
Selective Dissemination of Information in the Dynamic Web

Environment

A Thesis

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Ful�llment of the Requirements for the Degree of

Master of Science (Computer Science)

by

Edward K. O'Neil

May 2001

c
Copyright by

Edward K. O'Neil

All Rights Reserved

May 2001

Approvals

This thesis is submitted in partial ful�llment of the requirements for the degree of

Master of Science (Computer Science)

Edward K. O'Neil (Author)

This thesis has been read and approved by the examining Committee:

James C. French (Thesis advisor)

Worthy N. Martin

Ronald D. Williams

Accepted for the School of Engineering and Applied Science:

Richard W. Miksad

(Dean, School of Engineering and Applied Science)

May 2001

Abstract

A selective dissemination of information (SDI) system attempts to facilitate users' informa-

tion retrieval and information �ltering needs. With the rise of the internet as an information

source, the volume of information available ranging across all interests has exploded, and

di�culties in surveying, querying, and �ltering information pertaining to individuals' inter-

ests increase with this explosion. The goal of an SDI system is to deliver new information

arriving at an SDI-aware information provider to users who express their interests via user

pro�les. Mechanisms used to implement such SDI systems vary; one such option is a per-

sistent query mechanism. Users create and pose queries to an SDI system; queries remain

resident in the system which works to somehow match documents and users. Successful

matches are delivered from the SDI system back to users.

In this thesis, we address the dimensions of support necessary to implement a persistent

query system; these are considered to be applicable at two locations within such a system -

at the information provider and in any system-wide infrastructure that may exist to support

persistent querying. For our own protocol, we select a set of these dimensions, compose

them, and present our reasons for such decisions. Speci�cally, we are concerned with han-

dling internet-based information providers, the scalability of the protocol, and not unduly

burdening the information providers participating in persistent querying. The solution we

propose uses variable rate transmission of change noti�cations from information providers;

we believe these characteristics to be key to the development of a persistent query system.

Our protocol is implemented in the existing Personalized Information Environments (PIE)

system.

iv

Acknowledgements

vi

1

Introduction

1.1 Overview

Information overload is a pervasive problem in the internet age. An explosion in the variety

of information providers including internet web sites, digital libraries, and vast numbers

of others motivates a need to facilitate e�ective information retrieval and dissemination in

wide-area environments. The ability of individuals to comprehend and search all of the

information sources of interest as a regular task in maintaining currency in satisfying a

speci�c information need is becoming increasingly di�cult.

Current technologies for organizing and accessing information are challenged to address

this problem and its scale, and fundamental changes in how people view and access in-

formation sources will surely evolve in the coming years. One method for addressing this

problem is through selective dissemination of information (SDI). A concept that has existed

formally since the late 1950's [Luh58], selective dissemination of information is a process

by which individuals with an information need express to an SDI system that need in some

form; then, individuals receive new information that arrives at information providers par-

ticipating in the SDI system. User pro�les can assume many forms, perhaps a free-text

query, a SQL query, or rule sets. SDI is primarily concerned with keeping users up-to-date

with information matching a user pro�le as it arrives at an information provider. The SDI

concept has been widely used in the library setting for bibliographic references from tech-

1

2

nical literature but has yet to catch on in more mainstream applications, on a large scale,

and with a su�ciently �ne-grained search mechanism. A more widely used paradigm for

disseminating information to users is through information �ltering [BC92]; in this model,

a continual stream of information from a source is transmitted to all users and �ltered by

each user's rules to decide which items to actually present to a user.

Clearly, an information retrieval and distribution system supporting SDI could be of

great bene�t for users. In such a system, a user could arrive at work in the morning to

�nd documents or pointers to documents that relate to a user's pro�le and that describe

information in which the user has expressed interest. This saves the user time and e�ort

and allows the user to concentrate on the pertinent information without having to cull

many information providers independently. Selective dissemination of information is suited

to providing this solution, and persistent querying is a means by which to implement such

a system.

1.2 Persistent Querying

Two models for querying an information provider are possible, and often, an SDI system

provides both. First, retrospective querying is the type of query executed by a typical

internet search engine1. The results of the search are a retrospective look into what the

search engine has collected in the past via harvesting information items, such as web pages,

indexing them, and adding them to a collection of documents maintained at the engine.

The second query model is the one addressed in this thesis, persistent querying. Persistent

querying is most concerned with the arrival and dissemination of new information items

arriving at an information provider. Unlike retrospective queries which are a one-time

query to an information source, persistent queries remain active over time and operate to

cull new information from information sources on a user's behalf. This thesis presents a

study of persistent querying and a concrete persistent query based solution to the selective

dissemination of information problem. A persistent query is created by a human user and

1Such as http://www.google.com.

Draft February 7, 2001: Not for redistribution 3

expresses an interest that addresses a speci�c information need. The interest is posed to

a �xed or variable set of information providers, and some mechanism matches documents

arriving at information providers to expressions of user interest. Persistent queries remain

resident in such a system until they expire or are explicitly deleted. The act of informing

users of the arrival of new information matching their interests may take many forms such

as an e-mail, a page, or a specialized message. The content the user receives may be web

pages, scienti�c datasets, e-mail, news, images, or any other type of transferable content;

obviously, copyright laws must be considered in an SDI system. Queries in such a system

may be free-text queries expressed by the user, rule based �lters, SQL based queries, or

machine learned user pro�les. A goal of an SDI system is to have the user participate

as a passive recipient of information; the SDI system is the active element and should do

the work in �nding information items and perhaps even �nding information providers that

match the user's information need. Regardless of how the user expresses interest and how

the user receives pertinent documents, the action of expressing the interest and receiving

a stream created by matching user pro�les to new information items (or vice versa) is a

persistent query.

The solution presented here is developed for an information consumer and an infor-

mation provider where the supplier has a free text search interface and may meet some

additional, simple constraints. When the user is logged o� from the SDI system, the

information consumer, or user proxy, operates on the user's behalf by posing queries to in-

formation providers or by analyzing documents. These actors and a scenario are explored

in the next section.

1.3 A Typical Scenario

In order to understand how a persistent query operates, it is important to be familiar with

the components involved in a simple expression of interest and the distribution of matching

information items. The actors involved in a generic persistent query interaction are the

4

following:

� a human user with a persistent information interest;

� a user's proxy that acts on behalf of the user after the user has expressed an interest

in some subject; and

� an information provider that is selected somehow, either by the user or by default,

as a candidate for providing information that matches the user's interest.

These three actors interact in an persistent query mechanism in an SDI system to deliver

to information items that have been selected for the user based on the user's expression of

interest in a subject or according to some user pro�le. These actors might interact in the

following scenario.

The user has an interest in the topic \electoral college," so the user opens up a graphical

user interface that provides a point of entry to the SDI system. The user creates a user

pro�le that is persistently stored in a user proxy in the SDI system infrastructure. The

user can either select a set of information providers over which to pose the persistent query,

though the set of information providers may be �xed for the SDI system in which the

query is posed. Once this set has been selected, the user poses the persistent query to

the set of information providers, and then the user may close the user interface. The SDI

infrastructure is now responsible for somehow matching the user's query to new literature

that arrives at the information providers. Di�erent SDI systems handle this in di�erent

ways and may disseminate the user's pro�le to distributed information providers, may add

the pro�le to a centralized server, may match user pro�les to documents, or may match

documents to user pro�les. New items accrue at the user's proxy, and the next time the

user starts the user interface to the SDI system, the user can view the search results list

containing the information items that have matched the user's pro�le since the user posed

the query. Subsequent checks of this list will show all documents that remain undeleted

by the user from previous searches and all of the new information items that have arrived

since the user last checked the list.

Draft February 7, 2001: Not for redistribution 5

The selection of information providers over which the persistent query may be posed

takes two forms. As has often been the case in library SDI systems, the query can be posed

over a �xed set of information providers without the option provided to the user to add

or remove elements of the information provider set. This treats the information provider

set as a black box and has the ability to simplify the user interface because the user need

only pose a query, not select the information providers over which to do so. On the other

hand, a �xed information provider set may be wasteful if information items of interest exist

on only one of ten information providers in the set because the query may be posed to

or resident at sources with little chance of receiving matching documents. For instance, a

history query posed over a �xed set including a computer science database would likely be

wasteful. In the second method, information provider set creation is a user-driven process.

In some interface to the persistent query / SDI system, the user is shown a palette of

information providers that are available in the system. The user is free to choose all, some,

or none of the providers to be members of the set of information providers over which the

user will pose a persistent query. Users have the freedom to apply their own knowledge of

the providers in selecting the most appropriate way to meet an information need; however,

a user may also neglect information providers that may now or at some future time meet

the information need simply because the characteristics of such information providers are

unknown to the user. Which method of information provider set selection is used will be

a decision for each persistent query system, but either way, the system must be
exible

enough to allow some administrative authority to add and remove information providers

as the provider set changes over time.

The persistent query mechanism is what functions between the time the user poses the

query and then reads the search results. Persistent query functionality could simply be a

feature of an existing information retrieval and distribution system or may be its own entity,

but the characteristics, features, and implementation of such a facility are similar in either

case and are what we will consider in this thesis. This is obviously a simple model, and

we will build on it as we develop the persistent query protocol further. The above scenario

6

will evolve as we begin to require features on the information providers in order to support

a meaningful and e�cient interaction between user proxies and information providers.

There is an interesting item to note when discussing real SDI systems that attempt to

provide functionality similar to that just described; systems that provide true information

retrieval techniques for indexing documents and query processing are often inversely related

to those that scale and handle large user populations. All are desirable characteristics of

an SDI system. Information retrieval techniques generally provide a �ner-granularity of

search capability whereas information disseminated from systems serving large numbers of

users is often more coarse-rained. Examples of each will be presented in Chapter 2. One

of the goals for the work presented in this thesis is to bring the two together to provide

an environment where users have �ne-grained control over their searches but have a wide

variety of information providers from which to choose. In addition, the type of search

interface provided should be left up to individual information providers and the solution

should be able to support large numbers of users.

1.4 Thesis

The addition of a persistent query mechanism to an information retrieval and distribution

system provides a method for users to receive a stream of documents from an information

provider as a provider's contents evolve over time; documents delivered to users will match

some query-based expression of a user's information need. The thesis of this document

is that a solution to the problem of developing a persistent query protocol exists, and in

addition, the solution is lightweight, e�cient, scalable, requires minimal support at the

information provider, and is applicable to the dynamic web environment. It has been

implemented in the PIE [FV99] system.

1.5 Contributions

This work makes several contributions to the information retrieval community.

Draft February 7, 2001: Not for redistribution 7

1: A characterization of the dimensions in which a persistent query may be supported.

This is important in describing the levels of support for persistent querying that may

be provided by an information provider and those provided by the SDI infrastructure

of an information retrieval / distribution federation in support of a persistent query

mechanism. The dimensions that can be supported in each location and the tradeo�s

for the presence and absence of each dimension are described.

2: A set of requirements for minimally supporting an e�cient persistent query protocol.

This includes a necessary and su�cient condition for supporting a persistent query

protocol without polling.

3: A realization of the protocol in a working system.

1.6 Organization

The remainder of this document is organized as follows. Chapter 2 discusses generalities

of SDI and presents past solutions to SDI problems. A continuum of the solution space is

de�ned, and persistent querying is identi�ed in relation to other solutions to the problem;

the continuum is presented in terms of the level of content personalization performed by an

information provider. Di�culties in doing SDI over the internet are presented. Chapter 3

provides a characterization of the dimensions for supporting persistent querying. Support

for persistent querying can exist at two levels, on the information provider and in the

SDI infrastructure. This chapter presents di�erent levels of support and guarantees and

describes their tradeo�s versus system complexity. The choices for our persistent query

mechanism are presented at the end. Chapter 4 explains the optional and required choices

of features described in Chapter 3. It abstractly presents the persistent query protocol as

it will be implemented and discusses what we consider to be the most reasonable support

levels. It explains how the protocol is lightweight, is scalable, and handles dynamic in-

formation providers. Chapter 5 introduces the PIE system, the test-bed, and details the

steps required to implement the features described in Chapter 4 into a working information

8

retrieval system. Chapter 6 presents a qualitative analysis and arguments supporting why

persistent querying in PIE is scalable, lightweight, and supportive of dynamic informa-

tion providers. Chapter 7 presents related work considered under the topics of historical

SDI, systems work (including active databases and event noti�cation services), and other

continuous query work. Chapter 8 wraps up this discussion and presents challenges and

opportunities for future work on this and other persistent query systems.

2

The SDI Solution Space and Persistent Querying

2.1 Overview

The solution space for implementing SDI systems includes but is not limited to persistent

querying. In order to motivate the choice for persistent querying as a means for solving the

SDI problem, it will be useful to explain this space. In addition, this chapter will consider

characteristics of internet information providers and the di�culties with performing SDI

over such information providers.

2.2 Selective Dissemination of Information

Selective dissemination of information is a concept that originates in the roots of computer

science. Luhn originally presented the idea for a system that selectively disseminates in-

formation to users based on interests expressed in user pro�les [Luh58]. In the years since

Luhn described this idea, SDI systems have been implemented in several di�erent ways.

Originally, Luhn suggested inferring the user's interests from the information items the

system sent the user. In practice, more tractable ways of constructing user pro�les have

been implemented.

Libraries have been a focal point for implementing SDI systems, which have been used

to provide users with updates of bibliographic information from technical journals. Several

9

10

di�erent systems of this type had been implemented by the mid-1970 and were used in

university libraries; these are summarized by Housman [Hou73]. In these systems, users

created pro�les that consisted of Boolean phrases denoting the properties recommended

documents should have. Often, a high incidence of \NOT" clauses existed in such pro�les

in order to exclude blocks of documents from consideration. In addition, these library

systems allowed users to view and modify their user pro�les to �ne tune and evolve the

search results returned to the user. For e�ciency sake, pro�les were sometimes grouped

based on similar interests of users. In terms of the size of such systems, the discussion

mentions systems ranging from �fty to �ve-hundred pro�les and 15,000 documents over

200,000 information items inserted into the SDI system per year. Housman cites one of the

signi�cant impediments to the progress of library SDI systems as database compatibility.

Interestingly, the expense of SDI systems in research libraries was an issue as a result of

shrinking library budgets, which is still a problem today; however, at the time, the bulk

of such expenses were devoted to purchasing computer time used to match user pro�les

to documents. In the thirty years since this survey paper was published, the goals of

and problems with SDI systems have not changed, but the number of potential users and

potential information providers has exploded in size.

In a traditional sense, SDI systems disseminate documents to users based on the pro�les

the information disseminators possess about the users. In the internet age, scaling this type

of system is infeasible because it requires all information providers to be continually aware

of all users' interests, so we evolve the de�nition of SDI to be the creation of a customized

content stream that is delivered to a user based on some type of user pro�le of which all

information providers may not have knowledge. Regardless, the fundamental idea behind

SDI is to somehow match new documents to expressions of user interest.

Draft February 7, 2001: Not for redistribution 11

2.3 Additional SDI Systems

SDI systems have taken several forms since the mid-1970's. They are in use today in many

forms, though perhaps not personalizing content to the degree that Housman [Hou73] de-

scribes. In fact, common everyday information streams used by the average internet user

can be considered selective dissemination of information mechanisms, although they are

usually called information �ltering systems [BC92]. These systems form a continuum de-

scribing the level of personalization of content that they provide to their users. Here,

personalization is de�ned as the degree to which a user can specify the content of the

information stream they would like to receive from the SDI system; a high degree of per-

sonalization of an SDI stream means that users can specify at a �ne granularity the types

of information items they would like to receive. A low degree implies that users receive

an information stream that is only broadly of interest to users. At the simplest end of

the continuum, the user expresses an interest and information is disseminated to the user

with little or no �ltering to determine further interests of the user. At the opposite end

of the spectrum, machine learning algorithms observe the behavior of users to create user

pro�les and then scour the internet to discover information items and sources that match

the pro�les. Systems exist at both ends and at several other points along this continuum.

Providing a low degree of personalization, subscription services send e-mail headlines

from some information provider to a subscribed user in a simple form of SDI. Users express

interest by subscribing to the news headlines or to a mailing list about a topic of interest,

such as cooking or perhaps programming language design. While this expression of interest

is very broad, it is still a request for a �ltered information stream. The user then becomes

the passive entity with the user's e-mail box acting as a proxy for holding search results.

At some interval, e-mails arrive containing content the user has requested, and the user can

�lter the information items of interest from the rest of the stream. This is probably the

simplest SDI system today, and its mainstream use is common. These types of subscriptions

have a low degree of personalization of the content stream.

12

In the next step in terms of the user's ability to personalize an SDI information stream,

systems such as the Pointcast [RD98] network use a user interface and push technology1

to implement SDI. Users select the content they wish to have pushed to the proprietary

Pointcast client executing on a user's desktop. While little information persisted for the user

in the system, users were continually receiving a �ltered stream of new content rendered

to their desktop during the execution of the Pointcast client. Users select categories in

which to receive information such as current news headlines, sports scores, and technology

or business news. More recently, this type of SDI has been moved into the web browser and

out of a proprietary interface. Internet portal sites such as Excite2 and Yahoo!3 provide

a similar degree of personalization of the SDI stream. The web page displayed in a user's

browser is periodically updated to re
ect the newest content available from the content

provider. Such portal sites act as a focal point for additional information provider's content

streams; Excite for instance provides content from the AP, Dow Jones, Reuters, and other

news services integrated based on content for each subtopic, news, business, sports, and

so on. Thus, users receive content from many di�erent information providers, which has

been pre-categorized and packaged. The degree of personalization of this content stream

is higher than an e-mail broadcast, and the user �lters the stream by clicking on the items

of interest appearing in the browser. Still, this stream is topically speci�ed but at a coarse

granularity.

A more recent advance from traditional portal sites are features such as those provided

at Octopus.com4. This web site provides a service whereby users can create their own

portal pages starting not with pre-created categorizations of topics but by selecting their

own information providers and then integrating them into a customized page. This is

an even �ner granularity of control for personalizing the content stream; by selecting the

information providers and specifying the layout, users are in e�ect posing queries over those

1Franklin and Zdonik [FZ97] have noted that the use of push technology in Pointcast is actually very
limited and that the content is delivered through a pull mechanism initiated by the Pointcast client.

2http://my.excite.com
3http://my.yahoo.com
4http://www.octopus.com

Draft February 7, 2001: Not for redistribution 13

content streams and are just not selecting the individual, broad topics from the streams.

It is at this point that the inverse relation, mentioned in Chapter 1, between scalability

of an information distribution system and the information retrieval abilities of the system

tradeo�. Previous mechanisms support millions of users of news groups, mailing lists, and

portal sites with millions of daily information items; however, systems with more sound

and capable information retrieval based search techniques are often presented in terms

of thousands of users and information items. The library scenario described above and

presented in Housman [Hou73] and other literature of the time is a large step along the

continuum of personalization when compared to portal sites. In such systems, users could

further personalize the stream of literature they receive by creating a pro�le and speci�cally

tuning the stream to match an information need. Pasadena [WF89, FW91] operated over

Netnews and delivered indexed articles to users over a wide area network; Pasadena later

added SDI functionality [FW91]. More recently, the Stanford Information Filtering Toolkit

(SIFT) [YGM95] is an e�ort to create an e�cient and scalable solution to the information

�ltering / SDI problem; SIFT also operates over Netnews articles. Users interactively

create a pro�le and test it against test collections using retrospective queries. When the

pro�le satis�es the user, the user e-mails the pro�le to a central server that evaluates the

pro�le at a time interval speci�ed by a user. The pro�le is evaluated periodically against

all accumulated Netnews messages, and articles matching a user pro�le are sent to the

user's e-mail address. This system uses information retrieval indexing techniques from the

WAIS [KM91] toolkit to allow users, as in the library setting, to post user pro�les and

receive periodic results. This is an advance over previous items in the continuum because

information retrieval techniques are used to compare a user query to documents. This

clearly can provide a higher �delity information stream than is available at a portal site or

via a newsgroup subscription.

The �nal step along the continuum of SDI solutions are those created in the early-

and mid-1990's using agent technologies [SM93, Mae94, Lie95, BS95, BSY96, Bal98] ; such

systems provide the possibility of a high degree of personalization. Researchers developed

14

software agents to observe a user, infer the user's interests, and then discover and �lter

information providers such as web sites [Lie95, BS95, BSY96, Bal98], e-mail [SM93, Mae94],

or internet news [Mae94] to provide users personalized streams of information. Such systems

often employed technology more advanced than a user's development of a static query

posed over the incoming information stream. Machine learning techniques including neural

networks and genetic algorithms are used to observe, statistically quantify, and evolve a

user's interest in topics the agent systems noticed that users frequented. User pro�les

created in such a manner are more adaptable to changes in user interest because they can

evolve over time as a user's interest evolves and because they do not rely on the user to

update their query. Their dynamic nature absolves the user from explicitly maintaining

them as is the case in many of the other steps along the continuum, a problem noted by

Housman [Hou73]. The success of such systems is mixed because of di�culty in training

and evolving user pro�les; however, it is still an interesting idea and was actually the one

that Luhn [Luh58] originally described for pro�le generation. Such systems have never been

scaled to support a signi�cant user base. The degree of personalization provided by these

systems has the potential to be excellent.

Our view of persistent querying is most similar to the library view of SDI, but because

of how we will realize persistent querying, we provide users even more ability to personalize

the stream of documents delivered from the SDI system to the user because of the
exibility

in supporting wide varieties of information providers. Our solution exists in between the

information retrieval and agent-based systems along the personalization continuum.

2.4 Internet Information Providers

One point to note in this discussion is that the traditional idea of selectively disseminating

information from a few information providers is a very di�erent type of problem from se-

lectively disseminating information from tens of thousands (or more) information providers

to millions of users; the characteristics of the information providers are often very di�erent.

Draft February 7, 2001: Not for redistribution 15

We consider an internet information provider to provide content at \internet time" in an

internet accessible format. This simply means that the rate of content change at such a

provider is larger than it has been in the past for such providers as library databases. In

addition, internet information providers often have the unfortunate characteristic of being

lossy. This means that the provider will have a given document in its database at one time

and have lost it at a \short" time later. Quantifying this rate of change and the degree of

loss is not our concern here and is nigh impossible, but it should be easy to accept that

many information providers on the internet are in a constant state of
ux in terms of their

gain or loss of information items. In addition, many of the providers that we are interested

in may be uncooperative in that they do not provide support for a persistent query system.

The goal of our persistent query protocol is to capture as much of this content as quickly as

the user deems necessary to resolve the risk of its loss. Guaranteeing unconditionally that a

user will see every relevant document that ever arrives at an information provider of interest

will be virtually impossible, and it should be easy to see without signi�cant argument that

this is the case, especially at providers that do not aid in supporting a persistent query sys-

tem. Meeting this requirement in a library environment is easier because citation indexing

and dissemination SDI services do not have to deal with the degree of loss incurred with in-

ternet information providers. Our persistent query protocol attempts to to resolve the risk

associated with document loss in the greatest degree possible without unduly burdening

providers in a persistent query system. Mention of an internet information provider should

imply that such a provider is not necessarily providing signi�cant support for persistent

querying and is not guaranteeing to preserve information items for an inde�nite amount

of time. We refer to \well-behaved" internet information providers which are those that

when presented with a document store the document for future retrieval for a \reasonable"

amount of time on the order of days instead of minutes. Realizing that the argument and

de�nition are qualitative instead of quantitative, it should be plausible enough to accept

as a reasonable description of a general internet information provider.

16

2.5 Persistent Querying

Having discussed the solution space for selectively disseminating information and de�ned

the types of information providers of interest, the foundation has been laid for describing

the requirements of a persistent query system. A persistent query system that exists in such

an information provider environment must be lightweight, easy to implement,
exible, and

tailored to meet users' information needs. A persistent query protocol must be lightweight

in terms of the overhead required at information providers and at the user proxy operating

on behalf of a user in the SDI system. In addition, because of the scale on which we

are considering this system, the communication frequency between user proxies and the

information provider must be kept to a minimum so as not to unduly burden the network

and the computational resources at each. Second, the system must be easy to implement

or integrate into an existing information retrieval system or information provider. This

is especially true of the information providers participating in a persistent query system.

Burdening providers unduly with requirements must be avoided in order to decrease the

cost of participation for information providers. In order to implement persistent querying,

however, simple requirements will be placed on information providers; these will be de�ned

and discussed in Chapter 3 with our choices for a persistent query protocol presented

Chapter 4. Failure to support these requirements will not prevent an information provider

from participating in the SDI system, but it will remove it from the scope of the information

providers we are currently considering. Third, the system must be
exible enough to adapt

to the changing needs of users and to adapt to changes in the set of information providers

participating in the persistent query system. Because we expect (in the worst case) the

information providers to be operating on the internet, the persistent query protocol must

account for this and be as adaptable as the internet is dynamic in terms of accepting

new information providers without overhauling persistent query system features to do so.

Finally, the system must allow users to express information needs in such a way that those

needs can be met by the information providers. From our perspective, this is possible by

Draft February 7, 2001: Not for redistribution 17

allowing users to express free-text queries to user selected sets of information providers.

The assumption is that users are better at expressing and meeting their information needs

than �xed content streams or the current machine learning techniques for inferring a user

pro�le, and providing users the ability to free-text query an information retrieval search

engine is an e�ective avenue for serving information needs.

2.6 Conclusion

A survey of the solution space for SDI systems has been described, and the location of a

persistent query system in the continuum has been noted. Because of the proliferation of

information providers on the internet, this information rich environment must be consid-

ered when constructing a persistent query system. As a result, the unique characteristics

of internet-based content providers should be considered when designing a persistent query

system. A persistent query protocol implemented as a solution to the SDI problem should

be able to handle internet information providers and must be lightweight, non-intrusive,

exible, and able to allow users to express and meet their information demands. The follow-

ing chapter will present dimensions that can be implemented to support persistent querying

and are split between two locations, those at the information provider participating in the

persistent query system and those in an infrastructure supporting persistent querying (if

such an infrastructure exists). Later chapters detail the design of such a persistent query

protocol and describe its implementation in a working information retrieval system.

3

Design Dimensions for Persistent Querying

3.1 Overview

SDI systems match new information items to expressions of user interest. Fundamental

to such systems is the task of detecting the change of content at information providers

because this is a precondition to discovering and delivering new content to users. SDI

systems typically consist of two major elements, information providers and user proxies.

Information item distribution from provider to user proxy is based on some kind of user

interest pro�le. The pro�le describes the types of information in which a user is interested;

free-text queries are of particular to us. Unlike some previous solutions to the SDI problem

[GNOT92, YGM95, PL98], free-text queries can tailor the information stream to users'

interests using information retrieval techniques for querying as opposed to database query

methods. Given the pervasive nature of publishing on the internet, a persistent querying

SDI system should operate both on a small scale and on an internet scale.

An issue in supporting persistent querying is formulating a set of requirements to place

on information providers wishing to participate in the persistent query mechanism. Cur-

rent and previous systems have focused on providing persistent query support for a single

information provider or small provider set. A di�culty with this approach is that the frame-

work for supporting change detection may be closed or may be speci�c to each information

provider type in the SDI system, of which there are often few. Such systems do not scale

18

Draft February 7, 2001: Not for redistribution 19

well and are di�cult to evolve and supplement with new information provider types and

instances. An infrastructure called a federation can be provided to address these latter two

problems. By placing a set of standard and open requirements on information providers and

implementing such requirements in a scalable manner, a persistent query mechanism can

facilitate a wide range of participants in an environment that can be widely utilized. This

chapter discusses the levels of support that can be implemented by an information provider

participating in persistent querying and the implications of each dimension. Dimensions of

support are grouped based on where they can be located, at the information provider or

within a larger federation infrastructure supporting persistent querying. Identifying these

levels of support is a research goal of this thesis.

The perspective we take here is predominantly theoretical and simply presents major

dimensions along which persistent queries might be supported, how this functionality might

operate, and what is possible in such a system. One speci�c goal must be kept in mind:

requirements placed on the information providers participating in persistent query oper-

ations must be kept to a minimum. On an internet scale, providers will be required to

service tens of thousands to millions of users and their proxies, so scalability, especially

in terms of processing and storage requirements, must be considered when discussing the

support that an information provider can implement. Persistent queries can be supported

along six dimensions:

� Information provider-based change noti�cation emission;

� Timestamping items inserted into an information provider's content;

� Provision of a search interface at an information provider;

� Caching of information items;

� Supporting guaranteed change noti�cations; and

� Supporting guaranteed immediate change noti�cations.

20

These dimensions can be divided into two groups; the �rst consists of the initial three

elements in the above list, which the information provider may provide natively. The last

three are levels of support that require additional infrastructure outside of the informa-

tion provider1. In this last set, a federation infrastructure supporting the dimensions is

necessary. Justi�cation for these claims will be provided in the following sections. Note

that the �rst three items can also be provided, at a certain expense, by the federation in-

frastructure for uncooperative information providers that do not implement them natively.

Several terms have already been used that require de�nition such as information provider,

noti�cation, and guarantee; these and the notation used to represent sets and instances of

important elements follow.

3.2 De�nition of Terms

Information provider - An information provider is a source of information items that is

administered via some authority. Minimally, information providers have a browsable

interface facilitating access to their information items. Information providers are

\well-behaved," a term explained in Section 2.4. Information providers are not pro-

active in a persistent query system and simply provide services that can be used by

active elements of an SDI system. In particular, it is not assumed that information

providers provide an SDI capability.

User proxy - A user proxy is an entity that facilitates a user's persistent querying of

information providers. The user proxy is generally persistent and stores a persistent

queries and search results on the user's behalf. The user proxy is the destination for

messages sent from information providers that describe the state of the provider's

content. A user proxy is an active element in a persistent query system and operates

on the user's behalf when the user is not actively interacting with an SDI system. User

1Actually, the information provider could support the latter three dimensions in lieu of the use of feder-
ation infrastructure, but requiring any one of these dimensions at the information provider we feel unduly
burdens the provider.

Draft February 7, 2001: Not for redistribution 21

proxies have a unique, SDI system wide identi�er that is used by other participants

in the SDI system to communicate with the user proxy.

Persistent Query - A persistent query is a user's expression of interest in a topic that is

realized in a query syntax which can be structured or unstructured. The persistent

query is posed over a �xed or variable set of information providers; as content changes

at information providers, the persistent query model dictates that users' persistent

queries are evaluated at the providers, and the search results are returned to user

proxies. A basic persistent query consists of two parts, a unique query identi�er

(unique relative to a single user's proxy) and a free-text query. We assume free-text

queries throughout this thesis. In our discussion, the query is �xed during its lifetime

at an information provider.

Change noti�cation - A change noti�cation is a simple message that denotes a content

change in the documents stored at a single information provider. Such a noti�cation

is sent from an information provider to a \subscriber," an entity that has registered

an interest in receiving a change noti�cation. In our discussion, all subscribers to a

change noti�cation service of an information provider will be user proxies. A change

noti�cation does not contain search results for a user's persistent query, and the

presence of a noti�cation does not imply that documents useful to a user's query

have been added to the content at an information provider. In addition, noti�cations

do not contain or imply sequence numbers. Change noti�cations only signal a content

addition2 at an information provider.

Timestamp - A timestamp is a marking that can be assigned by an information provider

to information items inserted into the provider's content set. Timestamp values must

be monotonically increasing values so that no two items ever have the same time-

stamp. A timestamp provided to a document, di, is ti, where di 2 D = fd1; d2; :::; djDjg

2Note that deletions are also a form of content change at an information provider, but our model does
not consider change noti�cations when deletions occur because SDI focuses on new content.

22

and D is the set of documents at the provider at any given time. The following rela-

tionship must hold, di; dj s.t i 6= j^ti 6= tj ; timestamps and documents exist in a 1 : 1

relationship. In addition, timestamps are not meant to convey a global notion of time

and are only used to provide a total ordering of documents at a single information

provider.

Search interface - A search interface is a means by which some client can pose a query

that is evaluated over the information items indexed at an information provider. The

result of a query is a search result containing a ranked list of information items chosen

by the information retrieval technology powering a provider's search interface. In this

thesis, we are not concerned with the e�ectiveness of the results of such a search; the

search interface at an information provider is treated as a black box which operates

as described. A search interface is stateless, especially in terms of persistent queries,

user pro�les, and the results of user queries.

Federation - A federation is a system-wide infrastructure that is deployed to support

persistent querying and other information retrieval and distribution operations. The

persistent query components de�ned so far (information providers, user proxies, etc.)

comprise a peer-to-peer system between providers and user proxies. In order to facili-

tate functionality in addition to that provided by independent information providers,

a federation is necessary to bring information providers together within a common

framework that provides support and that can provide value-added services to users

and their proxies in persistent querying. This infrastructure may build guarantees on

top of the persistent query support dimensions available at an information provider.

The participants in a federation vary depending on the federation's requirements, but

all federations minimally consist of information providers and user proxies.

Information Provider Proxy - An information provider proxy is a wrapper for an in-

formation provider and is used to export an information provider's functionality to

participants in a federation. For example, if change noti�cations are implemented

Draft February 7, 2001: Not for redistribution 23

at an information provider, the provider's proxy assumes the responsibility for han-

dling subscriptions and cancellations for other entities in the federation. Information

provider proxies exist in a 1 : 1 relationship with information providers participating

in a persistent query system. A provider's proxy does not exist in a persistent query

system without a federation.

Cache - Because of the dynamic nature of web information sources, a cache may be useful

for saving documents of interest to the user if a user is unavailable to view them.

Caches can exist at many places throughout an SDI system including at the infor-

mation provider, a provider proxy, or a user proxy. The use of a cache is generally a

policy level decision that will be left up to some administrative authority.

Guaranteed - One design option for a persistent query system is to operate by transmis-

sion of change noti�cations from information providers to user proxies. The simplest

noti�cation delivery system implements a peer-to-peer protocol that does not require

the infrastructure of a federation and operates in a datagram style, unreliable delivery

mode. This design, however, does not provide strong guarantees assuring the delivery

and timeliness of a change noti�cation. In a simple guaranteed model, a noti�cation

is assured to eventually arrive at a user proxy under certain, reasonable operating

conditions. We assume that a federation infrastructure is necessary for providing

such a guarantee because placing the requirements for assuring the guarantee on an

information provider is an unreasonable burden. An information provider's proxy is

used in an infrastructure to facilitate delivery of guaranteed change noti�cations and

increase scalability of the SDI system. Conditions on the guarantee are discussed in

Section 3.4.2.

Immediate - In addition to providing guaranteed noti�cations, noti�cations may be de-

livered \immediately" to each element of an information provider proxy's subscriber

set. Immediate delivery does not imply that delivery is real time, but it does guar-

antee with certain conditions that a noti�cation will be delivered to a user's proxy

24

without signi�cant waiting. Immediate mode and guaranteed mode are analogous

to the postal service leaving a letter in a mailbox and delivering the letter by hand,

respectively. Again, an infrastructure is assumed in order to support immediate no-

ti�cations without unduly burdening an information provider. Conditions on the

immediacy aspect of the guarantee are discussed in Section 3.4.3.

The subsequent discussion will be decomposed into two parts. First, those persistent

query support dimensions which can reasonably be made on an information provider are

described; these include change noti�cations, timestamps, and a search interface. Then, the

dimensions that require the additional support of a federation infrastructure are described;

these include caching, guaranteed change noti�cations, and immediate guaranteed change

noti�cations. For each dimension, the discussion starts with a de�nition, describes the

implications of the absence of such a feature, and then expands on the implications of the

presence of the dimension. In cases where appropriate, a set of method signatures are

provided to programmatically show how a dimension might be provided in a persistent

query system.

3.3 Information Provider Support Dimensions

Information provider support dimensions are those that may be implemented at the provider

without any support from additional entities or a federation. The model under considera-

tion for simple persistent query support is shown in Figure 3.1.

In Figure 3.1, there are two main participants, the information provider and the user

proxy. In the most generic case, the information provider has a means by which to browse

the content that it stores. The user proxy, through some persistent query mechanism,

receives change noti�cations or a stream of information that has been evaluated against

a user's pro�le. In supporting such interactions between user proxies and information

providers, the providers may, independently of each other, have functionality in one of the

following three categories:

Draft February 7, 2001: Not for redistribution 25

Search Interface

Notifications

Timestamps

Network

User Proxy

Simple Architecture

Information provider−level Support Dimensions

Information Provider

Figure 3.1: Dimensions for supporting persistent queries at information providers.

� emission of change noti�cations;

� timestamping (or sequence numbering) information items added to their content

stores; and

� provision of a search interface.

We will discuss each item in turn.

3.3.1 Change Noti�cations

Because the SDI and persistent query systems are most interested in new content arriving at

an information provider, knowledge of the event of new content arrival is of key importance.

There are two general solutions to the problem of conveying this event to interested user

proxies. First, the provider may store the user queries and push to the appropriate user

proxies new information items arriving in its content store that match the queries. Second,

the information provider may transmit simple messages denoting content change to entities

that have \subscribed" to receive such messages. We do not consider the �rst class of

solutions because we believe that such a con�guration overburdens information providers

and that this model will not generally work on internet scale. A subscription based change

26

noti�cation service is the dimension we consider. Information providers propagate change

noti�cations to the provider's subscribers if new information item(s) are added to the

provider's collection. Noti�cations are sent to each element of the provider's subscriber

set3. An item in the set contains identi�ers used to resolve to a single user proxy and

a unique query at that user proxy. Let this set of subscribers be denoted by L where L

consists of items li that have the following attributes:

li =

8><
>:

subscriber id : subscriber identi�er

query id : persistent query identi�er

An information provider may choose to notify subscribers of its changes by propagating

a message containing the address of the provider (the origin of the noti�cation) and the

query identi�er of the noti�ed persistent query. If a single subscriber has n queries registered

at a provider, then the provider's L set has n distinct elements for that subscriber with

the same subscriber id entry but each with a di�erent query id entry. At the subscriber,

the arrival of this message is enough to denote a change, as the provider is assumed not to

have other interactions with the subscriber. At the time of a provider's content change, a

change noti�cation will be propagated to all elements l, l 2 L. Upon receipt of a change

noti�cation, the expected behavior of a user proxy is that the user proxy can choose to

react to the noti�cation immediately or at a later time; when the user proxy does react,

it will send the user's query to the notifying information provider and receive in return a

search result containing the new information items that have arrived at the information

provider.

In the absence of noti�cations, the alternative is to implement functionality where a user

proxy will poll an information provider of interest to try to detect changes to the provider's

content. These changes may be detected as di�erences in word count, byte count, document

count, or other characteristics that can be discerned by some means; some of these methods

3A \subscriber" may be any entity that subscribes to receive change noti�cations, but the \subscriber"
de�nition in this thesis implies only user proxy objects as the recipients of change noti�cations. This speci�c
case generalizes easily so any other participants may receive noti�cations.

Draft February 7, 2001: Not for redistribution 27

[LPT00] have been used before. The disadvantage of polling is that it generates a great deal

of network tra�c that may turn out to be useless because of the number of polls that return

having detected no changes. Polling is also a burden on the computational resources at the

server in having to respond to the polls and at the many clients doing the polling. Previous

persistent query solutions [LPT99a, LPT99b, LPT00] have used polling to discover changes

at information providers, but clearly, this solution is not the most e�cient.

Assuming that information providers send change noti�cations to subscribers, the in-

formation provider can use several di�erent policies to determine the rate of noti�cation

emission to the subscriber set, L. The delivery of a noti�cation is assumed to be unre-

liable, meaning that a noti�cation(s) may not be successfully delivered to a subscriber;

such failures will occur independently of each other. This assumption is necessary in order

to avoid burdening information providers with error recovery requirements and to reduce

a provider's cost of entry to participate in a persistent query system. A noti�cation can

successfully be delivered if two conditions exist:

� a path exists through the network from subscriber to information provider (and vice

versa); and

� both the subscriber and information provider are alive on the network.

Noti�cations can be transmitted at a rate de�ned by one of three models:

1. notify-per-change, which emits a noti�cation in a 1 : 1 relationship with a provider's

content changes;

2. counter based noti�cation, which emits a noti�cation every n document arrivals;

3. timer based noti�cation, which emits a noti�cation once at the end of the interval t;

or

4. variable rate noti�cation, which emits noti�cations based on the arrival of documents

and the response time of the subscribers.

28

Under notify-per-change, every arrival of a new document at an information provider

causes that provider to emit a noti�cation to every element in its subscriber list, but a

high document arrival rate incurs a high frequency of noti�cation propagation which may

overwhelm the computational and network resources of the system. This method is e�ective,

but it is also overkill because for the average query, every document arriving at a provider

will not be useful to every query. In addition, the user proxy receiving the noti�cation

will be forced to respond somehow to every incoming message even if the user proxy does

not choose to react immediately and pose the query at the information provider for every

change. The information about each registered query necessary to support this noti�cation

rate is simply that listed for li.

The second method, counter based noti�cation, emits a noti�cation to an li item after

n content changes, where n is a value that can be speci�ed by each subscriber. This

allows a user proxy to coarsely control the rate at which an information provider transmits

change noti�cations for a given persistent query. It reduces the amount of network tra�c

by a factor determined by the sum of the decrease in frequency of noti�cations for every

< subscriber id; query id > pair. The problem with this model is that each subscriber may

wait inde�nitely for the nth noti�cation to arrive from the provider. For example, if n is

set to �ve and four new documents have arrived but the �fth will not for some time, the

subscriber waiting for the nth noti�cation will wait this full time duration. This noti�cation

model also requires the information in the li for each subscriber, and additionally, it requires

a counter for every li element that is incremented each time a document arrives at the

provider. The counter is reset when the nth change occurs and a noti�cation is �nally sent

to the < subscriber id; query id > pair. An additional problem with this model is that

failure to deliver the nth noti�cation (because of unreliable communication) may greatly

a�ect the ability of a subscriber to keep up with information provider changes.

The third method is the timer based noti�cation model and provides an interface by

which the subscriber may set the time interval, t, over which it would like noti�cations to

accumulate before being noti�ed by the information provider about a change. For each

Draft February 7, 2001: Not for redistribution 29

subscriber, once t has passed and if any new documents have arrived, the information

provider propagates a change noti�cation. As with the counter based method, the issue

here is that a document may arrive immediately after the previous timer expired, and the

noti�cation for the document will have to wait for virtually the entire interval t to pass

before the noti�cation can be sent to the subscriber. In addition, the complexity of the data

maintained for each subscriber increases to include a timer per registered query. In a large

system, maintenance of this number of timers will become expensive in space and runtime

complexity, and recovery from runtime failures of the timer mechanism on the information

provider will be expensive or impossible. For each subscriber in the L set, this method

requires the properties maintained in the li structure and a running timer and interrupt

handler.

The �nal noti�cation model sends as few change noti�cations as possible and relates the

transmission rate to the rate at which subscribers respond to noti�cations. We term this

the variable rate noti�cation model. In this case, noti�cation emission rates vary based on

the arrival of documents at the information provider and the rate at which a user's proxy

chooses to respond to them, which may di�er for every subscriber. In this situation, the

information provider need only to store the data referred to as li and one bit called the

\noti�cation pending"
ag. The bit denotes whether or not the user proxy has been sent a

noti�cation since the last time it responded to one. When a user proxy arrives to register

a query at the information provider, the bit is set to zero. When the information provider

receives a new document, a change noti�cation is propagated to the newly subscribed

user proxy. Because no noti�cations have been propagated to the new subscriber, its

\noti�cation pending"
ag is false, so the noti�cation is sent to the subscriber and the

\noti�cation pending"
ag is set to true. Now, the onus is on the user proxy to respond to

the noti�cation whenever the user proxy deems it necessary. Until the subscriber handles

the last noti�cation it received, additional noti�cations from the same information provider

yield no additional information in terms of change at the information provider and are not

transmitted. Each time a noti�cation is to be propagated by an information provider, a

30

check is made of the \noti�cation pending" bit for each < subscriber id; query id > pair

before transmitting the noti�cation; the transmission is made only if the
ag is false for

a given pair. When the user proxy �nally responds to the change noti�cation it received,

all of the documents added since its last response time are available through the query or

browse interface of the information provider regardless of how many changes have occurred.

The \noti�cation pending"
ag is turned to false at query completion time. In the event

of a change noti�cation delivery failure, the provider will not receive an acknowledgement

packet from the subscriber and will not set the \noti�cation pending" bit to false. Thus,

subsequent noti�cations will propagate to a subscriber until it successfully receives one,

but in this simple model, no attempt is made on the part of the provider to re-deliver after

a failure. The subscriber still has the option of querying the information provider at any

time, which places the burden of recovering from failures on the subscriber rather than

the information provider. This makes failure recovery a policy issue; one such policy is to

have the subscriber always query the information provider upon recovery. That way, any

time that the subscriber is capable of listening for change noti�cations from information

providers, it receives the most current noti�cations.

The variable rate noti�cation model is a clean model for noti�cation delivery, and it

delivers a minimal number of noti�cations relative to the maximum of one per document

per < subscriber id; query id > pair and has excellent error recovery properties. In addition,

it requires simply one bit more of storage per subscriber on the provider than the minimal

amount of storage necessary in the notify-per-change model and also requires no running

processes for each li. Providing variable rate noti�cations is not a good design if documents

arriving at the information provider have short lifetimes because during the interval between

user proxy responses, documents may disappear; however, because the responsibility for

responding to noti�cations rests with the user proxies, the user proxies must take steps

to resolve these risks to levels that are acceptable to the subscribing user proxies. The

opportunity to respond to every change noti�cation immediately is not precluded by this

method, but for those user proxies who do not wish to incur the overhead of doing so, the

Draft February 7, 2001: Not for redistribution 31

bene�t is reduced network tra�c and not having to respond to every document insertion

at the provider. Furthermore, we assume that information providers are \well-behaved" in

terms of document loss.

Figure 3.2 shows the interface for a mechanism facilitating user proxy subscriptions and

change noti�cation delivery.

public interface ChangeEventManager f

public void addChangeListener(ChangeListener listener);
public void removeChangeListener(ChangeListener listener);
protected void �reChangeEvent();

g

Figure 3.2: Subscription interface at an information provider providing noti�cations.

The �rst two method signatures provide the ability for an interested subscriber to regis-

ter and unregister an interest in change noti�cations. This interface is suitable for the �rst

and last noti�cation models described above. The subscribe method may require additional

parameters; for example, the timed and counter based noti�cation models require inter-

val and count information, respectively. The same functionality in the method signatures

above may also be provided through HTTP / CGI or other non-programmatic interfaces.

3.3.2 A Search Interface

Another feature that may be implemented at the information provider level is a search

interface. A search interface facilitates access to some or all of the content maintained at the

site in an indexed and queryable representation. The provision of a search interface relieves

the user proxy from having to manually browse an information provider each time the user

proxy polls or reacts to a change noti�cation from the provider. The search interface of

the most interest is that in place at a typical internet search engine, for example Google4,

which facilitates free text queries (perhaps using some Boolean syntax) from an inquiring

4http://www.google.com

32

client5.

A search interface is an important feature for an information provider to implement.

In addition to allowing a user to retrospectively query a site for documents relating to a

given topic, a search engine organizes and increases the usability of the often vast amount of

content that is available at a typical internet web site. Search tools are continually evolving

and incorporating advances made in the information retrieval �eld. As search engines evolve

and improve, the usefulness of documents returned to users can evolve independently of any

SDI mechanism that is employed. The search interface at an information provider need not

have any more functionality than free text searching. It is assumed that the query syntax

used to initially pose a persistent query will be passed to the search interface to produce a

search result consisting of a list of documents ranked highly by the search engine relative

to the query. The performance of the search engine in terms of returning relevant results

is not of interest in this discussion, we are only interested in the absence, presence, and

implications of a search interface. A search interface operates as follows. An information

provider has an indexed document collection D and all documents, d 2 D, are accessible

via the search interface. Given a query, Q, Q is evaluated at the search engine. The search

interface returns D0 where D0 � D and d0 2 D0 was ranked highly for the query Q through

the provider's search engine. This search result, D0, is returned to the user proxy and can

be processed additionally there as required.

Absence of a search interface makes persistent querying of an information provider more

di�cult. A search interface is convenient because the provider is able to return documents

spread throughout the site as useful to a query. Without this ability, user proxies interested

in a provider's content must shoulder the burden of having to scour the provider for relevant

changes that have occurred. In addition, the user proxy becomes burdened with having to

determine the usefulness of information items found at the information provider, which will

be more di�cult than using an information provider's native search interface. Later, in the

discussion on federation infrastructure, we will see how a search interface can be provided

5The free-text / Boolean query syntax if preferable over SQL or another more structured syntax.

Draft February 7, 2001: Not for redistribution 33

at the federation level. Regardless of how search capability is facilitated for the information

provider, it will be very expensive and less e�ective than if the provider implements this

functionality natively.

Assuming a search interface exists, the issue of who stores and initiates execution of a

query is important. Query processing will always take place on the information provider,

but it can be initiated by either the information provider or the user proxy. In the former

case, the provider has the option of sending documents to the user proxy only when an

information item ranks highly in the search result produced by evaluating the query at the

provider's search engine. This design could be a useful feature because it saves the user

proxy from having to come and repose the query to the provider each time a document

arrives, and only those documents deemed of interest to the user proxy are returned. Instead

of executing each query against the provider's content for each new document, the provider

may optimize the task and query the pro�les with each new document to match documents

to queries. This saves having to run the search engine over the entire contents of the

collection for every new document arrival, which could be an expensive operation. Also,

there is no need for a provider to emit change noti�cations if all user proxies explicitly

register a query predicate instead of simply a query identi�er at the provider. The di�culty

with this solution and the optimization, however, is that the information retrieval properties

of the search engine may work against good evaluation of the usefulness of a document to a

query because the document can not be ranked relative to others like it. The user proxy is

best left to treat search results as recommendations from information providers to further

evaluate the usefulness of a document relative to a user's information needs. In addition

to issues with the information provider solely determining the usefulness of documents,

storing the queries on the information provider places burdens on its infrastructure. Each

provider must keep track of the li structures and the full user query. This is necessary

because the provider must be able to process the query and to resolve the user proxy and

query pair to which to send the search result, D0. Also, the provider is left to make the

policy decision about when to execute the queries against new content. User proxies lose

34

the ability to execute the query based on their own policies and are left at the will of the

provider's administrative authority to enforce a query execution policy. Several systems

[FW91, GNOT92, YGM95, LPT99a, LPT99b, LPT99a, LPT00] implement such persistent

query functionality.

One result of this is that the information provider is ill suited to evaluate the �nal

usefulness of the document to a user's query and broader information need. This is the

case even if leaving this �nal judgment to the provider is computationally more e�cient.

Instead, the task of further identifying and acting upon the usefulness of a document is best

left to the user proxy, which can leverage its local computational resources, understanding

of the user's information need, and information retrieval functionality to determine the �nal

usefulness of an information item to a user's information need. For example, the user proxy

may have a more advanced user pro�le against which to �lter documents or may have some

comparator and decision process based on the user's document viewing history. Finally, the

user proxy initiating the query process guarantees that the user proxy is ready to receive

the results, which it might not be if the information provider simply pushes search results

asynchronously, perhaps when the user proxy is not active in the interaction. A search

interface is useful for retrieving documents out of the whole content at a provider, which

results in a rough estimate of the information item's subject matter and results in a ranked

list of information items. Additional processing of information items for content is best left

to the user proxy.

The other location for the query is to leave it at the user's proxy, which requires the

user's proxy to explicitly return to the information provider to issue the query at some

interval. This removes the issues just noted of having the providers perform query execu-

tions, and it returns control of the frequency of response to the information provider to the

user proxy's policies. The queries also do not have to be stored at the provider, and the

leisurely nature of noti�cation handling by some user proxies may reduce the load on the

provider. Most importantly, the user proxy gains the ability to exploit the search interface

of the provider to its fullest potential because it can do information retrieval processing in

Draft February 7, 2001: Not for redistribution 35

addition to that performed on the provider using full result sets instead of only the items

the information provider deems useful to the user queries posed through a black box search

interface.

A provider's search interface could be accessed in several ways, through HTTP as at an

internet search engine, or programmatically using an interface similar to that in Figure 3.3

public interface SearchInterface f

Document[] giveAllDocuments(Query q);

g

Figure 3.3: A simple search interface on an information provider.

3.3.3 Timestamps

Providing timestamps or sequence numbers to individual information items at an informa-

tion provider can be used to optimize query processing at the provider. Timestamps must

provide a total ordering of all of the content available at that location and must be mono-

tonically increasing to ensure that no two documents will ever have the same timestamp

in a content base. A timestamp6 says nothing about the persistence of a document at the

provider.

A timestamp for a document, d, is t, where d 2 D and D is the set of documents at the

provider at any given time. The presence of timestamps enables \di�erential querying."

Di�erential querying is an algorithm where each time a query is issued over a provider's

evolving content, the content is partitioned into two sets based on the query's last execution

time, and the query executes only over the partition containing content that has arrived

since that time. Di�erential querying is made signi�cantly easier when timestamps are

coupled with an information provider's native search interface, and this discussion will

6Timestamps do not have to be based on clock time; any monotonically increasing naming or numbering
scheme will su�ce.

36

assume that this is the case. Timestamps could be used when browsing documents because

the contents of the information provider may be viewed in order of their timestamps;

however, timestamps interact with a search interface in a more meaningful way. Use of

timestamps in searching requires the timestamp of the last query execution time to be

stored somewhere in the persistent query mechanism, either at the information provider or

at the user proxy.

The presence of timestamps when coupled with a way to incorporate them into a search

or browse operation is a signi�cant step toward supporting persistent queries e�ciently

and e�ectively. The provider's collection can be partitioned on the last execution time of

a query, as previously discussed. Because timestamps are distinct and the comparator for

placing a document in a partition is exact, no document could successfully be considered for

membership in each partition simultaneously. Di�erential querying is made possible in this

situation. Through di�erential querying and with \well-behaved" information providers,

all of the documents present at an information provider that match a registered persistent

query will be found by the query at the time of its execution over the partition containing

new content. Timestamps and querying interact as follows. A document, d, arrives at a

provider that uses timestamps. It is assigned a timestamp t and inserted into the set of

documents D at location i, where i = jDj+ 1. Under the de�nition of a timestamp, for all

t ever assigned to any member of D, ti 6= tj ;8i 6= j. All documents are now totally ordered

in D. At a later time, a query consisting of a two-tuple, < Q;t >, where Q is the query and

t is a timestamp, is registered at the information provider. At registration time, t = �1

and all documents in D ranked highly relative to the query Q are returned in a search result

set D0
a. The current system time, ta is returned to the user proxy that issued the query.

Because the user proxy was told ta, this value can be used with a timestamp-aware search

interface the next time the query is executed at this information provider. At a later time,

the user proxy returns with the query that is now < Q; ta >. The query and timestamp

are executed in the search engine at time tb to generate a search result, D0
b where:

D0
b = fd1; d2; : : : djD0

b
jg;minT imestamp(D0

b) = i;maxT imestamp(D0
b) = j; (i > a) ^ (j � b)

Draft February 7, 2001: Not for redistribution 37

Assuming append-only information providers as in [TGNO92] and a current time of tn,

D0
a [D

0
b [: : : [D0

n is equivalent to Q executed at tn without using a timestamp feature.

Because the timestamps are monotonically increasing and the query is executed over par-

titions of the cumulative set of content D, the union of the results contains no duplicated

timestamps (and thus no document appeared twice). The search result union contains all

documents that could have possibly matched the query at any given time, assuming the

information provider loses no documents.

The lossy nature of internet information providers must be taken into consideration

as developing the entire persistent query theory around append-only providers would bur-

den the information provider unreasonably and would provide poor service to users. The

working assumption here is that providers are \well-behaved," and given working persis-

tent query operation and diligent user proxies, documents exist in D long enough to be

retrieved within reasonable constraints. Thus, the argument above concerning the union of

the result sets holds and can possibly increase the number of information items evaluated

against a user's query. If Q is executed at the search interface at time tn, the result set

returned for a retrospective query would likely be smaller than that gained by taking the

union of the di�erential search results because of deletions in the content base; at time

tn, the documents that were present during the di�erential query intervals may have been

deleted. Thus, the result of summing the sizes of the partitions over the di�erential intervals

may be larger than the size at the time of a retrospective query or other persistent query

evaluation mechanism. Di�erential querying has the ability to send noti�cations about

documents that would be missed if the provider is not occasionally checked. In addition,

the results are delivered to the user proxy as they appear at the provider, thus ful�lling

a requirement that the user proxy (and transitively the user) stay continually apprised of

new content at a provider. If user proxies are diligent in acting on this goal, they will fetch

useful information from a provider \soon" after it is inserted. Thus, with well-behaved

providers, user proxies may often obtain content before it disappears. In the case of persis-

tent queries that will be posed in the future and miss previously deleted documents, this is

38

an unavoidable consequence that would require signi�cant machinery, especially caching,

to mitigate. Remember, however, that this is an SDI system which focuses on the current

and future information
owing into the information providers. Given an appropriate per-

sistent query mechanism and diligent user proxies, the goals of SDI can still be met even if

information providers are lossy in the long term.

The absence of timestamps has a signi�cant impact in the provider's ability to perform

persistent querying because of the requirement that each persistent query provide duplicate-

free search results to a user. Without timestamps, a complete list of all documents that

have been returned by each query must be kept at some location in the system, either at the

provider or on the user proxy. Accomplishing this requires retro�tting a total ordering onto

each individual's search results for all of their persistent queries. This total ordering can

be created by providing a unique, monotonically increasing document identi�er for every

document returned to a user and �ltering new search results against all previous results.

There are several issues with retro�tting timestamps in such a manner. Assuming

the processing and storage of the search result lists can be performed on the information

provider, the list of document handles in a search result for any of a user's persistent queries

is maintained on the provider for every registered persistent query. After a user's persis-

tent query executes on the information provider's search interface, the search result list

is �ltered against the previous search result list to remove their overlap. Any remaining

entries are returned to the user as the \current" search result. If this is the case, the stor-

age requirements for maintaining the list of previously seen information item identi�ers for

every persistent query would expand quickly and would not scale well for large registered

persistent query sets, even in a capable database. In addition, while the computational

complexity for di�erencing the current query results against the previous results are in-

signi�cant for a single user, scaling this operation to internet-scale would be a signi�cant

computational burden for information providers. Second, if the user proxy maintains the

previously seen document list, the same di�culties exist but without the scaling require-

ment. The storage of the previous search result list is an issue as the previous search result

Draft February 7, 2001: Not for redistribution 39

list grows over time. The process of di�erencing the lists of current results versus previous

results could be less of an issue at the user proxy because of the potentially distributed

nature of user proxies; each user proxy may leverage the computational capabilities at its

host server. Note, however, that the network load for transmitting the entire contents of a

search result list to every user proxy would greatly increase bandwidth utilization.

The presence of timestamps coupled with a search interface and appropriate syntax to

facilitate using the two together for searching may be implemented using a method similar

to the interface in Figure 3.4.

public interface SearchInterface f

Document[] giveAllDocumentsSince(Query q, Timestamp t);

g

Figure 3.4: A search interface with timestamp support.

An interface of this style simpli�es the process of querying for both the user proxy and

the information provider. The user proxy is assured that no results returned overlap in

terms of their sequence numbers with the results that the user proxy has previously seen,

and the provider does less work in executing the query.

The tradeo�s in terms of providing timestamps are signi�cant. On the one hand,

requiring an information provider to create timestamps and have an interface through which

to meaningfully use them is a burden placed on providers in a persistent query system. On

the other hand, retro�tting timestamp functionality via previous search result list storage

and list di�erencing will force a signi�cant amount of functionality for duplicate search

result removal elsewhere in the SDI system. Implementing a search or browse interface

that uses timestamps is a signi�cant step to implementing an e�cient persistent query

system.

40

Support Dimensions
Caching
Guaranteed Notifications
Guaranteed Immediate NotificationsFederation boundary

Information Provider
Information Provider Proxy

Network

User Proxy

Federation Architecture

Figure 3.5: Dimensions for supporting persistent queries in a federation

3.4 Federation Infrastructure Requirements

In addition to the requirements placed on information providers to enhance their support

for persistent queries, creation of a federation infrastructure can facilitate additional en-

hancements and can make guarantees that are outside the reasonable scope of the providers.

The major di�erence in requirements between information provider features and federation

features is the addition of a system wide infrastructure and object model. This architecture

is presented in Figure 3.5; compare this with the simple architecture in Figure 3.1.

The participants in the above model include a new object, the information provider

proxy. The provider proxy emulates functionality of the actual information provider, in-

cluding the publish / subscribe pattern provided by the information provider itself that

allows user proxies to register an interest in receiving change noti�cations from the provider

via the provider's proxy. In the federation if noti�cations are emitted by the information

provider, then the provider proxy would be the only subscriber in the actual information

provider's subscriber set, and the provider proxy would assume all of the responsibilities

Draft February 7, 2001: Not for redistribution 41

for receiving the noti�cations and then propagating them along to subscribed user proxies

in the federation. In addition, the information provider proxy will export the information

provider's search interface, or the provider proxy may provide such an interface if one does

not exist on the actual provider. Note that these changes have no e�ect on the information

provider, which behaves exactly the same as if its proxy did not exist. Figure 3.5 will evolve

depending on the support dimensions implemented at the federation level.

3.4.1 Caching

Caching is the process of storing a document and its constituent parts for retrieval and

use at a later date. In particular, we are concerned with the process of caching documents

outside of information providers to mitigate the risk of their deletion at their home provider.

Caching is an important process that enhances the reliability a�orded to the user because

documents in volatile information providers can persist until a user processes a document.

While we assume \well-behaved" information providers, a theoretic caching model is worthy

of discussion as a dimension in the infrastructure. Particularly in an environment such as

the web, caching is necessary both for fault tolerance purposes, in case its server is down

and a document is unavailable, and because the content itself might disappear from the

provider before the user has the ability to read and deliberately store the document.

Absence of a cache in persistent query system may have an impact on the availability

of documents from some information providers. Without caching, the document pointers

returned to users through the regular SDI operation may be null pointers by the time the

user takes the opportunity to retrieve them. Thus, for lossy providers, caching at some

level, for example in the provider proxy or user proxy, will increase a user's likelihood of

being able to view a document, but it will not increase the accuracy of the search results

delivered to a noti�cation subscriber. One factor to consider is that inclusion of a variety of

information providers will mean that di�erent document lifetime policies may be employed

at each.

Inclusion of a cache in the infrastructure can be done in at least three locations, the

42

information provider proxy, the user proxy, and at a third party. Which one or combination

is selected depends on policies employed in the infrastructure design. We will consider each

in turn. In the case where caching is performed in the information provider proxy, the

provider proxy e�ectively becomes a mirror of the provider itself. The provider proxy

must give a location and identi�er under which to store every document that arrives in the

provider, and in addition, the provider proxy must somehow determine all of the documents

that are added each time the provider proxy receives a change noti�cation or polls the

provider. Keeping the provider and its proxy synchronized without the cooperation of the

provider in divulging new documents will be di�cult. Also, the storage requirements in

this naive solution will be large. Assuming persistent queries are registered at information

providers, an optimization is available by using a table with dimensions:

number of documents X number of registered queries

The table contains entries marking whether or not the < subscriber id; query id > pair

has seen the document referenced by the document identi�er dimension of the table. A

table entry remains empty until a query is executed against a document set that contains

the document identi�er associated with the entry. Then, once the search results are re-

turned and the user proxy requests a set of documents, the entry for each document in the

document set over which the query was posed is marked. When an entire row is marked,

the document corresponding to the row has been a candidate for selection with every query

presently registered, and it can be deleted if necessary. Clearly, this protocol is lossy and

would not perform as well as keeping all of the documents, but with churning information

providers and space requirements, it is a possible solution. One signi�cant di�culty is that

queries registered after documents have been deleted will never be able to see the missing

documents. As discussed with timestamps in Section 3.3.3, however, the purpose of the

persistent query functionality is SDI, which is most interested in the current and future

documents. The table itself will be expensive to maintain and manipulate for large systems;

if the provider proxy caches, caching all documents would provide better performance.

Draft February 7, 2001: Not for redistribution 43

Caching on behalf of the user in the user proxy will require signi�cant commitment

in terms of storage, but the requirement is more reasonable if all of the content does

not need to be stored. From an implementation perspective and given the potentially

distributed nature of the system, caching on the user proxy makes more sense than caching

on the provider proxy for the same reason a query should be kept at the user proxy; see

Section 3.3.2. The user proxy is a better judge of the merit gained by caching a document

than is the provider proxy, and the provider proxy will not have to store all documents from

the actual provider. Because of the well-behaved nature of information providers, a user

proxy's ability to respond to a noti�cation quickly and receive a search result translates

into its ability to immediately turn around and resolve document pointers in the search

result; thus, the user proxy is able to cache exactly what it deems most important to the

user it represents.

Caching could also be done in a third party service that is bolted onto the user proxy

or is hosted remotely. A third party cache could interact with the information provider,

its proxy, or the user proxy, but given the previous argument, it makes the most sense for

a cache simply to deal with a user level component. In an ideal scenario, the user proxy

receives a change noti�cation, responds by issuing the persistent query at the provider

proxy, decides which document handles look the most promising out of the search result,

and passes these handles to the remote cache, which will perform the necessary operations

to save the documents for the user. This could even be a fee-based service that user proxies

may or may not use depending on user preference. Regardless, caching makes sense when

considered in the context of a federation, and adding one may add value to users' search

results. Because caching takes place after noti�cations, though, it is presented here for

completeness in terms of persistent query support and is outside the scope of the rest of

this work.

44

3.4.2 Guaranteeing Noti�cation Delivery

Guaranteed noti�cations are a federation-level support dimension that guarantees the de-

livery of change noti�cations to a provider's subscribers. This is a further enhancement

to the unreliable change noti�cations described in Section 3.3.1. Guaranteeing noti�cation

delivery makes the additional provision that all user proxies subscribed to receive change

noti�cations from an information provider will receive all noti�cations sent to them at some

time, given certain operating conditions. A \guaranteed" noti�cation is always successfully

delivered to a user's proxy from an information provider provided the following hold:

� an information provider proxy exists in the federation for the information provider;

� a path through the network exists between the user proxy and the information

provider proxy (and vice versa); and

� a user proxy that goes o�-line at some time comes back on-line at some later time.

The protocol for delivering a guaranteed noti�cation begins with an information provider

propagating a change noti�cation. Unlike change noti�cations delivered under the simple

persistent query architecture in Figure 3.1, this change noti�cation is delivered to an infor-

mation provider proxy that exists within the federation supporting persistent query func-

tionality. The subscription interface is also implemented at the provider proxy to facilitate

change noti�cation subscriptions from user proxies in the federation; the provider's proxy

is the only federation participant subscribed for change noti�cations directly from the ac-

tual information provider (which exists outside the federation). The information provider's

proxy then delivers the change noti�cation under the model selected for change noti�cation

delivery7. Then, the provider's proxy attempts to deliver the change noti�cation to every

element, < subscriber id; query id > in the provider proxy's subscriber set. When a user

proxy receives the noti�cation, it acknowledges with a successful return value or the absence

of an exception. In the event of a failure, the \guarantee" provided by guaranteed noti�-

cations is enacted for a the < subscriber id; query id > pair. The provider's proxy queues

7These models, for delivery-per-change, variable rate, etc. were described in Section 3.3.1.

Draft February 7, 2001: Not for redistribution 45

the failed < subscriber id; query id > pair into a list of other such failed pairs. Because all

change noti�cations from an information provider contain no state and denote a simple,

generic event, the guarantee is met with the successful delivery of a change noti�cation to

the user proxy in any order. In a simple implementation, the provider's proxy attempts

to send a noti�cation to each failed < subscriber id; query id > pair using a round-robin

algorithm that is executed on some time interval, for example daily. When a noti�cation

is delivered for a pair, the pair is dequeued8.

Under these circumstances, a noti�cation that is emitted by the information provider

will arrive, at some time in the future, at the user proxy; we call this \eventual semantics"

for noti�cation delivery because every pair will eventually receive every change noti�cation

sent by some information provider's proxy in the federation. The conditions are neces-

sary because the information provider / provider proxy duo can guarantee due diligence in

attempting to deliver a noti�cation but can not guarantee its receipt; the conditions guar-

antee the receipt of the noti�cation. Also, requirements on user proxies concerning �nite

absences from the system are necessary to prevent an in�nitely long presence of a failed

noti�cation in the failed noti�cation set. By adding these three conditions, the receipt of

the said noti�cation is guaranteed to occur under eventual semantics. Of course, as a prac-

tical matter, the user's proxy is also required to unregister from the information provider

proxy's subscription interface for all providers that exist in the user proxy's provider set.

This is necessary to ensure that the provider's proxy does not waste resources attempting

to send a noti�cation for a persistent query or user proxy that no longer exists9.

Absence of guaranteed noti�cations will leave user proxies with the same level of support

for a persistent query mechanism that exists with unguaranteed, variable rate noti�cations

as discussed in Section 3.3.1. At the propagation of a noti�cation, the user proxy may or

may not receive the message. In the case that the message is not received, the information

8As a performance optimization, if a < subscriber id; query id > pair fails, subsequent attempts by the
information provider to deliver a noti�cation to the same subscriber for di�erent queries could be suppressed
in the current cycle.

9Detection of user proxies that violate this optimization can be performed by checking on the continued
existence of the user proxy in the federation by pinging or other means initiated by information provider
proxies.

46

provider will notice the fault because the receipt acknowledgement will not return and the

provider proxy will not mark the noti�cation as pending in the provider proxy's subscriber

set data structure (because the noti�cation is not pending if it was not received). Thus,

when some noti�cation is successfully propagated to previously failed user proxy, the ac-

knowledgement will be made and the pending
ag will be set in the provider proxy's data

structure. Then, using the variable rate noti�cation model, the provider will avoid sending

subsequent noti�cations to the user proxy until the user proxy responds to the noti�cation

and executes its query on the provider's changed content. No active attempt is made to

re-deliver a single noti�cation. While this di�erence from guaranteed noti�cations is subtle,

it is important in guaranteeing aspects of a useful SDI systems that works to successfully

deliver new content to users in a timely fashion; guaranteed noti�cations facilitate this goal.

Guaranteed noti�cations allow us to revisit the di�erent decision criteria for sending a

change noti�cation. E�ective models for implementing change noti�cations, variable rate,

timed, and so on, have already been discussed in Section 3.3.1, but by guaranteeing that a

user proxy will see all of its change noti�cations, the user proxy is able to implement more

accurate decision criterion for responding to a noti�cation. For example, the user proxy is

able to count the number of documents that have arrived at an information provider and

can accurately execute a query after the nth noti�cation arrives. This decision criteria is

implemented at the user proxy level and requires no knowledge by the provider or provider's

proxy of the user proxy's actions. With guaranteed noti�cations, no changes are necessary

elsewhere in the system to provide user proxies this ability, and implementing the feature

here also reduces coupling between the information provider and the user proxy, leaving

the provider and provider's proxy entirely genericized.

Implications of supporting guaranteed noti�cations are signi�cant. The information

provider proxy appearing in the Figure 3.5 is necessary because functionality outside the

realm of a provider is required. The machinery to ensure that all user proxies receive all

noti�cations is signi�cant and will consume computational resources at the provider proxy.

This model is similar to a scenario where the postman leaves mail in a mailbox expecting

Draft February 7, 2001: Not for redistribution 47

someone to retrieve the mail at some time in the future. If the user proxy were to disappear

from the infrastructure for some reason, the provider's proxy will essentially \hold the mail"

until such time that the user proxy successfully starts receiving noti�cations again. In

addition to requirements on the provider proxy, the user proxy must itself employ techniques

that will keep it alive and responsive to heard noti�cations emitted from the provider proxy.

Fault tolerance of such software systems is addressed in other �elds of active research.

The provider / provider proxy combination makes a best e�ort to deliver noti�cations

under the conditions speci�ed but cannot ensure the timely receipt of a change noti�cation.

Guaranteed noti�cations must exist in the federation infrastructure level because of the

requirement that the information provider not be unduly burdened in supporting persistent

queries.

3.4.3 Immediate Noti�cation Delivery

A guaranteed immediate noti�cation builds on the provisions and functionality of a guar-

anteed noti�cation and makes stronger assurances about when a subscriber will receive a

noti�cation. The immediacy of the guarantee is qualitative and states that a user proxy

subscribed to receive noti�cations from an information provider will receive change noti-

�cations without signi�cant waiting given three simple criteria (note the similarity to the

list of conditions for guaranteed noti�cations):

� an information provider proxy exists in the federation for the information provider;

� a path through the network exists between the user proxy and the provider proxy

(and vice versa); and

� provided the previous condition, there exists a method for contacting a user proxy that

is not currently active in the federation, assuming the contact entity is functioning.

The protocol for immediate guaranteed noti�cation delivery is similar to that for guar-

anteed delivery; the information provider propagates a noti�cation to its provider proxy

48

Federation boundary

Information Provider Proxy
User Proxy

Network

NetworkNetwork

User Proxy’s Parent

Information Provider

Enhanced Federation Architecture

Figure 3.6: Guaranteed immediate noti�cation participants.

which then propagates it to the user proxies in the provider proxy's subscriber set. If deliv-

ery is successful, the user proxy can decide whether or not to return to issue the persistent

query. If delivery is unsuccessful, the provider proxy must be pro-active in delivering the

noti�cation to the user proxy; this requires additional components in the federation infras-

tructure that can be seen in Figure 3.6.

The user proxy's parent component is contacted by the provider proxy to start or

awaken the user proxy via some mechanism. Once the user proxy is executing properly, the

noti�cation can be delivered to the user proxy and the appropriate acknowledgement sent

back to the information provider proxy. The time delay for delivering an initially failed

noti�cation varies depending on the delays in starting the necessary system components,

but assuming the conditions hold (except for the liveness requirement on the user proxy),

the delivery delay is simply the time required to start the user proxy. A detailed method

for contacting a user proxy that is inactive in the federation will be concretely described

in Chapter 5.

Draft February 7, 2001: Not for redistribution 49

The absence of guaranteed immediate noti�cations has the same types of implications

as the absence of guaranteed noti�cations in Section 3.4.2. Not providing noti�cations at

this level of guarantee simply means that user proxies will have to forego reliable delivery

of noti�cations and implement error handling routines, such as query upon failure recovery,

in supporting a user's persistent query activities. In addition, more statistics for making

judgments about rates of content evolution at an information provider will be missing,

impacting the accuracy of timer-based and counter-based noti�cation response models im-

plemented at user proxies. Also, user proxies will have to rely on the less frequent but just

as e�ective semantics provided by variable noti�cations. In either model, the user proxy

can still execute a persistent query at will at an information provider proxy.

Guaranteed immediate noti�cations imply that if the system is working in an appro-

priate manner, the noti�cation sent by the information provider will be received at a user

proxy and will be delayed only by the network transmission time and the overhead in

running the noti�cation handler. If all aspects of the system are functioning correctly,

guaranteed and guaranteed immediate noti�cation delivery are functionally equivalent be-

cause the noti�cation is not delayed en route to the subscribed user proxies. The di�erence

between the two is the operation of the failure mode if the transmission of the noti�cation

is unsuccessful. With failure in the former case, the provider proxy works at its leisure to

deliver the noti�cation so long as it is eventually delivered to the user proxy as described

in Section 3.4.2. In this case, no additional functionality is necessary outside of the failure

routines described for the information provider proxy. In the latter case, the immediacy

notion of the noti�cation requires additional support to be able to contact the user proxy

\immediately." The requirement here is that there be a way to contact a user proxy that

is a member of, but is not currently active in, the federation at any given time. This func-

tionality may exist in Figure 3.6 at one of two locations, at the information provider proxy

or at the user proxy.

Immediate noti�cations can be used to deliver information to user proxies and users in

near real time, and given an accurate mechanism for its judgment could facilitate attaching

50

importance to the delivery of an information item and cause its immediate delivery via a

pager, a cellular phone, a PDA, e-mail, or an alarm clock. The judgment of this importance

is outside the scope of this work and is left as an information retrieval research question.

The immediate guaranteed noti�cation says nothing, however, about the response time

of the query interface or availability of the information provider and simply guarantees

that the noti�cation arrives at a user proxy in a timely fashion. Our noti�cation models

guarantee the delivery of change noti�cations but can not force action on such messages on

the part of user proxies.

3.5 Di�ering Levels of Support

The beauty of encapsulating an information provider in a provider proxy lies in its elegance

and simplicity and decouples the provider from interested user proxies. Support provided

by the information provider becomes less of an issue in terms of the features that the

provider's administrative authority implement and more an issue of what support can be

provided to user proxies in a federation by the provider proxy. In the federation, the

interface to an information provider can be genericized. The success of this design is that

information providers can seamlessly (but not orthogonally) give di�ering levels of support

to user proxies. A user proxy is able to listen for change events from a provider proxy

that sends guaranteed noti�cations as easily as a provider proxy delivering unguaranteed,

variable rate noti�cations. The guarantees provided by both will di�er in their stringency,

but the methods of interaction will be the same. This lends a great deal of
exibility to

an implementation because of the homogeneous appearance of information providers when

viewed from within the federation; however, di�ering support from provider proxies is not

orthogonal because all have the same appearance but are used di�erently. Thus, care must

be taken to denote di�erences between providers exporting heterogeneous functionality

through a homogeneous interface, but in terms of an implementation, this simplicity can

be a step that reduces complexity. Because of the orthogonality argument, a federation

Draft February 7, 2001: Not for redistribution 51

should be used to provide the same level of support across all information providers in

terms of guarantees made for noti�cations so that all user proxies expect and receive the

same noti�cation behavior from all information providers.

3.6 Conclusion

A persistent query mechanism is one model for implementing an SDI based information

distribution system. This chapter has presented the theory behind dimensions of support

provided for a persistent query system. Those considering implementing such an SDI

system should consider the requirements and burdens placed on components of the system,

especially at the information providers. Virtually all of these features can be implemented

independently of each other to provide some level of additional support for a persistent

query mechanism; however, implementing some of them together can facilitate great gains

in SDI system e�ectiveness, both in terms of results for users and resource consumption.

In implementing a concrete persistent query system, we have selected several of these

dimensions. Our system uses a federation infrastructure and provides noti�cations, a search

interface that is coupled with monotonically increasing document identi�ers, and the fault

tolerance levels of guaranteed immediate resource change noti�cations transmitted on a

variable delivery rate. The design of our persistent query protocol is presented in the next

chapter.

4

Protocol

4.1 Overview

Having discussed the various dimensions of support for implementing persistent query func-

tionality in an SDI system, it is now possible to describe the protocol that we have developed

to support persistent querying. In order to support a useful system that allows the number

of information providers and user proxies to scale, our persistent query protocol requires a

support infrastructure of the type described in Section 3.4. An infrastructure will help the

system scale and provide additional services to users. Our design goals are those stated in

Chapter 1:

� create a lightweight protocol that can be used to disseminate timely information to

users with little user e�ort;

� do not overly burden information providers;

� make the solution e�cient in terms of network tra�c and computational overhead;

� make the solution scalable; and

� provide a solution that is applicable to the WWW environment.

This chapter details our selection of features to require both at participating informa-

tion providers and in the federation supporting persistent querying. Justi�cation for each

52

Draft February 7, 2001: Not for redistribution 53

choice is provided; outstanding issues with the protocol that need to be addressed in an

implementation are also mentioned.

4.2 The Protocol

The design of the persistent query protocol follows from the examination of the dimensions

of support presented in Chapter 3. Clearly, some of the support dimensions are straight-

forward and others are more intricate to provide, such as a search interface and caching

respectively; these requirements have in
uenced the choice of features for our protocol.

Our basic design is as follows; users pose persistent (and retrospective) queries through a

client-side user interface to the user's proxy object, which operates in the infrastructure

supporting our SDI system and persists after the user logs out of the client. When the

query is posed, the user's user proxy subscribes to change noti�cations from each of the

information providers in the user's information provider set; we allow users to customize

items in this set. For scalability and to minimize requirements on information providers,

we expect that each information provider is enclosed in a wrapper that is aware of our SDI

infrastructure and supports the persistent query mechanism of the system, this wrapper is

the information provider proxy or provider proxy for short. No communication between

the information provider, provider proxy, or user proxy occurs until a change is detected,

but at the time of a change, the information provider sends a simple change noti�cation

to its proxy. In the most fundamental action of the protocol, the provider proxy passes

the noti�cation along to every user proxy that has registered a persistent query against

the changed information provider. User proxies are then aware of a change in the infor-

mation provider's content. The user proxy is now in control of deciding when to respond

to the change noti�cation received from the changed information provider's proxy. When

the user proxy decides to respond to the change noti�cation, the results of this query will

consist only of the new information that has arrived at the information provider since the

last time the user proxy posed the query there. The time that the query completes will

54

be returned to the user proxy along with the search result; the user proxy will use this

timestamp the next time the user proxy issues the query to the provider proxy in order to

partition the documents at the information provider into the previously queried and yet to

be queried sets described in Section 3.3.3. The search result may consist of documents or

pointers to documents. A user's persistent query remains registered at all of the informa-

tion providers until the user either deletes the persistent query or removes an information

provider from the information provider set. The noti�cation paradigm used is the variable

rate noti�cation model, and those noti�cations are guaranteed to reach the user proxy

under the appropriate conditions. Under these conditions, the protocol supports delivery

of noti�cations to the user proxy in either guaranteed or immediately guaranteed mode,

modeling the mailbox or hand delivery described in Section 3.4.2 and Section 3.4.3. Which

method is used could be selected by the user, and either method can be implemented by

the infrastructure. We have chosen to implement the latter because the former follows

naturally from doing so. We do not implement caching and can emulate timestamps and a

search interface at the information providers, though provision of them by the information

provider would be helpful and would reduce the cost of implementing and maintaining an

information provider's proxy.

This protocol is di�erent from many of the previous SDI systems of the past in several

ways. First, we believe change noti�cations are the fundamental component of an e�cient

persistent query system. We require this feature of the information providers participating

in our system. It is possible to implement a wrapper that generates a change noti�cation

by polling the information provider, but we are not directly supporting this class of in-

formation providers. Change noti�cations signi�cantly reduce the burden on network and

processing infrastructure and yield a signi�cant gain in e�ciency. Signi�cant research has

been conducted in the �elds of distributed event noti�cation services as described by Hinze

et al.[HF99], Carzaniga et al.[CRW98], and Rosenblum et al.[RW97], but few information

retrieval systems have been implemented on top of such an infrastructure1. In addition, our

1The MediAS system has been implemented in a digital library environment on top of infrastructure
described by Hinze et al.[HF99].

Draft February 7, 2001: Not for redistribution 55

noti�cation scheme leaves the decision of whether to respond to a change noti�cation up to

user proxies; a noti�cation does not necessarily trigger a
urry of query processing by all of

the noti�ed objects. Second, queries in the persistent query protocol are not stored at the

information providers. They are kept in each individual user's user proxy object in the SDI

system. This yields gains in terms of e�ciency for the information provider or its wrapper

because they need only know about the location of the user proxies that are subscribed to

receive noti�cations. In addition, we believe given our current implementation that this

solution will scale well in an environment of millions of information providers and users.

Systems providing information retrieval capabilities to users as opposed to information

�ltering capabilities have not scaled to such levels in the past.

4.2.1 Necessary and Su�cient Support

Sending change noti�cations is the fundamental requirement for implementing our persis-

tent query model. Transmission of noti�cations facilitates the eventual semantics and the

variable rate noti�cation paradigms in the system. Both of these reduce the resource re-

quirements in terms of network and processing that would be necessary using other models

such as notify-per-change. Alternatives to variable noti�cations would trade-o� between

propagating noti�cations for every information provider change and propagating too few

changes to keep user proxies informed. Variable rate noti�cations allow user proxies to be

fully informed if they choose to be so; a user proxy's choice to be fully informed is made

by responding to change noti�cations. This option is facilitated by requiring emission of

noti�cations from information providers.

Noti�cations are the single su�cient requirement for accurately providing persistent

query support. All other functionality including timestamps, a search interface, and the

other information provider level support dimensions, can be emulated in the information

provider proxy, albeit at signi�cant cost. If polling is permitted as a means of detecting

changes in an information provider, even noti�cations are not necessary to support per-

sistent querying. Many SDI systems in the past have used polling, often including a user

56

speci�ed interval at which to check for new information items, to detect changes in content

at an information provider. This is true even in systems where providers are cooperative

with the goals of the system, for example, Pasadena [WF89], Tapestry [GNOT92], and

OpenCQ [LPT99a]. Polling is, however, expensive in terms of computational resources.

This expense is manifested on the network because of information provider proxies that

must poll uncooperative information providers. In order to provide a su�ciently small

granularity of noti�cations to notice discrete changes as opposed to gross changes in an

information provider's content, the polling interval must be small. This increases the re-

source requirements of a persistent query system even more. A larger issue, however, is

that by providing noti�cations, a content provider is in control of the amount of tra�c that

it receives from interested user proxies; resources are not wasted responding to frequent

but non-productive polls. Implementing functionality that prevents an SDI system from

polling information providers for changes will likely increase the participation of information

providers in the system.

Polling disallowed, change noti�cations are a necessary and su�cient condition for sup-

porting a persistent query mechanism. This is because in a persistent query implementation

of an SDI system, changes must be detected at information providers in order to disseminate

new content to participating users. Excluding polling requires a mechanism of some sort to

detect changes from at information providers, which leaves the provider to signal changes

itself. A change noti�cation implements this mechanism and is a necessary component for

a persistent query system. Furthermore, all of the other features can be emulated in prox-

ies or at other locations in the system. A search interface is not necessary because if the

information provider is browsable, a provider proxy can turn that browsable interface into

a useful search interface. Timestamps are not necessary because either the user proxy or

information provider proxy can keep a running list of which document items a user has pre-

viously viewed in order to return fresh results to the user. The other three dimensions are

implemented at the federation level and require no support from the information provider

at all. Thus, the presence of change noti�cations is a necessary and su�cient condition for

Draft February 7, 2001: Not for redistribution 57

supporting persistent querying in an SDI system.

4.3 Lightweight

We have chosen to implement the variable noti�cation model that was described in Chap-

ter 3. This solves the problem of notifying subscribers about a change at the information

provider and provides an excellent model on which to implement further functionality.

E�ciency of the persistent query protocol must be considered at all locations within

the SDI system. The two most important areas of consideration are the at the information

provider proxy and in the communication between a user proxy and information provider

proxy. Communication between the user and information provider proxies should be kept

to an absolute minimum. This is a strict requirement because of the degree to which the

system must scale to support millions of users e�ectively. By keeping the communication

infrequent, the resource requirements of each system component are reduced. The infor-

mation provider proxy must be capable of transmitting change noti�cations to all of the

user proxies subscribed to receive them. This message is small, and its frequency is reduced

to a minimal amount, while keeping the user proxy informed of changes at an information

provider, through the use of variable rate noti�cations. The e�ciency of this noti�cation

mechanism is that the information provider proxy need only notify the user proxy as of-

ten as the user proxy is interested in processing the persistent query at the information

provider. All user proxies could in theory immediately respond to all change noti�cations,

but in practice, we believe that this will not be the case because doing so may be expensive

or user proxies will �nd little bene�t in such actions. Variable noti�cations, as shown in

Section 3.3.1, keep noti�cation transmission to an absolute minimum while providing the

greatest knowledge about information change to the user proxy at the lowest cost. Thus,

while variable rate noti�cations are not as informative as a noti�cation emission per in-

formation provider change, they can convey similar information and are more e�cient to

implement. In addition to the network communication bene�ts, variable rate noti�cations

58

make providing guarantees to user proxies about noti�cation receipt feasible. Consider the

situation where guarantees are made to user proxies but where noti�cations are transmit-

ted with every content change at an information provider. The rate of transmission errors

can remain constant, but by sending more noti�cations, more errors occur and increase

the requirements on information provider proxies to handle such issues. With variable

rate noti�cations and the resulting decrease in noti�cation transmission, the commitment

to restart all user proxies inactive in the federation (given implementation of immediate

guaranteed noti�cations) is not as great at the information provider proxy.

4.4 Requirements on Information Providers

We are requiring a simple change noti�cation feature from an information provider and

the ability to subscribe a user proxy to such functionality. No additional requirements

are placed on providers. This is important because providers can participate \as-is." For

cooperative information providers, we would prefer a provider to minimally have a search

interface. At this level of support, the protocol can use a wrapper to implement timestamps.

A fully cooperative information provider will provide noti�cations, a search interface, and

timestamps. To participate in the persistent query system, though, only change noti�ca-

tions are required, and as will be discussed later, this can be provided very cleanly via a

generic component that will handle user subscriptions and change noti�cation propagation.

4.5 Scalability

In order to operate in an information and user rich environment such as on the internet,

any solution to the persistent querying problem must be highly scalable. The information

provider / user proxy model lends itself naturally to distributed computing, and we will

leverage this characteristic. Our idea is to group information providers and user proxies as is

convenient for those responsible for administering the servers; for example, each department

at a university may wrap its own information providers and facilitate its own members'

Draft February 7, 2001: Not for redistribution 59

participation in a persistent query system. A name service of some sort will process queries

to discover information providers at the level of the entire SDI system; scalable information

provider discovery will be discussed in Section 6.3. Every information provider's proxy and

user's proxy in the persistent query system will have its own unique identi�er; each identi�er

encodes the location of the object on the internet and in the federation system.

4.6 Dynamic Information Provider Environment

Given the explosive growth of the internet in recent years and the number of information

providers participating in the medium, it is imperative that a persistent query mechanism

be able to leverage information providers that are located in this environment. Often

in the past, the information provider set of an SDI / persistent query system has been

limited and slow to evolve. While arrival of the Information Age has radically changed

how such systems are viewed, limitations on the number of available information providers

have consistently been issues in this type of SDI system. In the past, SDI systems have

been limited to a few citation databases; more recent systems are limited to a centralized

Netnews server. Our vision is much lager and includes the possibility of including tens of

thousands of providers present on the internet in addition to databases, libraries, and other

content producers in a system implementing our persistent query protocol. Thus scalability

is a requirement along with easy integration of heterogeneous information providers. The

persistent query protocol is not limited to a single provider type; rather, the protocol's

use of information provider proxies yields an architecture facilitating limitless numbers of

information providers. All that is required to implement such a proxy is to develop the

information provider speci�c features necessary to export, via a homogeneous interface -

see Section 3.5, a noti�cation service, a search interface, and metadata information to user

proxies within the SDI system. The architecture of the protocol is highly adaptive to the

dynamic information provider environment of the internet.

60
T

im
e

Ts = New Timestamp
Sr = Search Result
Q = Query
N = Notification

N_3

Q_2

Q_3

Sr_2

Ts_2

Sr_3

Ts_3

N_1

Q_1

Sr_1

Ts_1

N_2

Their result sets, Sr_2 and Sr_3, may have duplicates

Q_2 and Q_3 are issued with the same timestamp

Information Provider ProxyUser Proxy

Figure 4.1: Pending noti�cation issue

4.7 A Problem with Noti�cations

There is an issue with implementing change noti�cations sent by the information provider

to a subscribing user proxy. Consider the following; a user proxy receives a noti�cation from

an information provider under the variable noti�cation model and decides to respond to the

noti�cation immediately. The user proxy then issues its query to the information provider

that has undergone a change, and between the time the query is issued to the provider and

before the user proxy receives the search results, the provider proxy propagates another

noti�cation. The danger in this situation is illustrated in Figure 4.1.

This is a problem because the two queries issued by the user proxy will have the same

Draft February 7, 2001: Not for redistribution 61

timestamp and will be executing, in general, over the majority of the same content. As-

suming that the user proxy attempts to pose the query again (while the previous query is

still processing), users may receive duplicated results in their search result lists; this breaks

the model described in Section 3.3.3 and enforced by timestamps. This is an unacceptable

race condition in the handling of noti�cations in our SDI system.

The �x for this problem is simple and only requires another
ag for every element li 2 L

in the information provider proxy's subscriber set. The
ag is a \noti�cation enabled"
ag,

and immediately before the user proxy issues a query, the user proxy sets the \noti�cation

enabled"
ag on the provider to false. Now, no noti�cations can be sent to the user

proxy and the \noti�cation pending"
ag can not be marked as true. When the user

proxy has �nished a query, it re-enables noti�cations. This is not a problem during query

processing because any documents that are received while the query is being executed will

be returned to the user proxy regardless of whether or not the user proxy has received a

noti�cation for them or not. An issue arises when the query has completed and before

noti�cations are re-enabled because the user proxy will not receive the noti�cation. This

can be �xed by propagating noti�cations, once noti�cations are turned back on, that were

received after query completion but before noti�cations were re-enabled. Essentially, the

disabling and re-enabling of noti�cations denotes the beginning and end of a transaction

between the user proxy and the provider; this keeps each query issuance by the user proxy

atomic and simpli�es the interaction between the user proxy and the information provider

proxy. Disabling noti�cations raises another simple issue; while the user proxy is disabling

noti�cations before issuing the query, noti�cations may be sent from the provider proxy

before they are disabled. In this situation, the user proxy can behave normally and send

additional requests to disable noti�cations. Through the use of thread safe variables on the

information provider proxy side, the \noti�cation enabled"
ag will be set once, and using

a thread safe variable on the user proxy, the query will only be issued once.

62

4.8 Conclusion

We believe that the protocol presented in this chapter yields an e�ective and scalable

solution to the persistent query protocol. In addition, the protocol can be applied over a

wide variety of information providers and environments. The protocol trades-o� noti�cation

delivery per change from a provider to all of its subscribers for e�cient use of network

resources, and this is possible by making guarantees for noti�cations that are delivered

under the eventual semantics / variable rate noti�cation model. We have implemented this

protocol in the PIE system [FV99]; this work is presented in the next chapter.

5

Implementation

5.1 Overview

The persistent query protocol may be implemented as a stand-alone application or within an

existing system. We choose the latter approach, having already developed a retrospective

query system called Personalized Information Environments (PIE) [FV99]. A high-level

description of PIE, a description of the test-bed, and a detailed description of PIE are

necessary before explaining how the persistent query protocol was implemented in this

existing system.

5.2 Concepts of PIE

The PIE system is a software infrastructure for bringing together information providers and

users in a user-centric, customizable, and e�ective search environment with information

provider discovery and information retrieval based search tools. PIE provides a palette of

information providers to users and lets the user select and interact with individual providers

or user-constructed sets of providers. Two basic components comprise the PIE system,

PersonalCollection (PeC) and VirtualRepository (VIRP) objects. Both are designed for

maximum genericity and
exibility in their roles in the PIE system. In terms of our

persistent query discussion so far, the PeC object maps exactly to a user proxy and the

63

64

VIRP object maps exactly to an information provider proxy.

The VIRP is a proxy or wrapper for an information provider participating in the PIE

system. VIRPs realize an information provider's proxy object. VIRPs are implemented

for every type of information provider in the PIE system. In the current PIE implemen-

tation, VIRPs and information providers exist in a 1 : 1 relationship. The information

provider stores the content and provides a search or browse interface. The VIRP ex-

ports the provider's search interface and the provider's metadata to methods that can

be used by client objects wishing to interact with the VIRP. This genericity is extremely

important when dealing with information providers and is facilitated by leveraging object-

oriented programming techniques. Such techniques genericize all speci�c realizations of

a VirtualRepository into an object that can be manipulated by a simple, standard inter-

face. A VirtualRepository base class is subclassed to create instances that wrap infor-

mation providers of speci�c types. This allows many di�erent types of objects, including

databases, websites, digital libraries, FTP sites, technical report archives, and others to

seamlessly participate in PIE with the same homogeneous interface. Currently, one sub-

class exists, VirtualRepository Dienst, which provides a VIRP wrapper for a Dienst

information provider. Additional VIRP types, such as VirtualRepository Website and

VirtualRepository Library can be implemented. In order to have a meaningful palette

of information providers participating in the system, each provider's cost of participation

in PIE must be very low. In PIE, the cost of entry for an information provider is simply to

provide a browse or search interface that can be accessed somehow by a VIRP. Including

such an information provider in PIE simply requires implementing a VIRP wrapper for the

provider. In addition, a VIRP provides a set of metadata about the information provider

that it wraps. Currently in PIE, this is a Dublin Core [WKLW98] compliant metadata

set, but it may be even more advanced and could include a language model representation

of the underlying content indexed at the provider. VIRPs are passive entities from the

perspective of users because they provide services only when requests are made to VIRPs

by some user.

Draft February 7, 2001: Not for redistribution 65

PersonalCollection objects are constructed and maintained by users of the PIE system

and are created by users in order to ful�ll a speci�c information need. In persistent query

terms, PersonalCollection objects exist in the same capacity as user proxies. Users explic-

itly create and name PersonalCollection (PeC) objects; names for PeC objects are unique

relative to the PeC set of the user that created the new PeC. A user then adds VIRPs to the

PersonalCollection's information provider set. Maintenance of an information provider set

is entirely user driven and is a fundamental operation facilitated by a PersonalCollection.

The goal of a provider set is to facilitate grouping information providers that have the po-

tential to address the speci�c information for which the PeC was created. Elements of the

provider set can be added or deleted at will. The PersonalCollection object also provides

an interface through which the information providers in the PersonalCollection's provider

set can be queried. In the basic implementation of PIE, queries are retrospective; they only

execute against a collection and return all information items in the collection that match

the query at query execution time. Later, we will describe how persistent queries have

been implemented in PersonalCollection objects. In naive query processing, a search of the

provider set broadcasts the user's query to each information provider, and the Personal-

Collection object collects the results of the query and presents them to the user. Currently,

the search results are simply concatenated together, but information retrieval techniques

may be used at the PersonalCollection to merge and rank the individual search results

before presenting them to the user. Items in a search result are pointers to documents,

instead of the documents themselves. In our current test-bed, described in Section 5.3,

these pointers to documents are URLs. A single user can create an arbitrary number of

PersonalCollections, each tailored to meet a di�erent information need. PersonalCollection

objects can be shared among users and can exist in di�erent security levels to be accessed

by users with the appropriate permissions for a given level. References to all of a user's

PersonalCollection objects are stored in the user's UserPro�le object in the PIE; the User-

Pro�le is helps to authenticate the user at login time and persistently stores global user

characteristics.

66

5.3 Information Providers in the Test Environment

This thesis is concerned with the use of information providers in the \dynamic web environ-

ment." As discussed in Section 2.4, this environment is a di�cult operating environment

because of its dynamic nature, unreliable communication mechanisms, and the lossy na-

ture of internet information providers. Our persistent query protocol accounts for this by

considering these characteristics in the design of the model. We have also attempted to

model this reality in how we evolve information providers in our test environment.

The PIE test-bed consists of information providers that run over Networked Computer

Science Technical Reference Library (NCSTRL1) [DL00] data. NCSTRL is a loosely cou-

pled federation of computer science departments and other organizations that run servers

sharing bibliographic data on the technical reports written by each department or organi-

zation, called a publisher. Operational details of the NCSTRL network are not of interest

here. We use the NCSTRL data that is available via the Dienst2 protocol. The test-bed

is seeded with a large �le containing tens of thousands of bibliographic entries, formatted

according to RFC 1807[LC98], from over one-hundred thirty3 di�erent NCSTRL publish-

ers, mostly operated by university computer science departments. The test-bed is created

by decomposing these bibliographic entries by publisher. For testing in PIE prior to imple-

menting persistent queries, the decomposed �les were indexed in whole to create a collection

for every organization; we have written scripts that automate this and the searching pro-

cesses. In PIE, each organization represents one information provider that is wrapped by

a VirtualRepository type subclass called a VirtualRepository Dienst.

For testing purposes, indexing and searching each collection is done locally using a

derivative of the WAIS software package [KM91]. Updates to this information can be made

at speci�ed intervals or as new documents are found in the bibliographic �les available

through Dienst sites on the internet. The search interface to an information provider's col-

1http://www.ncstrl.org
2http://www.cs.cornell.edu/cdlrg/dienst/DienstOverview.htm
3This number is current at the time of this writing (November 2000); the list of current publishers in

NCSTRL can be found at http://cs-tr.cs.cornell.edu/Dienst/UI/2.0/ListPublishers

Draft February 7, 2001: Not for redistribution 67

lection is provided by freeWAIS and is executed through the VirtualRepository Dienst

object that wraps each Dienst publisher. The freeWAIS search results are sent to a

text �le and are then parsed to create an XML search result that can be returned to

the PersonalCollection through which the query was posed; this XML result can be dis-

played in the client-side user interface. In this interface, each VIRP is displayed as an icon

that the user can drag-and-drop into a PersonalCollection's information provider set. The

VirtualRepository Dienst wrapper for the NCSTRL test information providers popu-

lates a Dublin Core compliant metadata set that describes the provider and content of its

underlying collection.

5.4 Implementation of PIE

Now that the major PIE components and the test-bed have been discussed, an explanation

of the architecture and implementation of PIE is helpful and builds the foundation for

explaining the changes required to implement and analyze persistent queries in PIE. These

main components of PIE interact to provide users an infrastructure in which to complete

information discovery and retrieval tasks in a user-customized, user-centric environment.

PIE was initially implemented in C++ on the Legion distributed object meta-system

described by Grimshaw et al., [LG96, GW96]. The original PIE user interface was a simple

command line tool that allowed a user to create, query, and destroy PersonalCollection

objects. Retrospective querying was the only type of querying available in this system. All

PeC and VIRP objects were named, and the Legion system provided an excellent naming

abstraction { a \context space" in which objects could be named, stored, and retrieved.

Context space is similar to a �le system's directory hierarchy because contexts (directories)

can be created, nested, and destroyed. Object instances (�les), including PeCs, VIRPs,

and UserPro�les, can then be inserted into context space and named with the familiar

root directory/sub-directory/NamedObject syntax. Clients interacting with the Le-

gion server can then resolve to instances of VIRP and PeC objects by specifying a context

68

name (path name) and, using a Legion method invocation, can resolve a context name to an

object instance. We implemented a Java client-side user interface that made the construc-

tion of and interaction with PersonalCollection objects more user friendly than the original

command line client. Communication between the Legion server and Java user interface

is XML4 based. For many reasons, this has turned out to be an excellent implementation

decision because of the platform neutrality of the XML format, its readability, and ability

to transmit entire data structures in the well-supported, simple string type.

The server was ported to Java / CORBA because the resource requirements of Legion

were too signi�cant for our intended server infrastructure. CORBA requires a short in-

troduction to provide context for a discussion on the scalability of a PIE system based on

CORBA. The fundamental component in CORBA is the Object Request Broker (ORB).

The ORB is a communication bus for object interactions, which may take the form of

method invocations or message passing. The CORBA speci�cation [Gro00] details the

format in which data will be transmitted over IIOP, a TCP/IP based transport protocol

that is part of CORBA. This includes standardized formats for basic types such as integer,

oating point, and string typed data; in addition, IIOP also details the ways in which user

de�ned objects are transmitted. The �rst step in de�ning a CORBA based system is to

provide the interface to the CORBA objects in the Interface De�nition Language (IDL).

The IDL provides a language neutral way to de�ne objects and method signatures that are

then mapped to a speci�c programming language. This mapping is done by an IDL com-

piler that reads the IDL �le to generate, for example, Java stubs and skeleton classes that

are used by the client and server respectively to facilitate a client's method invocation on

CORBA objects. During a CORBA method invocation, parameters passed to the method

invoked on a CORBA object are marshaled on the client side by the stub classes generated

above. Marshalling a parameter turns it into the common form that is described in the

CORBA speci�cation. These parameters travel through the ORB over IIOP, are unmar-

shaled on the server-side in IDL generated skeletons, and are passed as parameters to the

4http://www.w3c.org/XML

Draft February 7, 2001: Not for redistribution 69

method on the object on which the method was invoked; return values are transmitted back

to the method invoker in a similar manner. This mechanism allows CORBA to facilitate

communication between many di�erent server platforms and CORBA-side programming

languages. For example, the method invocation could be performed between a LISP client

and a C++ server. This is possible because of the common transport mechanism and

through the use of stubs and skeletons. This operation is important in understanding how

PIE clients resolve and interact with server-side objects; it is also important to provide

exibility in terms of language and server platform to participants in the PIE system. Ad-

ditional CORBA information can be found in Henning and Vinoski's excellent book [HV99].

One issue in supporting this functionality is providing a naming convention so all CORBA

objects can be accessed by any interested clients

CORBA provides built-in services such as naming, transaction, persistence, messaging,

and event noti�cation services which may be useful to supporting persistent querying in

PIE in the future. Currently, we use the CORBA Name Service, which is very similar to

the Legion context space model, to name and locate server-side PIE objects. The Name

Service for an individual CORBA server is obtained by obtaining a handle to the server's

ORB; ORBs are located by providing an IP address/DNS name and port number. In PIE,

we supplement this with the context name of a server-side object of interest. Our server

side CORBA objects are the following:

1. Personal Collection (PeC);

2. Virtual Repository (VIRP);

3. User Pro�le;

4. Object Server;

5. User Manager;

6. Selection Broker; and

70

7. Object Monitor.

All of PIE's server side objects, those in the list above, are named with a custom object

naming scheme that consists of the following data:

< server IP address : server port number : context name >

For example, the address:

< 127.1.2.3:1025:/pie/virps/ncstrl.uva cs >

will locate the University of Virginia, Department of Computer Science technical re-

port NCSTRL VIRP that is running as an object that is registered in context space as

/pie/virps/ncstrl.uva cs in the CORBA Name Service that is listening at the IP /

port number location 127.1.2.3:1025. In order to attach to this server object, a client

would bind to an ORB located at this address, obtain a handle to the Name Service, request

the object by context name using the Name Service, and invoke methods on the object as

if the object were running locally using the method signatures de�ned in the IDL for the

CORBA object.

Object names in PIE are created once at the object's home PIE server and persist for

the lifetime of the object; we call these names ObjectHandles. A discussion of scaling this

naming scheme and of distributed discovery of other PIE objects is provided in Section

6.3. The basic architecture of a single PIE server is shown in Figure 5.1.

The context space locations of objects of each type and their cardinalities at a single PIE

server are shown in the Figure 5.1. On a PIE server, there may be many VIRP, UserPro�le,

and PersonalCollection objects. VIRP objects are administered by some authority and

wrap an information provider, and PeCs are created by users who then own them. The

�rst time users log into PIE, they provide a username and a password. This username is

used to create a sub-context (or subdirectory) in the =pie=users context at the server. The

UserPro�le maintains the user's login name, password, and list of all PersonalCollection

objects owned by the user. At each PIE server, there is also one of each of the remaining

Draft February 7, 2001: Not for redistribution 71

ObjectServer (/pie/)

PIE Server

.

.

.

SelectionBroker Object (/pie/)

ObjectMonitor Object (/pie/)

VirtualReposotory Objects (/pie/virps/)

PersonalCollection Objects (/pie/users/<username>/)

UserProfile Objects (/pie/users/<username>)

UserManager Object (/pie/)

Object Type (context space location)

Figure 5.1: Single PIE server architecture.

72

objects, ObjectServer, UserManager, SelectionBroker, and ObjectMonitor, all of which

exist in the =pie context and consistently named as stated at every PIE server. The

ObjectServer is in charge of administering all requests for objects that are stored under the

root =pie context. The UserManager maintains and serves UserPro�le objects and handles

user log-ins and log-o�s. The SelectionBroker provides a service used at query time to

select from a PersonalCollection's information provider set the candidate providers most

likely to yield information matching a given query based on representations of the content

at each provider; it is used for e�ciency purposes. Powell [Pow00] describes this process in

detail. Finally, the ObjectMonitor runs independently of the other PIE server objects and

monitors a PIE server's context space. The monitor keeps track of the objects successfully

running in context space and provides an administrator a method for maintaining a real-

time view of a single PIE server; the monitor is optional and must be started explicitly

by an administrator. When each of these objects is instantiated, it is bound to a context

name by invoking a method on the CORBA Name Service running at a PIE server. These

objects make up the core of the PIE implementation; each plays a role in servicing user

method invocations. In the current PIE implementation, there is a graphical client-side

interface and a graphical server-side interface.

5.5 Implementing Persistent Queries in PIE

The PIE system provides an ideal environment in which to implement persistent queries.

PIE has an established distributed architecture that decouples the information providers

and suppliers and has properties to facilitate scaling to large numbers of participating

objects (both PeCs and VIRPs). In addition, PIE natively provides locations to imple-

ment functionality needed to support making guarantees about noti�cation delivery as

discussed in Section 3.4.3. The mapping of persistent query entities to PIE objects has

been mentioned; in persistent query terms, PersonalCollections act as user proxies and

VirtualRepositories act as information provider proxies.

Draft February 7, 2001: Not for redistribution 73

The persistent query protocol discussed in Chapter 4 requires changes to the PIE in-

frastructure and has been realized as discussed in the following sections. The information

providers in the test bed, however, are not ideal because they do not provide change noti-

�cations or timestamps. The �rst issue requires polling of providers to determine change,

but in our test bed, this is a simple process. In the header for the bibliographic �le for

each information provider, there is an entry describing the number of documents currently

in the publisher's collection. In addition, scripts allow the information providers to have

a variable churn rate, so our polling interval and document arrival rates can be varied for

testing purposes. The polling code exists outside of the VirtualRepository objects and is

implemented as an external observer to the information provider, thus decoupling PIE from

polling. VIRP objects wrapping a provider receive a noti�cation from the observer that

is watching the information provider for an upward or downward change in the number of

documents at the provider. In terms of timestamps, all NCSTRL documents are stamped

with a name, but the requirement of a monotonically increasing identi�er is not met. Thus,

the worst case solution for providing di�erential querying discussed in Section 3.3.3 is im-

plemented for each persistent query registered at the provider. This does not break the

di�erential querying model presented in Section 3.3.3, it just moves the task of di�erencing

the current search result with the previous search result list from the information provider

to the PersonalCollection object. Users still receive only the new items that have arrived

at an information provider in the search result list for a given persistent query. For ev-

ery persistent query a user has created, the PersonalCollection owning a persistent query

maintains a list of previous search results for the query accumulated over the lifetime of the

query. In implementing this functionality at the PersonalCollection level, we have shown

that this is a reasonable addition to make for information providers that are uncooperative

in this dimension.

Two objects must be modi�ed in the base PIE implementation in order to implement

persistent queries, the PersonalCollection and the VirtualRepository. In addition, two data

structures must be added, a query execution time table and a persistent query list; these

74

public interface PersonalCollectionClientInterface f

/� used to register and unregister persistent queries �/
String registerPQ(String persistentQueryXML);
boolean unregisterPQ(String persistentQueryXML);

/� used to get queries and query results from the PeC �/
String getPersistentQueryResults(String persistentQueryXML);
String getPersistentQueryList();

/� used to monitor the state of persistent queries from a running client interface �/
boolean testPersistentQueryResults(String persistentQueryXML);
String getChangedPersistentQueries();

g

Figure 5.2: Graphical client $ PersonalCollection interface.

structures are present in the PeC and VIRP objects respectively. Each of these four changes

will be discussed in turn.

5.5.1 Personal Collection Changes

To support persistent querying, PersonalCollection objects must export functionality that

provides users the ability to pose and delete persistent queries, retrieve the list of current

persistent queries, and retrieve the current search result list for a selected persistent query.

The interface for this functionality is shown in Figure 5.2.

Note that all input and output data structure types are CORBA strings and use XML as

the message format; in reality, these string types are representations of deeply nested data

structures that have been linearized into the string representation and are restored to their

native types when they reach the caller. For example, the list of persistent queries consists

of the objects QuerySet which are n PersistentQuery objects each with a QueryIdeni�er

object all of which are present within the linear XML structure.

In addition, the PeC object must provide an interface to VIRP objects to be used at

noti�cation time. This interface has a method to which noti�cations are delivered. If a

Draft February 7, 2001: Not for redistribution 75

public interface PersonalCollectionVIRP f
boolean receiveNoti�cation(String noti�cationXML);

g

Figure 5.3: VIRP $ PersonalCollection interface.

public interface FolderManagerInterface f
public boolean makeFolder(String folderName);
public boolean deleteFolder(String folderName);

public boolean addItemToFolder(String folderName, String documentHandleXML);
public boolean removeItemFromFolder(String folderName, String

documentHandleXML);

public boolean testFolderExists(String folderName);

public String getFolder(String folderName);
g

Figure 5.4: FolderManager interface.

noti�cation is received through this interface when a VIRP invokes the method, this meets

the \in-hand" delivery of noti�cations described in Section 3.4.3. The interface is shown

in Figure 5.3.

With the addition of persistent query support, PIE evolved to maintain a list of per-

sistent search result folders, similar to those provided for users of e-mail tools. Users

can create a folder into which document pointers are stored and all folders are accessible

through all PersonalCollection objects; they are stored and managed at the level of users'

UserPro�le objects. These folders exist in persistent storage on disk and are synchronized

to control concurrent accesses to the contents of a given search result list. The interface

for interactions with such lists is shown in Figure 5.4.

All PersonalCollection objects have a single FolderManager object that keeps track of

search results for each persistent query. The FolderManager implements simple spin locks

76

per �le so that �le accesses are synchronized. The PersonalCollection object writes to

the search results when new documents that have not previously been received arrive in

response to a query at a VIRP, and the PeC object reads from disk when the user requests

the contents of a search result �le. Because semantics for how the user receives new search

results are not provided in the persistent query protocol, access to search results stored

on disk must be atomic and controlled elsewhere. Folders are stored in XML, including

folders that contain previous search results. Items can be added and removed from the

folders through the interface provided by the FolderManager; this gives users the ability

to move document pointers from one folder to another. The functionality that we have

modeled here is that of user creation and modi�cation of folders in a typical e-mail client.

Each user's UserPro�le object also has a FolderManager that manages storage and access

of document pointers that are stored in folders into which document pointers from any

persistent query or PersonalCollection can be placed.

The PersonalCollection object itself must keep track of its persistent queries and the

last time they were executed at each of the information providers in the PeC's provider

set. This is necessary to implement the di�erential querying described in Section 3.3.3

because in order to partition the space of documents stored at an information provider, the

last query time for each persistent query must be provided to separate the documents into

previously seen and not previously seen sets. The QueryExecutionTimeTable is where this

information is stored. The table is a hashtable of query identi�ers, which are assigned when

the query is created by the PersonalCollection object over which the persistent query was

posed. Each query identi�er points to another hashtable that contains < key, value >

pairs of the form < VIRP ObjectHandle, last query time >, for every query identi�er.

The cardinality of the elements in this latter hashtable are related 1 : 1 with the size of the

information provider set for the PersonalCollection. When a change noti�cation is received

at a PeC for a speci�c query, the query identi�er and VIRP's ObjectHandle are used to

hash into these two nested tables to retrieve the last query execution time for the noti�ed

query at the notifying VIRP; this time value is then passed to the VIRP at the time of

Draft February 7, 2001: Not for redistribution 77

query issuance. When the query completes on the VIRP, the completion time is sent back

to update the time entry in the QueryExecutionTimeTable.

5.5.2 Virtual Repository Changes

Implementing persistent query functionality also requires adding features to the VIRP.

The VIRP object must provide a subscription / unsubscription facility for PeCs to express

interest in receiving noti�cations, an interface so that a PeC can enable / disable noti�ca-

tions as necessary, and an interface to the information provider's search capabilities. The

subscription / unsubscription interface at a VIRP is used by all PersonalCollection objects

that need to receive noti�cations from the VIRP. PersonalCollections identify themselves

during subscription / unsubscription by providing their ObjectHandle and the XML rep-

resentation of the PersistentQuery object being registered at the VIRP5. Enabling and

disabling noti�cations is necessary for the reasons described in Section 4.7. Finally, the

VIRP exports the search interface for the information provider in the generic way de�ned

in the VirtualRepository base class. If the information provider has a search interface,

the provider proxy's search interface simply act as a pass through and will interact di-

rectly with the interface available on the provider. For example, a VIRP wrapping the

http://www.slashdot.org website would pass any query received at the VIRP directly to

the search interface on the web page. Search results are returned to the PersonalCollection

by parsing the resulting page for the results of the search at the site. If the information

provider does not have a search interface, the VIRP may emulate one internally over the

VIRP's representation of the provider's content. Means for accomplishing this are a policy

decision left to the information provider's VIRP implementor.

The inheritance hierarchy of the VIRP objects is an important aspect of PIE because

signi�cant parts of the persistent query system are common to all of the VIRP objects that

are persistent query capable. The inheritance hierarchy is shown in Figure 5.5.

In implementing our design of the persistent query protocol, this hierarchy is impor-

5Presently, the text for the query is ignored by the VIRP. Only the persistent query's unique identi�er
is retained for storage and subsequent use.

78

VirtualRepository

+disableNotifications(objectHandleXML, pqXML) : void
+enableNotifications(objectHandleXML, pqXML) : void
+giveAllSince(queryXML, timeXML)
+receiveNotification() : void
+registerPQ(objectHandleXML : , pqXML) : boolean
+unregisterAllPQ(objectHandleXML) : boolean
+unregisterPQ(objectHandleXML, pqXML) : boolean

Virtual Repository Object Inheritance Hierarchy

Note: In VirtualRepository_Dienst,
the only method that needs to be
implemented is the abstract
(italicized) signature above:
giveAllSince(...).

Note: Only signatures of
methods used in persistent
querying are shown.

VirtualRepository_Dienst

Figure 5.5: VirtualRepository inheritance hierarchy.

Draft February 7, 2001: Not for redistribution 79

tant because much of the functionality required by the VIRP objects is common for all

types of VIRPs. For example, managing subscriptions / cancellations and propagation

of noti�cations to user proxies are routines that, under our protocol, will be common to

all information provider types. This decomposition of functionality is important because

signi�cant development e�ort does not need to be expended to create VIRP wrappers for

additional information provider types; essentially, only the the search interface at a speci�c

information provider must be encapsulated in the VIRP type subclasses implemented to

wrap that provider type.

In the VIRP, a data structure must be maintained that describes the list of persistent

queries that are registered at a given VIRP. This data structure, the PersistentQueryList,

consists of a hashtable with keys that are the ObjectHandle for each PersonalCollection

object that has at least one registered query at this VIRP. The value of each key is a data

structure with a list of < query id, noti�cation pending, noti�cation enabled > elements.

This information fully describes the subscription state of all queries registered at the VIRP

by all interested user proxies. When the PersistentQueryList data structure is manipulated

in a VIRP object, it is locked so that changes can only be made atomically to its information;

this helps to prevent race conditions where the representation of noti�cation state for each

< subscriber id; query id > pair.

5.5.3 PIE Infrastructure Changes

In order to implement the guaranteed immediate noti�cations discussed in Chapter 3, a

method must be provided for contacting PersonalCollections that are o�-line or inactive in

the system at the time of a noti�cation. In addition, when user proxies and information

provider proxies are o�-line or inactive in the PIE system at a given point, they must persist

in a storage medium so that resources at their host servers are conserved.

Recall that inter-object method invocations and messaging in PIE over a CORBA ORB

are performed using XML. This was a convenient choice because it does not require CORBA

de�nitions of the many di�erent types of data structures that would be transmitted between

80

public interface Persistent f
public Persistent(String XML);
public void parseXML(String xml);
public String createXML();

g

Figure 5.6: Interface for XML based persistence in PIE.

PeC and VIRP such as search results, queries, and other data. All of these objects are

passed as XML in the native CORBA string type. Virtually all objects in the PIE system,

including those that are not CORBA aware, contain three important methods to support

persistence in XML that are shown in Figure 5.6.

The �rst method is a constructor that receives an XML string as its parameter. After

any data structure initializations, this string is passed to the parseXML() method which

would re-creates all of the persistent data stored in the object and populates any non-

primitive type objects that are data members in the class. The createXML() method

creates a deeply nested XML string that contains all of the data necessary to re-create

the object at a later time. This operates similarly to the Java serialization infrastructure

but is more e�ective because it can operate with CORBA and is human readable while

other persistence mechanisms are not. Java serializability requires Java remote method

invocation instead of CORBA middleware. In addition, as PIE scales and databases large

and small are used at servers in lieu of storing persistent data as �les on disk, the string

type of the representation is simple to implement and does not require BLOB types in the

database which would be necessary for serialized Java objects. XML strings are also highly

compressible and in addition can be encrypted / decrypted for security during transmission.

All of the CORBA aware PIE objects, mentioned previously, can be written to disk in a

persistence structure that emulates their locations in the naming context space of the

CORBA name service.

The ObjectServer plays a signi�cant role in being able to save and restore CORBA

Draft February 7, 2001: Not for redistribution 81

objects on its own server. The ObjectServer can shutdown parts or all of a running PIE

server to be restored at a later date. This is useful if objects need to move from server

to server or to conserve server resources by shutting down objects that have not been

used recently. For example, in order to shutdown a PersonalCollection type object, the

ObjectServer simply must resolve to the name of the object using the CORBA Name Service

and execute its createXML() method. In fact, an ObjectFactory and PersistenceService

have been implemented to abstract the startup and shutdown processes for objects.

The importance of this process is that, given a running ObjectServer, any object at a site

can be started locally (by the local ObjectServer) or remotely (by invoking a method in the

remote ObjectServer's IDL interface) by another object. This is particularly useful when

implementing guaranteed immediate noti�cations. Consider the following scenario. At

noti�cation propagation time, a VIRP (provider proxy) needs to transmit the noti�cation

to a PeC (user proxy). If the PeC is not able to receive the noti�cation because it is not

running, an exception will be thrown when trying to execute the method from the VIRP on

the PersonalCollection. The error handler at the VIRP contacts the ObjectServer owning

the PeC to wake the PersonalCollection object up and restore it from disk. Then, the

noti�cation can be transmitted from the VIRP to the PeC successfully. If the ObjectServer

is not running, there is no way to contact a missing user proxy, and the preconditions for

transmitting the noti�cation as described in Section 3.4.3 fail. This latter problem can

be solved by implementing the ability to start the ObjectServer remotely from somewhere

in the PIE system. This is possible, but currently, we have not implemented this latter

functionality.

5.6 The Protocol in PIE

The protocol as implemented in PIE is best viewed using sequence diagrams. These dia-

grams show the call and return sequences as methods are invoked inter- and intra- object.

For clarity, the sequence diagrams here explain the purpose of the method invocations in

82

plaintext as opposed to simply providing a method signature. Four sequence diagrams are

presented that describe the subscription (Figure 5.7), noti�cation handling (Figure 5.8),

unsubscription (Figure 5.11), and error handling (Figure 5.9 and Figure 5.10) for persis-

tent querying in PIE. All horizontal lines in the �gures represent method invocations; in

all cases, return values are transmitted but are generally omitted in these �gures. Vertical

lines represent the passage of time from top to bottom and invocations between vertical

lines occur inter-object. Those invocations starting and ending on the same vertical line

(object) are performed intra-object (such as Figure 5.8, Step 2).

Personal Collection objects are the entry point for persistent queries into the PIE sys-

tem. A user poses a persistent query through a query box in the client-side PIE graphical

user interface. The query box is simply a text box for the query and a check box used

to signify whether the query is retrospective or persistent. All of the inter-object method

invocations occur through a CORBA ORB. The sequence of subsequent actions in the PIE

system in response to the user's actions is shown in Figure 5.7.

The user's PersonalCollection receives the query (step 1) and registers the query at each

of the VirtualRepository objects that the PersonalCollection has resident in its information

provider set at the time the query was issued (step 2). At the time of registration, the query

is issued retrospectively at each of the information providers at which the query is registered.

When all of the VirtualRepository registrations have completed at the PersonalCollection

(after step 7), the collected search results from all of the VirtualRepository objects are

returned to the user (step 8). Currently, these results are simply concatenated together

but could be merged in the PersonalCollection object. Users are presented with this list

of search results in a window on their desktops. Now, users are retrospectively up to date

with all of the meaningful information relative to a user's query that was found in each of

the information providers in the PersonalCollection object over which the query was posed.

The system is inactive until the content at some information provider changes; at this

time, the information provider emits a simple change noti�cation to the provider's Virtual-

Repository wrapper. This results in a series of method invocations used to notify the

Draft February 7, 2001: Not for redistribution 83

Note: This registration is done
for every VIRP present in the
PersonalCollection to which
the query was posed.

Note: Each invocation has
some return value
associtated with it. For
clarity, these are generally
omitted from the figure.

Posing a persistent query

Note: These search
results are from all of
the PersonalCollection’s
VIRPs.

Note: These search
results are from a single
VIRP.

Information ProviderPersonalCollection VirtualRepositoryHuman User

Issue the query retrospectively 5:

Pose a persistent query 1:
Register the persistent query 2:

Return search results 7:

Register query with a VIRP 3:

Issue the query 4:

Return search results 6:

Return search results 8:

Figure 5.7: Posing a persistent query in PIE.

84

VIRP's subscribers of a change in the provider's content. These events are sequenced in

Figure 5.8.

This series of calls occurs in response to a change noti�cation sent from the information

provider to the VIRP signaling a change in the provider's content. The VIRP then takes

the noti�cation and propagates it to each of the < subscriber id; query id > pairs that are

registered in its subscriber set. This happens in steps 1 and 2, respectively. Once the

noti�cation has been received, the PersonalCollection has the option to respond immedi-

ately or to respond later. When the user proxy decides to respond, the protocol execution

picks up at step 4. First, as discussed in Section 4.2.1, the PersonalCollection must disable

noti�cations originating from the VIRP in order to prevent the race condition previously

described. The acknowledgement of this operation is known to the invoking Personal-

Collection object by the absence of an exception during the call and the absence of an error

code in the return value. Once this precaution has been taken, the PersonalCollection

object issues the query to the VirtualRepository object whose information provider's con-

tent changed (step 5). When the PersonalCollection issues the query, the timestamp of

the last time the PersonalCollection issued the query to the VIRP that propagated the

noti�cation is included; this timestamp is taken from the QueryExecutionTimeTable data

structure described earlier. As discussed in Section 3.3.3, this timestamp conveys no notion

of system-wide time and only applies to the information provider wrapped by the VIRP.

The search is run against the new content at the information provider after step 6 and

the search results are returned to the VirtualRepository in step 7. Because every type

of information provider wrapped by a VirtualRepository may have a di�erent format for

presenting search results, each subtype of VIRP will have a method for parsing search re-

sults that is tailored to the format of the search result returned by the provider type. For

example, the NCSTRL search result format the test-bed returns is consistent and parsed

by a VirtualRepository Dienst type object whereas the http://www.cnn.comVIRP will

require a search result parser tailored to specially read search results, perhaps formatted

in HTML, from that information provider. Once the search results have been parsed, a

D
ra
ft

F
eb

ru
a
ry

7
,
2
0
0
1
:
N
o
t
fo
r
red

istrib
u
tio

n
85

Time may pass before the PersonalCollection
decides to respond.

Time may pass before a user picks up any
search results that have accumulated.

Responding to a change notification

Note: Issuing the query
includes the timestamp of the
last time this PeC queried the
VIRP with this query.

Note: This propogation
happens for all persistent
queries that are registered at
this VIRP.

Note: Each invocation has
some return value
associtated with it. For
clarity, these are generally
omitted from the figure.

Information ProviderPersonalCollection VirtualRepositoryHuman User

Pose the query to the search interface 8:

Propogate the change notification 2:

Return the search results
and new timestamp

 10:

Request results 13:

Generate a change notification 1:

Disable notifications 5:

Return the search results 9:

Issue a persistent query to the VIRP 7:

Enable notifications 12:

Acknowledge notification receipt 3:

Mark notirication pending flag
for < PersonalCollection, query_id >

 4:

Acknowledge search result receipt 11:

Unmark notification pending flag
 for < PersonalCollection, query_id >

 6:

Return results 14:

F
igu

re
5.8:

H
an
d
lin

g
ch
an
ge

n
oti�

cation
s
in

P
IE
.

86

search result set is created on the VIRP and populated with pointers to information items

resident at the information provider; this search result is turned into XML and, in step 8,

transmitted back across the CORBA bus to the PersonalCollection object that issued the

query. At the PersonalCollection object, this search result is appended to a growing list of

search results that are pending review by the user and may be di�erenced against the cu-

mulative previous search results if the information provider does not support searching with

timestamps. Search results are stored by the FolderManager in XML on disk or in another

persistent storage mechanism. Currently, these search result lists are temporally ordered

on a �rst come, �rst appended basis, although other presentations including ranking can

be provided. When the user next requests this search result, the results are read out of

storage and returned to the user's client interface in XML in steps 10 and 11 respectively.

The client interface then renders the search result XML into a window where the user can

manipulate the results. Further interaction with the search results is similar to reading

e-mail; the user can create folders at the UserPro�le level that are visible to all Personal-

Collections into which to place pointers to information items of interest from any search

result at any PersonalCollection. The UserPro�le object is responsible for administering

thread synchronized access to these folders and for keeping track of their location (usually

in the persistent /pie/users/ < username > directory on disk) through the FolderManager

interface in Figure 5.4.

In addition, there are error recover modes for failed noti�cations that occur in persistent

querying. In the event that a VIRP can not deliver a noti�cation to a PersonalCollection

object, the VIRP may contact the ObjectServer at the PersonalCollection's PIE server.

One of two error recovery modes can then be employed. The �rst method is shown in

Figure 5.9.

In this method, the ObjectServer can accept the noti�cation from the VIRP and write

the noti�cation to a special location that is checked the next time the PersonalCollection

object wakes up in step 3. When the PersonalCollection awakens, if there are noti�cations

present in this place, the PersonalCollection is now aware of the changes at the VIRP(s)

Draft February 7, 2001: Not for redistribution 87

Error recovery from a failed guaranteed notification

Note: Each invocation has
some return value
associtated with it. For
clarity, these are generally
omitted from the figure.

Note: This delivery fails.

PersonalCollectionVirtualRepository ObjectServer

Deliver notification 1:

Acknowledge success in storing the notification 4:

Request that ObjectServer save notification for PersonalCollection 2:
Locate PersonalCollection and save
notification to persistent storage

 3:

Figure 5.9: Error handling with mailbox noti�cation delivery.

with pending noti�cations, and the PersonalCollection can handle them as necessary. This

error recovery mode provides guaranteed noti�cations, which are mentioned in terms of a

library context in [HF99]. This is similar to the postman leaving a package on your doorstep

if you are not home; eventually, you will arrive and pick up the package and the postman

(VIRP, in this case) has performed due diligence in delivering it. This implements a form

of guaranteed noti�cation delivery as described in Section 3.4.2.

The second and more advanced error recovery mode, shown in Figure 5.10, occurs

when the VIRP contacts the ObjectServer of the PersonalCollection and the ObjectServer

restores the PersonalCollection object from persistent storage for noti�cation delivery in

step 4. In this case, the PersonalCollection receives, in step 6, the noti�cation in near real

time relative to when the VIRP sent it. This model is equivalent to the postman having the

recipient sign for a piece of mail to guarantee its delivery; an unsuccessful delivery will raise

an exception in the VIRP propagator. As described in Section 3.4.3, outside of the event

of an error preventing noti�cation delivery the guaranteed and guaranteed immediate noti-

�cation delivery methods di�er only when one of these error routines must be executed. In

88

Error recovery from a failed immediately guaranteed notification

Note: Each invocation has
some return value
associtated with it. For
clarity, these are generally
omitted from the figure.

PersonalCollection

Note: This delivery
fails.

VirtualRepository ObjectServer

Deliver notification 1:

Restore the PersonalCollection
from persistent storage.

 4:

Transmit notification 6:

Acknowledge recovery of PersonalCollection 5:

Activate the failed PersonalCollection object 2:
Locate the PersonalCollection’s representation
in persistent storage

 3:

Figure 5.10: Error handling with in-hand noti�cation delivery.

this last case, Hinze and Faensen [HF99] describe something similar called real-time noti�-

cations in which they require additional infrastructure support used to restart failed system

components. This infrastructure for error recovery here is provided by the persistence layer

and ObjectServer in the PIE system. This implements a form of guaranteed immediate

noti�cation delivery as described in Section 3.4.3.

Network, ObjectServer, and / or VIRP failures are not covered in this model because

they fall outside of the criteria presented in de�ning the meaning of the term \guarantee."

In the event of such failures, however, the system relies on the eventual semantics of the

noti�cation model for error recovery. The PersonalCollection objects will eventually receive

noti�cations of changes from the VIRPs about the information providers for which the

VIRPs are responsible. In addition, if the PersonalCollection objects are not functioning

for some reason, as soon as they are able, the PersonalCollection objects have the ability

to query the VIRP, and this could be implemented as another error recovery technique.

Draft February 7, 2001: Not for redistribution 89

Unregistering a persistent query

Note: This is done for each
persistent queries that the
PersonalCollection has
registered at the VIRP.

InformationProviderPersonalCollectionHuman User Resource

Unregister 3:

Remove a VIRP from the PersonalCollection’s resource set 1:
Unregister all persistent
queries from the VIRP

 2:

Acknowledge 4:

Acknowledge 5:

Figure 5.11: Unregistering a persistent query in PIE.

This is a policy decision that can be implemented in the PersonalCollection, but there is

nothing in the protocol that limits the PersonalCollection from acting in due diligence for

the user in recovering from errors. In the case that the PersonalCollection were to take

such an action, this sequence would simply begin with step 4 in Figure 5.8.

For the sake of completeness, we show the process of unsubscribing from a VIRP in

the event that a user removes the VIRP from the user's PersonalCollection information

provider set; this appears in Figure 5.11.

5.7 Networks of PIE Servers

Thus far, the discussion of PIE has focused on a single instance of a PIE server. Clearly, in

order to have a useful persistent querying system, many PIE servers must exist through-

out the network in order to support di�erent users and di�erent information providers.

The distributed case follows from the single PIE server because the naming conventions

90

described and used by a local server can be used to locate and interact with PIE objects

throughout a wide-area network. The ObjectHandle format convention:

< server IP address : server port number : context name >

scales to address the entire internet. The missing piece is how widely spread PIE

servers perform distributed object discovery, the result of which is an address of the form

above. This function can be performed by a PIE-level name service that, minimally, has

registrations for all VirtualRepository and shared PersonalCollection objects participating

in PIE. Once ObjectHandles have been served to a requesting client, the local PIE server

can resolve to the remote PIE objects using the handles as easily as contacting a local

object. This name service is described in the scalability discussion of PIE in Chapter 6.

5.8 Conclusion

This concludes the implementation of persistent querying in the PIE system. Clearly, there

are many additional avenues that are available in terms of options for error recovery and

querying VirtualRepositories. A stable and complete framework has been developed that

implements the persistent query protocol in full and, in cases such as searching an informa-

tion provider using timestamps, in the worst possible scenario. The implementation was

successful in proving that it is reasonable to place requirements on information providers,

create wrappers for information providers, and make the guarantees we make in the persis-

tent query protocol in the PIE system without employing signi�cant machinery to support

the guarantees in the VIRPs or at the information providers themselves. The next chapter

analyzes the persistent query protocol in PIE in terms of the requirements set forth at the

beginning of this thesis, especially scalability, e�ciency, and requirements placed on the

information providers.

6

Analysis

6.1 Overview

Thus far, we have discussed the implementation of a PIE server in a single server envi-

ronment. One of the goals of PIE and persistent querying is to create a system that will

operate on internet scale. This requires a high degree of
exibility in the system and inde-

pendence for every participant to meet the resource needs of their own locale. In addition,

our requirements have stipulated that persistent querying be a lightweight addition to an

information retrieval system and that the requirements placed on an information provider's

participation in the PIE persistent query system be reasonable. This chapter will analyze

these criteria after looking at the
exibility of persistent querying in PIE.

6.2 Flexibility of Design

Working on internet scale also requires working on internet time. While a hackneyed phrase,

the implications of internet time are signi�cant in terms of the speed at which an infor-

mation retrieval system on the internet must evolve to meet the demands of users and to

keep them informed. Paramount to meeting this goal is system
exibility and evolvability.

This is why PIE and persistent querying are such a good match. The object model of PIE,

and especially the encapsulation of information providers in VirtualRepository subclasses

91

92

implementing a common VIRP interface, provides implementors of new VIRP types the

ability to work in isolation of all other components of the system. The time to create a

VIRP is as short as the time necessary to provide ways to determine its metadata, wrap its

search interface, and parse its search results. If an information provider does not provide

features such as timestamps, more e�ort will be involved, but we anticipate being able to

accommodate these issues in PIE. As shown in Figure 5.5, the VIRP inheritance hierarchy

hides the functionality that deals with user proxies and noti�cations in the base class. Thus,

subclasses are free to concentrate on implementing the important functionality for a given

information provider. In addition, the coupling degree of persistent querying to the objects

involved, PersonalCollections and VirtualRepositories, is very low. The persistent query-

ing functionality is concentrated in these two locations and can be evolved independently

of other components in the system. In all, the PIE object model and lightweight design

of the persistent query protocol yields a framework that is
exible enough to be adapted

to user needs, especially when trying to satisfy users' insatiable desire for more informa-

tion providers. Implementation of persistent query functionality could be accomplished in

information systems using these same design principles.

6.3 Scalability

Of the utmost importance in the PIE persistent query system is facilitating users' meeting

their information needs. Scalability of the persistent query system and PIE is the next most

important issue of concern for implementing this SDI system on internet scale. We believe

that the PIE platform will scale very well in a system having tens of thousands to millions

of objects. Building PIE on top of CORBA is a signi�cant contributor in this optimism.

CORBA is designed by nature to be a highly scalable, distributed, and object-oriented

infrastructure. Scalability is provided by the ORB on top of which PIE is implemented.

Sites maintaining PIE servers can choose an ORB that matches their economic constraints

and that scales to meet the resource demands placed on their server infrastructure. This is

Draft February 7, 2001: Not for redistribution 93

possible because of the interoperability of CORBA ORBs implemented by di�erent vendors.

While we are not using this
exibility currently, we allow individual PIE servers to execute

on top of a platform providing functionality necessary to meet user demand and scalability

needs while at the same time permitting heterogeneous CORBA ORBs to work together.

In principle, this is possible, but in practice, this has been di�cult to guarantee. Recently,

however, the interoperability of CORBA ORBs is improving as the OMG closes holes in the

CORBA speci�cation that caused interoperability problems between ORBs from di�erent

vendors. CORBA scalability and response time has been the subject of signi�cant research

in recent years. Schmidt [GS97, GS98, POS+99] is the foremost expert on such issues and

has broadly studied existing CORBA ORBs for their real-time and scalability properties.

In early work, Schmidt et al. found that CORBA implementations incurred high latency

and high method invocation cost because of layers of object-oriented abstraction present

in CORBA; low scalability resulted partially from these issues [GS97]. Later research re-

vealed that it is possible to overcome these impediments and create e�cient CORBA ORBs

[GS98]. As the CORBA speci�cation, hardware capabilities, and ORB development has

evolved, CORBA ORBs have become more heavily multi-threaded and capable of han-

dling a large number of objects at an ORB and clients invoking methods on those objects

[POS+99]. Schmidt's research has culminated in a real-time CORBA ORB that is avail-

able for free on the internet1. While this ORB is implemented in C++, the optimization

techniques applied to the CORBA platform are portable to other ORB implementations.

The CORBA platform is scaling more e�ectively as it matures, and while CORBA is based

on the principle of abstraction, which always incurs some overhead, we believe that our dis-

tributed architecture, that does not concentrate large numbers of objects at any single PIE

server, will scale well on top of CORBA. Thus, by distributing the load on PeC and VIRP

objects spread throughout the system and building on an inherently scalable platform, the

persistent query functionality and PIE architecture should scale well.

Prior discussion of the PIE implementation has mentioned the requirement to have a

1http://www.cs.wustl.edu/~schmidt/TAO.html

94

naming authority that services name requests and is knowledgeable about the objects ex-

isting at distributed PIE servers. In fact, such a name server is fundamental to an e�ective

distributed PIE system. Obviously, having a centralized naming authority is a dangerous

prospect, especially in a system that relies on discovering information providers. We pro-

pose that a solution to this problem be solved through the use of an inexpensive and highly

scalable web server such as Apache2. The name server will receive periodic updates from

PIE servers with new VirtualRepositories that have come on line and PersonalCollections

that are shared by their owning users. These updates consist of metadata about each object

and the object's ObjectHandle. This will give the name server the ability to specify an

object of interest by name and provide some metadata to describe the object. The name

server will receive queries about other objects, which may be executed over the indexed

metadata of each, and will return lists of ObjectHandle objects in response. Users will

issue such requests and the ObjectHandle list will be used to resolve to speci�c objects

returned by the name server. We believe that this solution will provide a highly scalable

solution to the issue of providing a distributed name service for PIE. HTTP servers are a

good match for this task because of their bias toward handling short transactions that may

involve databases or information retrieval engines, and HTTP servers can scale to handle

millions of transactions. Operational examples of such scalability exist at many websites

such as Google3 which handles millions of transactions each day. Signi�cant research and

practice has been invested in creating scalable and reliable web servers and platforms. We

will rely on these successes and believe that they will provide a sound solution to scalable

information provider discovery and persistent querying in PIE.

In our current implementation, we have tested using a single PIE server that has run

under a load of multiple users, each with multiple PersonalCollections, and up to 100

VirtualReposotory objects, each representing an NCSTRL information provider. This has

been done on a single processor machine with 256 megabytes of main memory and a single

network interface. The memory footprint of such a system is �fty-�ve megabytes. One of

2http://www.apache.org
3http://www.google.com

Draft February 7, 2001: Not for redistribution 95

the reasons that we are optimistic about the scalability of PIE and persistent querying is

that the maximum amount of tra�c generated by each user will be limited to how quickly

users can process the data they are presented. Construction of a PersonalCollection is

performed entirely on the client-side, and messages are sent to the server only as often as

necessary. The use of variable rate change noti�cations reduces the amount of network

tra�c and processing between the PersonalCollection and VirtualRepository objects. A

persistent query system is not as casual as sur�ng the web; an investment must be made

up front by each user to tailor a PersonalCollection to their information needs and to then

pose meaningful persistent queries over the information providers.

Because of the distributed architecture of the PIE system, the load on each individual

server will be reasonable, with the majority of interaction occurring between the user in-

terface client and the PIE server on which the user's UserPro�le object exists. Processing

a persistent query at a VirtualRepository simply requires issuing the query at the infor-

mation provider the VIRP wraps. On the internet, this would be done through a CGI or

similar search interface; these scale to handle the required tra�c at many internet sites.

At other information providers such as digital libraries or databases, their user bases are

likely to be di�erent than the web at large. For example, the Virgo4 search interface at the

University of Virginia has a di�erent size of information consumer audience than does that

at http://www.cnn.com. Information providers that are under heavy demand will likely

need to be hosted on PIE servers and networks that can handle that demand. This issue

is also one of using a scalable CORBA ORB and is in principle no di�erent from handling

many page hits at an active website such as that for the Olympics5. All other operations,

such as PersonalCollection construction and browsing search result lists, take place at the

leisure of the system or users and are not required to provide \real-time" results that place

demands on third parties.

In terms of storage requirements, persistent queries place a storage demand in several

locations. Foremost, persistent queries will always have to store result lists on a PIE server

4http://virgo.lib.virginia.edu
5http://www.olympics.com

96

at which a user's PersonalCollection objects are hosted. In addition, the persistent user-

created search result folders will have to be stored in a similar location. This storage

will be cumulatively signi�cant over the entire PIE system, but by using distributed PIE

servers, this requirement is amortized over all of the PIE servers. Administrators at each

of the servers will simply need to assure that there is enough disk space to accommodate

the local user-base. At extremely large PIE servers, the size of the user-base may dictate

that an alternate to disk based storage be used and a database may be used instead to

speed storage, speed retrieval, ease synchronization, and increase the scalability of storing

user folders and search results. In practice, such a solution would be easy implement

because of the FolderManager interface presented in Figure 5.4 and would scale well based

on experience with database use at large internet sites such as search engines. Another

location in the persistent query system where database infrastructure will be useful is if an

information provider does not provide timestamps. In this case, it would be very e�ective

to leverage the power of a database to �lter and store the document identi�ers that have

been previously returned to the user by a persistent query, for each persistent query the

user has posed. Currently, timestamps over the NCSTRL-based information provider test-

bed are implemented by di�erencing a
at �le on disk with a current search result to yield

the complement of their intersection that is not already stored; these are the new search

results to be returned to the user. This could easily be performed with a simple SQL query

over a database storing the same document pointers.

In each of these areas, distributed object discovery, distributed object naming, individ-

ual PIE servers, computation, and storage requirements, the persistent query implemen-

tation in PIE should scale well. For those areas that will have an issue with the current

implementation, a solution has been presented to be tested and used when a suitably large

test-bed can be constructed.

Draft February 7, 2001: Not for redistribution 97

6.4 E�ciency of Persistent Querying

Outside of considering the scalability of the system, the e�ciency of persistent querying

is of importance to this thesis. The resource requirements for persistent querying are the

following. First, the VirtualRepository objects must keep track of a set of

< subscriber id, query id, noti�cations enabled, noti�cation pending >

structures for each subscriber and registered persistent query. Assuming the size of this

structure is on average 200 bytes, a table representing one million queries would total 200

megabytes. This may seem large, but in terms of the storage capable in a modern database,

this storage is quite small and could be handled easily. In the case of scaling persistent

querying to this magnitude, databases, as discussed earlier, will be necessary throughout

the PIE system which has been designed with this eventuality in mind. In addition, the

VirtualRepository object will become a bottleneck when having to notify all of one mil-

lion queries when a change noti�cation is received from the information provider. For this

technique, several optimizations can be made. First, only the < subscriber id; query id >

identi�er would be kept in the four-tuple above. The PersonalCollection subscribing to the

noti�cation would have to handle de-multiplexing the single noti�cations onto the poten-

tially many persistent queries that may be posed over the information provider. Second,

clustering of noti�cations may be necessary and could be performed at the granularity of

individual PIE servers. This would simply require a layer between the PersonalCollection

objects at a server and the larger PIE federation as a whole. In this case, the subscription

of a PersonalCollection to a VirtualRepository will not occur if the PIE server hosting the

PersonalCollection is already subscribed to hear the VIRP's change noti�cations, and the

largest number of subscribers at any one VIRP will be the total number of PIE servers that

are present in the entire federation. The �nal cause for concern in scaling a persistent query

at a VIRP is handling the many queries from the million subscribers that may arrive on

the VIRP. Modern commercial CORBA systems have been shown to perform well as trans-

action processing platforms. A query is a simple transaction between a PersonalCollection

98

and a VirtualRepository, and it can be treated as such by using thread pools, load bal-

ancing, and other techniques on the VirtualRepository to limit the load placed on speci�c

objects. These techniques are well studied and could be implemented here either natively in

PIE or by using a transaction platform available in commercial CORBA systems. Schmidt

[Sch01] conducted a study of such threading techniques in CORBA serves.

Handling persistent queries at PersonalCollection objects is a much easier task in terms

of the resource requirements placed on the infrastructure. Most importantly, the PIE model

is inherently distributed, so individual PIE servers will be able to process their own objects'

requests. PersonalCollection objects are mostly concerned with keeping track of current

subscriptions and issuing queries to VirtualRepositories. This process, considering that

PIE has already been tested with over one hundred �fty CORBA objects running on a

single machine, is entirely tractable considering that we expect only hundreds of objects to

be hosted at a single PIE server.

In terms of network bandwidth, several areas deserve consideration. First, subscriptions

from PersonalCollection to VirtualRepository require several hundred bytes of synchronous

method invocation to complete. The same is true of unsubscriptions and change noti�ca-

tions. The signi�cant overhead is in issuing and processing queries at VIRPs. In this

case, the PersonalCollection must send its ObjectHandle identi�er and persistent query to

the VIRP. The VIRP must then send the query to the search interface of the information

provider. If the provider supports timestamps, the returned search result will generally be

much smaller than if the search interface does not support timestamps. This is because the

time stamped search result will not contain older search results that the latter would con-

tain repetitively. The network requirement could be signi�cant in terms of having to return

these results to the user. There is no way to avoid performing this action; it is the purpose

of an SDI / persistent query system and is unavoidable. Returning document pointers,

as done in the current test-bed, instead of returning actual documents should reduce this

load. We do not expect full documents be returned to users in a search result and �nd

caching to be a more scalable and practical approach to this problem, see Section 3.4.1.

Draft February 7, 2001: Not for redistribution 99

In addition, current calls to execute a query are synchronous, and leveraging features of a

CORBA implementation to perform asynchronous calls may increase fault tolerance and

e�ciency of querying.

Given this characterization of the resource requirements of a persistent query, we believe

that the protocol presented here will scale well and will not present any signi�cant burden

to network and server resources that has not already been mentioned. Several optimizations

have been provided to address signi�cant concerns.

6.5 Requirements on Information Providers

In order for any SDI system to be successful, the information providers that are at the

disposal of the users are extremely important, and their participation is essential to provid-

ing a useful service. As a result, the cost of participation by such providers must be kept

low, and this is why one of our requirements has been to keep the requirements placed on

the providers as minimal as possible without overburdening them. Our only requirement

for information provider participation is that they emit a change noti�cation to a single

subscribed object, the information provider's proxy. The use of a proxy in this location is

important in reducing this burden because without a provider proxy the number of user

proxies subscribed at the information provider is virtually unlimited. Use of a provider

proxy as the SDI system's interface to the information provider keeps the cardinality of

this subscriber set on the provider to size one per information provider. This absolves

the information provider from having to provide a subscription interface, to provide an

interface to turn o� noti�cations, and to maintain all of the state associated with handling

subscriptions and propagating noti�cations to many subscribed user proxies. Noti�cations

as the only requirement on providers is a reasonable expectation for participation in an

SDI system.

A search interface and timestamps can be emulated in the infrastructure of the infor-

mation provider proxy, though at great cost. We believe that at least the former will be

100

present in virtually all information providers; in the internet age, provision of an interface

to search content is almost a de facto standard at information sources. Timestamps are

more di�cult to require, but any monotonically increasing identi�cation number will suf-

�ce. As SDI systems supporting persistent querying and a diverse information provider set

become more prevalent, the economic models associated with participating in such systems

are likely to motivate information providers to provide timestamps. We can foresee some

of these services subscription based, even simply at the information provider level, in the

future.

This requirement on an information provider is a reasonable, scalable, and simple to

provide feature that allows an easy entry of information providers into a persistent query

infrastructure similar to that implemented in PIE. The complex part, wrapping the func-

tionality of the information provider, is the responsibility of the implementor of the Virtual-

Repository wrapper, a barrier reduced from the information provider's cost of participation

in the persistent query system by e�ective abstraction.

6.6 Conclusion

The distributed, noti�cation-based architecture of the persistent query system in PIE are

signi�cant factors in the scalability of the system. These characteristics facilitate the inclu-

sion of signi�cant numbers of information providers and user proxies spread throughout the

internet on distributed PIE servers. Use of an HTTP based centralized name server could

serve millions of object references daily, and the use of databases reduces access latency

and increases the usability of stored data. The architecture reduces the processing costs

of information provider proxies and user proxies by spreading them out on many di�erent

machines. This architecture and the solutions to potential bottlenecks should lead to a

system that will facilitate users' meeting their information needs through the use of the

persistent query functionality present in the PIE system.

7

Related Work

7.1 Overview

This chapter discusses work done by others that relates to research described in this thesis.

Research presented here is decomposed topically and temporally. The work is decomposed

into the following topics - the history of SDI, active databases, event noti�cations systems,

SDI research in the 1990's, and continual queries.

7.2 SDI in History

SDI is one of the older application areas in computer science. Luhn's seminal paper [Luh58]

on the subject was presented in the second volume of the IBM Systems Journal. Luhn

described a system that automatically abstracted and encoded documents so that they

could be matched to machine-learned user interest pro�les. Luhn believed that information

retrieval functionality, then a young �eld, was necessary to make such a system a success. A

document is auto-indexed by determining the frequency of occurrence of signi�cant terms in

the document. User pro�les, called action points, are created similarly to the representation

of documents. Matching is performed when new documents arrive in the system and those

documents that \su�ciently" match user pro�les are printed and the document provided

to the user. Interestingly, Luhn required human intervention to transcribe text documents

101

102

into digital format and to formulate user pro�les, tasks which would be automated or

performed by the user today. The goals of the system Luhn describes are still the goals of

a modern SDI system, which we describe in terms of persistent querying. In many ways,

Luhn's ideas were ahead of their time in SDI and computer science, especially his ideas of

the machine learning of user pro�les. Housman [Hou73] provides an excellent survey of the

systems implemented based on Luhn's ideas during the 1960's and early-1970's. Mainly

used in libraries, SDI systems of the time allowed users to create pro�les that were stored

in a computer system. Pro�les could consist of Boolean phrases or other queries that were

evaluated against newly arriving documents. The results of such queries were returned

to the user in the form of photocopied journal papers. SDI systems tied together several

databases, including information items such as bibliographic references, so users could pose

one query that is transmitted to all of them. One of the concerns of supporting working

SDI systems was the cost of buying computer time on mainframes.

While the goals of SDI systems have been understood since Luhn's 1958 paper, recent

work has focused on making SDI systems scalable and capable of operating over hetero-

geneous information providers. Yan and Garcia-Molina [YGM94] make the point that in

the past, SDI systems were centralized, but in order to scale up to work on internet scale,

SDI systems must be distributed. In this paper, they consider the e�ciency of such a

wide-scale system. Their focus is di�erent from ours, though, and rests on \distributed

matchmaking." They describe a system where distributed servers accept user pro�les and

documents from information providers, match them, and distribute documents to users.

This is in lieu of either distributing all documents to all pro�les or putting all pro�les at all

document servers. Altinel and Franklin et al.[AF00] describe �ltering XML documents for

SDI using an XML speci�c query language and a query engine for executing such queries

over the structured XML documents.

Draft February 7, 2001: Not for redistribution 103

7.3 Active Databases

One means for implementing a change noti�cation service in a database environment is

with an active database. Active databases are concerned with observing changes and trig-

gering events based on the changes in a database. These systems are based around the

event-condition-action (ECA) model where the database monitors a query and reacts, per-

forming an action, under certain conditions observed once the database is changed. Patton

and D�iaz [PD99] present an excellent survey paper of the �eld. Their survey addresses

paradigms for database triggers and discusses speci�c systems that implement such func-

tionality. McCarthy and Dayal's [MD89] work details the architecture of such systems.

Active databases are well studied and understood and are not very well suited to the per-

sistent query environment because of scalability issues, though triggers have been used to

implement continuous query functionality as will be described shortly. Also, internet-based

information providers are not in the practice of providing an interface to facilitate access

to their trigger mechanism on databases storing their content and prefer to provide such

information through an information retrieval based search interface.

7.4 Event Noti�cation Systems

The e�ectiveness of an SDI system hinges on its ability to either tell users about new

documents or distribute them directly to users. In some ways, both models rely on the

propagation of events within a system that supports matching user pro�les with information

items (or vice versa). While we do not use a speci�c event noti�cation system, implementing

PIE or persistent querying on top of such a foundation would not be di�cult. Signi�cant

work has been done in the �eld of distributed event noti�cations. Wolf and Rosenblum

[RW97] present a model for internet-scale event noti�cations. They evaluate previous work

in event noti�cation and describe the shortcomings of other systems. Then, they propose

a framework consisting of seven models, the levels of which address di�erent aspects of

event observation and propagation. The models are object, event, naming, observation,

104

time, noti�cation, and resource. Each level is used to describe and to facilitate some

aspect of distributed event noti�cation such as subscription, the description or detection

of relationships between noti�cations and events, and a way to name components of the

system. The authors consider scalability issues in the naming of, propagation of, and

detection of events. They also describe pattern detection and trends over time where

we are simply concerned with the occurrence of the event and leave pattern modeling

up to the event consumer. The dimensions presented, however, are a complete list of

those necessary in any event noti�cation system and include many of the steps that we

implement in persistent querying such as expressing interest in an event, observation of

events, noti�cation of events, distributed object naming, and response to events. Many

of the aspects of the high-level framework they present are fundamental to constructing

any successful distributed, persistent query system. Hinze and Faensen [HF99] present a

model for an internet scale alerting service, describe the shortcomings of that presented

by Rosenblum and Wolf [RW97], and diagram a system architecture. Hinze and Faensen

describe another model of event dissemination usable with or without polling \suppliers",

our information providers, participating in the system. The architecture is similar to that

in PIE where suppliers interact with an \alerting service" that stores query pro�les and

has a noti�cation bu�er. These two components are linked with an event observer that

can reside in either the supplier, similar to our requirement on information providers, or

in the \alerting service" component. The authors also mention some of the guarantees

that can be made to clients in such a system including guaranteed and real-time delivery,

our guaranteed and guaranteed immediate noti�cations respectively. The alerting service

was realized in the MediAS system which facilitates change noti�cation for content in a

digital library; observers are used as wrappers for suppliers' heterogeneous implementations

and normalize their interfaces to the MediAS system as VIRPs do in PIE. The paper and

MediAS work, however, does not consider the scalability of the system or issues related to

lossy suppliers.

Several researchers have investigated frameworks and dimensions for supporting dis-

Draft February 7, 2001: Not for redistribution 105

semination based systems. Crespo and Garcia-Molina [CGM97] describe the spectrum of

awareness services in digital libraries along several dimensions, push or pull of noti�ca-

tions, stateful and stateless clients and servers, the cardinality of clients at a data store,

and the awareness level of stores to sources and vice versa. Franklin and Zdonik [FZ97]

describe similar dimensions including the push or pull of messages at a periodic or aperiodic

rate in a unicast or multicast environment; these aspects are described in a model called

DBIS. Franklin et al. [AAB+98] expand this model in later work to describe the design

options for \nodes" that are used to compose di�erent data distribution models; these in-

clude classifying the data source based on the modi�cations it makes to an information

stream (no modi�cations, some modi�cations, etc.), the caching model used, optimization

of the push schedule, recovery services of nodes, and functionality of value-added nodes

that might provide such services as merging. It is noteworthy that the caching notion

presented by Franklin et al. is used to optimize page fetching for speed, not to preserve

volatile information items. Franklin et al. [AAB+99] have since realized the DBIS toolkit.

The characteristics described in these papers are useful in considering our persistent query

functionality, and all are broad enough to contain the characteristics of our implemented

persistent query system in PIE. Conceptually, the dimensions we describe for support-

ing persistent querying are similar to these bodies of research, especially Franklin's work

[AAB+98], but with a di�erent perspective. Crespo and Garcia-Molina [CGM97] describe a

\hint-pull" mechanism as an alternative to purely push or purely pull mechanism where the

information provider hints to interested clients that a change has occurred on the provider.

Our support dimensions are concerned with describing practical means for implementing

persistent queries as opposed to classifying a system. Allowing for a hint-pull client /

server interaction model, our persistent query protocol �ts into any of these awareness or

dissemination frameworks.

106

7.5 SDI Research in the 1990's

Several important SDI systems were constructed in the early 1990's. Pasadena, Tapestry,

and SIFT used similar information streams, including Netnews, to create systems that

distributed information based on user pro�les. The techniques for querying information

providers to access information items ranged from SQL queries over databases to informa-

tion retrieval techniques.

Wyle and Frei [WF89] describe Pasadena, a wide-area SDI system. Pasadena creates a

selective dissemination of Netnews service that uses an information retrieval based query

system instead of a SQL based database system. Pasadena provides indexing, querying,

dissemination, archiving, extraction and selection functionality in a single environment

with the services available over wide-area networks. The system runs over several heteroge-

neous and distributed information providers using a WAN information server which receives

streams from each provider and which has components to index and archive Netnews and

other information items. The Pasadena SDI service, under development at the publica-

tion time of the paper, provided user pro�ling functionality to match incoming information

items to interested users. Pasadena is particularly concerned with the scheduling of queries

that are executed at remote information provider sites. Pasadena attempts to consider

the update rate of information at remote providers and the network failure rate between

the client and information provider in order to optimize a query schedule to balance query

transmission success with the chance of �nding matching documents. A sliding window is

used to maintain a weighted knowledge of the most recent attempts to execute a query at

an information provider. Wyle and Frei later describe the Pasadena system [FW91] im-

plemented with SDI functionality and user pro�ling. This later work describes the results

of using two di�erent indexing systems in Pasadena. Every user has one user pro�le that

contains one or more queries. Queries can list the information providers to search, search

patterns to include / exclude, and a time interval for the query rate. User queries are run

periodically by polling the information providers. This work is similar to our persistent

Draft February 7, 2001: Not for redistribution 107

query work in that it attempts to provide a reliable and distributed system for disseminat-

ing information from heterogeneous information providers. Wyle and Frei describe issues

with such providers well, terming the di�erences in query format and interaction with each

provider as \highly-parameterized," a phrase that accurately describes the problems that

PIE's VIRP component addresses.

Terry et al. [TGNO92] introduce continuous queries in an append-only database envi-

ronment. They describe the di�culties of developing a continuous query mechanism using

the naive solution of simply executing a query repetitively and note that such a methodology

may create nondeterministic results, duplicates, and ine�ciency. They present continuous

semantics as a solution to the problem; continuous semantics say that the results of a con-

tinuous query are \the set of data that would be returned if the query were executed at

every instant in time." The theoretical framework implementing these semantics requires

append-only databases and timestamps for every item. Queries run against the database

are only run against the \new" items in the database. Queries are SQL based and must

be monotone (have a temporally, non-decreasing result set) so as not to have di�culties

in partitioning the database as the state of the database state changes. Terry et al. had

to take care in implementing continuous queries over Netnews articles because as readers

respond to di�erent threads, the past content of the database changes; they addressed this

through the construction of the tables in the database. Queries are executed periodically

by polling the database. Terry et al. describe Tapestry [GNOT92] which implements their

continual query semantics in an e-mail, Netnews, newswire environment. Information items

from these information streams are extracted, indexed, and inserted into a database. Users

pose continual queries to the Tapestry system which are executed occasionally against the

database to discover any new information items since the last query execution. The re-

sults are e-mailed to the user; documents in the database store are persistent. Persistent

querying is similar to this body of work in concept but very di�erent in practice. The

append-only information environment is somewhat unrealistic when considering internet

based information providers. In addition, users can not be expected to always pose mono-

108

tone queries to information sources. The persistent query protocol described in this thesis

is also scalable and accounts for information providers that do not export a SQL database.

We attempt to emulate the continuous semantics on the internet in a reasonable fashion

considering the characteristics of this environment but without overly constraining the in-

formation providers with an append-only requirement. Given an append-only information

provider with timestamps in our persistent query system and relaxing the monotone query

requirement, Terry's strict continual semantics will be met with our framework.

A more recent information �ltering system described by Yan and Garcia-Molina [YGM95]

is the Stanford Information Filtering Tool (SIFT). The toolkit provides an e-mail interface

at which users can pose pro�les they have constructed and tested over a test collection. At

a periodic interval provided by the user, SIFT evaluates the user's pro�le against Netnews

articles that have accumulated in the SIFT server's document collection. The architec-

ture of the system provides a centralized server at which Netnews articles accumulate and

at which users pose pro�les. SIFT uses the WAIS [KM91] tools to index and search the

news articles. While real information retrieval techniques (as opposed to SQL queries and

databases) are used to search documents that have been indexed, the original SIFT sys-

tem was centralized and only considered the Netnews format as opposed to providing for

arbitrary information providers. More recently, Yan and Garcia-Molina [YGM99] discuss

a distributed version of SIFT. In a distributed con�guration, SIFT uses quorums to decide

how to distribute documents and pro�les in the network of SIFT servers. A single docu-

ment in the system would be sent to a a set of SIFT servers called a document quorum and

likewise for a pro�le and a pro�le quorum. A guarantee about the opportunity of a pro�le

to see a document can be made if the intersection of these two quorums (document and

pro�le) is non-empty for all documents and pro�les. The di�culty with this con�guration

is that it requires cooperation of the information providers or complete knowledge of the

information items as in a Netnews environment. This would be very di�cult to implement

over arbitrary web information providers for this reason and also because of issues in scaling

SIFT to millions of information items.

Draft February 7, 2001: Not for redistribution 109

7.6 Continual Queries

A signi�cant body of research has been performed by Ling Liu, Carlton Pu et al. previously

at the Oregon Graduate Institute and currently at Georgia Tech. The research conducted at

these locations has focused on what they term \continual queries" and on a framework for

query processing. Liu and Pu [LP97] address the integration of distributed, heterogeneous

information sources (databases) in a query framework that provides services to process

queries; the system is realized in the Distributed Interoperable Object Model (DIOM).

DIOM describes information provider wrappers, similar to VIRPs in PIE, and a mediation

layer between clients and information providers. In this middle layer, query decomposition,

query routing, query scheduling, and results merging are performed for user queries. The

issue with these features is that they are described in terms of \relevant" and \optimal"

decisions made for routing queries to \relevant" information providers; from an information

retrieval perspective, these terms are meaningless and no exposition on the algorithms used

or justi�cation for these claims is made. In the database environment over which DIOM

executes, such claims can be self-ful�lling because the representation of an information

provider can be precise if properly constructed from the database; this is not the case in

an information retrieval setting where creating exact summaries of arbitrary information

providers is much more di�cult. DIOM is used as the foundation for other continual query

work performed by Liu and Pu.

Liu et al. [LPBZ96] describe continual queries as standing queries that monitor informa-

tion providers of interest and provide matching results to users. They present a di�erential

re-evaluation algorithm (DRA) that is used to incrementally update the previous results of

users' queries instead of having to re-evaluate a query each time it is posed to a set of in-

formation providers. They describe the DRA algorithm relative to Terry et al.'s [TGNO92]

continuous query work. DRA is accomplished by di�erencing the results of the current

query with the previous query for every query at every database; only the di�erence of the

two (the new part) is returned as a query result. A sliding window is used to discard old

110

results. Liu et al. provide an algorithm to accomplish this in terms of databases but do not

address issues Terry et al. do such as monotonic queries. DRA is similar to the worst case

situation described in Section 3.3.3 where the user proxy must di�erence consecutive search

results to ensure that users receive only the newest results except that DRA performs the

computation at the database instead of distributed on user proxies. The former solution

incurs a scalability problem. As with DIOM, a signi�cant di�erence in this work from

ours is that of the database environment versus an information retrieval one. The former

environment is very precise in the presence or absence of tuples that match a SQL query;

information retrieval is concerned with identifying information items that are relevant to

users' queries while allowing
exibility in expression of interest and latitude in determining

a document's relevance to a query.

Pu and Liu [PL98] expand on their continual query work and present a software ar-

chitecture for implementing a continual query system outside of DIOM. This architecture

consists of three key components, the event driven update monitor, the trigger �ring dae-

mon, and the continual query evaluator. In this architecture, most data is delivered to users

by a server push method where the server evaluates new information items against users'

queries stored on the server. The architecture expects to be able to parse users' queries for

a termination criterion and expects a trigger that can be turned into a SQL query to eval-

uate at a database. As in DIOM, Pu and Liu use the term \relevant" to describe selection

of information providers. The architecture, while presented in the context of servicing the

internet, is not discussed in terms of scalability.

The DRA and continual query work is realized in a three implementations, OpenCQ1

[LPT99a], JCQ [LPT99b], and WebCQ2 [LPT00]. OpenCQ [LPT99a] is an implementa-

tion of Liu and Pu's continual query framework that provides users the ability to register

queries that will be executed continually under the equivalent of the DRA model. In this

work, Liu et al. have two event observation methods, synchronous using database triggers

and polling and have dropped content based changes from the OpenCQ implementation.

1http://www.cc.gatech.edu/projects/disl/CQ/
2http://www.cc.gatech.edu/projects/disl/WebCQ/

Draft February 7, 2001: Not for redistribution 111

Polling is relied upon to detect changes in snapshots taken over consecutive time inter-

vals at information providers. After detecting a di�erence between the representations, a

change noti�cation is �red and the OpenCQ system decides which continual queries must

be executed, schedules them, and executes them. Liu et al. claim that their model outper-

forms polling over a pull-based delivery model for a large number of objects but make no

comments about handling a large number of queries, a potential problem in such systems.

This claim is easy to support when polling information providers at a thirty second interval

for all subscribed clients; the polling and query execution scheduling for all clients is done

by a single entity yet the system is still polling, which is a limitation to implementing such

a system in a large scale environment. JCQ is a Java implementation for monitoring web

information and provides a scalability enhancement over OpenCQ.

JCQ [LPT99b] attempts to cluster registered continual queries into groups based on

similarities in the triggering condition of the query. By doing this, the trigger need only

be checked once for the group as opposed to once per query as in OpenCQ for every

change at an information provider. Liu et al.'s assumption facilitating this is that triggering

conditions are all similar except for \the appearance of di�erent constant values in the

trigger speci�cation." The architecture for JCQ is the same as the conceptual system and

OpenCQ, and determination of change is still done by polling the information provider.

The same issues with OpenCQ and DIOM exist with this architecture with the added

problem of assuming that the triggering condition for a continual query can be classi�ed

and that large numbers triggers di�er only by a constant. The example queries provided

are of a form that detects a percentage change in the price of a stock; these may be simpler

to classify than free-text queries posed to an information retrieval system, but they only

meet a limited set of users' information needs and constructing a system around such an

expectation is unrealistic. In addition, in discussing the scalability of continual queries, only

a maximum of twenty-�ve are considered and no discussion is presented for the scalability

of DIOM on top of which JCQ is implemented.

WebCQ [LPT00] is a web information monitoring system that is somewhat di�erent

112

from the other continuous query systems discussed. The system provides functionality

whereby users may express interest in the structure or characteristics of arbitrary web pages,

forming a web-based continuous query. WebCQ is then responsible for detecting changes

between two versions of web pages in terms of a number of \sentinels" such as a page's byte

count, content, or HTML structure. WebCQ attempts to exploit the semi-structured nature

of HTML to detect changes in image, link, table, and other HTML speci�c structures. The

WebCQ infrastructure caches pages from web sites for speeding subsequent requests for

the same page, and an HTML di�erencing engine is used to detect changes between two

pages. The di�erences discovered in a new page are presented to the user showing the

old and new page side-by-side, only the di�erences, or old and new merged together. The

fundamental assumption of this system, however, is that for the lifetime of the query a web

page's structure does not change often enough to interrupt users' posed WebCQs; such a

change would make completing users' queries impossible because the structure of the page

over which a regular expression is posed will no longer match. In practice, this assumption

is tenuous at best as the structure and / or content of web pages may change often while

the page's appearance remains the same. In addition, caching pages internally will yield

di�erent or stale search results for di�erent users depending on when the page is updated;

the scalability of WebCQ is not discussed in terms of either the number of users, number

of queries, or complexity of storing and di�erencing an arbitrary number of HTML pages.

Finally, WebCQ is simply a change noti�cation service that detects whether or not a regular

expression or byte count for a page has changed; there is no information retrieval value to

the system, it only detects changes and presents the changes to users, a limitation that still

requires users to �lter the information themselves.

Chen et al. [CDTW00] describe the NiagaraCQ3 system, the continuous query compo-

nent of the Niagara project conducted between the University of Wisconsin and the Oregon

Graduate Institute. NiagaraCQ attempts to provide a scalable, internet based continuous

query system. In order to provide scalability, the authors describe optimizations on user

3http://www.cs.wisc.edu/niagara/Engine.html

Draft February 7, 2001: Not for redistribution 113

queries. Queries are grouped based on users' interests; the examples given all relate to

retrieving stock quotes from XML documents. The authors describe using push and pull

models for detecting information provider changes. User queries are sent through a query

parser and optimizer. As changes occur, user queries are posed against the data sources

that, in the two test information providers, are in an XML format. Components of the Ni-

agaraCQ system are used to provide only new content at an information provider for query

processing each time a query is executed. Chen et al. expect to support millions of users

with this system but provide no evidence that the centralized system that implements the

NiagaraCQ system will scale, outside of query grouping. Their similarity-based grouping

of queries as a means by which to scale to millions of users is another tenuous assumption

relying on a high degree of query correlation and fast, e�cient grouping of new queries.

7.7 Conclusion

Signi�cant research has been conducted in �elds relating to the persistent query work pre-

sented in this thesis, which learns from and builds on some of this related research. The

event noti�cation framework papers provide the broad picture of system properties nec-

essary to consider when building a change detection or event noti�cation system. Work

more speci�cally related to awareness services and change detection has mentioned how

timestamping at an information provider may be used and generally what change noti�-

cations can mean. SDI systems such as Tapestry and Pasadena provide work on formal

continuous querying and wide-area information dissemination, respectively, and the body

of continuous query work from Liu et al. has highlighted many points that need to be ad-

dressed in the construction of a persistent query system, including the necessity to build

a scalable infrastructure and implement meaningful information retrieval techniques. Our

work is di�erent from much of that in the past because it facilitates information retrieval

techniques to be used for query processing and because responses to persistent user queries

are not pushed from information providers to users (or their proxies) as is the case in

114

many previous systems. Rather, the user proxies are allowed to query the information

provider only as necessary and are not compelled to accept search results the information

provider unilaterally pushes to the user. In addition, we have addressed scalability issues in

Chapter 6, have worked with accepted distributed computing standards such as CORBA,

and provide for a heterogeneous information provider set that is not limited to Netnews,

or internet web sites but can include any browsable or searchable information provider,

including databases, together in a single framework.

8

Conclusions

The purpose of an SDI system is to keep its users up to date with new information items ar-

riving at information providers that match users' pro�les. A persistent query mechanism is

a method for implementing such a system. In this thesis, we have characterized the solution

space for SDI systems and have provided dimensions for supporting and implementing per-

sistent querying. This functionality can be supported at the information providers and in

a federation's infrastructure supporting persistent querying, if such machinery exists. Our

protocol selects persistent query dimensions that provide reasonable guarantees to users in

an SDI infrastructure without incurring signi�cant cost at the information providers. This

functionality is realized in our implementation of persistent querying as a subsystem of

PIE.

The fundamental requirement that we make of information providers is that they emit

noti�cations when their content changes. While this may seem intricate and di�cult to

integrate with an existing system, we believe that this functionality can be easily and

securely provided by a self-contained, add-on package which can be attached outside of

an information provider's existing infrastructure. When a change occurs, the information

provider would simply report the change to a noti�cation daemon. The noti�cation daemon

would need to provide a subscription interface to the persistent query infrastructure, but

in an infrastructure such as PIE, the information provider would never have a subscriber

set larger than cardinality one because the VIRP wrapping the information provider would

115

116

be the only direct subscriber to the provider's change noti�cations. The daemon could be

constructed to receive and propagate noti�cations over an HTTP interface, through RPC,

through a CORBA method (as is currently implemented), or via any number of other

messaging mediums. We expect that such an implementation would be easy to install,

could be secure, and would be usable by many di�erent information providers.

Information retrieval techniques are important to allowing users the freedom to pose

unstructured, free-text queries to a heterogeneous set of information providers. Use of

databases and SQL style structured querying do not provide the granularity and
exi-

bility in search capability that internet users require. Our system di�ers from previous

SDI systems because it leverages users' understanding of how to search the internet with

unstructured queries as opposed to strictly structured ones.

Our persistent query protocol and its implementation are a lightweight, e�cient, and

scalable solution to the SDI problem. We introduce and de�ne several key concepts in

persistent querying including variable rate noti�cations, eventual semantics, and di�eren-

tial querying. Variable rate noti�cations minimize the rate of noti�cation transmission

to subscribers, varying the rate based on a subscriber's responses to those noti�cations.

Eventual semantics are possible as a result of guaranteeing noti�cations and ensure that a

subscriber will eventually see all of its noti�cations, and di�erential querying works over

internet-based information providers and couples timestamps and a search interface to re-

duce the cost of querying such providers. These provide a new perspective for analyzing

and creating SDI systems which are focused on the needs of the information consumer in

terms of customizability, search functionality, and decision making and allow information

providers to participate at the simple cost of change noti�cations and additional searches

executed through their search interfaces. This work and perspective show potential for

future implementations of large scale SDI systems.

Draft February 7, 2001: Not for redistribution 117

8.1 Future Work

The persistent query protocol and its realization in PIE leave opportunities for signi�cant

future work and research. These fall into three categories, conceptual, information retrieval,

and systems work. Conceptually, the protocol should be analyzed for additional dimensions

which might be supported at the information provider or in the infrastructure. For example,

change logging may be useful either at the information provider or at the infrastructure

level. While we believe that we have identi�ed the major elements of support necessary for

persistent querying, additional value-added features will certainly arise.

In terms of information retrieval aspects of the persistent query concept, many di�erent

locations exist for enhancing persistent querying in PIE. Most signi�cantly, information

retrieval techniques can be leveraged throughout the infrastructure to potentially enhance

the query results returned to users. More interesting results merging and ranking algorithms

should be researched and implemented for use when merging the search results of persistent

queries. In addition, greater use of e�ective selection could be used to increase the quality

of search results and reduce the amount of work necessary to provide search results to users.

The demands placed on search interfaces available at average web sites, not just those sites

solely devoted to searching, should be studied and understood. This needs to be done in

terms of the impact that information providers participating in a persistent query system

will incur.

From a systems perspective, PIE will require signi�cant scalability to operate on a large

scale. While we believe that PIE will scale well, this relies to some degree on the scalability

of the middleware on which PIE is implemented. This implies that work on the CORBA

ORB used to support the implementation should be considered especially in terms of the

scalability, real-time, and fault-tolerance characteristics of such ORBs. While the imple-

mentation to date is pure Java, future implementations of the persistent query protocol

even within PIE could be implemented in C or C++. Quantitative studies of the require-

ments placed on servers and on networks should be made to determine the computational

118

requirements for the system. Optimizations such as clustering queries, clustering user pro-

�les, and a single VIRP subscriptions on behalf of all queries from a given PIE server might

also be investigated. In addition, persistent querying is not required to run over CORBA,

and advances in other middleware technologies should be noted as possible platforms for

implementing additional PIE infrastructure. Additional work on the user interface might

result in an HTML or XML web browser-based client.

In all, there is signi�cant research to be done that ranges from systems work in scalability

to fundamental questions about information retrieval techniques. All will bene�t persistent

querying, PIE, and SDI by creating systems that are more e�ective for users and usable by

large numbers of participants, both users and information providers.

Bibliography

[AAB+98] Demet Aksoy, Mehmet Altinel, Rahul Bose, Ugur Cetintemel, Michael

Franklin, Jane Wang, and Stan Zdonik. Research in Data Broadcast and Dis-

semination. In Proceedings of the First International Conference on Advanced

Multimedia Content Processing, Osaka University, Osaka, Japan, November

1998.

[AAB+99] Mehmet Altinel, Demet Aksoy, Thomas Baby, Michael Franklin, William

Shapiro, and Stan Zdonik. DBIS-Toolkit: Adaptable Middleware for Large

Scale Data Delivery. In Proceedings of the 1999 ACM SIGMOD International

Conference on Management of Data, pages 544{546, Philadelphia, PA, June

1999.

[AF00] Mehmet Altmel and Michael J. Franklin. E�cient Filtering of XML Documents

for Selective Dissemination of Information. In Proceedings of International

Conference on Very Large Data Bases, Cairo, Egypt, September 2000.

[Bal98] Marko Balabanovic. Learning to Surf: Multiagent Systems for Adaptive Web

Page Recommendation. PhD Thesis SIDL-TR-98-1605, Computer Science De-

partment, Stanford University, 1998.

[BC92] Nicholas J. Belkin and W. Bruce Croft. Information Filtering and Informa-

tion Retrieval: Two Sides of the Same Coin? Communications of the ACM,

35(12):29{38, December 1992.

119

120

[BS95] Marko Balabanovic and Yoav Shoam. Learning Information Retrieval Agents:

Experiements with Automated Web Browsing. In Working Notes of the AAAI

Spring Symposium Series on Information Gathering from Distributed, Hetero-

geneous Environments., 1995.

[BSY96] Marko Balabanovic, Yoav Shoham, and Yeogirl Yun. An Adaptive Agent for

Automated Web Browsing. Technical Report SIDL-WP-1995-0023, Stanford

Digital Library Project, Stanford University, February 1996.

[CDTW00] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ: A

Scalable Continuous Query System for Internet Databases. In Proceedings of

the 2000 ACM SIGMOD International Conference on Management of Data,

Dallas, TX, May 2000.

[CGM97] Arturo Crespo and Hector Garcia-Molina. Awareness Services for Digital

Libraries. In Carol Peters and Constantion Thanos, editors, Research and

advanced technoloty for digital libraries: First European converence; proceed-

ings/ECDL 1997; In Lecture Notes in Computer Science, volume 1324, pages

147{171, Pisa, Italy, September 1997. Springer Verlag.

[CRW98] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design of a

Scalable Event Noti�cation Service: Interface and Architecture. Technical Re-

port CU-CS-863-98, Department of Computer Science, University of Colorado,

August 1998.

[DL00] J. R. Davis and C. Lagoze. NCSTRL: Design and Deployment of a Globally

Distributed Digital Library. Journal of the American Society for Information

Science, 51(3):273{280, March 2000.

[FV99] James C. French and Charles L. Viles. Personalized Information Environments:

An Architecture for Customizable Access to Distributed Digital Libraries. D-

Lib Magazine, 5(6), June 1999.

Draft February 7, 2001: Not for redistribution 121

[FW91] H. P. Frei and M. F. Wyle. Retrieval Algorithm E�ectiveness in a Wide Area

Information Filter. In Proceedings of the 14th Annual International ACM SI-

GIR Conference on Research and Development in Information Retrieval, pages

114{122, Chicago, IL, October 1991.

[FZ97] Michael Franklin and Stanley Zdonik. A Framework for Scalable

Dissemination-Based Systems. In Proceedings of OOPSLA, pages 94{105, At-

lanta, GA, October 1997.

[GNOT92] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Using

Collaborative Filtering to Weave an Information Tapestry. Communications

of the ACM, 35(12):61{70, December 1992.

[Gro00] Object Management Group. The Common Object Request Broker: Architecture

and Speci�cation. Object Management Group, 2.4.1 edition, November 2000.

[GS97] Aniruddha S. Gokhale and Douglas C. Schmidt. Evaluating CORBA Latency

and Scalability Over High-Speed ATM Networks. In Proceedings of the ICDS,

Baltimore, MD, May 1997.

[GS98] Aniruddha S. Gokhale and Douglas C. Schmidt. Measuring and Optimizing

CORBA Latency and Scalability Over High-speed Networks. IEEE Transac-

tions on Computers, 47(4), April 1998.

[GW96] Andrew S. Grimshaw and Wm. A. Wulf. Legion { A View from 50,000 Feet. In

Proceedings of the Fifth IEEE International Symposium on High Performance

Distributed Computing, Los Alamitos, CA, August 1996.

[HF99] Annnika Hinze and Daniel Faensen. A Uni�ed Model of Internet Scale Alerting

Services. Technical Report TR-B-99-15, Freie Universitat, Berlin, Germany,

1999.

122

[Hou73] Edward M. Housman. Selective Dissemination of Information. In Carlos A.

Cuadra and Ann W. Luke, editors, Annual Review of Information Science

and Technology, volume 8 of Annual Review of Information Science and Tech-

nology, chapter 7, pages 221{241. American Society for Information Science,

Washington, DC, 1973.

[HV99] Michi Henning and Steve Vinoski. Advanced CORBA Programming with C++.

Addison-Weseley, 1999.

[KM91] B. Kahle and A. Medlar. An Information System for Corporate Users: Wide

Area Information Servers. Connexions - The Interoperability Report, 5(11):2{9,

1991.

[LC98] R. Lasher and D. Cohen. RFC 1807: A Format for Bibliographic Records,

September 1998.

[LG96] Michael J. Lewis and Andrew Grimshaw. The Core Legion Object Model. In

Proceedings of the Fifth IEEE International Symposium on High Performance

Distributed Computing, Los Alamitos, CA, August 1996.

[Lie95] Henry Lieberman. Letizia: An Agent That Assists Web Browsing. In Pro-

ceedings of the International Joint Conference on Arti�cial Intelligence, pages

924{929, Montreal, Canada, August 1995.

[LP97] Ling Liu and Carlton Pu. Dynamic Query Processing in DIOM. IEEE Bulletin

on Data Engineering, 20(3):30{37, September 1997.

[LPBZ96] Ling Liu, Carlton Pu, Roger Barga, and Tong Zhou. Di�erential Evaluation of

Continual Queries. In IEEE Proceedings of the 16th International Conference

on Distributed Computing Systems, pages 458{465, Hong Kong, May 1996.

[LPT99a] Ling Liu, Carlton Pu, and Wei Tang. Continual Queries for Internet Scale

Draft February 7, 2001: Not for redistribution 123

Event-Driven Information Delivery. IEEE Transactions on Knowledge and

Data Engineering, 11(4):610{628, July/August 1999.

[LPT99b] Ling Liu, Carlton Pu, and Wei Tang. Supporting Internet Applications Beyond

Browsing: Trigger Processing and Change Noti�cation. In Proceedings of the

5th International Computer Science Conference, Hong Kong, December 1999.

Springer Verlag.

[LPT00] Ling Liu, Carlton Pu, and Wei Tang. WebCQ - Detecting and Delivering

Information Changes on the Web. In Proceedings of the IEEE Conference on

Information and Knowledge Management, Washington, DC, November 2000.

[Luh58] H. P. Luhn. A Business Intelligence System. IBM Journal of Research and

Development, 2(4):314{319, October 1958.

[Mae94] Pattie Maes. Agents that Reduce Work and Information Overload. Commu-

nications of the ACM, 37(7):30{40, July 1994.

[MD89] Dennis R. McCarthy and Umeshwar Daya. The Architecture of An Active

Data Base Management System. In Proceedings of the 1989 ACM SIGMOD

International Conference on Management of Data, Portland, Oregon, June

1989.

[PD99] NormanW. Paton and Oscar D�iaz. Active Database Systems. ACM Computing

Surveys, 31(1):63{103, March 1999.

[PL98] C. Pu and L. Liu. Update Monitoring: The CQ project. In "Proceedings of the

2nd International Conference on Worldwide Computing and Its Applications",

pages 396{411, 1998.

[POS+99] Irfan Pyarali, Carlos O'Ryan, Douglas Schmidt, Nanbor Wang, Vishal

Kachroo, and Aniruddha Gokhale. Applying Optimization Principle Patterns

124

to Real-time ORBs. In Proceedings of the Fifth USENIX Conference on Object-

oriented Technologies and Systems (COOTS '99), San Diego, CA, May 1999.

[Pow00] Allison L. Powell. Database Selection in Distributed Information Retrieval: A

Study of Multi-Collection Information Retrieval. PhD thesis, University of Vir-

ginia, Department of Computer Science, University of Virginia, Charlottesville,

VA 22903, USA, December 2000.

[RD98] Satish Ramakrishnan and Vibha Dayal. The PointCast Network. In Proceed-

ings of the 1998 ACM SIGMOD International Conference on Management of

Data, page 520, Seattle, WA, June 1998.

[RW97] David S. Rosenblum and Alexander L. Wolf. A Design Framework for Internet-

Scale Event Observation and Noti�cation. In Mhedi Jazayeri and Helmut

Schauer, editors, Proceedings of the 6th European Software Egnineering Con-

ference, volume Software Engineering Notes of Lecture Notes in Computer

Science, pages 344{360, Zurich, Switzerland, September 1997. ESCE / FSE,

Springer-Verlag.

[Sch01] Douglas C. Schmidt. Evaluating Architectures for Multi-threaded CORBA

Object Request Brokers. Communications of the ACM, To Appear., 2001.

[SM93] Beerud Sheta and Pattie Maes. Evolving Agents for Personalized Information

Filtering. In Proceedings of the Ninth IEEE Conference on Arti�cal Intelligence

for Applications, pages 345{352, Orlando, FL, March 1993.

[TGNO92] Douglas Terry, David Goldberg, David Nichols, and Brian Oki. Continuous

Queries over Append-Only Databases. In Proceedings of the 1992 ACM SIG-

MOD International Conference on Management of Data, pages 321{330, San

Diego, CA, January 1992.

[WF89] M. F. Wyle and H. P. Frei. Retrieving Highly Dynamic, Widely Distributed

Information. In N. J. Belkin and C.J. van Rijsbergen, editors, Proceedings

Draft February 7, 2001: Not for redistribution 125

of the 12th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 108{115, Boston, MA, June 1989.

[WKLW98] S. Weibel, J. Kunze, C. Lagoze, and M. Wolf. RFC 2413: Dublin Core Meta-

data for Resource Discovery, September 1998.

[YGM94] Tak W. Yan and Hector Garcia-Molina. Distributed Selective Dissemination of

Information. In Proceedings of the Third International Conference on Parallel

and Distributed Information Systems (PDIS 94), Austin, Texas, September

28-30, 1994, pages 89{98, 1994.

[YGM95] Tak W. Yan and Hector Garcia-Molina. SIFT - A Tool for Wide-Area Informa-

tion Dissemination. In Proceedings of the 1995 USENIX Technical Conference,

pages 177{186, New Orleans, LA, January 1995.

[YGM99] Tak W. Yan and Hector Garcia-Molina. The SIFT Information Dissemination

System. ACM Transactions on Database Systems, 24(4):529{565, 1999.

