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A Fortran 90 program for the computation of the real parabolic cylinder functions W (a, +z), = > 0
and their derivatives is presented. The code also computes scaled functions for a > 50. The func-
tions W (a, +z) are a numerically satisfactory pair of solutions of the parabolic cylinder equation
y" + (x2/4 — a) y =0, =z >0. Using Wronskian tests, we claim a relative accuracy better than
51013 in the computable range of unscaled functions, while for scaled functions the aimed rela-
tive accuracy is better than 510~ 14, This code, together with the algorithm and related software
described in [5; 6], completes the set of software for parabolic cylinder functions (PCFs) for real
arguments.
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1. INTRODUCTION

We present a Fortran 90 code for computing the Weber parabolic cylinder function
W (a,x) and its derivative. The parabolic cylinder function W (a, z) [13, §12.14] is
a solution of the differential equation

y"—f—(ixQ—a)y:O, z > 0. (1)

which also has W(a,—x) as a solution, the pair {W(a,x), W(a,—2)} being a nu-
merically satisfactory pair of solutions in the sense of Miller [9; 10].

The algorithm is based on the use, in different regions, of different methods of
computation: Maclaurin series, local Taylor series, uniform asymptotic expansions
in terms of elementary functions and Airy-type asymptotic expansions. All these
methods are described in detail in [4].
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The code gives as output the values of W (a, z), W(a, —z), W/(a, ) and W'(a, —x)
for real @ and z > 0. Notice that W’(a,—z) is not exactly the derivative of

W(a,—x), but W'(a —z) = —%W(a, —x).

2. DEFINITION OF SCALED FUNCTIONS

For large (positive) values of the parameter a the functions W(a,x), W(a, —z) are
very large or very small. To avoid overflow or underflow in numerical computations
it is quite useful to define scaled values with the dominant exponential behavior
factored out [7, sect. 12.1.3]. This scaling factor can be also factored out from the
uniform asymptotic expansions.

We define the scaling factor as eX(®*) where y(a, ) is given by

(a,7) = a (arcsint +tv/1 —¢2), if t <1 (Monotonic Region) 2)
X% %)= am/2, if t > 1 (Oscillating Region)

with ¢t = 2/(2/a) > 0. For a < 0 scaling is not needed. We consider only positive
values of z, which is not a restriction because we compute the pair {W(a, ), W(a, —x)}
and its derivatives.

The scaled functions are defined as

W(a,z) = eX@DW(a,z), W(a,z)=eX@DW(a,z), )
. . /
Wia,—0) = ) 7, —a) = ),

Scaling factors can be directly factored out from the expressions used for the
asymptotic expansions but not from the differential equation (1), which is the start-
ing point of the local Taylor series method; because of this and in order to avoid
introducing numerical errors due to the exponential terms of the scaling, scaled
functions are computed for a > 50.

In particular and in the case of the Airy-type asymptotic expansions in the mono-
tonic region (¢ < 1), the scaled functions W (a, £x) can be written in terms of scaled
Airy-functions:

W (a,0) ~ IO (ﬁm—z)Au(c) - Biﬁf;)Blmo) W
W' (a,z) ~ —W%%%Z(u) (— Al(:z) C, Bi'(—2 D, ) ,

() ~ =T (B0, + B (-2)Du0 ®)
W (0, ) ~ T 0000 (m a0+ ;;Z)Bu@)) C®
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where a = $pu?, z = M%C, and for ¢ we have the relation

[/oV)

(—=¢)* = Larccost — 3tv1—#2, —-1<t<1, <0,
¢ = VP -1-bl(t+VP 1), 1<t (>0

(8)
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The function ¢(¢) is given by ¢(¢) = (t%l) and £(u) is computed by means

of the asymptotic expansion

21 o~ L
)~ =5, 9)
b
s=0
where the first few coefficients are {g = 1, 1 = —1fs, (2 = — 55085, (3=

_ 2695447331 {, = — 375987489 96091
48157949 95200 » 4= 2219118333788 *

Also, the computation of the functions A, (¢), B.(¢), C.(¢), and D, (¢) appearing
in equations (4), (5), (6) and (7) is performed by using asymptotic expansions of
the form

4s 7
2 e 2 1o
SCS s s
CulQ) ~ D) (1=, Du(Q) ~ ) (-1 =5
5=0 K s=0 K
Details on the coefficients as, b, ¢s and dg can be found in [12, §3.1].
Scaled Airy functions [8] are defined for z > 0 as
P 2,3/2 _— 2,3/2
Ai(z) =e®  Ai(x), Ai'(z)=e* Ai'(x),
~ _2,3/2 — _2.8/2 (11)
Bi(x)=e 3 Bi(z), Bi'(z) =e * Bi'(z),

while /A\l(x) = Ai(z) when = < 0 and the same applies for the derivative and for
Bi(z) and its derivative.

The module for the computation of Airy functions uses a Fortran 90 version of
the code by Fullerton [3] (the Fortran 77 code is available at Netlib).

3. REGIONS OF APPLICABILITY OF THE METHODS AND TESTING.

The curves f;, ¢ = 1,...,6 appearing in Figures 1 and 2 correspond to the fitting
curves separating regions of applicability of the methods. Explicit expressions for
these curves are given by:

fira=Tr—-2)2+25ifr<2;2=2and0<a<25

fa:a=1.1z%+ 30.5,

fa3:a=02(z—12)% + 33,

f1:a=022z%— 40,

fs:a=—=2(x—4.6)2-3if fs > fs and z < 3.8;
a=—-4and 38<x<45;x=45and —4<a<0

feé:a=01322—-25
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Figure 1. Regions in the (a,z)-plane (a > 0) where different methods of computation are
considered. The curve a = 22 /4, frontier between the monotonic (a > x2/4) and the oscillatory
(a < 22/4) behaviour of the functions, is also shown. The methods used are: A) Maclaurin series;
B) Local Taylor series; C) Airy expansions; D),E) Expansions in terms of elementary functions.

-10

-15

-20

© -25

Figure 2. Regions in the (a,z)-plane (¢ < 0) where different methods of computation are
considered. The methods used are: A) Maclaurin series; B) Local Taylor series; F) Asymptotic

expansions for a < 0.

3.1 Wronskian tests
We test the Wronskian relation between W (a,x) and W (a, —x), which is given by

WW (a,z), W(a,—z)] = 1. (12)

This relation means that

W(a,z)W'(a,—x) + W'(a,x)W (a, —x) = —1. (13)
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We compute the maximum relative errors for the Wronskian test using 107 ran-
dom points in selected regions of the (x, a)-plane. For unscaled functions we obtain:

1) [0,100] x [0,200]: 1.510713,
[0,10000] x [0,200]: 1.2210713
[0,100] x [~1000,0]: 1.710713,
[0,1000] x [—10000,0]: 1.410713,
[0,10000] x [~100000,0]: 5.510~ 14,

For scaled functions, the results for the Wronskian test are

(1) [0,100] x [50.01,1000]: 1.110~4,
(2) [0,1000] x [50.01,10000]: 91015,

Based on these Wronskian tests, we claim an accuracy better than 5 x 10713
in the computable range of unscaled functions and a relative accuracy better than
5 x 10~ for scaled functions.

4. COMPARISON WITH EXISTING SOFTWARE

To our knowledge, no reliable (refereed) software is available for computing the
functions W(a, £x). A few algorithms have been described in [1; 11] with a claimed
accuracy not better than eight digits. But according to the Digital Library of
Mathematical Functions [2], the only existing routines are those included in the
book [14]. However, these routines are built for a very limited range of validity (only
0 <a<5,0<z<5) Complex variable computations for the W (a, £z) functions
are available in Maple (or Mathematica) through complex confluent hypergeometric
functions, but for large values of the parameters, and particularly for computing
W (a, z) for large a > 0, these are very inefficient in comparison with the Fortran 90
calculations provided, because the representation of W (a,z) in terms of confluent
hypergeometric functions becomes unstable [4].
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