
Reasoning with UML Class Diagrams

Andy S. Evans
Department of Computer Science

University of York
Heslington
York, UK

andye@cs.york.ac.uk

Abstract

The Unified Modeling Language (UML) is likely to be-
come an important industry standard language for mod-
elling object-oriented systems. However, its use as a pre-
cise analysis tool is limited due to a lack of precise seman-
tics and practical analysis techniques. This paper proposes
a rigorous analysis technique for UML based on the use of
diagrammatical transformations. A precise description of a
subset of UML class diagrams is presented. This is then
used to identify a number of deductive transformations on
class diagrams. Conditions for checking the soundness of
the rules are also given. Because the reasoning system is
based on the manipulation of diagrams, it is proposed that
they can be successfully used by practitioners without re-
course to complex linguistic proof techniques.

1 Introduction

The popularity of object-oriented methods such as OMT
[2], Booch [3] and Fusion [4] can be largely attributed to
their use of visual, intuitively appealing, modelling nota-
tions. Typical examples of these notations are class and
object diagrams, state diagrams and object-interaction di-
agrams. Each of these diagrams plays a role in presenting a
particular view of the system being modelled.

It has long been argued that the effective use of graphical
notations can be problematic when applied to the develop-
ment of non-trivial systems. A significant source of prob-
lems is their lack ofprecise semantics. Most object-oriented
methods only provide a loose interpretation of the meaning
of the diagrams they use. This can lead to problems of: mis-
interpretation (confusion and disagreement over the precise
meaning of a model); analysis (important properties of a
model can only be informally verified) and design (correct-
ness of designs cannot be checked).

These problems have been widely recognised [12], and
have led to the development of a number of approaches to
improving the precision of OO notations.

The most common approach to the problem has been to
make the notations more precise and amenable to rigorous
analysis byintegratingthem with a suitable formal speci-
fication notation. A number of integrated OO and formal
notations have been proposed (e.g., see [5, 6]). Most works
focus on the generation of formal specifications from less
formal OO models. This can reveal significant problems
that are easily missed in less formal analyses of the mod-
els. Furthermore, the formal specifications produced can
be rigorously analysed, providing another opportunity for
uncovering problems. However, a serious limitation of this
approach is that it requires an in-depth knowledge of the for-
mal notation and its proof system. This can be a significant
barrier to industrial use.

Another approach to the problem has been to extend for-
mal notations with OO features, thus making them more
compatible with OO notations. Several extensions exist in
the literature (e.g., Z++ [7] and Object-Z [8]). However,
although a rich body of formal systems have resulted, they
are still too different from current industrial methods to be
suitable for general industrial application. In addition, there
is also a lack of available analysis tools.

Rather than generate formal specifications from infor-
mal OO models, a more workable approach might be to
make the informal modelling constructs moreprecise. This
approach allows developers todirectly manipulatethe OO
models they have created. The role of formal specification
techniques is therefore to gain an insight into appropriate
semantics for informal modelling constructs1.

This paper investigates the above approach in relation
to the Unified Modeling Language (UML) [9]. It aims to
show how rigorous reasoning techniques can be incorpo-
rated within UML at the level of its component abstrac-

1Further discussion on this approach can be found in [12]

tions and representations. Because these abstractions are
presented using diagrams, we will investigate the use ofdi-
agrammatical manipulationas a proof technique for UML.

UML is a large modelling language, and therefore the
proof techniques are only illustrated for a small part of it
- the static model. In order to make the meaning of the
model precise, a simple syntactic and semantic model is first
constructed. Rules for manipulating a static model are then
proposed based on diagrammatical transformations. These
rules enable a diagram representing a static model of a sys-
tem (a UML class diagram) to be transformed into a di-
agram representing some deduced property or conclusion
about the system. It is shown how the soundness of the rules
may be proven correct with respect to the semantic model.
The end result is set of simple diagrammatical transforma-
tions, which provide a general foundation for understanding
and verifying properties of UML class diagrams. Thus, it is
shown that the use of diagrams within a rigorous develop-
ment process is both feasible with and complementary to
current software development practice.

The paper is structured as follows: Section 2 gives a brief
introduction to UML and UML class diagrams. In Sec-
tions 3 and 4 the well-formedness rules and semantics (of a
subset of) UML class diagrams are precisely defined. Sec-
tion 5 then presents rules for manipulating class diagrams
in terms of diagrammatical transformations. Section 6 de-
scribes how the soundness of the transformation rules can
be checked against the semantic model and a start is made
to verify the soundness of a number of the rules. Finally,
some related issues are discussed in Section 7 before con-
cluding.

2 A brief introduction to UML and class dia-
grams

The Unified Modelling Language (UML)[9] is emerg-
ing as a de-facto standard for modelling object-oriented sys-
tems. It provides a visual language for modelling OO sys-
tems consisting of a number of diagram models. UML dia-
grams can be broadly divided up into static and behavioural
diagrams. A static diagram describes the static (data) prop-
erties of a system, for example the relationships that hold
between object instances over the system lifetime. A be-
havioural diagram describes the interactions that occur be-
tween objects in order to perform the functions of the sys-
tem.

An important part of UML is its semantics document
[10], which attempts to give a sound semantic basis to its
diagrams. Meta-models are used to describe the syntax of
its static and behavioural models, while semantic details are
expressed in informal English. Unfortunately, the infor-
mal nature of these semantics is inadequate for justifying
formal analysis techniques for UML. Thus, we need to de-

velop a more precise semantic description. UML is also a
large modelling language. Therefore, we restrict ourselves
to considering analysis techniques for itsstatic model. The
static model is a core model in UML, and many components
of a static analysis technique will apply to its behavioural
models.

The static UML model is visually represented by aclass
diagram. Its purpose is to graphically depict the relation-
ships holding among objects manipulated by a system. As
an example, a typical class diagram is shown below, which
depicts the relationship between a university and its stu-
dents:

StudentUniversity

Full-time Part-time
enlightens

1

0..*

As this example shows, a UML class diagram provides a
visually expressive and intuitive model of a system. How-
ever, it is less effective when it comes to answering impor-
tant questions about the system it represents. In particular,
it is not possible to reason (in a precise manner) with the
diagram or deduce properties about it. For example, what is
the relationship between the university and students? Fur-
thermore, does a university enlighten any of its part-time
students? Using informal arguments these questions might
be answered like so: “some students must be enlightened
by the university, as some students are full-time students”,
or “clearly, there is no relationship between the university
and part-time students - they are not connected”, or “surely,
some part-time students can be enlightened - the class di-
agram does not forbid this”. In each case, a conjecture is
made about the class diagram, but can it be rigorously ver-
ified? The answer is that it cannot, because the means to
proveits correctness is missing.

It is these type of questions that this paper sets out to an-
swer. By developing a precise description of what a UML
class diagram means, we can develop sound rules for rea-
soning with UML models. Furthermore, it is hoped that the
approach outlined in this paper will provide a basis for rea-
soning with other types of diagrams supported by UML.

Four fundamental aspects of UML class diagrams are
dealt with in this paper:

� classes, which describe the different kinds of objects
that can exist in a system;

� associations, which describe what kinds of objects can
be linked together;

� multiplicity constraints, which state how many objects
can be related to each other;

� generalisation, which is used to classify objects, and
therefore simplify the overall structure of a design.

2.1 The components of UML class diagrams

A class diagram is composed of a number of primitive
diagrammatic objects as follows:

{} {}r

named class

generalization

named association
(with multiplicity sets)

Diagrammatic object Name

N

In general, a class diagram consists of a number of
classes that are related (linked) by associations and gener-
alisation hierarchies. Generalisation is a relationship be-
tween classes in which one class is identified as thegeneral
class and the others asspecialisationsof it. The general-
isation relation is represented by arrowed line drawn from
the specialised class to the general class. Classes may form
a generalisation hierarchy. Theancestorsof a class are all
those classes found by traversing the hierarchy towards the
top. Itsdescendantsare those found by going downwards in
the hierarchy from the class. Other terms used to describe
the role a class plays within a particular generalisation rela-
tionship are:superclass, which denotes a generalising class
andsubclasswhich denotes a specialising class. Abstract
classes (i.e. classes which act as a ‘place-holder’ for sub-
classes) are labelled as ‘abstract’. The following diagram
illustrates the general idea:

of A
descendents

D E

CB

ancestors of
 D and E

abstract
special subclass

general superclass

A

An association is a relationship between classes that
specifies how instances of the classes are linked together.
Note that an association may link (via itsassociation ends)
more than two classes. However, binary associations are
the most common and will be used in this paper. Associa-
tions are annotated with additional information to show how
many objects of the associated class an object can be related
to. This multiplicity information is shown by aset expres-
sion, placed at each end of the association line. An asso-
ciation may also belabelledwith a name, which uniquely
identifies the association androles, which denote the roles
that instances.

3 Well-formed diagrams

In the UML semantics document (version 1.1), the core
package -relationships- gives an abstract syntax for the
static components of the UML (and therefore the abstract
syntax of UML class diagrams). This is described at
the meta-level using a class diagram with additional well-
formedness rules given in the Object Constraint Language.

In this section we use the Z notation to precisely define
the abstract syntax and well-formedness rules of a subset of
UML class diagrams. We treat the UML semantics docu-
ment as arequirements statementfrom which a fully formal
model can be obtained.

The following given sets are assumed:

[ClassName; Name]

from which all class names and names can be drawn.
An association has association ends which describe the

role that classes plays in the association:

AssociationEnd
rolename: Name
class: ClassName
multiplicity : P

1
N

multiplicity 6= f0g

An AssociationEndhas anameand is linked to aclass. It
also has a multiplicity describing the number of instances
of the class that may participate in the association. A mul-
tiplicity must be a non-empty set of values and may not be
a multiplicity of zero.

A binary association has a name and two association
ends:

Association
name: Name
e1; e2 : AssociationEnd

e1:rolename6= e2:rolename

The constraint of the schema states that each
AssociationEndof an Associationmust have a unique
rolename.

A schema describing the objects in a class diagram and
the rules by which they are well-formed can now be given.
A well formed diagram consists of a set of classes, a set
of abstract classes, a set of associations and a superclass
relationship between classes:

WFD
abstract; classes: F ClassName
associations: F Association
superclass: ClassName 7! ClassName
allsup; allsub : ClassName 7! F ClassName

abstract� classes

8a1; a2 : associationsj
a1 6= a2 � a1:name6= a2:name

8 c : classes� c =2 allsub(c) ^ c =2 allsup(c)

9 r : (classes$ classes) � superclass[
fa : associationsj

a:e1 6= a:e2 � a:e1:class 7! a:e2:classg = r�

The constraints of the schema state that:

� some classes may be abstract;

� all associations have unique names;

� no class can be supertype of its subclasses, circular in-
heritance is not allowed;

� a transitive, reflexive relationship exists between all
classes in a diagram.

whereallsub andallsup are un-specified functions, which
return a given class’s subclasses and superclasses respec-
tively.
Here are some examples of diagrams that are well formed:

A

r2

r B A1

A

r

CB

and some that are not:

A A

A

B

Br

4 Semantics

When drawing a diagram to represent a system, we intu-
itively learn to assign a meaning to its representational com-
ponents. In the case of a class diagram, a class represents
a set of objects. Additionalconstraintsare placed on these
objects by the relationships that exists between classes. For
example, a part-time student class represents a set of part-
time student objects. An enlightens association represents
a set of links between university and part-time student ob-
jects and thus constrains their relationship to one another.
Thus, a semantic model for class diagrams should describe
the valid sets of objects that can be assigned to each of its
classes and the constraints that are enforced upon them.

4.1 Set assignments

When a class diagram is drawn, we make the following
assumptions regarding itsmeaning:

� A class is associated with a set of object instances;

� Each instance has anidentity which distinguishes it
from all other instances;

� An association represents a set of links between in-
stances of classes.

The following data type is introduced from which the set
of all object identities and object links can be drawn:

[OId; Link]

The following schema describes the set of instances and
links that can be assigned to a class diagram:

S
obj : ClassName7 7! POId
links : Name 7 7! (OId $ OId)

4.2 Satisfaction conditions

We now formalise what it means for a set assignment
to satisfythe components of a class diagram. A diagram
component can be a class, a generalisation or an association.
In addition, it is necessary to distinguish betweenabstract
andnonabstractclasses and their subclasses. We also want
to be able to say what it means for a set assignment to satisfy
a whole diagram, so a well-formed diagram must also be
defined.

The enumerated typeComponentis introduced to repre-
sent the different components of a class diagram:

Component::=
classhhClassNameii j
genhhClassName�ClassNameii j
abstracthhClassName� F ClassNameii j
nonabstracthhClassName� F ClassNameii j
associationhhAssociationii j
wfdhhWFDii

The following relationj= describes precisely what it
means for an set assignment to satisfy each of the compo-
nents of a class diagram.

4.2.1 Class

j= : S$ Component

8 s : S; c : ClassName�
s j= class(c) ,

c 2 dom s:obj

A set assignment satisfies a class if objects may be as-
signed to the class.

4.2.2 Generalisation

8 s : S; sub; sup: ClassName�
s j= gen(sub; sup),

s:obj(sub) � s:obj(sup)

A set assignment satisfies a generalisation if the set of
objects assigned to the subclass of the generalisation is a
subset of those assigned to the superclass of the generalisa-
tion.

Conceptually, this models the fact that instances of a
specialised class are also instances of its generalised class.
Thus, whenever an instance of a specialised class is created,
it also thought of as being an instance of all its ancestor
classes. This approach (see France et al. [13]) also enables
multiple-inheritance to be modelled (multiple inheritance
implies membership of an instance to multiple classes) and
also abstract and non-abstract classes (see sections 4.2.3 and
4.2.4).

4.2.3 Abstract Classes

8 s : S; abs: ClassName; subs: F ClassName�
s j= abstract(abs; subs),

(9 x : seq(POId) j
ran x = fc : subs� s:obj(c)g �

x partition s:obj(abs))

A set assignment satisfies an abstract class if the set of
objects assigned to its subclasses partition the set of objects
assigned to the abstract class. Thus, all instances of an ab-
stract class must belong to its subclasses.

4.2.4 Non-abstract classes

8 s : S; non : ClassName; subs: F ClassName�
s j= nonabstract(non; subs),

(9 x : seq(POId) j
ran x = fc : subs� s:obj(c)g �

disjoint x)

A set assignment satisfies a non-abstract class if the set of
objects assigned to its subclasses are disjoint. In this case,
an object may be an instance of an non-abstract class or its
subclasses.

4.2.5 Associations

8 s : S; a : Association�
s j= association(a),

dom(s:links(a:name)) � s:obj(a:e1:class) ^
ran(s:links(a:name)) � s:obj(a:e2:class) ^
(8 i : s:obj(a:e1:class) �

#fj : s:obj(a:e2:class) j
(i; j) 2 s:links(a:name)g 2

a:e2:multiplicity) ^
(8 j : s:obj(a:e2:class) �

#fi : s:obj(a:e1:class) j
(i; j) 2 s:links(a:name)g 2

a:e1:multiplicity)

A set assignment satisfies an association between classes
if the following conditions holds:

� an association only links objects belonging to the
classes it associates;

� each instance of a class attached to a rolee1 is linked
(by the association) toe2:multiplicity instances of the
class attached toe2 (and vice versa).

This definition implies a number of obvious properties.
Given a named associationa, attached to named classesc1,
c2, with multiplicitiesm1 andm2, then:

� 0 =2 m2) dom s:links(a) = s:obj(c1), i.e. if there is a
compulsory association at classc2 then every instance
of c1 must be linked to an instance ofc2;

� 0 2 m2) dom s:links(a) � s:obj(c1), i.e. if there is
a non-compulsory association at classc2 then a subset
of instances ofc1 are linked to an instance ofc2.

4.2.6 Diagrams

8 s : S; d : WFD �
s j= wfd(d) ,

(8 c : d:classes�
s j= class(c)) ^
(8g : d:superclass�
s j= gen(first g; second g)) ^
(8 c : d:abstract�
s j= abstract(c; dom(d:superclassB fcg))) ^
(8 c : d:classesj c =2 d:abstract�
s j= nonabstract(c; dom(d:superclassB fcg))) ^
(8a : d:associations�
s j= association(a))

Finally, a set assignment satisfies a well-formed diagram
d if and only if it satisfies all the components ofd.

5 Reasoning with UML Diagrams

We now describe how UML class diagrams can be ma-
nipulated so that certain properties of one diagram to be de-
duced from another The means by which this is achieved is
to present a set oftransformation ruleson UML diagrams.
Each rule describes the legal transformations that can be
applied to a class diagram (or other UML diagram), which
result in the transformed diagram being a valid deduction of
the original diagram.

As an example, consider the class diagram presented in
Section 2, which describes the relationship between a uni-
versity and its students. One of the conjectures made about
the diagram was that it could be deduced that “some stu-
dents must be enlightened by the university”.

This conjecturecan be expressed by the following two
diagrams, whereD is the diagram representing the original
assumptions made about the model andD0 represents the
proposed conclusion:

D

Student

enlightens

1

0..*
Full-timePart-time

University

University

D’

0..*

enlightens
Student0..1

Using suitable transformation rules, we should be able
to transform the original diagram into the second diagram,
thereby proving that the conjecture is a valid theorem.

However, before developing these rules, we must first
describe what it means for one class diagram tofollow from
other class diagrams. In other words, when is it true that
one class diagram is a valid consequence of another class
diagram?

The consequence relation among class diagrams is de-
fined as follows:

j=d : WFD$ WFD

8D; D0 : WFD �
D j=d D0 ,

(8 s : S� s j= wfd(D)) s j= wfd(D0))

A well formed diagramD0 follows from a well formed
diagramD, if and only if, every set assignment that satisfies
D also satisfiesD0.

As described above, we wish to deduce properties of
class diagrams by applying transformation rules. A trans-
formation rule is valid provided that it allows us to trans-
form a diagramD to D0, andD j=d D0. If this can be shown
to be true for all transformation rules, then we can claim
that a diagramD0 resulting from the application of a trans-
formation rule is a valid deduction of the original diagram
D and thereforeD ` D0.

5.1 Deductive Transformation Rules

A set of deductive transformation rules are now pre-
sented for transforming UML class diagrams in which the
transformed diagram is a deductive consequence of the orig-
inal diagram. Each rule aims to identify simple transforma-
tions that can be applied in the proof of a number of class
diagram properties.

Rule 1: The rule of erasure of a diagrammatic object

A diagram may be copied omitting a class, association or
generalisation. A subclass of an abstract class cannot be
omitted. A well-formed diagram must result.

Example 1aWe are allowed to transform the diagram on
the left to the diagram on the right by applying the erase
class rule three times in the order: D! E! C

D E

CB

A A

B

Example 1b We are allowed to transform the diagram on
the left to the diagram on the right by erasing the associa-
tion r:

0..*1

a b

A

B

A

C

1

1

* *
c

a

0..*

0..*

b

1

C

0..*

B

Example 1cThe following transformation is not permitted
as a subclass of an abstract type is deleted:

abstract

CB

A A

B

Rule 2: The rule of substitution of an association

An association may be substituted with a less constrained
association of the same name as follows:

� in any association, R, an association endE with mul-
tiplicity M may be substituted with an association end
E with multiplicity N provided thatM � N

Example 2a In the following, the diagram on the left is
transformed to the diagram on the right substituting a less
constrained association end:

1 1

a

A 0..*

a
1 B

BA

Rule 3: The rule of substitution of a class

A non-abstract class may be substituted for an abstract class
of the same name.

Example 3 The diagram on the left is transformed to the
diagram on the right substituting a non-abstract class for
the abstract class:

D E

C

abstract

D E

C

Rule 4: The rule of promotion of an association

Consider an associationR with multiplicity M1 (connected
to a classC1) and multiplicityM2 (connected to classC2). If
C2 is a subclass, thenRmay be ‘promoted’ to the superclass
of C2 provided that its multiplicity after the transformation
atC1 is optional, i.e.0 2 M1.

Example 4 The diagram on the left is transformed to the
diagram on the right by promoting the association from B
to C:

11 B

A

C

1

a

a

1

abstract

abstract

C

B

A

Rule 5: The rule of demotion of an association

An association may be demoted from a superclass to a sub-
class provided that the superclass is abstract and it has only
one subclass.

Example 5The diagram on the left is transformed to the
diagram on the right by demoting the association from A to
B:

C

11C

B

A

a

a

11 B

A

5.2 Example revisited

We now prove the class diagram conjecture in Section 5.
Given the original model:

StudentUniversity

0..*

1

Part-timeFull-time

1

enlightens

D

First, rule 1 is used to erase thePart� timeclass:

University

0..*

1

enlightens

2

Student

Full-time

D

Next, rule 4 is used to promoteenlightensto theStudent
class. Note, that the multiplicity of the association at the
Universityclass is now optional:

3

enlightens

0..*0..1
Student

Full-time

University

D

Finally, theFull � time class is erased (rule 1) leaving
the desired conclusion (only some Students are enlightened
by a University):

enlightens

0..*0..1
Student

4

University

D

6 Soundness of Rules

See Appendix A

7 Issues

7.1 Constraints

Unfortunately, class diagrams have limited representa-
tional power. For example, they cannot describe depen-
dencies between attributes of classes. Therefore, it is nec-
essary to combine class diagrams with a textual language
for describing constraints. In UML, such constraints can
be added using the Object Constraint Language (OCL), a
semi-formal language which uses set theory and predicate
logic to describe constraints on class diagrams)2.

In order to represent non-trivial designs it is likely that
additional constraints and properties will have to be de-
scribed using a language like OCL. However, will the
work presented in this paper still be useful? Although we
presently have limited practical experience of proving prop-
erties of large (non-trivial) class diagrams, we believe that
the rules outlined in this paper are still applicable. This
is because, in practice, textual constraints are usually ap-
plied to attributes of classes, and therefore will not constrain
properties of association and generalisation constraints.

Nevertheless, constraints can be applied to class dia-
grams which invalidate a particular rule. For example, con-
sider the following class diagram and OCL constraint:

B C

A

self.oclIsTypeOf(B) or

self.oclIsTypeOf(C)

D

A

Here the OCL expression constrains every instance ofA to
be of typeB orC. In this case, applying rule 1 to erase either
classB or C will no longer be a valid transformation, as the
constraint does not imply that every instance ofA is of type
B alone (orC alone).

2Further details of OCL can be found at
http://www.software.ibm.com/ad/ocl/

In practice, it is unlikely that such a constraint would
be defined, as the property is more elegantly described by
an abstract class. However, care must be taken to ensure
that a particular textual constraint does not interfere with
the validity of a transformation.

7.2 Proof patterns

The idea that design patterns [14] can benefit the devel-
opment process is becoming an accepted one. However,
the ability to diagrammatically construct precise proofs of
UML diagrams leads to the possibility ofproof and equiv-
alence patterns. A proof pattern encompasses the identifi-
cation of a common pattern of proof, for instance: the ver-
ification of an invariant property, the proof of validity of a
refinement, or perhaps the identification of commonly de-
rived properties of a UML diagram. As a simple example,
consider the followingproof pattern diagram:

D
 abstract

CB

E
*

intersection(self.a.oclIsTypeOf(C)) -> isEmpty

E

self.a.oclIsOfType(B) ->

1
A

This diagram aims to document in an abstract manner a
commonly inferred property of a class diagram, in which
a classE is associated with a superclass. The derived prop-
erty of this class diagram is that the sets of objects of type
B associated with an instance ofE is disjoint from the set of
objects of typeC.

In contrast, an equivalence pattern would document
common equivalences between UML diagrams, for exam-
ple:

B

A

CB

A

C

D’

D

self.oclIsTypeOf(C)

self.oclIsTypeOf(B) or

A

 abstract

Here diagramD is equivalent to diagramD0 as the con-
straints ofD0 imply the implicit properties of the abstract
class in diagramD (and vice versa).

In fact, any of the transformation rules presented in this
paper can be thought of as proof patterns (albeit the most
simple). The considerations of using a constraint language
should also result in interesting proof patterns, but again
these are best determined from practical application.

8 Conclusions

The diagrams used by UML and other OO methods are
intuitive and understandable to practitioners in industry.
Moreover, the abstractions they represent are designed to be
close to those in the software domain. Yet, they do not of-
fer the precision that is often required when reasoning with
software systems. To achieve this goal, a full understanding
of the laws by which they can be manipulated and reasoned
with must be obtained.

This paper has a proposed and illustrated a step towards
this goal. A formal semantics was developed for a small
subset of the language of UML class diagrams. These se-
mantics were then used as a basis for developing deductive
transformation rules. Because these rules were based on
diagrammatical transformations, it is hoped that a more in-
tuitive approach to proof will result.

A number of extensions to the work presented here are
currently being investigated (in addition to those described
above): Firstly, it would be very useful to be able to prove
the completeness of the rules. This would require showing
that any valid static diagram is reachable by application of
the rules from any other diagram. Secondly, the work pre-
sented here needs to be expanded to include other UML di-
agrams, particularly behavioural diagrams such as sequence

diagrams and object interaction diagrams. An understand-
ing of the relationship between the different diagrams sup-
ported by UML will be required in order to determine the ef-
fect that transformation rules will have on linked diagrams.
For example, if it can be deduced that an object instancea
of classA can send messages to many different instances of
classB (on an object interaction diagram), then we should
be able to deduce a one to many association betweenA and
B (on a class diagram).

8.1 Related work

A significant amount of research has already been carried
in the area of formal object-oriented methods. In addition to
that referenced in the introduction, Lano et al. have investi-
gated and formalised many aspects of the Syntropy method
[15, 16]. This has involved showing how the diagrams used
in Syntropy (including static diagrams) can be formalised
using the Object Calculus. Lano has also proposed the idea
of formalising design patterns as transformations on object
diagrams. He has also verified a number of these patterns
using the Object Calculus. The main differences between
this work and theirs is that ours has concentrated on deduc-
tive transformations. Also, we have only considered a sub-
set of class diagram components with the aim of identifying
a complete set of basic transformations for their manipula-
tion.

9 Acknowledgements

Tony Clark, Ian Hayes and members of the pUML group
are thanked for their suggestions and comments on earlier
versions of this work.

References

[1] Folwer M., UML Distilled, Addison-Wesley, 1997.

[2] Rumbaugh T. et al., Object-Oriented Modeling and
Design, Prentice Hall, 1991.

[3] Booch, G., Object-Oriented Analysis and Design with
Applications (2nd Ed), Benjamin Cummings, 1994.

[4] Coleman, et al., Object-Oriented Development: The
Fusion Method, Prentice Hall, 1994.

[5] Bruel, J.M., France, B and Larrondo-Petrir, M.,
CASE-based Rigorous Object-Oriented Methods, In
A.S.Evans and D.J.Duke, Procs of the 1st Northern
Formal Methods Workshop, Springer eWiC series,
1997.

[6] Randolph Johnson, D. and Kilov, H., Can a flat no-
tation be used to specify an OO system: using Z to
describe RM-ODP constructs, In Elie Najm and Jen-
Bernard Stephani, editors, Procs of the 1st IFIP Work-
shop on Formal Methods for Open Object-based Dis-
tributed Systems, pages 407-418, Chapman and Hall,
1996.

[7] Lano, K. and Haughton, H., The Z++ Manual. Tech-
nical Report, Imperial College, 1994.

[8] Duke, D., Object-Oriented Formal Specification, PhD
thesis, University of Queensland, 1991.

[9] Booch, G., Jacobson, C., and Rumbaugh, J., The Uni-
fied Modeling Language - a reference manual, Addi-
son Wesley, 1998.

[10] Booch, G., Jacobson, C., and Rumbaugh,
J., The Unified Modeling Language Seman-
tics Document (version 1.1), available from
http://www.rational.com/uml, 1998.

[11] Spivey, J.M., The Z Notation - a reference manual,
Prentice Hall, 2nd Edition, 1992.

[12] France, R., Evans A., Lano K., and Rumpe B., The
UML as a Formal Modeling Notation, Computer Stan-
dards and Interfaces, No. 19, pages 325-334, 1998.

[13] France, R., J-M. Bruel, and M.M. Larrondo-Petrie. An
Integrated Object-Oriented and Formal Modelling En-
vironment, Journal of Object-Oriented Programming,
To appear.

[14] Gamma, E., Helm, H., Johnson R., Vlissides, J., De-
sign Patterns: Elements of Resuable Object-Oriented
Software. Addison Wesley. 1994.

[15] Lano, K., Formalizing Design Patterns, Procs. of 1st
Northern Formal Methods Workshop, Springer eWiC
series, 1996.

[16] Lano K., Sanchez, A., Transformation Formal Devel-
opment of Real-time systems, Transformation-based
Reactive Systems Development, M Bertran, T. Rus
(Eds), LNCS vol 1231, Springer-Verlag, 1997.

Appendix A

In Section 5 it was shown what is means for a diagram to
be a logical consequence of another. In this appendix, the
validity (soundness) of some of the transformation rules are
proved by showing that each results in a diagram that is a
logical consequence of the other.

9.1 Proof of the rule of erasing a class

Recap, there are two cases where a class can be omitted
from a class diagram:

1. Where it is a subclass of a non-abstract class

2. Where it is related to another class by and association
(in this case, the association must be deleted as well in
order to preserve the well-formedness of the diagram)

It must be shownD j=d D0 for each of the above cases.
Case (1): consider a non-abstract hierarchy withn sub-

classessub1 : :subn and non-abstract superclasssup. The set
of objects assigned to each subclass is a subset of those as-
signed tosup(consequence ofs j= gen(subx2n; sup)) and is
disjoint (consequence ofs j= non� abstract(sup; sub1 : :
subn)). Deletion of a subclass will be valid if it can be
shown that the objects assigned ton� 1 subclasses is also
disjoint, i.e:

8 s : S�

(s:obj(sub1) � s:obj(sup) ^ : :

s:obj(subn) � s:obj(sup) ^

s:obj(sub1) \ : : \ s:obj(subn) = ;) [disjoint]

)

(s:obj(sub1) � s:obj(sup) ^ : :

s:obj(subn�1) � s:obj(sup) ^

s:obj(sub1) \ : : \ s:obj(subn�1) = ;)

which clearly holds asP\ Q\ R = ;) P\ Q = ;, and
P� S; Q� S) P� S.

Case (2): this is trivially true, as, given a diagram with
classesC1, C2, related by an associationR, it is always pos-
sible to deduce the existence ofC1 (provided that the result-
ing diagram is well-formed) withoutRandC2:

8 s : S�

s j= class(C1) ^

s j= class(C2) ^

s j= association(R))

s j= class(C1)

Finally, it is shown that a subclass of an abstract class
cannot be validly erased. In addition to the properties for
a non-abstract class above, the following would need to be
true if the transformation is permitted:

8 s : S�

s:obj(sub1) [: : [s:obj(subn) =

s:obj(sup) [partition]

)

s:obj(sub1) [: : [s:obj(subn�1) =

s:obj(sup))

which is false, assubn cannot be guaranteed to be empty.

9.2 Proof of the rule of promoting an association

Consider two classesA andB, where classB has sub-
classesC1 : : Cn (n � 2). Consider also, there is an as-
sociationr betweenA andC1 with role endsa andb and
multiplicities am andcm respectively. In order to show the
validity of the demotion rule, we much show that associa-
tion r is also implied betweenAandBprovided it is optional
atA. The relevant parts of the proof are as follows:

8 s : S�

ran(s:links(a:name)) � s:obj(C1) ^

(8 j : s:obj(C1) �

#fi : s:obj(A) j

(i; j) 2 s:links(r)g 2 am)) ^

s:obj(C1) � s:obj(B))

ran(s:links(a:name)) � s:obj(B) ^

(8 j : s:obj(B) �

#fi : s:obj(A) j

(i; j) 2 s:links(r)g 2 am[f0g))

which holds because:

� if the range ofa is a subset ofC1, it is also a subset of
B (ass:obj(C1) is a subset ofs:obj(B));

� every instance ofB is associated with 0 orx : am in-
stances ofA (ass:obj(C1) is a subset ofs:obj(B), and
every instance ofC1 is associated withx : am instances
of A).

