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Abstract

We give a short elementary proof of the well known identity ζ(2) =∑∞
k=1 1/k

2 = π2/6. The idea is to write the partial sums of the series
as a telescoping sum and to estimate the error term. The proof is based
on recursion relations between integrals obtained by integration by parts,
and simple estimates.

Introduction

The aim of this note is to give a truly elementary proof of the identity

ζ(2) =

∞∑
k=1

1

k2
=
π2

6
(1)

which can be appreciated by anyone who understands elementary calculus. The
identity (1) is often referred to as the “Basel Problem” and was solved by Euler
around 1735. More on the interesting history can be found in [5, 15].

The idea in this paper is to derive an explicit formula for the partial sums of
(1) by rewriting it as a telescoping sum. For that we exploit recursion relations
between the integrals

An =

∫ π
2

0

cos2n x dx and Bn =

∫ π
2

0

x2 cos2n x dx

for n ≥ 0. In particular we derive the explicit estimate

0 ≤ π2

6
−

n∑
k=1

1

k2
= 2

Bn
An
≤ π2

4(n+ 1)
(2)

from which (1) follows by letting n → ∞. The idea is similar to the one by
Masuoka [13], but the estimate of the remainder term is even simpler. An
alternative way to write (1) as a telescoping sum is given in [2].
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There are many short proofs of (1), but most rely on additional knowledge.
A nice collection is given in [3]. One proof commonly used is based on non-trivial
theorems on the pointwise convergence of Fourier series. A second approach is
based on the Euler-MacLaurin summation formula (see [6, Section II.10] or [4]).
Other proofs rely on the product formula for sinx such a Euler’s original proof
(see [6, pp 62–67] or [5, 15]). Yet other proofs involve complex analysis such as
the one in [12] or double integrals and Fubini’s theorem [1, 7, 8, 10]. Without
attempting to provide a complete list there are proofs in [4, 9, 11, 14] and
references therein.

Derivation of the result

We start by proving the well known recursion relations between An and An−1.
Using integration by parts and the identity sin2 x = 1− cos2 x

An =

∫ π
2

0

cosx cos2n−1 x dx = (2n− 1)

∫ π
2

0

sin2 x cos2(n−1) x dx

= (2n− 1)

∫ π
2

0

(1− cos2 x) cos2(n−1) x dx = (2n− 1)(An−1 −An).

Hence for n ≥ 1 ∫ π
2

0

sin2 x cos2(n−1) x dx =
An

2n− 1
=
An−1

2n
. (3)

Next we rewrite An in terms of Bn and Bn−1. The idea is to use integration by
parts twice, introducing the factors x, and then x2. Using integration by parts
a first time we get

An =

∫ π
2

0

1× cos2n x dx = 2n

∫ π
2

0

x sinx cos2n−1 x dx.

Using integration by parts a second time we get

An = −n
∫ π

2

0

x2
(
cosx cos2n−1 x− (2n− 1) sin2 x cos2n−2 x

)
dx

= −nBn + n(2n− 1)

∫ π
2

0

x2(1− cos2 x) cos2(n−1) dx

= (2n− 1)nBn−1 − 2n2Bn.

Hence for all n ≥ 1 we have

An = (2n− 1)nBn−1 − 2n2Bn. (4)

This allows us to derive a simple expression for the partial sums of (1). Dividing
the identity in (4) by n2An and then using (3)

1

n2
=

(2n− 1)Bn−1
nAn

− 2Bn
An

=
2Bn−1
An−1

− 2Bn
An
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for all n ≥ 1. Hence we have the telescoping sum

n∑
k=1

1

k2
=

n∑
k=1

(2Bk−1
Ak−1

− 2Bk
Ak

)
=

2B0

A0
− 2Bn

An

for all n ≥ 1. Now

A0 =

∫ π
2

0

1 dx =
π

2
and B0 =

∫ π
2

0

x2 dx =
π3

3× 8
,

and so
2B0

A0
=
π2

6
,

Hence for all n ≥ 1 we have

n∑
k=1

1

k2
=
π2

6
− 2

Bn
An

. (5)

We now estimate Bn in terms of An to get a bound for Bn/An. The linear
function 2x/π coincides with sinx for x = 0 and for x = π/2. Because sinx is
concave on [0, π/2] we get sinx ≥ 2x/π for all x ∈ [0, π/2] as illustrated below.

x

y

sin
x

1

π
2

2
π
x

Using the recursion relation (3) with n replaced by n+ 1 we get

Bn =

∫ π
2

0

x2 cos2n x dx ≤
(π

2

)2 ∫ π
2

0

sin2 x cos2n x dx =
π2

4

An
2(n+ 1)

.

Combining the above with (5) we arrive at (2) as required.
We finally note that an induction using (3) and (5) gives Masuoka’s repre-

sentation from [13], namely

n−1∑
k=1

1

k2
=
π2

6
− π

4

(2n)!!

(2n− 1)!!
Bn,

but we have dealt with the error term rather more directly.
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[5] W. Dunham, When Euler met l’Hôpital, Math. Mag. 82 (2009), 16–25.
doi:10.4169/193009809X469002

[6] E. Hairer and G. Wanner, Analysis by its history, Springer, New York,
2008. doi:10.1007/978-0-387-77036-9

[7] J. D. Harper, Another simple proof of 1 + 1
22 + 1

32 + · · · = π2

6 , Amer. Math.
Monthly 110 (2003), 540–541. doi:10.2307/3647912

[8] M. D. Hirschhorn, A simple proof that ζ(2) = π2

6 , The Mathematical Intel-
ligencer 33 (2011), 81–82. doi:10.1007/s00283-011-9217-4

[9] J. Hofbauer, A simple proof of 1 + 1
22 + 1

32 + · · · = π2

6 and related identities,
Amer. Math. Monthly 109 (2002), 196–200. doi:10.2307/2695334

[10] M. Ivan, A simple solution to Basel problem, Gen. Math. 16 (2008), 111–
113.

[11] D. Kalman, Six ways to sum a series, College Math. J. 24 (1993), 402–421.
doi:10.2307/2687013

[12] T. Marshall, A short proof of ζ(2) = π2/6, Amer. Math. Monthly 117
(2010), 352–353. doi:10.4169/000298910X480810

[13] Y. Matsuoka, An elementary proof of the formula
∑∞
k=1 1/k2 = π2/6,

Amer. Math. Monthly 68 (1961), 485–487. doi:10.2307/2311110

[14] M. Passare, How to compute
∑

1/n2 by solving triangles, Amer. Math.
Monthly 115 (2008), 745–752.

[15] C. E. Sandifer, Euler’s solution of the Basel problem—the longer story,
Euler at 300, MAA Spectrum, Math. Assoc. America, Washington, 2007,
pp. 105–117.

4

http://dx.doi.org/10.1007/BF03026576
http://dx.doi.org/10.4169/college.math.j.43.3.244
http://empslocal.ex.ac.uk/people/staff/rjchapma/etc/zeta2.pdf
http://empslocal.ex.ac.uk/people/staff/rjchapma/etc/zeta2.pdf
http://dx.doi.org/10.1090/S0002-9939-2010-10565-8
http://dx.doi.org/10.4169/193009809X469002
http://dx.doi.org/10.1007/978-0-387-77036-9
http://dx.doi.org/10.2307/3647912
http://dx.doi.org/10.1007/s00283-011-9217-4
http://dx.doi.org/10.2307/2695334
http://dx.doi.org/10.2307/2687013
http://dx.doi.org/10.4169/000298910X480810
http://dx.doi.org/10.2307/2311110

	Introduction
	Derivation of the result

