5 —1.42 -2

6 1.07 2

7 —0.80 -2

8 0.60 2

9 —0.45 -2
10 0.3375 2

Table 8.4

For ¢ =-0.75, the output oscillates briefly and decays to zero for the infinite precision
version. If the result is rounded to the nearest integer, then the output oscillates between
—2 and +2. These signals are plotted in Figure 8.29 and listed in Table 8.4.
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Figure 8.29
Output with and without rounding
Example 8.9
A filter with transfer function
1
H(z)=2—
z°—z+0.5

is stable filter. A 2’s complement overflow non-linearity is added to the filter structure as
shown in Figure 8.30.

x(n) () — x() ()

LZ |

-0.5

<
<

&)

Figure 8.30
FIR filter structure with overflow non-linearity added

The transfer function of the non-linearity itself is shown in Figure 8.31.
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Transfer function of overflow non-linearity

According to the notations of Figure 8.30, if the input is zero,
x(n+1)=x,(n)
x,(n+1)=NL [—O.le (n)+x, (n)]

With an initial condition of
x,(0)=0.8
x,(0)=-0.8
At the next time instant, we have
x,(n)=(-1)"0.8
x,(n)=(=1)""0.8

In fact, forn > 1,

x,(1)=-0.8

x,(1) = NL[-0.5x,(0) + x,(0)]
= NL[-1.2]
=+0.8

Thus the output oscillates between 0.8 and —0.8.
Note that the limit cycle will only start if there is a previous overflow. If no overflow
occurs the system remains linear.
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Digital signal processors

While the most demanding DSP applications will require custom designed VLSI devices
to hard-wire the DSP algorithms, most common applications can be handled by the use of
commercially available digital signal processors. For instance, it is likely that the desktop
computer most people are using contains at least one DSP chip in it, most likely as part of
the sound card. Owing to its common use, it is the purpose of this chapter to give a
description of the common fundamental characteristics of these processors. We shall also
attempt to describe some particular features of DSP chips by Texas Instruments and
Analog Devices.

Common features

A few semiconductor manufacturers produce a range of DSP chips with different
capabilities. Most of the DSP chips are single processor devices. There exist chips that
integrate multiple DSP processors on the same chip such as the Texas Instruments
TMS320C8x. Others combine a DSP processor with a microcontroller such as the
Motorola DSP568xx.

Some manufacturers offer DSP cores. They are intended to be used as building blocks
in creating a semi-custom chip. This allows the designer to integrate a programmable
DSP and other custom circuitry onto a single application-specific integrated circuit
(ASIC). The DSP core cuts design time and it is most useful for high volume production
designs for specific applications in areas such as telecommunications. In some cases, the
vendor providing the core is also the foundry fabricating the ASIC. In other cases, the
vendor simply licenses the core design to the customer, who then selects an appropriate
foundry.

Most of these processors share some common features, which facilitate the efficient
computation of DSP algorithms.

Fast multiply-accumulate

It has been demonstrated in our discussion in the previous chapters that the multiply-add
or multiply-accumulate (MAC) operation is encountered in all major DSP functions.
These functions include filtering, FFT and correlation. Therefore, all DSP chips are
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designed to perform the MAC operation very efficiently. In fact, they are able to
complete the MAC operation in one single instruction cycle. To achieve this, the
multiplier and accumulator are integrated into the same data path of the processor. The
accumulator register can usually store the extra bits resulting from the arithmetic
operations to avoid overflow.

Multiple-access memory architecture

In most conventional microprocessors, the random access memory (RAM) can be used to
store both the program instructions and the data. For example, to perform an addition, the
microprocessor will have to fetch the instruction and then the data to be added. So the
whole operation has to be performed in several instruction cycles. Most DSP chips,
however, keep the instruction memory and data memory separate. This allows the
processor to fetch an instruction and the associated data simultaneously.

To support simultaneous access to multiple memory locations, the DSP chips have to
provide multiple on-chip buses, independent memory banks and/or multi-port on-chip
RAM. This means that somehow the program and data must be transferred from external
memory to on-chip internal memory.

Special addressing modes

DSP algorithms typically require the summation over a range of indices. For instance, the
FIR filtering equation

ym =Y hm)x(n—m)

is a summation of product terms with the indices n and n—m. The indices refer to memory
locations. To address them efficiently, DSP chips often incorporate dedicated address
generation units. These units operate in the background, generating the next addresses in
parallel with the execution of the current program instruction. Special addressing modes
are therefore possible to perform such things as bit-reversed addressing for FFT and
circular addressing for circular buffers.

Special program control

Special instructions are built-in for efficient looping that is often required by DSP
algorithms. Other special instructions include those that move data from external to
internal memories as a block, and low-overhead interrupts for fast input/output.

Peripheral interfaces

Most DSP chips incorporate serial and parallel I/O interfaces to other devices such as
ADC and DAC. The DSP processor is often used as a coprocessor to another
microprocessor, which acts as a host. Some DSP chips have special registers for
communicating with the host processor. Some versions of the DSP chips have other
peripheral devices integrated on-chip for special applications.

The hardware architecture, including data path design and the memory architecture, is
discussed in more detail in the next section. Examples of how special instructions and
addressing modes can be used are provided in section 9.3
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9.2

9.2.1

Hardware architecture

In this section, we shall expand on some aspects of the hardware architecture of DSP
chips. General design issues related to data path and memory organization are first
discussed. They are then illustrated by describing the architectures of two specific
families of DSP chips.

Data path

Data path refers to the complete arithmetic processing path, including multipliers,
accumulators, other registers, and specialized units such as an address generation unit.
The data paths of a fixed-point DSP (Texas Instruments TMS320C6x) and a floating-
point DSP (Lucent DSP32C) are shown in Figures 9.1 and 9.2 respectively.

16k x 32 Program Memory

256
Data Path 1 Data Path 2
Register File A Register File B
A A A A
\ g
\ 4 \ 4 \ \ 4 \ 4
1616 32/40 bit 32/40 bit 32-bit 16x16 32/40 bit 32/40 bit 32-bit
Multiplier Arithmetic ALU and address Multivlier Arithmetic ALU and address
and compare shifter calculation P and compare shifter calculation
M1 L1 S1 D1 M2 L2 S2 D2
A A
432 A32
\ 4 y
32k x 16 Data Memory
Figure 9.1
Data paths of TMS320C6x

Note that TMS320C6x family is one of the latest families of DSP chips. The fixed-
point devices consist of two parallel data paths instead of the one data path that exists in
other DSP processors.
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Figure 9.2
Data paths of Lucent Technologies’ DSP32C

Multipliers

Multiplication is the central operation of DSP algorithms. Hence all DSP chips have a
multiplier that can multiply two native-sized data in a single instruction cycle. But
different designs lead to different characteristics. Some of them that are relevant to fixed-
point DSP chips are listed below.

In the Motorola DSP5600x, the multiplier is integrated with an adder to form the MAC
unit. Some other processors, such as the Lucent DSP16xx, the multiplier and adder are
separate. The result of the multiplier is first kept in a product register before it is sent to
the adder for accumulation. The result of the MAC operation will therefore be delayed by
one instruction cycle before it can be used by the next instruction.

We know that the product of two n-bit fixed-point numbers will need 2n bits to store
the result in order to avoid any loss of accuracy. Most fixed-point multipliers produce a
result that is twice the word-length of their operands. So the multiplier itself does not
introduce any error. But some multipliers produce results that are truncated. Examples of
the latter design include the Zilog Z893x, which uses 16-bit operands and produces 24-bit
results.

Some multipliers use pipelining to increase speed. Pipelining is a technique that allows
two or more operations to overlap during execution. The task is broken down into a
number of distinct sub-tasks, which are overlapped during execution. Thus the delay
between time-inputs is presented to the multiplier to the time that the result may be
available. It could be longer one instruction cycle even though the actual multiplication is
done within that time. This delay is called latency. The advantage of pipelined multipliers
is that if a long series of multiplications are to be performed, they are more efficient than
the ones without pipeline. But latency is worst when only one multiplication is to be
performed. The Clarkspur Design CD2450 DSP core uses a pipelined multiplier.
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9.21.2

9.2.2

Accumulator

Since a fundamental operation of DSP algorithms is the MAC operation, the accumulator
can become the bottleneck in the architecture. This is especially true if only one
accumulator is available and it is used as one of the source operands and also as the
destination of the calculation. Many DSP chips offer more than one accumulator.

The size of the accumulator should be larger than the size of the multiplier output word
by several bits. These extra bits, known as guard bits, allow the accumulation of a number
of results without overflow. Accumulators with n guard bits have the capacity to
accumulate 2" values without the need for intermediate scaling. The Lucent
Technologies’ DSP16xx has 4 guard bits and the Analog Device ADSP21xx has 8 guard
bits.

Some other DSP chips, instead of providing guard bits, provide the output register of
the multiplier to be scaled, by shifting it by a few bits. This is performed before adding it
to the accumulator and usually done within the single instruction cycle. The Texas
Instruments TMS320C2x and TMS320C5x, for instance, allow the multiplier product
register to be automatically shifted right by 6 bits. However, guard bits are more
preferable because there is no loss of precision.

Memory architecture

While the data path is important in speeding up the computation, a good memory
architecture keeps the data path fed with data is equally important. Most DSP chips
implement what is known as the Harvard architecture. Figure 9.3 illustrates typical
microprocessor architecture known as the Von Neumann architecture and Figure 9.4
shows a general Harvard architecture.

CPU

Address Bus

Data Bus
A

< >
< : >

\ 4 y

Memory

Figure 9.3
Von Neumann architecture
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Harvard architecture

While the general microprocessor architecture has only one bus for both data and
instructions, the Harvard architecture provides one for program instructions and two for
data. The program and data memories are separate. Thus overlapping of instruction fetch
(getting the next instruction from memory) and execution (involves reading and writing
data to memory) is possible.

Most DSP chips implement some form of the Harvard architecture. They include the
Texas Instruments TMS320 family, the Analog Devices ADSP2100 family and the
Lucent Technologies DSP16xx family. It is interesting to note that for the DSP16xx
processors, the full potential of dual bank of memories is not realized and writing to
memory takes two instruction cycles. There are other processors that implement three
banks of memory instead of two. Thus three independent memory accesses per instruction
are possible. Processors in this category include the Zilog Z893x, the SGS-Thomson
D950-CORE, and the Motorola DSP5600x, DSP563xx and DSP96002.

This multiple bus structure is too expensive to be extended to external (outside of the
chip) memory. Usually only one address and one data bus are available off-chip. So it is
important that data can be moved from external memory to on-chip internal memory
efficiently.

Multiple-access memories

Another way to achieve multiple memory access in one instruction cycle is to use
multiple-access memories. These memories can be accessed in a fraction of an instruction
cycle, allowing multiple sequential accesses to be made on a single bus. The Lucent
Technologies DSP32xx can complete four sequential memory accesses to the on-chip
memories in a single instruction cycle.
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9.222

9.2.2.3

Multiple access memories can be combined with the Harvard architecture to give even
better performances. Zoran’s ZR3800x processors have single-access program memory
and dual-access data memory.

Multi-port memories

Another type of memory that can be used is called multi-port memory. It has multiple
independent sets of address and data lines, allowing multiple independent memory
accesses in parallel. So in this case we do not need to have separate banks of program and
data memory since they can be accessed simultaneously from the same bank. Figure 9.5
shows a Harvard architecture combined with dual-port data memory and single-port
program memory.

This architecture is used in the Motorola DSP561xx processors. The disadvantage of
multi-port memory is that it takes up more silicon area to implement.
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Figure 9.5

Harvard architecture with dual-port data memory

Program caches

A program cache is a small amount of memory for storing program instructions within
the processor core. It reduces the need to fetch instructions from the program memory,
thus speeding up operations. They are usually much simpler than those caches found in
some advanced general-purpose microprocessors.

The simplest type of program cache is a single instruction repeat buffer. It is used in
conjunction with the repeat instruction. The instruction that is to be repeatedly executed a
number of times is loaded into this buffer. Subsequently, the same instruction is fetched
from the cache instead of the program memory. This is implemented in the Texas
Instruments TMS320C2x and TMS320C5x families of processors. Since program
memory accesses are not required during repeat execution, the program memory can be
used for data read or write access. During this time, the processor effectively has one
more data bus available.
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The repeat buffer can be designed to store more than a single instruction. In this case, a
block of instructions can be loaded into the cache and repeated, freeing up the program
memory bus for data access. This is very useful for algorithms containing loops with a
few instructions. Such loops are often used in transforms, block data moves and filtering.

A more general form of multi-instruction repeats buffer is the single-sector instruction
cache. It stores the number of the most recently executed instructions. If the program flow
jumps back to one of the instructions in the cache (called a cache hit), the instruction is
executed from the cache. The effectiveness of this type of cache obviously depends on the
number of cache hits, which in turn depends on the algorithm. In some cases, the software
designer can tailor the code to achieve more cache hits and so speeding up the execution
of the algorithm. This type of cache can be found in the Zoran ZR3800x.

Multiple-sector instruction cache can also be found in some DSP chips. It works like
the single-section variety except that two or more independent code segments can be
stored. The Texas Instruments TMS320C3x processors have two sectors of 32 words
each. Each sector stores instructions from different regions of program memory. The
cache is updated when a cache miss (as opposed to cache hit) occurs. In this case, if the
external address is from one of the two sectors currently associated with the cache, then
the instruction is stored at the appropriate location in the cache. If the address is outside
of that monitored by the cache, then the entire content of the sector is discarded and a
new set of addresses will be monitored. The algorithm, which decides which cache sector
will be discarded, is called the least recently used (LRU) algorithm. As the name implies,
the cache with the most recent hit is kept and the other one is discarded.

Some DSP chips allow the programmer more control over the use of the cache. In some
cases the programmer can lock the contents of the cache at some point in the program or
disable the cache. Allowing manual control over the use of cache helps the developer to
ensure that their programs will meet critical time constraints.

Even in cases where a physical cache is not present, the programmer can often
manually move a section of program code from slower external memory to the faster
internal memory for execution. This is called manual caching and often speeds up
program execution significantly.

Direct memory access

Direct memory access (DMA) is the process of transferring data without the involvement
of the processor itself. It is often used for transferring data to/from input/output devices.
A separate DMA controller is required to handle the transfer. The controller notifies the
DSP processor that it is ready for a transfer. Then the processor relinquishes control of its
external memory bus and grants the control of the bus to the DMA controller. The DMA
controller then transfers the specified amount of data and signals the processor upon
completion of the transfer.

The Texas Instruments TMS320C3x, TMS320C4x, the Motorola DSP96002, and the
Analog Devices ADSP2106x family of more sophisticated DSP chips all have an on-chip
DMA controller.

Architecture of TMS320C5x

Figure 9.6 shows the functional block diagram of the Texas Instruments TMS320C5x
family of DSP chips.
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Block diagram of theTMS320C5x family

The central processor (CPU) consists of two arithmetic logic units (ALU), a parallel
logic unit (PLU) and registers. The first ALU is called the central ALU (CALU). It is
used for two’s complement arithmetic and consists of the following:

e A 16x16 bit multiplier producing a 32-bit product

e A 32-bit accumulator

e A 32-bit accumulator buffer

e Shifters at the outputs of both the accumulator and the product register

The second ALU is called the auxiliary register arithmetic unit (ARAU). It is an
unsigned 16 bit arithmetic unit that calculates indirect addresses by using inputs from the
auxiliary registers, index register and the auxiliary register-compare register.

The scaling shifter is used for prescaling. It has a 16-bit input that is connected to the
data bus and a 32-bit output connected to the ALU. It provides a left shift of 0 to 16 bits
on the input data. Shifters are also connected to the output of the product register and the
accumulator for post-scaling. They allow the CALU to perform numerical scaling, bit
extraction, extended-precision arithmetic and overflow prevention.

The PLU operates independently and in parallel with the ALU. It performs boolean and
bit manipulations. It can set, clear, test or toggle bits in a status register, control register
or any data memory location. Its operation does not affect the contents of the accumulator
or product register. There are eight memory-mapped auxiliary registers that can be used
for indirect addressing.

Two circular buffers are available. The circular buffer control register controls them.
The start and end addresses of the two buffers are stored in separate registers and the
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buffers can be enabled or disabled. They can be used with either increment or decrement
type of updates.
Four internal buses allow simultaneous program and data access. They are:
e Program bus (PB)
e Program address bus (PAB)
e Data read bus (DB)
e Data read address bus (DAB)

The PAB provides addresses to program memory space for both reads and writes. The
PB carries the instruction code and immediate operands from program memory to the
CPU. The DB interconnects various elements of the CPU to data memory space. The
program and data buses can work together to transfer data from on-chip data memory and
internal or external program memory to the multiplier for single instruction cycle MAC
operations.

The processor has a 4-deep pipeline for delayed branch, call and return instructions.
For a given instruction sequence, the second instruction could be reading data at the same
time the first instruction is writing data. It also provides a bit-reversed index-addressing
mode for radix-2 FFTs.

The C5x DSPs carry a 1056-word 16-bit on-chip dual-access RAM. The memory space
is divided into 3 individually selectable memory blocks:

e 512 word data or program block
e 512 word data block
¢ 32 word data block

The dual-access RAMs are intended for data storage only. But it can also be used to
store program instructions. The two data buses (DB and DAB) allow the CPU to read and
write to the dual-access RAM in the same instruction cycle.

There are also on-chip single-access RAM. It can be configured as data or program
memory or both. These RAMs are divided into 1 K or 2 K blocks. Each block can be
accessed in parallel with the other blocks. However, only one access is allowed per cycle
for a particular block. If the CPU requests multiple accesses to the same block, the RAM
control logic schedules the accesses in multiple cycles.
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Internal architecture of the ADSP2 1xx family

The internal architecture of the Analog Device ADSP21xx family of DSP chips is

shown in

Figure 9.7. There are minor variations in the internal organization of functional

blocks within the devices in the family. But generally they possess three independent
units: an arithmetic logic unit (ALU), a multiplier-accumulator unit, and a barrel shifter.

These uni

ts process 16-bit data. There are also two data address generators and a program

sequencer.
Five internal buses are present:

¢ Program data (PMD) bus
The PMD bus is used for transferring instructions from off-chip memory to
the internal instruction register. Instructions are fetched and loaded into the
register during one process cycle and they are executed during the following
cycle while the next instruction is being fetched. It has the same width as the
processor’s instruction words, which is 24 bits.

e Program address (PMA) bus
The address of the next instruction is generated by the program sequencer and
is dependent on the current instruction and internal processor status. The
program sequencer handles branching loop counters and zero overhead
looping. This address is then placed on the PMA bus. The PMA bus is 14 bits
wide. This allows direct addressing of 16 K words of program code.

e Data memory address (DMA) bus

The DMA bus is also 14 bits wide, allowing direct addressing of 16 K words
of data.
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e Data memory data (DMD) bus
The DMD bus transfers contents of a register to another register, or to an
external memory location in a single cycle. There is also a PMD-DMD bus
exchange unit that allows data to be passed from one bus to another.

e Result (R) bus
It connects the computational units.

Each computational unit has its own set of input and output registers. These registers
serve as stopover points for data between external memory and the computational units.
This effectively introduces a single pipeline level on the input as well as on the output.
The computational units are arranged side by side rather than in cascade. To avoid
excessive pipeline delays when a series of different operations are performed, the R bus
allows any of the output registers to be used directly without delay as the input to another
computation.

An instruction cache is also present. It holds 16 words. Instructions loaded into the
instruction register are also written into the cache memory. As additional instructions are
fetched, they overwrite the current contents of the cache in a circular way. When the
current instruction does a program memory data access, the cache automatically sources
the instruction register if its contents are valid. The cache is most effective when
executing a program loop where the instructions within that loop can be fully stored in
cache memory. Operation of the cache is completely transparent to the user.

Special instructions and addressing modes

Circular buffers

To obtain an output sample from an order N FIR filter, (N+1) MAC operations will be
required. This corresponds to N+1 instruction cycles if each MAC operation takes one
cycle to complete. The overhead of this filtering computation includes shifting the input
sample from the input port to an internal register, the time required to update the registers
and the time it takes to output the filtered output sample to memory. Apart from
optimizing the MAC operation through hardware design, the overhead should also be
minimized to achieve maximum throughput.
Consider a generic DSP architecture as shown in Figure 9.8.
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Figure 9.8
A generic DSP architecture
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The sample processing algorithm for an N-th order FIR filter is
For each input sample x do:

W, =X
y = hywy
for i=N-1,...,1,0 do:
Wi =W,

y=y+hw

Notice that the registers w; are used to store the past input samples. These registers will need

to be updated as the algorithm progresses. In the first generation of DSP chips, the operations:
Wiy =W,

y=y+hw

were carried out using two instructions, one for data shifting and the other for the MAC
operation. Considering that so much effort has been put into optimizing the MAC
operation, the extra instruction cycle required for updating a register seems like a waste.
Therefore, in more modern DSP chips, these two operations can be carried out with one
single instruction.

Another way to perform an internal update efficiently is by using circular buffers.
Some DSP chips have built-in hardware to facilitate the implementation of circular
buffers. Examples include the Analog Devices ADSP2101-21020, the Texas Instruments
TMS320C30-C60, and the Motorola DSP56001 and DSP96002. The basic concept is that
previously we moved the data from one location to another to perform the update. Now
the data remain fixed at their respective memory locations but the addresses are updated
instead.

Consider a third order FIR filter, with 4 input samples that need to be buffered. Instead
of putting them in a straight line like we have done in figure 9.9, they are now arranged in
a circle as shown in Figure 9.10.

7
w

Figure 9.9
A linear buffer for data
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Figure 9.10
A circular buffer

In this diagram, the pointer p points to the first MAC operation. Figure 9.10(a) shows
how the 4 input samples are stored at a certain time instant n. At the next time instant, a
new input sample is available. Instead of storing it in w, as we have done previously, it is
now stored in w; and the pointer moves clockwise by one location. This is shown in
Figure 9.10(b). This means that the data in the other three registers remain where they
are.

Figure 9.11 shows the pointer location and register contents for 8 successive time
instants starting from n = 0.

Figure 9.11
Pointers and register contents in 8 successive time instants
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9.3.2

9.3.2.1

By using circular buffers, the amount of data movement is minimized. This is the
reason why the register update and MAC operation could be performed in one single
instruction cycle. So the total number of instruction cycles required for an order N FIR
filtering operation remains at N+1. The DSP chip must have hardware to support circular
or modulo addressing.

Circular buffers are very useful in implementing digital audio effects. A 100 msec
reverberation with a sampling rate of 44.1 kHz corresponds to a circular buffer with 4410
samples. We have already seen in Chapter 5 how circular buffers can be used for wave
table sound synthesis.

Code examples

Some real code examples will serve to illustrate certain special instructions and
addressing modes available. We shall discuss the codes for implementing convolution or
FIR filtering using circular buffers and the FFT butterfly. The Texas Instruments
TMS320C5x instructions will be used.

Complete sections of codes are included here for completeness sake. The seemingly
long programs should not deter the reader. There is no need to completely understand
every part of the code.

FIR filtering

FIR filtering will be performed using circular addressing that implement a circular buffer.
The register BK is initialized to the length of filter N. The locations for the data buffer
and the filter coefficients must start from memory locations with addresses which are
multiples of the smallest power of 2 that is greater than N. For example, if N = 7, the first
address for the data buffer must be a multiple of 8 (2*). Thus the least significant four bits
of the beginning address must be zero. The data memory organization is illustrated in
Figure 9.12.

Initial Final
input input
samples samples
Low address| h(N-1) Oldest| x[n-(N-1)] x(n)
h(N-2) x[n-(N-2)] x[n-(N-1)]
. . . Circular
. . . queue
h(1) x(n-1) X(n-2)
High address|  N(0) Newest|  x(n) x(n-1)

Figure 9.12
Data memory organization for the FIR filtering program



Digital signal processors 219

The codes for N=16 are given below.

; Implements a 16-th order FIR filter
.mmregs
.Anclude ‘main.inc’
; The filter coefficients
COEFF_START .sect ‘coeff_fir’ :filter coefficients
.word 6Fh
.word OF3h
.word 269h
.word 50Dh
.word 8 A%h
.word 0C9%h
.word OFF8h
.word 11EBh
.word 11EBh
.word OFF8h
.word 0C9%h
.word 8 A%h
.word 50Dh
.word 269h
.word OF3h
.word 6Fh
COEFF_END
FIR_DP .usect  ‘fir_vars’,0
d_filin .usect  ‘fir_vars’,1
d_filout .usect  ‘fir_vars’,1
fir_coeff table .usect ‘fir_coeff’,20
d_data_buffer .usect  ‘fir_bfr’,40 ;buffer size
def fir_init ;initialize filter
; This routine initializes circular buffers for both
; data and coefficients.
.asg ARO, FIR_INDEX_P
.asg AR4, FIR_ DATA_P
.asg ARS, FIR_COEFF_P

.sect “fir_prog’
fir_init:
STM  #fir_coeff _table,FIR_COEFF P
RPT #K_FIR_BFFR-1 :move coeffs from

MVPD #COEFF_FIR_START,*FIR_COEFF_P+;program to data
STM  #K_FIR_INDEX,FIR_INDEX_ P
STM  #d_data_buffer, IR DATA_P :load cir_bfr address

;for recent samples
RPTZ A #K_FIR_BFFR

STL A,*FIR_DATA_P+ :reset the buffer
STM  #(d_data_buffer+K_FIR_BFFR-1),FIR_DATA_P
RETD

STM  #fir_coeff _table,FIR_COEFF_P
; This subroutine performs FIR filtering using MAC instruction.
; Accumulator A (filter output) = h(n)*x(n-i) for i=0,1,...,15
.asg AR6,INBUF_P
.asg AR7,0UTBUF _P
.asg AR4,FIR_ DATA_P
.asg ARS5,FIR_COEFF_P
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*FIR_DATA_P+0%,*FIR_COEFF_P+0%,A

.sect ‘fir_prog’

fir_task:

LD #FIR_DP,DP

STM  #K_FRAME_SIZE-1,BRC

RPTBD fir_filter_loop-1

STM  #K_FIR_BFFR,BK

LD *INBUF_P+,A
fir_filter:

STL A,*FIR_DATA_P+%

RPTZ A,(K_FIR_BFFR-1)

MAC

STH A, *OUTBUF_P+
fir_filter_loop

RET

;repeat 256 times

;circular buffer size
;load the input value

;replace oldest sample with
;new

;filtering
;replace oldest buffer value

Note that there is a special instruction FIRS that facilitates the implementation of exact
linear phase FIR filters with symmetric impulse responses.

9.3.2.2 FFT

We shall now consider the coding of a 256-point real FFT. It is a radix-2, in-place
algorithm. Memory allocation for this program is shown in Figure 9.13.

Program memory

Program space
(about 224 words)

Interrupt vector table
and reserved locations

Data memory

Memory-mapped registers

Group counter

Index of twiddle table

Index of data processing buffer

Stack

Sine table

Cosine table

Data processing bufter
(2K words max)
bottom half serves as real
FFET input buffer initially

0080h
rfft_task
015Fh
FF80h
reset —P»
EEEEh
0000h
Q05F
d_grps_cnt —P»] 0060h
d_twid_idx ——p»{ 0061h
d_data_idx —P»] 0062h
0070h
QQ7Fh
0400h
Sing =—_
O5FFh
0800h
Cosine —P»
Q9FFh
0OCOOh
fft_data =——
13FFh
1400h
real fft output ——p
17FFh

Power spectrum
output buffer
(1K words max)

Figure 9.13
Memory allocation for the FFT program
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There are four major parts:

¢ Packing and bit-reversal of input

The input is bit reversed so that the output is in natural order. The original 2N-
point real input sequence is copied into contiguous sections of memory
(real_fft_input) and interpreted as an N-point complex sequence d(n). The
even indexed real inputs form the real part of d(n) and the odd indexed ones
form the imaginary part. This process is called packing. The complex
sequence is then bit reversed and stored in the data processing buffer
(fft_data).

:Bit Reversal Routine

.asg AR2,REORDERED_DATA
.asg AR3,0RIGINAL_INPUT
.asg AR7,DATA_PROC_BUF
.sect ‘rfft_prg’

bit_rev:

SSBX FRCT ;turn fractional mode on

MVDK d_input_addr,ORIGINAL_INPUT :AR3->1% original input

STM  #fft_data, DATA_PROC_BUF ;AR7->data proc buffer

MVMM DATA_PROC_BUF,REORDERED DATA:AR2->1" bit-reversed data
STM  #K_FFT_SIZE-1,BRC

RPTBD bit_rev_end-1

STM  #K_FFT _SIZE,ARO ;ARO->half size of cir buf
MVDD *ORIGINAL_INPUT+,*REORDERED_DATA+

MVDD *ORIGINAL_INPUT-,*REORDERED_DATA+

MAR *ORIGINAL_INPUT+0B

bit_rev_end:

RET
.end
e N-point complex FFT

An N-point complex FFT is performed in-place in the data processing buffer.
The twiddle factors are stored in two separate tables, pointed to by sine and
cosine. Each table contains 512 values, corresponding to angles ranging from
0 to almost 180 degrees. The indexing scheme used here permits the same
twiddle tables for inputs of different sizes. Circular addressing indexes the
table and the starting address of each table is required to start at an address
with zeros in the eight least significant bits.

; There are log(N)-1 stages

fft:

.asg AR1,GROUP_COUNTER

.asg AR2,PX
.asg AR3,QX
.asg AR4,WR
.asg AR5, WI
.asg AR6,BUTTERFLY_COUNTER
.asg AR7,.DATA_PROC_BUF ;for stages 1 and 2
.asg AR7,STAGE_COUNTER ;for remaining stages
.sect ‘rfft_prg’
;*****Stage 1*****
STM  #K_ZERO_BK,BK ;BK=0 so that
; ARn+0% == *ARn+0
LD #-1,ASM ;outputs div by 2 at each stage

MVMM DATA_PROC_BUF,PX ;PX->PR
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LD *PX,A ;A =PR
STM  #fft_data+K_DATA_IDX_1,Q0X ;QX > QR
STM  #K_FFT_SIZE/2-1,BRC
RPTBD stagelend-1
STM  #K_DATA_IDX_1+1,AR0
SUB  *QX,16,A,B ;B := PR-QR
ADD  *QX,16,A ;A = PR+QR
STH A, ASM,*PX+ ;PR’ := (PR+QR)/2
ST B,*QX+ ;QR’ := (PR-QR)/2
LD *PX,A ;A =PI
SUB  *QX,16,A,B ;B := PI-QI
ADD *QX,16,A ;A = PI+QI
STH  A,ASM,*PX+0 ;PI” := (PI+QI)/2
ST B,*QX+0% ;QI” := (PI-QI)/2
LD *PX,A ;A :=next PR
stagelend:
;*****Stage 2*****
MVMM DATA_PROC_BUF,PX ;PX->PR
STM  #fft_data+K_DATA_IDX_2,Q0X ;QX->QR
STM  #K_FFT_SIZE/4-1,BRC
LD *PX,A ;A =PR
RPTBD stage2end-1
STM  #K_DATA_IDX_2+1,AR0
; 1* bufferfly
SUB  *QX,16,A,B ;B := PR-QR
ADD *QX,16,A ;A = PR+QR
STH  AASM,*PX+ ;PR’ := (PR+QR)/2
ST B,*QX+ ;QR’ :=(PR-QR)/2
LD *PX,A
SUB  *QX,16,A,B
ADD  *QX,16,A
STH A ASM,*PX+
STH  B,ASM,*QX+
. ond butterfly
MAR  *QX+
ADD *PX,QX,A ;A = PR+QI
SUB  *PX,*QX-,B ;B := PR-QI
STH  AASM,*PX+ ;PR’ := (PR+QI)/2
SUB  *PX,*QX,A ;A = PI-QR
ST B,*QX
LD *QX+,B
ST A¥PX
ADD  *PX+0%,A
ST A*QX+0%
LD *PX,A
stage2end:
J¥R*EEStage 3 thru Stage logIN-1### %%
STM  #K_TWID_TBL_SIZE,BK ;BK=twiddle table size
ST #K_TWID_IDX_3,d_twid_idx ;init index of table
STM  #K_TWID_IDX_3,AR0
STM  #cosine, WR
STM  #sine,WI

STM

#K_LOGN-2-1,STAGE_COUNTER

;initial WR pointer
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ST #K_FFT_SIZE/8-1,d_grps_cnt
STM  #K_FLY_COUNT_3-1,BUTTERFLY_COUNTER
ST #K_DATA_IDX_3,d_data_idx ;init index for data

stage:
STM  #fft_data,PX ;PX->PR
LD d_data_idx,A
ADD *(PX),A
STLM A,QX ;QX->QR
MVDK d_grps_cnt, GROUP_COUNTER
group:
MVMD BUTTERFLY_COUNTER,BRC ;# of butterflies
RPTBD butterflyend-1
LD *WR,T
MPY *QX+,A
MACR *WI+0%,*QX-,A ;A = QR*WR+QI*WI
;QX->QR
ADD  *PX,16,A,B :B :=(QR*WR+QI*WI)+PR
ST B,*PX
SUB *PX+,B
ST B,*QX
MPY  *QX+,A
MASR *QX,*WR+0%,A
ADD  *PX,16,A,B
ST B,*QX+
SUB *PX,B
LD *WR,T
ST B,*PX+
MPY  *QX+,A
butterflyend:
;Update pointers for next group
PSHM ARO
MVDK d_data_idx,ARO
MAR  *PX+0
MAR  *QX+0
BANZD group,*GROUP_COUNTER-
POPM ARO
MAR  *QX-

;Update counters and indices for next stage
LD d_data_idx,A
SUB  #l,AB
STLM B,BUTTERFLY_COUNTER
STL A,1,d_data_idx
LD d_grps_cnt,A
STL A,ASM,d_grps_cnt
LD d_twid_idx,A
STL A,ASM,d_twid_idx
BANZ D,stage,*STAGE_COUNTER-
MVDK d_twid_idx,ARO
fft_end:
RET
.end
e Separation of even and odd parts
Separates the FFT output into four independent sequences: RP, RM, 1P and
IM, which are the even real, odd real, even imaginary and odd imaginary
parts, respectively.
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9.4

9.5

e Generation of final output
One more set of butterflies are needed to generate the 2N-point complex
output, corresponding to the DFT of the original 2N-point real input sequence.
The output resides in the data processing buffer.

Codes for the last two parts do not involve any new instructions and are not included.

General purpose microprocessors for DSP

General-purpose microprocessors are becoming increasingly powerful. Quite often, a
substantial amount of spare capacity is available in personal computers or embedded
systems. This spare capacity can be harnessed for use in less demanding DSP
applications. At the same time, some more recent microprocessors, such as the
Motorola/IBM PowerPC 6xx, the MIPS R10000, the Sun UltraSPARC and the Hewlett-
Packard PA-7100 and the Intel Pentium MMX, have adopted some DSP chip features.
Some are able to perform a floating-point MAC operation in one single instruction cycle
in some circumstances. They also have special instructions to perform multimedia signal
processing that are required in modern computers.

Intel has adopted a native signal processing (NSP) initiative that seeks to use the host
processor in personal computers to perform such tasks as audio compression and
decompression, sound synthesis as so on. As the host processor becomes more powerful
and operates at increasingly higher clock speeds, more DSP functions can be performed.

Choosing a processor

Although many DSP chips are similar, there are many subtle differences between them.
We have briefly described some of the differences between designs. It is not easy to
compare different processors. Hopefully this background knowledge will help the user to
choose the right device for the application at hand.

Many vendors state their processor performs using MIPS (million instructions per
second). But this is a very subject value that depends on the device architecture. A MIPS
rating will not necessarily reflect the performance of your algorithm running on different
processors. When using benchmark programs for comparison, make sure that algorithms
similar to the actual application are used. The most important matter is the performance
of the entire DSP system for the particular application. The criteria of choice should
include system complexity, cost and development time. Some other considerations
include the following:

e The amount of internal RAM: Since the access time for internal RAM is
typically shorter than that for external RAM, the performance of your programs
may vary according to the amount of internal RAM.

e If high data throughput is required, then the number of DMA (direct memory
access) controllers available for handling movement of data through the system
without loading the CPU should be considered.

e Some DSP chips have high-speed communication ports available for data
transfer to and from other devices in the system.

The relatively high cost of floating-point devices has prevented their widespread use.
Most systems use fixed-point DSP chips. However, more application specific versions of
these devices are becoming available. They target specific application areas such as
mobile cellular radio, video and speech coding, control, etc.
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The development time of the whole system depends very much on the quality of
software and hardware tools available. This is the topic of the next chapter.

To probe further

It is not the purpose of this chapter to compare the performances of the DSP chips
available. A very detailed performance report has been produced by Berkeley Design
Technology, Inc. Their contact details can be found in Table 9.1. Other comparisons
between particular processors can also be found on the world wide web.

Details of the DSP chips can be obtained from the manufacturers.
Texas instruments http://www.ti.com
Analog devices http://www.analog.com
Motorola http://www.mot.com
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Hardware and software
development tools

In this final chapter we shall take a brief look at some of the development tools for both
hardware and software DSP systems. Some of these tools are free and in the public
domain while most others are commercial. Obviously we cannot list all of them
exhaustively. But certainly some of the ones we will describe here are very popular. It
should be emphasized that we are not endorsing any of the vendors or their products.

The right tool for the right job is so important that it cannot be over-emphasized. Some
of the DSP chips and systems may look impressive in terms of their performance figures.
But in the end the DSP designer still needs to rely on good and efficient development
tools to build the system on time and within budget.

We shall first briefly review the DSP system design flow. Then the tools available from
the DSP chip manufacturers, software simulation tools, and other third party development
tools will be briefly discussed.

DSP system design flow

A simplified DSP system design flow is depicted in Figure 10.1.

It is simplified because we assume that the final product will be implemented with a
DSP chip on purpose-designed hardware. As we have mentioned in previous chapters,
there are many other approaches that can be taken. For instance, the whole system can be
a piece of software running on a general-purpose microprocessor. At the other end of the
spectrum, we may need to design a specific VLSI device to implement the algorithm for a
time-critical application.

The design flow is composed of several main areas. They are:

e System requirement definition.
e Development of algorithm.

e Selection of DSP chip.

e DSP hardware development.

e DSP software development.
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e System integration.
e System debugging and testing.

System
Requirements

~

Algorithm
Development

v

Algorithm
Testing

Mo FaceT>

Yes

Selection of
DSP Device and
Development Tools

System
Integration

and Testlng

Hardware
Development

Software
Development

No No

Pass’>
Y

Final Product

Figure 10.1
DSP system design flow

System requirement definition

Good engineering designs require a thorough knowledge of the problem at hand. It is
essential that at the start of the project all requirements be defined. This process is often
overlooked, however. The success of the final system is judged primarily by satisfying
and perhaps even exceeding the basic requirements documented. The definition typically
includes at least the following:

e The input and output signal or data requirements

e The interface design specifications (IDS)

e Prime item development specification (PIDS)

The IDS specifies all interface characteristics such as data rates, data lengths, control,
and message protocols. It may also include the types of connectors used and electrical
characteristics. The PIDS specifies all signal and non-signal processing requirements. The
signal processing requirements may include the bandwidth, throughput delay, and modes
of processing. The non-signal processing requirements may include the size and form
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10.1.2

factor of the final product, weight, power requirements, reliability and cooling
requirements.

Development of algorithms

The next step in the design process is to develop or adopt a suitable algorithm for
processing the signals to obtain the required output. In order to decide on the suitable
algorithm(s), we first need a good understanding of the characteristics of the signals to be
processed. Signal characteristics that are of interest include:
e Number of channels or sensors
In some applications, signals are gathered from a number of sensors at the
same time. They need to be combined in some way in order to extract the
information required. These applications include sonar in submarines, which
receives underwater acoustic signals to determine if other vessels are present
and if so, their position and distance. Antenna arrays are also becoming
widely used in commercial cellular phone systems to increase the capacity. In
this case, several antennas attached to the base station of a cell are either
receiving or transmitting at the same time.

¢ Analog or digital
If the signal is analog, a suitable ADC will need to be used in order to capture
the contents of the signal.

e Bandwidth and frequency ranges
This information is obviously used for determining a sampling rate and for
filtering purposes.

¢ Spectral contents
Even within the bandwidth of the signal, the phase and magnitude
characteristics may vary.

¢ Dynamic range (number of bits)
This may affect our choice of fixed point or floating point implementations.

o Steady-state or transient or both
The duration of the whole signal is usually too long to be processed all at one
time. The signal is usually processed either sample by sample or block by
block. If the signal is in steady state, the boundary of these blocks may not
affect the outcome of the processing too much. However, for transient signals,
the transient duration is usually relatively short and the boundaries of the
block may have implications on the outcome.

¢ Deterministic or random
Random signals are those which obey certain statistical properties such as
distribution of amplitude. For digital signals with a finite alphabet, the
probability of occurrence of each alphabet may be different or we may assume
this probability is uniformly distributed. Most signals, especially digital
signals, are modeled as random signals. Signals that are not random are
known as deterministic. A signal may be entirely deterministic or entirely
random or both. It also depends on which level we are modeling the signal.
For instance, the DTMF signal of a certain key on the telephone keypad can
be considered as deterministic because each time that key is pressed, this
particular signal will be generated. During transmission, random noise will be
added and the received signal is now a combination of both a deterministic
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and a random signal. The transmitter knows which key on the keypad has
been pressed but the receiver does not. So as far as the receiver is concerned,
the signal it receives can be any of the DTMF signals that are possible. The
received signal can therefore be modeled as an entirely random signal.
Random signal processing is a very important and interesting area within the
broad field of DSP.

e Type of noise

Noise is that component of a signal that is not wanted. Noise can be additive
or multiplicative, meaning that it is either added to the desired signal or
multiplied with the signal. Most noise are additive. Examples include the
noise added to a transmitted signal through the channel. On television, we can
sometimes see some speckle noise showing up as white or black dots
randomly on the screen. Multiplicative noise can result from camera shake or
out of focus blur.

e Data format, multiplexing and codes
For digital signals, especially those that have been encoded or multiplexed,
we need to know the format in order to recover the original symbol sequence.

e Data rate

e Desired information
Sometimes it is easy to forget what information we are trying to extract from a
signal. The desired information may simply be the original signal that is as
noise free as possible. We may also be extracting the digital signal symbol
sequence. In speech recognition systems, the desired information is the string
of words that have been spoken.

The above list is obviously not exhaustive. But once the fundamental characteristics of
the signals to be processed are available, we can then search for a suitable algorithm. In
most cases, algorithms are already available and they only need to be customized to the
present needs. For instance, FIR and IIR filtering algorithms are widely studied as we
have discussed in previous chapters. All that is needed is to design the suitable filter,
which depend on the frequency characteristics of the signal. If a suitable algorithm is not
readily available, one has to be developed, which may take anything from a few days to a
few years.

In some cases, the performance of the algorithm is already known. If not, then its
performance has to be characterized as well. The performance criteria depend on the
particular application. Some performance criteria include the throughput delay, the signal
to noise ratio, and the accuracy of the extracted information. Criteria can also be
subjective. For instance, the quality of an image after processing often needs to be
assessed by human subjects. Also, the quality or clarity of computer generated speech
also need to be assessed subjectively.
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10.1.3

System implementation
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Figure 10.2
DSP system implementation procedure

The system implementation steps are illustrated in Figure 10.2. The whole process is first
drawn as a block diagram, from the point where signal or data is captured by the system
to where the data leaves the system. This diagram can be derived with the help of the
system requirement definitions. An analysis of the resources required by each part of the
whole process is then carried out.

This analysis includes:

¢ Processor engine resource analysis
The amount of time required by the DSP processor to process a unit of data
(maybe a block or a single sample). This will depend on the algorithm.

e Memory resource analysis
The amount of internal and external memory required.

e Data communication resources analysis
The amount of time needed to move data from external memory to internal
memory and vice versa. It should also take into account the communication
between the DSP chip and the control processor if one is present.

¢ Control processor resource analysis
If a separate control processor is in the system, then the computational
demand on this processor needs to be assessed. For instance, in some
communication systems, the DSP chip may handle signal modulation and
demodulation while a separate processor takes care of the protocol and
external interface.

e Input/output processor resource analysis
In some systems, there are input and/or output processors that handle the
external interfaces. These processors include those that handle the parallel or
serial interface.
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The throughput of the system can then be analyzed. This is compared to the system
requirements and if certain requirements are violated, then the system configuration will
need to be adjusted.

System debugging and testing

Once the system has been implemented, it can be tested against specifications. Setting the
appropriate set of tests according to specifications requires insight and thorough
understanding of the specifications and operating conditions. Ideally debugging is carried
out by the design team while testing is done by a separate team that is not involved
directly with the detailed design. In this way, there is a greater likelihood that some bugs,
which are overlooked by the design team, can be picked up by the testing team.

Debugging is usually carried out with the help of in-circuit emulators, logic analyzers,
and software debuggers. All vendors of DSP chips offer some kind of in-circuit emulators
and other software tools for development purposes.

Development tools

A search through the Internet will reveal that there are numerous resources for the
development of DSP systems. Some of these are available from the chip manufacturers
for their specific chips. Others are either third-party commercial or shareware. There is
also some design software available in the public domain, although they are mainly for
non-commercial educational uses.

High-level language tools

The first generation of DSP chips is programmed primarily by using their assembly
languages. High-level language software tools (compilers, etc) are virtually non-existent.
However, the use of high-level language such as ‘C’ for software development in DSP
applications has become more common recently. There are several reasons:
e Productivity
Writing programs in high-level languages are much easier than writing
programs in assembly language. Quite often, algorithms are developed and
tested in a high-level language. These programs can then be compiled to the
appropriate processor’s machine code directly and in most cases, without
change.

e Maintainability
Anyone who has developed programs in assembly languages and high-level
languages will agree that high-level language codes are much easier to
maintain.

¢ Portability
It is not difficult to re-compile a high-level language program for a different
target DSP chip if necessary.

¢ Efficiency concerns
There are obviously concerns regarding execution speed. The most efficient
codes are hand-coded in assembly language. But with the speed of DSP chips
increasing, in most applications some inefficiencies are quite acceptable. In
fact, the most time-critical parts of the program can be hand-coded in
assembly language with the rest developed in a high-level language. Most
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linkers will be able to link object codes generated by assemblers and
compilers to produce the executable program.

In order to create high-level language compilers that are efficient for DSP
chips, there are several areas of concern that need to be addressed:

e Memory usage

As we have mentioned in the previous chapter, most DSP chips have on-chip
and external memories. The way they are used will often determine the
efficiency of the program. The memory space of a DSP system is also
typically partitioned in some special way. There must be some ways in which
the programmer can tell the compiler where to put certain variables or
program codes. Compilers also tend to produce codes that require more
memory compared with hand coding. This may be a concern for processors
with a small addressing space.

¢ Special instructions usage

DSP chips have special instructions to perform some tasks such as the MAC
operation very efficiently. The compiler will need to recognize such
constructs and use these special instructions instead of the more general ones.
These concerns are more pronounced in fixed-point DSP systems. Firstly,
fixed-point DSP chips are often used in applications that have more cost
effectiveness concerns. So efficient memory usage is an even more important.
Secondly, fixed-point algorithms have their special needs for scaling and
rounding as discussed previously. Most high-level languages do not support
fixed-point data types, thus making programming fixed-point algorithms
much more difficult.

Generally, efficiency concerns for floating-point DSP systems are much less
severe.

e Languages available
Among the high-level languages, C is probably the most popular. All vendors
that support high-level language development on their DSP chips or cores
have a C compiler for their processors. So far, only the Lucent Technologies’
DSP16xx and the Zoran AR3900x do not have a C compiler available.

There is a very high quality general purpose C compiler called GNU C widely
available on the Internet. It is developed by the Free Software Foundation.
Some people have made modifications so that some versions of it can
generate codes for DSP chips. Most notably, there is one version for the
Motorola DSP5600x family.

C is, after all, a general purpose programming language. It lacks some
important features that will simplify the coding of DSP algorithms. For
instance, a fixed-point data type would be very useful for fixed-point
processors. Many vendors have added their own specific extensions to the
standard C language to support some of these constructs. These extensions
include providing ways to assign certain variables to certain areas of memory
and the inclusion of assembly language segments into the C source code.

The ANSI Numerical C Extension Group (NCEG), which is an ANSI
standards committee is working towards standardizing extensions to the C
language to support numerical computations. It is anticipated that once the
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standard has been agreed upon, vendors will provide at least a subset of the
extensions for use with their compilers.

Another high-level language that is gaining popularity is C++. The ability to
create new data types and operations using C++ makes it much more flexible
compared with C. The use of these user-defined data types and operators
gives the compiler more room for optimization. Additionally, object-oriented
programming techniques can be wused which makes program more
maintainable. At present, only the Texas Instrument’s TMS320C3x and
TMS320C4x families of DSP chips have C++ compilers available for them
from a third-party vendor.

Some run-time libraries useful for DSP applications are available from
vendors. They include libraries for mathematical functions, signal-processing
functions, vector processing and application libraries for speech codecs,
modems and image processing.

Source-level debuggers are usually bundled with the compilers. Most of them
make use of the windowing systems available on most computers for visual
user interface.

10.2.2 Assembly language tools

A typical assembly language development environment for DSP systems will include the
following:

e Assembler

e Linker

e Instruction-set simulator

e Debugger

e Development boards

e In-circuit emulator

e Software libraries

Figure 10.3 shows the relationships between the various parts of the development
environment.
e Assemblers and linkers
Assemblers for DSP chips are no different from assemblers for general-
purpose processors. Most of them are macro assemblers with ‘standard’
features such as conditional assembly.

The common object file format (COFF) is the standard format for assembled
object code files. COFF allows the annotation of object codes with debugging
information if necessary. This common format also simplifies the integration
of third-party libraries.

e Simulators
Instruction-set simulators simulate the execution of a processor at the
instruction level on a host computer. The user can see changes in the various
registers, memory and flags as the program is executed. The user can single-
step through a program. It is very useful for debugging and algorithm
optimization. A limitation of such simulators is that it simulates the processor
alone and does not support the simulation of peripherals or other I/O
processors.
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Figure 10.3
DSP system development environment

¢ In-circuit emulation

In-circuit emulators (ICE) are hardware systems that sit between a host
computer and the DSP system. Software on the host computer allows the user
to monitor and control the processor in the target system as it executes
programs. The user may single-step through a program and optionally modify
the contents of memory locations or registers. The ICE is an important
debugging tool because it allows the developer to see what’s happening when
the programs are executed in real-time on the target system.

There are three basic types of ICE:

e Pod-based emulator.
The DSP chip is removed from the target system. The ICE has a pod that is
plugged into the socket for the DSP chip in the target system. The emulator
contains a special version of the target DSP processor that is being emulated.
This special processor has additional hardware for controlling it. The
disadvantage is its price; they are usually quite expensive and are processor
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specific. Also, the emulator pod changes the electrical characteristics of the
circuit and may cause electrical time problems. For this reason, pod-based
emulators usually do not allow full-speed operation.

e Scan-based emulator.

This type of emulation is becoming popular in recent years. This is because
the new generation of DSP chips has built-in debugging logic together with a
special serial port to access this logic by external devices. Some of these
processors use an IEEE standard ‘JTAG’ (Standard 1149.1) compatible port.
Debugging features of the chip can be accessed by simply connecting a host
processor to this port using a special adapter. The on-chip debugging logic
monitors the processor operations in real-time, halting it when a break point is
reached. Debugging information can then be accessed via the serial port.

There are 3 main advantages of scan-based emulation compared with the pod-
based one. First one is that the processor does not have to be removed from
the target system. So the electrical characteristics are not affected. Another
advantage is that the number of signal lines coming out of the target system is
small (5 for JTAG) because communication is serial. These signals can
operate at a much lower speed than the processor’s other signals. Third
advantage is that it supports full-speed operation of the DSP chip.

e Monitor-based emulator.

This is the most inexpensive type of emulation. A supervisory program, called
the monitor, is run on the DSP processor. The monitor using one of the serial
ports on the DSP chip handles communication between the target system and
the host computer. The debugging program is run on the host computer. The
advantage of this approach is that no special hardware is needed. It is the
cheapest of the three types of emulation. But it is usually not possible to set
real-time break points. Also, since the monitor runs on the DSP processor
itself, the state of the processor is changed before it can be examined by the
user. This approach is normally used with low-cost development boards or
evaluation boards.

¢ Development boards

Most DSP chip manufacturers produce low-cost development boards or
evaluation boards. They are very useful for learning about the specific chip
and its capabilities, experimenting with algorithm implementations, and
simple system developments. There also exist a whole range of stand-alone or
plug-in boards for personal computers or workstations. They are usually more
powerful, typically with more memory and some of them can be plugged into
the expansion slots of PCs. They are useful for program development. Cost of
these systems varies from a few hundred US dollars to several thousand
dollars depending on the processor and memory configurations. Some of these
cards even have multiple processors on them for parallel processing.

Other software tools

There are a number of software available that supports DSP algorithm development and
programming. Some of these incorporate very good visual programming environments
and programming can be done by dragging and dropping block diagrams and
interconnecting them. They provide tools for simulation; fixed-point analysis and some
even have DSP code generators.



236 Practical Digital Signal Processing for Engineers and Technicians

Some of them are listed below:

e MATLAB
Produced by Mathworks Inc. It is very popular with academic institutions and
as a result has become an ‘industry standard’ for simulation and signal
processing algorithm development. Many new DSP textbooks use MATLAB
code as examples. It also has options for fixed-point analysis and DSP code
generation. There is also a visual block-diagram-programming environment
called Simulink. Details can be obtained from

http://www.mathworks.com

It is available for both PCs and UNIX workstations. A more limited student
version is available to full-time students.

e DADisP
DADISP is an interactive graphics worksheet — a visually oriented software
package for the display, management, analysis and presentation of scientific
and technical data. It can collect, manipulate, edit, reduce, transform, display
and analyze data. Details are available at the DSP development corporation
web site

http://www.dadisp.com

There is a free student version and a 30-day commercial trial version that can
be downloaded from their web site.

e MatrixX
MatrixX is marketed by Integrated Systems Inc. It is designed to be a
complete system modeling and simulation environment using building blocks
in a graphical design environment. Mathematical analysis and visualizing
tools block model development is supported. Automatic software code
generation and push-button configuration of the real-time hardware are
available. Details are available at

http://www.isi.com

¢ Signal processing worksystem (SPW)
SPW from the Alta Group is a simulation and design tool that bridges the gap
between system level simulations and the realization of the system
components. SPW supports realizations with digital signal processors as well
as hardware realizations. Details at

http://www.altagroup.com

This software is only available for UNIX workstations.

e COSSAP

The COSSAP digital signal processing development system provides a
unified environment throughout the design process. It makes use of stream-
driven simulation (SDS), which operates on the natural flow of data through
the system so designers do not have to define architecture before they develop
their algorithms. Since this is essentially a self-timed circuit, defining multi-
rate and asynchronous systems is no more difficult than defining a single-rate
system. This approach also results in considerably lesser overhead for the
simulation engine, typically allowing it to run 8-16 times faster than clock-
cycle-based simulation, according to Synopsis Inc.
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The COSSAP product family includes signal processing libraries and HDL
code generator for behavioral and RTL design in VHDL or verilog, DSP code
generator for optimal C generation and DSP developer kits for DSP co-
simulation with TI and Lucent Technologies DSP chips. The synopsis web
site is located at

http://www.synopsis.com

This software is only available for UNIX workstations.

e Hypersignal
Hypersignal is a graphical DSP environment for developing real-time DSP
applications using DSP and data acquisition boards. It also includes an
automatic ANSI C source code generator for generating C source code from
visual designs. Details can be found at the web site of Hyperception Inc.

http://www.hyperception.com

e Scilab
Scilab is a high-level language for numerical computations in a user-friendly
environment. Scilab is developed at INRIA and is available free via
anonymous ftp in source and binary formats. Scilab runs on Windows 95/NT,
linux and most UNIX workstations. Scilab can be obtained by anonymous ftp
from ‘“ftp.inria.fr’ (internet 192.93.2.54), in directory ‘/INRIA/Scilab’.

Naturally this list is not exhaustive. Note that we are not recommending any of these
products. It is simply provided for reference purposes.

Real-time operating system

An operating system controls accesses to system resources and manages the order of
execution of programs on a processor. Real-time operating systems (RTOS) are ones that
guarantees the latency (time delay) of interrupts. In other words, the time delay between
the instant when an interrupt occurs and the time when a special interrupt service routine
is activated to service that interrupt is bounded. An RTOS will be most useful when
multiple interrupts may occur at unspecified times.

Real-time operating systems are more popular with general-purpose processors. A few
are now available for DSP processors. They are usually adapted from the ones for general
purpose processors. So far only one is designed for DSP chips right from the start. It is
called SPOX from Spectron Microsystems. There are versions of a range of floating-and
fixed-point DSP chips from Texas Instruments, Motorola and Analog Devices.
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Binary encoding of quantization
levels

Consider an n-bit binary number representing a full-scale range R. In other words, the
range R is being quantized into 2" quantization levels. If R is unipolar, the quantized value
Xq lies in the range [O,R]. If it is bipolar, xq lies in the range [-R/2,R/2].

We shall denote the n-bit pattern as a vector b = [b,.y, by, ..., by, bg] where b, is
called the most significant bit (MSB) and b, is the least significant bit (LSB). There are
many ways in which this n-bit pattern can be used to encode xo. Three most common
ways are:

¢ Unipolar natural binary

Xg=R(b 27" +b ,27 +.. 452" +5,27)
¢ Bipolar offset binary

Xg=R(b 27" +b ,27 +.. 452" +5,27-0.5)
¢ Bipolar two’s complement

o =R(bxa2" +b 27 +. 452" 5,27 -055)

Here b,-; denotes the complement of b,,_;.
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Example A.1
For R=2 V and 3-bit (8-level) quantization, the correspondence between the binary
representations and the quantized value are given in the following table.

b,b;by | Natural binary | Offset binary | 2’s complement
111 1.75 0.75 —0.25
110 1.50 0.50 —0.50
101 1.25 0.25 —0.75
100 1.00 0.00 -1.00
011 0.75 —0.25 0.75
010 0.50 —0.50 0.50
001 0.25 —0.75 0.25
000 0.00 -1.00 0.00

The unipolar natural binary representation encodes levels in the range 0 to 2 V. Offset
binary and 2’s complement encodes —1 Vto 1 V.
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Practical sessions

The practical sessions associated are designed to enhance the readers’ understanding of
the lecture materials. Some sessions may go beyond what is being taught for those who
are interested. Thus they not only enhance but also extend the knowledge that has been
gained from the lectures.

Most of the practical sessions are software based. They make use of the widely
used MATLAB software from Mathworks, Inc. Other sessions use the Texas
Instruments DSP boards for experimentation. The readers are encouraged to
explore as far as time allows.

Below is a summary of the practical. Detailed notes on each practical are
covered later.

e Introduction to MATLAB
The objective of this practical is to introduce the MATLAB software: how to
use it and what it can do, etc. It should be done before the other practical that
makes use of the software.

e Introduction to SIMULINK
Simulink is a software that provides a drag-and-drop interface and other
graphical facilities to perform visual programming. No knowledge of
MATLARB is required as the interface is meant to be intuitive. The objective
of this practical is to be able to use SIMULINK to simulate simple DSP
operations.

¢ FIR filter design
The objective of this practical is to deepen the understanding of the FIR filter
design process. Various techniques introduced in the lectures will be used.
Readers can attempt to design filters that are relevant to their area of work.

e IIR filter design
Similar to FIR filter design practical, the objective of this practical is to
enhance the understanding of the design of IIR filters. IIR filters can then be
compared to FIR designs. Insights into their relative merits can be gained.
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e Filter realization
Simulink and the DSP block set will be made use of in this practical to
experiment with different digital filter realization methods discussed in the
lectures. The effects of finite word length and coefficient quantization can
also be experimented with.

¢ Image processing
Image processing is inherently a 2-dimensional signal processing operation.
But often it is treated as 1-dimensional (1-D). In this practical some of the
insight gained in 1-D DSP will be applied to image processing. The image
processing toolbox integrated with MATLAB will help in this area.

e Sampling and quantization
The objective of this practical is to observe the effects of sampling and
quantization on the frequency spectrum of signals. A simulation model of the
ERMES transmitter discussed in Chapter 5 will be built. Various sampling
and quantization effects will be introduced and the result observed.

e DSP implementation
The TMS320C5x DSP chip will be made use of to perform some speech
processing and analysis tasks. The objective is to gain some first hand
experience in compiling, assembling, downloading and debugging programs
written for the chip. No actual programming will be required. Insight into the
effectiveness of some development tools discussed in the lectures will be
gained.

Introduction to MATLAB

Objectives

To provide a brief overview of the functionality and basic features of MATLAB.

Equipment required

A 486/Pentium PC running Windows95 with MATLAB version 5.x and the signal
processing toolbox installed.

Notation

The commands that user needs to enter into the appropriate window on the computer are
formatted with the typeface as follows:

plot(x,y)

Brief description of MATLAB and the signal processing toolbox

MATLAB

MATLAB is a powerful collection of tools for algorithm expression, computation and
visualization. It provides much of the control and flexibility of a traditional high-level
programming language. However MATLAB is extremely easy to learn and is very
compact. This allows you to express algorithms in concise and readable code. MATLAB
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also provides an extensive set of ready-to-use functions including mathematical and
matrix operations, graphics, color and sound control.

MATLAB is an ideal software tool for studying digital signal processing (DSP). Its
language has many functions that are commonly needed to create and process signals.
The plotting capability of MATLAB makes it possible to easily view the results of
calculations and to visualize what is happening.

This is a collection of toolboxes built on the MATLAB numeric-computing
environment. The toolbox supports a wide range of specific operations, from signal
processing to control system, image processing and economic modeling.

Exercises on basic features

These simple exercises will take you through the basic command structures of MATLAB
so that you will be able to understand the commands that we will use later on in other
exercises.

Start MATLAB by clicking on the MATLAB icon on the desktop. The MATLAB
command window should be opened with a prompt “>>*.

Simple math

Just like a calculator, MATLAB can do simple maths. Type
>> 4+2+5
(without the command prompt). The answer is given a name.

Q1: What is the variable name of the answer?
Try to do multiplication (*) and division (/).

Vector and matrices

MATLAB stands for ‘MATrix LABoratory’. All of MATLAB’s calculations are

performed on matrices. A scalar value is a 1x1 matrix.
Let’s build a vector. At the MATLAB prompt, enter:

This command creates a vector A containing 201 elements between 0 and 100 (inclusive).
The ‘linspace’ command makes the vector in a ‘linear’ fashion, e.g. 201 evenly spaced
points with the beginning value of 0 and the end value of 100. The single quote after the
command line is the transpose command. ‘linspace’ generates a row matrix. The use of
the single quote transforms it into a column matrix.

Notice that the result of this command is output to the screen. Now try to place a
semicolon (;) at the end of the line and execute it again. (Hint: you may use the up-arrow
key to scroll back to the previous command). This time the output is not displayed.

Create another column vector B, with 201 linearly spaced points between 25 and 75
without displaying the results. Then type B at the command prompt to view your vector.

Addition of vectors is straightforward.

Q2: What is the result of entering the following command?
>> C=A+B

Q3: What is the result of entering the following command?
>> D=A*B
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Remember that A and B are matrices. Attention should be paid to the dimension of the
matrices when doing multiplication. Both A and B are 201 x 1 matrices. The size of all
variables in the current session can be checked by entering:
>> whos

The following multiplication should work:
>> D=A'*B

Element-by-element multiplication can also be done. The command format is as
follows:
>> E=A.*B

Q4: What are the dimensions of matrix E?

Here are two ways to build a matrix:
()>> M=[1 2 3;4 5 6;7 8 9];
(2) >> N=[A B];

QS5: What are the dimensions of M and N?

Note that the values of A and B are copied to N. So if the values of A and B are
changed after N is created as above, N will still hold the old values in A and B.

Help

Probably the most useful command in MATLAB is ‘help’. Enter the following:
>> help

A list of topics MATLAB has help files on is returned. Try entering the following:
>> help elfun

A list of elementary math functions in MATLAB is returned. For more help on a
certain function (for example, for) type
>> help for

Alternatively, you may click on the ‘?” icon on the command window. A new window
appears and you may now click on the item of interest to show the respective help
information. Try this out now.

File execution

You may extend the available MATLAB commands by creating your own. These
commands or functions are usually stored in what is called M-files. The syntax of these
files is simply a sequence of statements, which could execute from the MATLAB prompt
put into a single file, where each line ends with a semicolon.

Under the File drop-down menu in the command window, select New—M file. A new
window (MATLAB editor/debugger window) will appear. Enter the following lines into
that window:
t=1linspace(0,2*pi,100) ;
x=sin(t) ;
plot (t,x) ;
title (‘'Sine Function’) ;
xlabel (‘radians’) ;
ylabel (‘amplitude’) ;
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Save this to a file by selecting File—Save in the drop-down menu of the MATLAB
editor/debugger window. Enter a filename of your own choice (say, testl). The file will
be saved with extension .m appended.

Now go back to the MATLAB command window and enter this filename at the
command prompt. The commands in this file are executed and a plot (of one period of a
sine function) is created.

This type of M-files are called script M-files. Another type of M-file is called function
M-files. They are different from script M-files in that they take input arguments and the
output are placed in output arguments.

In the editor/debugger window, select File—New to create a new M-file. Enter the
following and save it with the filename ‘flipud’.

function y = flipud(x)

FLIPUD Flip matrix in up/down direction

FLIPUD(X) returns X with columns preserved and rows
flipped in the up/down direction. For example,

becomes 3 6

N}
o u
BN R

4
5
4

o\® o\° o\°® o\® o\° o\° o\° o° o\°

if ndims (x)~=2, error (‘X must be a 2-D matrix.’); end
[m,n] =size(x) ;
y=x(m:-1:1,:);

After saving this file, go back to the command window. Create a matrix X as in the
example given in the file by entering
>> X=[1 4;2 5;3 6];

Then apply the “flipud’ function.
>> Y=flipud (X)

Check that the matrix returned is as described. Note that the filename of a function M-
file is always the same as the name of the function itself.

Optional exercises

These exercises should be taken if you have time and an interest in understanding more
about MATLAB.
e Enter tour at the command prompt. A separate ‘MATLAB tour’ window will
appear.
e Move the cursor to ‘Intro to MATLAB’ on the left-hand side of the window and
click on it.
¢ Go through the introduction by clicking on the ‘Next>>>‘ button when ready.
¢ In a similar way to (c) above, go through the following categories one by one:
matrices, numeric, visualization, and language/graphics.
e You may choose to go through the examples in each of these categories
passively by clicking on the appropriate button when prompted by the text that
appears.
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e Alternatively and this is recommended, that when you see the commands shown
in the text on the left, go back to the MATLAB command window by a single
click on that window. Then type in those commands as shown and see
MATLAB work. Commands are shown with the prompt “>>‘ in the text box in
the ‘slideshow player’ window. You will need to go back and forth between the
‘slideshow player’ window and the MATLAB command window.

e When you have finished all the categories and their associated examples as
listed in (a), click on the ‘main window’ button at the bottom of the window to
return to the ‘MATLAB Tour’ main window.

e When you have finished all the examples, click on the ‘main window’ button at
the bottom of the window to return to the ‘MATLAB tour’ main window.

e Then click on the ‘exit’ button on the bottom right-hand corner of the
‘MATLAB tour’ main window to exit the tour.

e Type quit in the MATLAB command window to exit MATLAB.

Introduction to SIMULINK

Objective

To provide:
e A brief overview of the functionality and applications of SIMULINK.
e A tutorial on the use of SIMULINK to generate simulation models.
e A tutorial on the DSP Block Set.

Equipment required

A 486/Pentium PC running Windows95 with MATLAB version 5.x, SIMULINK version
2.1 and DSP block set installed.

Notation

The commands that users need to enter into the appropriate window on the computer are
formatted with the typeface as follows:

plot(x,y)

Brief description of SIMULINK and the DSP blockset

SIMULINK

SIMULINK is a software package for modeling, simulating and analyzing dynamical
systems. It supports linear and non-linear systems, modeled in continuous-time, discrete-
time, or a combination of the two. Systems can also be multi-rate, i.e. having different
parts that are sampled or updated at different rates.

SIMULINK provides a graphical user interface (GUI) for building models as block
diagrams, using click-and-drag mouse operations. With this interface, you can draw the
models just as you would with pen and paper. It has a set of ‘standard’ block library
consisting of sinks, sources, linear and non-linear components and connectors. User
created and defined blocks are also possible.

It runs under the MATLAB environment.
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DSP blockset

The DSP blockset is a collection of block libraries for use with Simulink dynamic system
simulation environment. These libraries are designed specifically for DSP applications.
They include operations such as classical, multi-rate, and adaptive filtering, complex and
matrix arithmetic, transcendental and statistical operations, convolution, and Fourier
transforms.

Building

models

We shall now attempt to build three SIMULINK models, starting with a simple one.

Sine wave integrator SIMULINK model

Procedure

We shall now attempt to build a simple model using SIMULINK. You should close all
the demo windows with only the MATLAB window on. The model we shall be building
will simply integrate a sine wave and display the input and output waveforms.

To start SIMULINK, type simulink (followed by the enter key) at the
MATLAB prompt. A window titled ‘library: simulink’ will appear.

In the ‘library: simulink’ window, in the ‘file’ drop-down menu, choose ‘new-
>model’. A new window will now appear with a blank screen. You might want
to move this new model window to the right side of the screen so you can see its
contents and the contents of the block libraries at the same time.

In this model, you need to get the following blocks from these libraries:

Source library: the sine wave block

Sinks library: the scope block
Linear library: the integrator block
Connections library: the mux block

Open the source library to access the sine wave block. To open a block library,
double-click on the library’s icon. Simulink then displays all the blocks in that
library. In the source library, all the blocks are signal sources.

Now add the sine wave block to your model by positioning your cursor over
that block, then press and hold down the mouse button. Drag the block into the
model window. As you move the block, you can see the outline of the block and
its name move with the pointer.

Place the block in your model window by releasing the button when it is in the
position you want. In the same way, copy the other three blocks into the model
window.

The > symbol pointing out of a block is an output port. If the symbol points to a
block, it is an input port. A signal travels out of an output port and into an input
port of another block through a connecting line.

The mux block has 3 input ports; we need only 2 of them in our model. To
change the number of input ports, open the mux block’s dialog box by double
clicking on the block. Change the ‘number of inputs’ parameter value to 2. Then
click on the ‘close’ button.
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e Now we need to connect the blocks. Connect the sine wave block to the top
input port of the mux block: position the pointer over the output port of the sine
wave block, hold down the mouse button and move the cursor to the top input
port of the mux block. The line is dashed while the mouse button is down.
Release the mouse button. The blocks are connected.

e Connect:

The output port of the integrator block to the other input of the mux.

The output of the mux to the scope.

e The only remaining connection is from the sine wave block to the integrator.
We shall do so by drawing a branch line from the line connecting sine wave to
the mux. Follow the steps:

Position the cursor on the line.

Press and hold down the CTRL key on the keyboard. Press the mouse button.
Drag the cursor to the Integrator block’s input port.
Release the mouse button and the CTRL key.

e Open the scope block to view the simulation output. Keep the scope window open.

e Set the simulation parameters by choosing the ‘parameters’ from the
‘simulation’ drop-down menu. In the dialog box that appears, set the ‘stop time’
to 15.0. Close the dialog box.

e Choose ‘start’ from the ‘simulation’ menu. Watch the traces of the scope
block’s output.

e Simulation stops when it reaches the time specified or when you choose ‘stop’
from the ‘simulation” menu.

¢ You may save the model by choosing ‘save’ from the ‘file” menu.

Questions

(a) Explain the phase shift between the integrated and sine wave form?
(b) Do you expect to see this phase shift in practice? Why?

Audio effects — reverberation

The second simulation will demonstrate the interaction between MATLAB and
SIMULINK. We shall simulate audio reverberation. The simulation model is shown
below.
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Create a new SIMULINK model as shown in the figure. Note that the blocks entitled
‘feedback gain’ and ‘delay mix’ are actually ‘gain’ blocks in the linear library. Blocks can
be renamed simply by clicking on the titles and editing them. Change the gain values in
the gain blocks to that shown in the figure.
Also set the following block parameters:
(1) Signal from workspace

variable name = x

sample time = 1/fs
(2) To workspace

variable name =y

max. no. of rows = inf

decimation = 1

sample time = -1
(3) Delay

integer sample delay = 1800

initial condition =0

Once the model has been setup, save it to a filename of your choice.

: # Simulation parameters: reverb ==l i

Solver 1 “whorkzpace | A0 i Diagnosticsi

Sirmulation time
Stark time: ! n.a Stop time: i 2
Solver options
idiscrete [mo continuous states] ';

Fized step size: ; auto
Cutput options
;Flefir.e outpuk "'; Eretime factorn: ; 1

Apply ! Fewert I Help i Cloze ;

~# Simulation parameters: reverb i

Snlveri whorkgpace 1/0 i Diagnosticsi
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I Load initial:
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Select simulation—parameters and set up the simulation parameters the same as that
shown in the above figures.

Now go back to the MATLAB command window, enter the following:
>> load reverbsrc
>> fs = 16000;

Data from a file called ‘reverbsrc.mat’ has been loaded into the workspace. Check that
data has been loaded to a variable called x (using the whos command). You can also hear
the sound using the command:
>> sound(x, £s)

Now run the simulation. The result can be heard by using the command in MATLAB:
>> sound(y,fs)

Adaptive noise cancellation

An adaptive noise cancellation system has been described briefly in Chapter 1. We shall
now attempt to build a simulation model to study its operation. This model will need to
include blocks from the DSP blockset

The simulation model is shown in the figure below.
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Details of the blocks in this model and their parameter settings are given below:

(1) Signal
Actual block used: signal generator
waveform = sine
amplitude = 1.0
frequency = 0.345573
units = rad/sec
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(2) Noise
Actual block used: bandlimited white noise
noise power = 1
sample time = 1
seed =[23341]
(3) Noise filter
Actual block used: digital FIR design
method = classical FIR
type = lowpass
order = 31
lower bandedge = 0.5
upper bandedge = 0.6
(4) LMS adaptive filter
FIR filter length= 32
step size, mu = 0.5
initial condition = 0.0
sample time = 1
(5) FFT scope
Frequency units = hertz
Frequency range = half
Amplitude scaling = dB
FFT length = 256
Y -axis label = filter response, dB
(6) Filter taps
Actual block used: time vector scope
Y-axis label: adaptive filter coefficients

Save the model once it has been setup using a filename of your choice.
Set up the simulation parameters as shown below.

-# Simulation parameters: anc 1

“Waorkzpace /0 ! Diagnnsticsl

Salver

Simulation time

Start time: ; 0o Stop hime: ! 999339

Solver optiohz

Type: (B ldiscrete [hio continuous states] :_i

Fixed step size: ; auto

Output options

Fiefine output ﬂ Biefite factor ; 1

Apply ] Hevertl Help I Cloze
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: ¢ Simulation parameters: anc '
Snlverl Workspace /0 Diagnnstics!
Load from workspace Save to workzpace
[ Input: i [t ] [ Time: ; bt
[~ States: i'f-ﬂtii
[~ Output: ;P-’JLE
States
[ Load initial [T Save final
Save optionz

[~ Limrik rowes to last: | 1000

Decimation: ; 1

Apply I Hevertl Help l Cloze

Now run the simulation and compare the input, input + noise, and output.

Questions:

(1) Does the system perform better if the LMS adaptive filter length is changed to 64?
(2) What if the LMS adaptive filter length is shortened to 24?

Discrete Fourier transform and digital filtering

Objectives

To reinforce concepts learnt in the lectures in the following areas:
e DFT and FFT
e Aliasing
e Convolution and filtering
e Overlap-add and overlap-save methods

Equipment required

A 486/Pentium PC running Windows95 with MATLAB version 5.x, SIMULINK 2.x and
the signal processing toolbox installed.

Notation

The commands that users need to enter into the appropriate window on the computer are
formatted with the typeface as follows:

plot(x,y)



254 Practical Digital Signal Processing for Engineers and Technicians

DFT, windowing and aliasing

(a) Start MATLAB by clicking on the MATLAB icon on the desktop. The MATLAB

command window should be opened with a prompt “>>°.

(b) Enter
>> sigdemol

(¢) The screen below should appear, containing the time and frequency representation of
a sinusoid. You are seeing the discrete samples of a sine wave and the absolute value
of its DFT, obtained using the FFT algorithm.

: ¢ Discrete Fourier Transform
File Edit ‘Window Help

Click and drag weaveform to change

fundamental frequency and amplitude Signal
: isine "i
| Window

i rectangle "i

YWiiaveform

Fundamental

I_‘E_

T T T T

4 e oo d-eoooe 4

E 1 1 1 1

S a0t R A S 4

[ul] el | | | I

= 1 1 1 1

2 0f e IR TR g
=, | | | | Info

= '2[' I "-'-'.'.'_':'__' """ ': """" _:'

= T g v
o 20 40 ] g0 100 Close

Frequency (Hertz)

Q1: Does the peak of the frequency spectrum correspond to the frequency of the
sinusoid?

Q2: Draw the theoretical spectrum of a sinusoidal signal. Is what is shown here
correspond to what you expect? If not, why not?

(d) To increase the frequency of this sinusoid, click on the curve in the top window and
while holding the mouse button down drag the mouse towards the left margin. Upon
releasing the mouse button we observe that the fundamental frequency of the sinusoid
has increased and is displayed in the window called ‘Fundamental’.

Q3: How does the spectrum change when frequency of the sinusoid is increased?
Q4: What happens to the spectrum when the frequency of the sinusoid exceeds 100?
Explain what happened.
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Q5: What is the sampling frequency for this demonstration?

(e) The original window applied to the selected signal is a rectangular window. This
means that the sinusoids are cut off abruptly at both ends of the signal. A different
window may be applied by selecting a window from the ‘window’ drop-down
menu. Select the Hamming window.

Q6: Does the peak of the frequency spectrum correspond to the frequency of the
sinusoid?

Q7: How does the spectrum of the signal differ from the one obtained using the
rectangular window?

Q8: See a plot of the Hamming window function in Figure 6.20 of the manual. Compare
this to a rectangular window (Figure 6.13). Can you guess what contributes to the
difference in the resulting spectrum?

() Try all the available windows and compare the resulting spectra.
Q9: Which window gives the smallest side-lobes (the artefacts at both sides of the peak)?

(g) Change the waveform by opening the drop-down menu called ‘Signal’ and clicking
the mouse on ‘square’.
Observe the corresponding time and frequency representations.

Q10: In changing the signal from sine wave to square wave, what do you notice about the
harmonics (the peaks in the spectrum) ?

(h) Click on the CLOSE button to end this session.

Filtering a signal

Here’s an example of filtering with the signal processing toolbox.

(a) First make a signal with three sinusoidal components (at frequencies of 5, 15, and 30
Hz).

Fs=255;

t=(0:255) /Fs;

sl=sin (2*pi*t*5); s2=sin(2*pi*t*15); s3=sin(2*pi*t*30);
s=81+82+83;

(b) The sinusoids are sampled with a sampling period of 1/Fs and 256 points are included.
Now plot this signal.
plot (t,s) ;
xlabel (‘Time (seconds)’) ;
ylabel (‘Time waveform’) ;

(c) To design a filter to keep the 15 Hz sinusoid and get rid of the 5 and 30 Hz sinusoids,
we create a 50-th order FIR filter with a passband from 10 to 20 Hz. The filter was
created with the FIR1 command.
b=firl (50, [20/Fs 40/Fs]);
a=1;
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Use the command help firl to see how the function firl is used. The filter coefficients
are contained in the variables b. To see their values simply type b at the command
prompt. b is also the impulse response of the filter.

(d) Display its frequency response.
[H,w]=freqz(b,a,512);
plot (w*Fs/ (2*pi) ,abs(H)) ;
xlabel (‘Frequency (Hz)');
ylabel (‘Mag. of frequency response’);
grid;
(e) Filter the signal using the filter command. The filter coefficients and the signal vector
are used as arguments.
sf=filter(b,a,s);
(f) Display the filtered signal (s£f).
plot (t,sf) ;
xlabel (‘Time (seconds)’);
ylabel (*Time waveform’) ;
axis ([0 1 -1 11);

Q11: Does it look like a single sinusoid?

(g) Finally, display the frequency contents of the signal before and after filtering.
S=fft(s,512);
SF=fft(sf,512);
w=(0:255) /256% (Fs/2) ;
plot (w,abs([S(1:256)' SF(1:256)"']1));
xlabel (‘Frequency (Hz)');
ylabel (‘Mag. of Fourier transform’);
grid;

Q12: Which frequencies have been removed from the composite signal?

Linear and circular convolution

The above digital filtering operation is performed using the £ilter function.
Q13: Using the command whos, find the dimensions of b, s and sf.

Filtering is basically a linear convolution between the impulse response of the filter and
the input signal. So the output of the filter can also be obtained by the linear convolution
function conv.

Q14: From the dimensions of b and s, what is the length of the sequence resulting from
the linear convolution of s and b?

Check your answer by performing the linear convolution and checking the dimension
of the result:
sc = conv(b,s);
whos
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Q15: Is your answer to Q14 correct?
Q16: Is st the truncated version of sc? Check the values of both sequences.

Circular convolution of b and the first 51 elements of s (s1) to obtain c1:
B=fft (b) ;
sl=s(1:51);
Sl=fft(sl);
Cl=B.*S1;
cl=ifft (C1);
Note that C1 is obtained by element-by-element multiplication of B and S1.

Q17: Compare the values of c1 with that of sc. Do you notice any differences?

Now perform the circular convolution of b and the second 51 elements of s (52).
s2=s5(52:102) ;

s2=fft (s2);

C2=B.*S2;

c2=1ifft (C2) ;

Q18: Do you expect the values in c2 to be the same as the elements 52 to 102 of sc?
Give your reason.

Overlap-add and overlap-save methods

We cannot obtain the correct linear convolution results by simply putting the circular
convolution results together. To obtain the correct linear convolution results, we need to
use overlap-save or overlap-add methods as described in section 4.7.2 in the manual.

We shall divide the signals into 2 blocks of length 128 each. Enter the following:
sl = s(1:128);
s2 = s(129:256) ;

Q19: What are the values of L and M (refer to section 4.7.2 of the manual) in this case?
We shall start with the overlap-add method.

Q20: How many zeros will need to be appended after each block?

Create a vector of this many zeros.
nz= % set this to the value of your answer in Q20
z = zeros(l,nz);

Now append the zeros to s1 and s2:
szl = [sl z];
sz2 = [s2 z];

Perform the circular convolutions using DFT:
B=fft (b,128+nz) ;

SZ1l=fft (szl) ;

Sz2=fft (sz2) ;

R1=B.*SZ1;

R2=B.*SZ2;

rl=ifft (R1);

r2=1fft (R2) ;
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Now align the two results and add them.
z2=zeros (1,128) ;

rl =[rl z2];

r2 =[z2 r2];

r = rl+xr2;

Q21: Is the resulting vector r the same as that obtained by linear convolution (sc)?
Based on the MATLAB codes above, implement the overlap-save method. Also breaking
the signal s into two 128-element blocks.

Write your MATLAB code here:

Q22: Are the results of overlap-add and overlap-save the same?

FIR filter design

Objective:

To provide:
e Deeper understanding of the characteristics of FIR filter.
¢ An understanding in the use of software tools in the design of filters.
e Verification of the examples in the lecture.

Equipment required:

A 486/Pentium PC running Windows95 with MATLAB version 5.x and signal processing
toolbox version 4 installed.

Notation:

The commands that users need to enter into the appropriate window on the computer are
formatted with the typeface as follows:

plot(x,y)

Exercises:

Starting sptool.

‘sptool’ is a graphical environment for analyzing and manipulating digital signals, filters
and spectra. Through sptool, you can access 4 additional tools that provide an integrated
environment for signal browsing, filter design, analysis and implementation.
o Start MATLAB by clicking on the MATLAB icon on the desktop. The
MATLAB command window should be opened with a prompt “>>°.
¢ Enter sptool at the command prompt. A separate ‘SPTool” window will appear.



Practical sessions 259

e sptool has now started. We shall use it to design some filters and use them
for filtering signals. We shall also make use of the signal browser and spectrum
viewer to examine the properties of the unfiltered and filtered signals.

File Edit Help “indow

Signals Filters Spectra
=] =y =]
[ = [
e I 1= I A= I
Mews Design I IEreate I
Edit esign I IUpdate I

Apply |

The SPTool window

Using the filter designer

Using the filter designer you can design IIR and FIR filters of various lengths and types,

with standard frequency band configurations.

(a) Open the filter designer by pressing the button new design on the SPTool window.
The filter designer is now activated with a separate window appearing as below.

: 4 Filter Designer H=] E3
File “window
Fier = | = || <= WA | £ ?
i‘.“""“""““"‘:] Zoom Zoom Zoom Zoom Pas=s i P =
file T ey | ower | m | owex | Band | TEM]) Zoom Help
Algarithm Sampling Frequenc:
" Auto Design 2 e t Owerlay Spectrum... 1
|Equiripple FIR [
Specifications F Measurements
reguency Response
¥ inirum Order 20
Order 22
Type ilowpass Yi a
Riasnl eyt Pazzhand
Fo [0.05 = Actual Rp 3.937
o
@ Wweight 1
R
Rp i 3 =
=
Stopbarnd—— | = 0 Stopband
Fs ; 0.07% Actual Rs 17.63
a0 Weight 1.71
Rz 1 20
-100
a
i Freguency

The filter designer window
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(b) The filter designer window has the following components:
¢ A magnitude response area.
e A design panel for viewing and modifying design parameters of the current
filter.
e Zoom controls for getting a closer look at filter features.
¢ Specification lines for adjusting the constraints.

(c) When the filter designer window first appears, it contains the specifications and
magnitude response for an order 22, low-pass, equiripple FIR filter (designed using
the Remez exchange algorithm), as shown in the figure above.

(d) Go back to the SPTool window, under the ‘edit’ drop-down menu, choose sampling
frequency. Change the sampling frequency to 7418 Hz. Notice now that the frequency
axis of the filter response is changed accordingly.

Q1: What are the maximum and minimum frequencies shown in the frequency axis?

(e) Go to the filter designer window, in the design panel, click on the ‘down-arrow’ next
to the word lowpass. A list of frequency configurations is shown.

Q2: What frequency configurations are available?

(f) Select bandpass by clicking on the word.

(g) Then set fs1 to 1200, fp1 to 1500, fp2 to 2500 and fs2 to 2800. These fields define the
width for the passband to stopband transition, in hertz.

(h) Set Rp (passband ripple) to 4. Set Rs (stopband attenuation) to 30. The units are in
decibels.

(1) Now specify the filter design method. Click on the ‘down-arrow’ next to the word
equiripple FIR. A list of design methods is shown.

Q3: Which of the design methods shown are for FIR filters?

(j) Click on Kaiser window. The new filter with the new specifications should now be
designed and the results shown.

Q4: What is the order of the filter designed?

(k) Place the cursor on the constraints (straight lines) in the filter response diagram. Press
on the mouse button and move it up or down. When the button is released, the new
constraints are now used and a new filter is computed.

Using the filter viewer

(a) Go back to the SPTool window and click on the view button (right above the new
design button). The filter viewer window now appears with the magnitude and phase
responses of the designed filter.

QS5: Is the filter linear phase?
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Q6: What happened to the stopband ripples as shown in the filter designer window?

< Filter Wiewer I =1
File  ‘wfindows
Filter: filt1 S Selection ————————————————
o ’W‘ rd - —
Fs_7a1m b=t | s e It Color.. |
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o
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Fi e
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The filter viewer

(b) The filter viewer has the following components:

e A main plots display area for viewing one or more frequency domain plots of
the selected filter.

e A plots panel for selecting which subplots to display.

¢ A frequency axis panel for specifying x-axis scaling in the main plot area.

e A filter identification panel which displays information about the current
selected filter.

e Zoom controls for getting a closer look at the plots.

(c) Go to magnitude in the plot panel. Click on the ‘down-arrow’ next to the word linear.
This determines the scaling appearing on the y-axis of the magnitude response plot.
Now click on the word decibel.

Q7: How does the magnitude response plot look using decibels as magnitude units
compared with the previous linear scale?

(d) It is not easy to tell whether the phase response is linear because of wrapping of the
angles. The group delay response makes it clearer. Click on the ‘tick box’ next to
group delay.

Q8: Is the filter linear phase?
Note: Group delay is defined as the derivative of the phase with respect to frequency. So
a linear phase filter has constant group delay response.

(e) Click on the tick-box next to phase and group delay to remove those plots.

() Click on the tick-box for impulse response to see a plot of the impulse response of this
filter.

(g) Then click on the tick-box for step response to see a plot of the response of this filter
when unit step input is applied.
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Using the signal browser

(a) We shall now get a signal from a file stored previously using MATLAB. Go back to
the SPTool window. Click on file to obtain the drop-down menu. Then click on
import.

(b) An ‘Import to SPTool” window appears. Click on from disk. Then click on the browse
button.

(c) In the “select file to open’ window, under the toolbox\signal directory double click on
mtlb.

(d) Now in the file contents panel of the ‘import to SPTool” window, the variable names
mtlb and Fs can be seen. First click on mtlb. Then click on the right arrow leading to
the data text box. The window should be as shown below:

Elmpnll to SPTool
Source File Contents r lmport A Sianal lj
1 Fram Work space <no selection: -
Fs
1 Fram Disk.
=i i ; rtle Drata
MAT -file: Marne:
; mtb.mat
Erowse... i

Sampling Frequency

Marne
| Help i Cancel i Ok ; ‘ E sigl

Importing signal to SPTool

(e) Now click on Fs and then click on the right arrow leading to the sampling frequency
textbox. Click OK.

(f) Click on the view button under the signals textbox. The signal browser is now
activated.

E Signal Browser 1O}
File Options Window

T - P Selection ——

it Full g = | <] b= 2

el | e ] e e M =] clar.
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The signal browser window
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(g) The signal browser window has the following components:
¢ A main display area for viewing signals graphically.
e A panner for seeing which part of the signal is currently displayed.
e Display management control (at the top left) with array signals and real.
e Zoom controls for getting a closer look.
e Rulers and line display controls for making signal measurements and
comparisons.

(h) Move the cursor over one of the vertical lines in the signal display. The cursor now
changes into the shape of a hand. While holding the mouse button down, move the
vertical line back and forth. Notice that the numbers in the rulers and line display
controls change values reflecting the position of the vertical line. You can do the same
with the other vertical line.

(1) Click on the Zoom in X button 2 to 3 times. Notice the changes in the signal display.
Also notice a box appears in the panner below indicating the position of the currently
displayed portion of the signal.

(j) Clicking on Zoom out X will have the opposite effect.

Using the spectrum viewer

(a) Go back to the SPTool window. Click on the create button under the spectra textbox.
The spectrum viewer is activated.

(b) In the spectrum viewer window, click on the apply button on the lower left. The
following display should be obtained.
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The spectrum viewer window

(c) The spectrum of the signal mtlb is displayed.
(d) The spectrum viewer window has the following components:
¢ A main display area for viewing spectra.
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e A parameter frame for viewing and modifying the parameters or method for
computing the spectrum.

e Zoom controls.

e Rulers and line display controls for making spectral measurements and
comparisons.

e Spectrum management buttons: inherit from, revert and apply.

¢ A signal identification panel.

(e) The ruler and line display controls are similar to that in the Signal Browser. The 2
vertical lines for measurement can be dragged back and forth.

Q9: What is the frequency of the spectral peak that is closest to 2 kHz? (Use the ruler to
make measurements).

(f) In the parameter frame, pull down the menu for window (click on the ‘down-arrow’).
Q10: Which windows are available in this menu?

(g) Choose Hamming window.

(h) In the overlap textbox, enter 100. There is now 100 samples overlap between

successive windows of the signal for FFT. Click on apply.

Q11: Are there any difference between the current spectrum and the one displayed
earlier? Which ones looks smoother?

Applying the filter to the signal

(a) Go back to the SPTool window. Click on the apply button under filters. In the ‘apply
filter’ window, click OK.

(b) The signal sigl has been filtered filtl to produce sig2. Highlight sig2 and view the
filtered signal using the signal browser.

(c) Create a new spectrum and apply it to sig2, which has already been selected.

Q12: Is the spectrum what you would expect?

Design the low-pass and high-pass filters for the loudspeaker crossover network as
specified in the manual. The crossover frequency is 1 kHz with passband ripple of 0.1 dB
and stopband attenuation of at least 60 dB. The transition band starts and ends at £200 Hz
from the crossover frequency. Use Kaiser window design.

Q13: What is the order of filter required?
Apply this filter to sigl and display the spectrum of the filtered signal.
Design the crossover filters using the Remez exchange algorithm (equiripple design).

Q14: What is the order of filter required?
Apply this filter to sigl and display the spectrum of the filtered signal.

Q15: Is the spectrum significantly different from the one obtained in the previous
delivery. If so, in what way?
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lIR filter design
Objective:

To provide:

e Deeper understanding of the characteristics of IIR filters.
¢ An understanding in the use of software tools in the design of filters.
e Verification of the examples in the lecture.

Equipment required:

A 486/Pentium PC running Windows95 with MATLAB version 5.x and signal processing
toolbox version 4 installed.

Prerequisite:

You should have completed the discrete Fourier transform and digital filtering service
before attempting this one. We assume that you are already familiar with sptool.

Exercises:

(1) IIR filter design using the filter designer.

e The filter designer lets you design digital filters based on classical functions
including Butterworth, Chebyshev (Chebyshev 1), inverse Chebyshev
(Chebyshev 1I), and elliptic filters.

e Start sptool and create a new design. (Refer to FIR filter design exercise if
you are not sure how to do this.)

e Select a Chebyshev type 1 IIR filter and high-pass as configuration.

e Set the sampling frequency to 2000 Hz using sampling frequency ... from the
edit menu in SPTool window.

e In the filter designer, set fs (stopband edge frequency) to 700. Set fp (passband
edge frequency) to 800.

e Set Rp (passband ripple) to 2.5. Set Rs (stopband attenuation) to 35. The unit is
decibel.

e Uncheck the minimum order tick-box and enter 7 in the textbox for an order 7
filter. Click on the apply button.

e The new filter should now be computed.

Q1: Does this filter satisfy the specifications?
¢ Enter 6 in the order textbox.

Q2: Does this filter satisfy the specifications?
e Try an even lower order filter.

Q3: What is the lowest order that still satisfies the specification?
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e Click view under filters in the SPTool window to activate the filter viewer.
Look at the phase response. Click on the tick box for group delay to give you a
better picture.

Q4: Is the phase response linear? (Or, equivalently, is the group delay constant?)

Q5: If the answer to Q4 is no, then in which frequency region does the group delay
change the most?

e Now select a Butterworth IIR filter. Let the specifications remain the same as
before.

Q6: What is the lowest order Butterworth filter that satisfies the specification?
¢ Go to the filter viewer.
Q7: Is the phase response linear? (Or, equivalently, is the group delay constant?)

Q8: If the answer to Q4 is no, then in which frequency region does the group delay
change the most?

e Select a Chebyshev type 2 IIR filter.
Q9: What is the lowest order Chebyshev II filter that satisfies the specification?
¢ Go to the filter viewer.
Q10: Is the phase response linear? (Or, equivalently, is the group delay constant?)

Q11: If the answer to Q4 is no, then in which frequency region does the group delay
change the most?

e Now select an elliptic IR filter.
Q12: What is the lowest order elliptic filter that satisfies the specification?
e To the filter viewer.
Q13: Is the phase response linear? (Or, equivalently, is the group delay constant?)

Q14: If the answer to Q4 is no, then in which frequency region does the group delay
change the most?

Verify the example designs in the manual.

(a) Design the Butterworth IIR filter as specified in the example of section 7.2.1 of the
manual.

Q15: Is the filter response the same as in Figure 7.4?
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(b) Design the Chebyshev I filter as specified in the example of section 7.2.2.
Q16: Is the filter response the same as in Figure 7.7?

(c) Design the inverse Chebyshev (Chebyshev II) filter as specified in the example of
section 7.2.3.

Q17: Is the filter response the same as in Figure 7.9?
(d) Design the elliptic filter as specified in the example of section 7.2.4.
Q18: Is the filter response the same as in Figure 7.9?

IIR filtering

(a) Import the signal mtlb using the procedures in (4) of discrete Fourier transform and
digital filtering exercise.

(b) Go back to the SPTool window, under the edit menu, choose sampling frequency.
Change the sampling frequency to 7418 Hz.

(c) Design a band-pass filter using an elliptic response.

(d) Set fs1 to 1200, fp1 to 1500, {p2 to 2500 and fs2 to 2800.

(e) Set Rp (passband ripple) to 4. Set Rs (stopband attenuation) to 30.

(f) Click on Auto in the parameter panel of the filter designer to let the program select the
appropriate filter order automatically.

Q19: What filter order is needed?

Q20: Compare with the FIR filters designed using the same specifications, which one has
the lower order?

(g) Filter the signal sigl by clicking on apply under filters in the SPTool window. Click
OK to generate sig2.

(h) View sig2 using the signal browser.

(i) Click on create under spectra in the SPTool window to view the spectrum of sig2.

Q19: Is the filtered spectrum what you expected?

() Design an FIR filter using Kaiser window with the same specifications. Filter the
signal sigl using this FIR filter. Then view the spectrum of the output signal sig3.

Q20: How do the spectra of sig2 and sig3 compare?
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Filter realization and wordlength effects

Objective:

To provide a deeper understanding and illustrations of:
e Wordlength effects
e Cascade realization of IIR filters

Equipment required:
A 486/Pentium PC running Windows95 with MATLAB version 5.x and signal processing
toolbox version 4 installed.

Notation:

The commands that users need to enter into the appropriate window on the computer are
formatted with the typeface as follows:

plot(x,y)

Exercises:

ADC quantization effects

Note that MATLAB computes everything in floating point. To simulate quantization
effects we shall create two functions fpquant and coefround, which are not
standard MATLAB functions.

(a) First start MATLAB. Under the command window, select file—new—m-files.
Then enter the following into the editor/debugger window.

function X = fpquant (s,bit)
$FPQUANT simulated fixed-point arithmetic

o°

Usage: X = fpquant( S, BIT )

o°

o°

returns the input signal S reduced to a
word-length of BIT bits and limited to the range
[-1,1). Wordlength reduction is performed by
(1) rounding to nearest level and
(2) saturates when input magnitude exceeds 1.

o® o o

o\°

if nargin ~= 2;
error (‘usage: fpgquant( S, BIT ).’);
end;

if bit <= 0 | abs(rem(bit,1)) > eps;
error (‘wordlength must be positive integer.’);
end;

Plusl = 2" (bit-1);
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s * Plusl;

round (X) ;
min(Plusl - 1,X);
max (-Plusl,X) ;

X / Plusl;

I B B e
[

(b) Save it with the filename fpquant.m (which stands for fixed-point quantizer). Now
enter the coefround function and save this one in coefround.m.

function [ag,nfal=coefround(a,w)

o\°

COEFROUND quantizes a given vector a of filter
coefficients by rounding to a desired
% wordlength w.

o\°

f=log(max(abs(a)))/log(2); % Normalization of a by
n=2"ceil(f); % n, a power of 2, so that

an=a/n; % lsan>=-1
ag=fpquant (an,w) ; % gquantize

)

nfa=n; % Normalization factor

(c) Generate a linearly increasing sequence v and obtain its quantized values using a 3-bit
quantizer:

v=-1l.1l:1e-3:1.1;
vg=fpquant (v, 3) ;
dg=vqg-v;

figure(1l), plot(v,vq)
figure(2), plot(v,dq)

(d) The mean, variance and probability density of the quantization error can be obtained
by

mean (dq)
std (dq)
[hi,x]=hist (e, 20);
plot (x,hi/sum(hi))
Q1: What is the range of distribution of errors?

Q2: Is the distribution even?

The power spectrum of the error can be displayed with
spectrum(dq)

Q3: Does this power spectrum differ from the theoretical? If so, how do they differ?
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Filter coefficient wordlength effects

(a) Design a linear phase FIR low-pass filter and display its frequency response:

f=[0 0.4 0.6 1];

m=[1 1 0 0];

hl=remez (30, f,m);
[H,w]l=fregz(hl,1,256)

plot (w,20*1ogl0 (abs (H)))

xlabel (‘Normalized Frequency’) ;
ylabel (*‘Magnitude squared (dB)’);

Q4: What are the specifications (order, passband, stopband, ripples, etc) of the filter
being designed?

(b) Quantize the coefficients to 10 bits:

wlen=10;
hlg=coefround (hl,wlen) ;

(c) Now display the frequency response of the filter:

[Hg,wqg] =fregz (hlqg, 1,256)
hold on, plot(wg,20*1logl0 (abs(H)))

Q5: How does the response of the coefficient-quantized filter differ from the original?
Q6: Does coefficient quantization destroy the linear phase property of the filter?

(d) Change the number of bits (wlen) to 8 and repeat the above.

Q7: How do the stopband ripples of these three versions of the filter differ?

e) Next, implement an IIR elliptic low-pass filter with passband edge at 0.4 Hz
p p p P g
(normalized) and a stopband attenuation of 40 dB.

[b,al=ellip(7,0.1,40,0.4);
[H,w]=freqgz(b,a,512);
figure(2), plot(w,20*1logl0 (abs(H)))

(f) Quantize the coefficients to 10 bits:

w0=10;

[bg, nb] =coefround (b, w0) ;

[ag, nal] =coefround(a,wo0) ;

[Hg,w] =nb/na*freqz (bqg, aq, 512) ;
hold on, plot(w,20*1logl0 (abs (Hqg)))

Compare the frequency response with that of the unquantized filter. Try using other
wordlengths (such as 12, 13, 14 bits).
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Q8: What is the minimum number of bits required so that the minimum stopband
attenuation remains below 40 dB?

Cascade implementation of IIR filters

(a) Implement the IIR filter designed in the previous section using the cascade structure.
First find the poles and zeros:

p=roots (a)
z=roots (b)

(b) p and z comes either in complex conjugate pairs or real. In this case there are three
complex conjugate pairs and a real root for each polynomial. Choose the pair with the
largest magnitude from p and the ones nearest to zero for z.

pl=[0.2841+0.93071 0.2841-0.9307i];
z1=[-0.3082+0.95131 -0.3082-0.95131];
bl=real (poly(zl)) ;

al=real (poly(pl)) ;
[H1,w]=freqgz(bl,al,512);

figure(3), plot(w,20*1logl0 (abs(H1)))

(c) Repeat the above for the remaining two pairs of p and z. Assign them to variables
p2, z2, b2, a2, H2andp3, z3, b3, a3, H3 respectively.

(d) The cascade frequency response can be obtained by

Hc=H1.*H2;

Hc=Hc. *H3;

sf=H (1) /Hc (1) ;

Hc=Hc*sft;

hold on, plot(w,20*1logl0 (abs (Hc)))

(e) Quantize b1, b2, b3 and al, a2, a3 to wordlengths of 10 bits. Compare the
resulting cascaded frequency response with quantized coefficients to that obtained in
the previous section.

Q9: How sensitive is the frequency response to coefficient quantization when the filter is
implemented as a cascade of second order structures? Is the frequency response better or
worse than the one obtained with coefficients quantized to the same number of bits?
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DSP system development

Objective:

e To introduce some features of the TMS320C54x family of DSP chips.

e To show how a simple DSP board can aid in the development of a DSP system.

e To go through the process of assembling, loading and debugging a DSP
assembly language program.

Equipment required:

o TMS320C5x DSP starter kit (DSK), with cables and power supply.

e PC with TMS320C5x development software installed.

¢ Disk of examples supplied by IDC.

e Microphone, speakers, signal generator, oscilloscope and spectrum analyzer (if
available).

Hardware setup

Check that the DSK board has been connected as shown in the documentation provided in
the Appendix. The DB25 printer cable is connected to the PC’s parallel port on one end
and to the DSK board on the other. The power supply is connected to the power supply
connector.

Software setup

The appropriate software should already be loaded. Click on the ‘C54x code explorer’
icon to start the debugger. Note that the debugger will only start if the DSK board has
been powered up and connected properly.

The directory C:\DSKPLUS is where the software required for this practical resides.
Load the example files needed for this practical to this directory. It should come as a
separate disk supplied by IDC.

Exercises:

Familiarization with the development board

Some relevant chapters from the TMS320C54x DSKplus user’s guide and the
TLC320ACO01C analog interface circuit data manual have been extracted in the
Appendix. Please refer to them if necessary. Your instructor should also have original
copies of these manuals available.

(a) Take a close look at the DSKplus development board. Identify the 3 main devices on
this board: the DSP chip, the programmable analog interface, and the PAL for host
port interface.

Q1: Which one of the TMS320C54x family of chips does this development board use?
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The table below shows the internal program and data memory sizes for various chips in
this family of DSP chips.

Memory Type 'S41 | '542 '543 '545
ROM: 28K 2K 2K 48K
Program 20K 2K 2K 32K
Program/Data 8K 0 0 16K
DARAM SK 10K 10K 6K

Q2: What are the configurations for the chip on the DSKplus development board?

Note: DARAM (dual access RAM) can be configured as data memory or data/program
memory.

(b) The ACO1 analog interface circuit provides a single channel of voice quality data
acquisition and playback. Quantization resolution is 14 bits. The default sampling
frequency is 15.4 kHz. The sampling frequency can be changed by programming the
A and B registers of the AIC.

The master clock frequency is now 10 MHz.

— Jy MCLK
2 X (register A value) (register B value)

5

Q3: What are some of the combinations of values for registers A and B that will produce
a 15.4 kHz sampling rate? What about a 10 kHz sampling rate?

(c) The on-board 10 MHz oscillator provides a clock to the board. However, the C542
creates a 40 MHz internal clock.
Assembly language program structure

(a) The assembler that comes with the DSKplus is called an algebraic assembler. It
enables users to program in assembly language without having extensive knowledge
of the mnemonic instruction set.

(b) Start up the PC and open an MS-DOS window. Go to the directory C:\DSKPLUS by
entering

CD C:\DSKPLUS.
(c) Start up the text editor by entering EDIT FIR.ASM. You are now looking at the
source code for a simplified FIR filtering program. The function of this program will

be discussed later.

(d) Find the assembler directives .setsect in the program file.
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Q4: How many ‘setsect’ directives are there?
QS5: What addresses do these directives define?

The last number on the ‘setsect’ directive statement indicates whether program (0) or
data (1) space is used.

(e) The .copy directive copies source code from the file with name enclosed in double
quotes.

Q6: How many files in total does this program consist of?
Q7: Can you identify the data areas and the program areas in this program?

Q8: What are the starting addresses of the filter coefficients, the input data and the output
data?

(f) Try to understand roughly what the code does. The comments in the file should make
it quite clear.

Q9: Find the file that initializes the analog interface chip. What sampling frequency is
being used (Hint: find the values for A and B registers)?

(g) Refer to the TMS320C54x DSP algebraic instruction set manual to find out what the
instructions repeat and macd do. These are at the heart of the FIR filtering program.

(h) When you feel you understand the program, exit the text editor by pressing ALT-F
followed by X. You should now return to the MS-DOS prompt.

Using the assembler and debugger

(a) Assemble the file FIR . ASM by entering
dskplasm fir.asm -1
Note that the last letter in the above command is lowercase L.
Q10: What messages do you see as the file is assembled?
(b) Check that the file FIR.OBJ is created.
Q11: What other files are created?

(c) Go back to windows. Click on the C54x code explorer icon in the code explorer group
to start the debugger or use the start menu.

(d) Click on file, followed by load program

(e) Go to the directory C: \DSKPLUS
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Q12: How many * .OBJ" files are present in that directory?
(f) Double click on FIR.OBJ

(g) The code has been loaded onto the C54x board. You should be able to see the source
code in the disassembly window on the left-hand side.

Note: If the program has not been loaded properly, the source code in FIR.ASM will
not appear in the disassembly window. In that case, exit code explorer and reset the
DSKplus board by unplugging the power connection and reconnect again. Then repeat
(c) to (f) above. If problem persists, get the instructor to help do a self-test on the
board.

(h) The debugger consists of 4 windows: disassembly, CPU registers, peripheral registers
and data memory windows. The toolbar on top of the screen includes buttons for
single stepping, running, and resetting the DSKplus board. These buttons allow you to
step over or into functions. The animation button supports a graphical representation
of a variable or buffer. The data can be viewed in either the time or frequency domain.
The debugger’s online help is accessed through a button on the interface. It can be
helpful in providing answers to common questions you may have while you are using
the tool.

(i) The first line of the program is highlighted in the disassembly window. Click on the
step into button on the top to single-step through the program. Single-step through the
first 3 lines of the program.

Q13: Which registers have been changed?
Q14: What color does the contents of these registers turn into?

() Open the data memory window. Examine the contents of the locations where the filter
coefficients, the input data and the output data are stored.

Q15: What are the contents of the output data area before and after the filtering
instructions?

(k) Reset the program by clicking on the reset button at the top.

(1) You can dynamically change the contents of registers and data memory. Try
increasing the most recent input data by 100 h (hexadecimal). Execute the program
again.

(m) You can also change the contents of these data memory locations during the
execution of the program. Try reducing the third input data by 100 h after the macd
instruction has been performed 5 times.

You have now gone through the basic steps in assembling and examining the
operation of a program using the debugger. These are routine procedures when
developing a DSP program for execution on a DSP chip.
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(n) If an oscilloscope or spectrum analyzer is available, you may observe the output of the
board. The program generates random noise, which is then filtered. The output signal
should show the frequency response of the low-pass filter.

(o) If a microphone is available, see if you can modify the source code of the program to
accept input from the input port (instead of the random noise sample generated within
the program). Then run the program, speak into the microphone and listen to the
filtered output.

Designing and implementing an FIR filter (optional)

We shall now go through the process of designing an FIR filter and putting the
coefficients into the FIR filtering program. We shall perform the design using MATLAB,
generate the filter coefficients and put that into our FIR filter program.

(a) Design an 80th order FIR filter with a cut-off frequency of 0.25 Hz (normalized) using
the Hamming window method. The MATLAB function to be used is FIR1.

Q16: What is the real cut-off frequency?

(b) Quantize these coefficients to 15 (or 16) bits. Scale the resulting quantized
coefficients by a factor of 2" (or 2'°).

(c) You can now enter these values as filter coefficients into the coefficient file. Copy the
original coefficient file and rename it to a filename of your choice. Copy, rename and
change the main program source (FIR.ASM) to reflect the change in coefficient
filename. Enter the coefficients into the appropriate locations in the file.

(d) Assemble and run the FIR filter program. If an oscilloscope or spectrum analyzer is
available, check if the program is behaving as expected. Otherwise, listen to the
filtered white noise using the speakers. The original filter has a cut-off frequency of
around 970 Hz. It should sound quite different from the current one.

(e) If time permits, try some other filter cut-off frequencies.

Sigma-delta techniques

Objective:

To reinforce the concepts and techniques used in sigma-delta converters, namely,
e Oversampling
¢ Quantization noise spectral shaping.

Equipment required:

A 486/Pentium PC running Windows95 with MATLAB version 5.x and Simulink 2.1
installed.
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Exercises:

Please refer to section 2.4.4 of the manual for concepts and techniques used in sigma-
delta converters.

Oversampling

The simulation model that we will use in studying the effect of oversampling is shown in
the figure below.

Note: It makes use of the function fpquant that we have defined in filter realization and
wordlength effects exercise.

@, ec(n)  critically

* Sampled

oo

c(n)

Analog
Filter

4 -times
[bﬂ’ aa] oversampled

vo2(n)
b Toauant 2o

e2(n)

w(n) ——

v(n)

decimate

Figure C.1
Simulation model for studying oversampling effects

The signal source is random (white) noise w(n), which has a flat spectrum. This signal
is filtered appropriately to produce a random signal v(n) with the desired bandwidth. The
MATLAB code for doing that is:

[b0,a0]=ellip(7,0.1,60,0.195);
w=(rand(1,8000)-0.5)*2);
v=filter (b0,al,w) ;

We have generated 8000 samples of the signal. The filter used is a 7-th order elliptic
low-pass filter with 0.1 dB passband ripple and at least 60 dB attenuation in the stopband.
The cut-off frequency is 0.195 Hz normalized.

v(n) is now the 4 times oversampled signal. The critically sampled signal ve(n) is
generated by downsampling v(n) by 4 (taking 1 out of 4 samples).
n=1:4:length(v) ;
ve=v (n) ;

The signals v(n) and ve(n) are now quantized to 10 bits.

yc=fpquant (vc,10) ;

vo2=fpquant (v, 10) ;

The quantization noise power (in dB) for vc(n) is calculated and stored as variable dbel.
ec=yc-vc;

dbel=10*1ogl0(cov(el)) ;

In actual systems, the oversampled signal will be digitally filtered and then downsampled
(see the manual for details), we shall do the same here. The quantization noise power (in
dB) dbe2 is calculated using only the downsampled version.

y2=decimate (vo2,4) ;

v2e=decimate (v, 4) ;

e2=y2-v2e;

dbe2=10*10gl0 (cov(e2)) ;
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Q1: What is the difference between dbel and dbe2?

Q2: How many bits of quantization does the improvement (in Q1) represent? Is that
roughly what is expected?
Quantization noise spectral shaping

The second technique that sigma-delta converters use is the reshaping of the quantization
noise spectrum by using error feedback. Figure C.2 shows the simulation model that we

will use.
4

v
v(n) Y = x(n) } fpquant }—u@»‘ decimate }7—> y3(n)
.

+

5—» e3(n)

vs(n) decimate v3e(n)

Z-1
4

Figure C.2
Simulation model for studying quantization noise shaping effects

The upper portion of the simulation model is the sigma-delta system using error feedback.
The lower portion provides us with the reference for calculating the noise power (in dB).
We shall first generate the sequence of outputs u(n).
x=0;
for n=1:1length(v),

u(n) =fpquant (x, 10) ;

ve=v(n)-u(n) ;

X=Ve+X;
end

The above code may take longer to execute. We have to compute the output sample-
by-sample instead of operating on the whole vector/matrix for which MATLAB is
optimized. Then the output signal is decimated (filtered and down sampled) to produce
the actual output and error.
y3=decimate (u, 4) ;

Before we decimate the input signal, we need to shift the sequence to the right by one
place because of the one sample delay introduced by the integrator in the loop.
vs(2:1length(v))=v(l:1length(v)-1);
vs (1) =0;
v3e=decimate (vs, 4) ;

The quantization error (in dB) can now be calculated.
e3=y3-v3e;
dbe3=10*10gl0 (cov (e3)) ;

Q3: What is the difference between dbe2 and dbe3?
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Q4: How many bits of quantization does the improvement (in Q3) represent? Is that
roughly what is expected?

Sigma-delta A/D converter
Start SIMULINK and construct a model as shown below:

sigmadelta

File Edit “iews Simulation Format

D] =4S TEEID

Filtered
Analog
Input

[F e N\

Signal Analag "
Int t
Fenerator B utte nua rth ntegratar Zian Zera-Order
LP Filter Hald
Decimatori Decimatorz Decimatorz Cigitized
Approximation
One-Bit
Error Signal
Ready | | FizedStepDiscrete L

The following parameters are used for the blocks:
(1) Signal generator
waveform: square
amplitude: 1
frequency: 80 Hz
(2) Analog Butterworth LP filter
cutoff frequency: 2*pi*400
order: 5
(3) Zero-order hold
sample time: 1/512000
(4) Decimator 1
Actual block used: FIR decimation
FIR filter coefficients: firl(31,0.15)
decimation factor: 4
input sample time: 1/512000
(5) Decimator 2
Actual block used: FIR decimation
FIR filter coefficients: firl(31,0.15)
decimation factor: 4
input sample time: 1/128000
(6) Decimator 3
Actual block used: FIR decimation
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FIR filter coefficients: firl1(31,0.15)
decimation factor: 4
input sample time: 1/32000

(7) Integrator
external reset: none
initial condition source: internal
initial condition: 0
upper saturation limit: inf
lower saturation limit: -inf
absolute tolerance: auto

Simulation parameters are setup as shown below.

# Simulation parameters: zigmadelta !EIE

Solver | whorkspace [ /0 | Diagnuatical

Simulation time

Start time: I oo Stop time: | 10.0

Solver options
Type: I Fixed-step ;I I oded [Funge-Kutta) ;I

Fized step size: I 1/812000

Output optionz

IHefine oLtpt ;I Eetine facton I 1

Apply | Hevertl Help | Cloze |

# Simulation parameters: sigmadelta !

Solverl Workspace 1/0 | Diagnosticsl
Load from workzpace Save to workzpace
™ Input: I [t. u] ™ Time: ; towik
[~ States: | =out

| Output: | ot

States
[ Load initial: I wl il [ Save final W

Save oplions

I Limit rowes to last: I 1000

Decimation: I 1

Apply | Hevertl Help | Cloze |

Start the simulation. The output of the converter is the quantized version of the input.
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Q5: Can you understand how the converter works?

Digital image processing

Objective:

e To provide an introduction to the DSP area of image processing.
e To illustrate linear and non-linear filtering on images.

Equipment required:

A 486/Pentium PC running Windows95 with MATLAB version 5.x and image
processing and signal processing toolboxes installed.

Notation:

The commands that users need to enter into the appropriate window on the computer are
formatted with the typeface as follows:

plot(x,y)

Exercises:

Displaying images.

(a) Start MATLAB. Enter

I = imread(‘ic.tif’);

J = imrotate(I,35,’'bilinear’);

imshow (I)

figure, imshow (J)

An image of an IC is displayed and it is rotated by 35° counterclockwise.
(b) To display a sequence of images,

load mri

montage (D, map)

Image analysis

(2) In image analysis, we typically want to obtain some pixel values or their statistics.
Enter the following:
imshow canoe.tif
impixel
Click on two or three points in the displayed image and then press ‘return’. The pixel
values are displayed. Notice that since this is a color image, the RGB values are
shown.

(b) To obtain the intensity values along a certain straight line:
imshow flowers.tif
improfile
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The cursor is changed to a cross hair when it is over the image. Specify a line segment
by clicking on the end points. Then press ‘return’.
(c) Image contours can be obtained:
I=imread (‘rice.tif’);
imshow (I)
figure, imcontour (I)
(d) Image histograms are useful. One use of histogram has been discussed in the lecture.
I=imread (‘rice.tif’);
figure (1), imshow(I)
figure(2), imhist(I,64)
(e) Edge detection is also a very useful operation.
I=imread (‘bloodl.tif"’) ;
BW=edge (I, 'sobel’) ;
figure(1l), imshow(I)
figure(2), imshow (BW)
You may also run edgedemo for an interactive demonstration of edge detection.

Image enhancement

(a) Intensity adjustment:
I=imread (‘rice.tif’);
J=imadjust (I, [0.15 0.9],[0,1]);
figure (1), imshow(I)
figure(2), imshow(J)
Compare this adjustment with the following:
J=imadjust (I, [0 1]1,[0.3 0.8])
imshow (J)
(b) Histogram equalization
I=imread (‘pout.tif’) ;
J=histeq(I) ;
imshow (I)
figure(2), imshow(J)
Histograms of the two pictures can be compared:
figure(1l), imhist(I)
figure(2), imhist (J)
(c) Median filtering
First, read in an image and add noise to it.
I=imread (‘eight.tif’);
J=imnoise (I, 'salt & pepper’,0.02);
figure(1l), imshow(I)
figure(2), imshow (J)
Now median filter the image:
K=filter2 (fspecial (‘average’,3),J)/255;
L=medfilt2 (J, [3 31);
figure (1), imshow (K)
figure(2), imshow (L)
The first figure uses linear filtering, and the second one uses median filtering. Which
one is better?
(d) Adaptive filtering
I=imread (‘saturn.tif’);
J=imnoise (I, 'gaussian’,0,0.005);
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K=wiener2 (J, [5 5]);
figure(1l), imshow(J)
figure(2), imshow (K)
This filter is called Wiener filter.

Fourier transform

(a) Construct an artificial image:
f=zeros(30,30) ;
£(5:24,13:17)=1;
imshow (£, 'notruesize’)

(b) Compute the 256 x 256 DFT:
F=fft2(f,256,256);
F2=1og(abs (F)) ;
imshow (F2, [-1,5], ‘notruesize’);
colormap (jet); colorbar
The DC coefficient is displayed in the upper-left corner. It can be moved to the center
by
F2=fftshift (F);
imshow (log (abs (F2)), [-1,5]);
colormap (jet); colorbar

These are just some of the operations provided by the image processing toolbox.
Explore it further by going to the MATLAB demos for this toolbox in a similar way to
introduction to MATLAB exercise.
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analog or digital, 228
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representation of numbers, 187-90
fixed-point representation, 187-9
floating-point representation, 189—-90
software implementation, 186—7
sample processing algorithms, 186—7

Digital filters, classification of, 98-9
Digital signal processors:

architecture, 215
choosing a processor, 224
circular buffers, 215-18
code examples, 218-24
FFT, 2204
FIR filtering, 218-20
common features, 2045

fast multiply-accumulate, 2045
multiple-access memory architecture, 205
peripheral interfaces, 205
special addressing modes, 205
special program control, 205
frequency modulator using, 87

general purpose microprocessors for DSP, 224

hardware architecture, 206—15
architecture of ADSP21xx, 214-15
architecture of TMS320C5x%, 211-13
data path, 2068
memory architecture, 208—11 see Harvard

architecture; Von Neumann

oversampling method, 39

special instructions and addressing

modes, 215-24
Digital-to-analog (D/A) conversion, 14, 46—8
bit stream DAC, 47-8
multiplying DAC, 46-7
Digital video discs (DVD), 8
Digital waveform generation using digital
filters, 81
Dirac delta function, 23
Direct form structure, /73, 178, 193
Direct memory access (DMA), 211
Discrete Fourier transform (DFT), properties
of, 13, 61, 63, 64—7

convolution, 65

correlation, 66

even and odd functions, 65

frequency shifting, 66

linearity, 65

modulation, 667

Parseval’s relation, 65

periodicity, 64—5

real sequences, 65

time delay, 66

Discrete frequency spectrum,
effect of, 62, 66
Discrete-time Fourier series (DTFES), 62
aperiodic signals, 63—4
periodic signals, 62-3
Discrete-time signals operations, 523

block diagram representation, 53

delay or shift, 52

scalar addition and multiplication, 52-3

vector addition and multiplication, 53

Discrete-time system, 3, 54, 57, 90, 98, 102
Dither, amplitude distribution of, 32
DSP, application areas of, 4—12

adaptive filtering, 8—10
channel equalization, 9-10
echo cancellation, 9
noise cancellation, 8-9

control applications, 10-11



DSP, application areas of (Continued)
digital communication receivers and
transmitters, 11-12
image and video processing, 7—8
image compression and coding, 8
image enhancement, 7
image restoration, 7—8
sensor or antenna array processing, 11
speech and audio processing, 4—7
coding, 4-7
recognition, 7
synthesis, 7
DSP system, 3—4
application, 79-90
block processing, 4
design flow, 226-31
development of algorithms, 228-9
system implementation, 230—1
system requirement definition, 227-8
development environment, 234
implementation procedure, 230
control processor resource analysis, 230
data communication resources analysis, 230
input/output processor resource analysis,
230
memory resource analysis, 230
processor engine resource analysis, 230
sample-by-sample processing, 3
Dual-tone multi-frequency (DTMF), 80

Electrical/electronic engineering (EE), 2

Elliptic filter see Cauer filters; Chebyshev filters

Equiripple FIR filters, 134

ERMES (European radio message system), 83, 84,
85, 86, 100, 128

premodulation filter in, 85

specifications in, 99-700

ETSI (European Telecommunications Standards
Institute), 83

Fast Fourier transform (FFT), 13, 61, 64, 67-71
computational savings, 69
decimation-in-frequency algorithm, 69—70
other fast algorithms, 71

Filter coefficients, 98

Filter design process, 99-106
approximation, 99—-101
implementation, 101
performance analysis, 101
synthesis and realization, 101

Filter impulse response, 107, 710

Filter response, 134

Filter structures, 171

Filters, comparison of, /57
see also Magnitude response
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Finite impulse response (FIR), 98
characteristics of, 102—6
frequency response, 102—3
linear phase filters, 104—6
designed using frequency sampling, /31
structure, 178
structure with overflow non-linearity added, 202
FIR filters see Non-recursive filters; Convolution
filters
First order sigma-delta ADC, 40-1
Formants, 89
Frequency, definition of, 2
Frequency-domain:
discrete-time signals, representation of, 61-78
interpretation, /74
model of coefficient quantization, 1914
Frequency sampling design, 166—7
Frequency sampling method, 128-34
design formulas, 129-30
transition region, 130—4
Frequency warping, /61

Graphical user interface (GUI), 245
Gray-scale modification, 91
Guard bits, 72, 208

Hamming window, /75-17, 120
magnitude response, /16—17
Hardware and software development
tools, 231-7
assembly language tools, 233-5
assemblers and linkers, 233
development boards, 235
in-circuit emulation (ICE), 234
monitor-based emulator, 235
pod-based emulator, 234
scan-based emulator, 235
simulators, 233
high-level language tools, 231-3
efficiency concerns, 231
languages available, 231-2
maintainability, 231
memory usage, 231
portability, 231
productivity, 231
special instructions usage, 231
other software tools, 235-7
COSSAP, 236
DADisP, 236
hypersignal, 237
MATLAB, 236
MatrixX, 236
scilab, 237
signal processing worksystem (SPW), 236
real-time operating system, 237
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Harvard architecture, 208—9
dual-port data memory, 270
High-pass filter, 3

Ideal low-pass filter:
and its impulse response, 43
response, 107
IIR filter response, calculation of, 166
Image enhancement, 91-4
contrast enhancement, 91-3
noise reduction, 93—4
Infinite impulse response (IIR), 98, 145
lattice filter, /85
Infinite impulse response (IIR) filter design:
approach, 147, 157, 162-3
characteristics of IIR filters, 1467
direct design methods, 165-9
frequency sampling, 1657
least squared equation error design, 167-9
FIR vs IIR, 169-70
IIR filters from analog filters, 15765
bilinear transformation method, 1602
frequency transformation, 162-5
impulse invariant method, 157-60
review of classical analog filter, 147-50
Butterworth function, 148-50
Chebyshev approximation, 150-2
elliptic function, 155-7
inverse Chebyshev approximation, 153—4
see Recursive filters
In-phase and quadrature signals, 87
Institute of Electrical and Electronic Engineers
(IEEE), 189
Interchanging the cascade, /72
Internal buses:
data memory address (DMA), 214
data memory data (DMD), 215
program address (PMA), 214
program data (PMD), 214
result (R), 215
Inverse DFT and its computation, 64

Jacobian elliptic functions, 155
Kaiser windows, 120-2, 191

Latency, 207

Least recently used (LRU) algorithm, 211
Least significant bit (LSB), 188

Limit cycle, 200

Linear buffer for data, 216

Linear convolution, 57, 60, 65, 74, 75
Linear phase response, /104-6, 169
Linear prediction, 67

Linear predictive model, 90

Linear programming method, 141-2
Linear time-invariant (LTI), 54
Low-pass filter, 2-3, 117, 142

Magnitude and phase responses, 99, 103, 165
Magnitude response:
Butterworth filters, 748, 150
Chebyshev filters, 150—8
five filters in the graphic equalizer, 126
Kaiser window designed FIR filter, 122
length-21 bandpass filter, 140
low-pass filter, 118
rectangular window, 114
rectangular windowed filter, 111
Manual caching, 211
Maximally flat filters, 148
METEOR, 7/42-3
Most significant bit (MSB), 188
Multi-channel ANC system, 97
Multiple-access memories, 209-10
Multiply-and-accumulate (MAC), 74, 172, 204
Multi-port memory, 210

Native signal processing (NSP), 224
Natural and man-made signals, 78
Non-recursive filters, 99, 134

Non-uniform quantization, 5, 28

Notation, 50

Numerical C Extension Group (NCEG), 232
Nyquist interval, 33, 43, 82, 106, 137
Nyquist rate, 17, 21, 37

0Odd length filter response, /39
Optimum and minimax filters see Equiripple
FIR filters
Original and quantized signal, 3/
Overlap-add method, 76—7
Overlap-save method, 77-8
Oversampling ratio, 37, 39, 40
Oversampling stage of a bit stream
DAC, 47-8

Parallel form realization, /81
Parallel logic unit (PLU), 212
Parks-McClelland method, 13441
approximation problem, 1356
design formulas, 13841
equiripple solution, 136
Remez exchange algorithm, 1378
Perfect reconstruction filter banks
(PRFB), 144
Periodic signal generation, 80-3
digital waveform generation, 81
DTMF example, 83
generating arbitrary frequencies, 823



Periodic signal generation (Continued)
generating integer multiples of fundamental
frequency, 81-2
sampling frequency, 81
Phonemes, 89
POCSAG, 83, 84, 87
Practical implementation issues, 71-4
bit reversal, 71
computation of real-valued FFTs, 723
computational complexity, 73—4
fixed point implementations, 72
Primal problem, 142
Processing signals digitally, benefits of, 1-2
Program and data access, 213
data read address bus (DAB), 213
data read bus (DB), 213
program address bus (PAB), 213
program bus (PB), 213
Program caches, 210-11
Pulse code modulator (PCM), 6
Pulse density modulated (PDM)
waveform, 48

Quantization, 24-33
dithering, 30-3
non-uniform, 28-30
sample-and-hold, 24-5
uniform, 25-8
Quantization noise, model of, 27
sampled and oversampled systems, 39
spectrum shaped by the sigma-delta
technique, 41
spectrum with dithering, 33
Quantized filter response, 194
Quantized signal spectrum, 3/

Real-time operating systems (RTOS), 237
Rectangular window, 108—1/0
impulse response, /10
Recursive filters, 99, 102, 145
Reflection coefficient, 184, 186
Relative merits, 176

Sample and hold circuit, 24, 34
Sampling, 15-23
aliasing, 20-1
anti-aliasing filters, 22
frequency domain interpretation, 18-20
mathematical representation, 23—4
practical limits on sampling rates, 22—3
theorem, 1617
Shannon’s sampling theorem, 16, 17
Shape parameter, 119, 120, 127
Sigma-delta converter model, 37, 39, 40
Signal reconstruction, 42
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Signals, definition of, 2

Single channel ANC system, 94

Snapshots, 15

Software radio architecture, 12

Spectrum, 2

Speech production model, 6, 90

Speech synthesis, 88—90
classification of sounds, 89
production mechanism, 88-9
production model, 90

Staircase reconstructors, 42, 44-5

Successive approximation register (SAR), 34

Superposition principle, 54

Transfer functions:

cascade of, 179

of overflow non-linearity, 203
Transposed FIR direct structure, /79
Transposed structures, 177-8
Transversal structure or tapped delay line

structure see Direct form structure

Typical discrete-time signals, 50—1

random, 51

unit impulse, 50—1

unit step, 51

Uniform sampling, 16
Unit impulse sequence, 50, 52
Unit step sequence, 5/-3

Voltage source multiplying DAC, 47
Von Neumann architecture, 208

Wave table synthesis, 81
Window method, 106-28
Blackman window, 117
Hamming window, 115-16
Kaiser window, 118-28
Bessel functions, 127-8
design, 119-20
design steps, 121-2
high-pass filter design, 122—7
rectangular window, 108—15
another interpretation, 114-15
performance evaluation, 110-13
Winograd Fourier transform (WFT), 71
Wireless transmitter implementation, 83—8
DSP implementation, 86—7
other advantages, 88
specifications, 84—6
WKS sampling theorem, 17

Zero order holds (ZOH) see Staircase
reconstructors
Zero padding, 60
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