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A Fortran 90 program for the computation of the real parabolic cylinder functions W (a,±x), x ≥ 0
and their derivatives is presented. The code also computes scaled functions for a > 50. The func-
tions W (a,±x) are a numerically satisfactory pair of solutions of the parabolic cylinder equation

y′′ +
(
x2/4 − a

)
y = 0 , x ≥ 0. Using Wronskian tests, we claim a relative accuracy better than

5 10−13 in the computable range of unscaled functions, while for scaled functions the aimed rela-
tive accuracy is better than 5 10−14. This code, together with the algorithm and related software
described in [5; 6], completes the set of software for parabolic cylinder functions (PCFs) for real
arguments.

Categories and Subject Descriptors: G.4 [Mathematics of Computing]: Mathematical software

General Terms: Algorithms

Additional Key Words and Phrases: Parabolic cylinder functions, ODE integration, asymptotic
expansions

1. INTRODUCTION

We present a Fortran 90 code for computing the Weber parabolic cylinder function
W (a, x) and its derivative. The parabolic cylinder function W (a, x) [13, §12.14] is
a solution of the differential equation

y′′ +
(

1
4
x2 − a

)
y = 0 , x ≥ 0. (1)

which also has W (a,−x) as a solution, the pair {W (a, x), W (a,−x)} being a nu-
merically satisfactory pair of solutions in the sense of Miller [9; 10].

The algorithm is based on the use, in different regions, of different methods of
computation: Maclaurin series, local Taylor series, uniform asymptotic expansions
in terms of elementary functions and Airy-type asymptotic expansions. All these
methods are described in detail in [4].
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The code gives as output the values of W (a, x), W (a,−x), W ′(a, x) and W ′(a,−x)
for real a and x ≥ 0. Notice that W ′(a,−x) is not exactly the derivative of
W (a,−x), but W ′(a − x) = − d

dxW (a,−x).

2. DEFINITION OF SCALED FUNCTIONS

For large (positive) values of the parameter a the functions W (a, x), W (a,−x) are
very large or very small. To avoid overflow or underflow in numerical computations
it is quite useful to define scaled values with the dominant exponential behavior
factored out [7, sect. 12.1.3]. This scaling factor can be also factored out from the
uniform asymptotic expansions.

We define the scaling factor as eχ(a,x) where χ(a, x) is given by

χ(a, x) =
{

a
(
arcsin t + t

√
1 − t2

)
, if t ≤ 1 (Monotonic Region)

aπ/2, if t > 1 (Oscillating Region)
(2)

with t = x/(2
√

a) > 0. For a < 0 scaling is not needed. We consider only positive
values of x, which is not a restriction because we compute the pair {W (a, x), W (a,−x)}
and its derivatives.

The scaled functions are defined as

W̃ (a, x) = eχ(a,x)W (a, x) , W̃ ′(a, x) = eχ(a,x)W ′(a, x) ,

W̃ (a,−x) = W (a,−x)
eχ(a,x) , W̃ ′(a,−x) = W ′(a,−x)

eχ(a,x) .
(3)

Scaling factors can be directly factored out from the expressions used for the
asymptotic expansions but not from the differential equation (1), which is the start-
ing point of the local Taylor series method; because of this and in order to avoid
introducing numerical errors due to the exponential terms of the scaling, scaled
functions are computed for a > 50.

In particular and in the case of the Airy-type asymptotic expansions in the mono-
tonic region (t ≤ 1), the scaled functions W̃ (a,±x) can be written in terms of scaled
Airy-functions:

W̃ (a, x) ∼ π
1
2 μ

1
3 �(μ)φ(ζ)
2

1
2

(
B̂i(−z)Aμ(ζ) +

B̂i
′
(−z)
μ

8
3

Bμ(ζ)

)
, (4)

W̃ ′(a, x) ∼ −π
1
2 μ

2
3 �(μ)

2e
1
2 φ(ζ)

(
− B̂i(−z)

μ
4
3

Cμ(ζ) + B̂i
′
(−z)Dμ(ζ)

)
, (5)

W̃ (a,−x) ∼ π
1
2 μ

1
3 �(μ)φ(ζ)
2−

1
2

(
Âi(−z)Aμ(ζ) +

Âi
′
(−z)
μ

8
3

Bμ(ζ)

)
, (6)

W̃ ′(a,−x) ∼ π
1
2 μ

2
3 �(μ)

φ(ζ)

(
− Âi(−z)

μ
4
3

Cμ(ζ) + Âi
′
(−z)Dμ(ζ)

)
, (7)
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where a = 1
2μ2, z = μ

4
3 ζ, and for ζ we have the relation⎧⎨⎩ 2

3 (−ζ)
3
2 = 1

2 arccos t − 1
2 t
√

1 − t2, −1 < t ≤ 1, ζ ≤ 0,

2
3ζ

3
2 = 1

2 t
√

t2 − 1 − 1
2 ln

(
t +

√
t2 − 1

)
, 1 ≤ t, ζ ≥ 0.

(8)

The function φ(ζ) is given by φ(ζ) =
(

ζ
t2−1

) 1
4 and �(μ) is computed by means

of the asymptotic expansion

�(μ) ∼ 2
1
4

μ
1
2

∞∑
s=0

�s

μ4s
, (9)

where the first few coefficients are �0 = 1, �1 = − 1
1152 , �2 = − 16123

398 13120 , �3 =
− 26954 47331

481 57949 95200 , �4 = − 3759 87489 96091
221 91183 33788 .

Also, the computation of the functions Aμ(ζ), Bμ(ζ), Cμ(ζ), and Dμ(ζ) appearing
in equations (4), (5), (6) and (7) is performed by using asymptotic expansions of
the form

Aμ(ζ) ∼
∞∑

s=0

(−1)s as(ζ)
μ4s

, Bμ(ζ) ∼
∞∑

s=0

(−1)s bs(ζ)
μ4s

,

Cμ(ζ) ∼
∞∑

s=0

(−1)s cs(ζ)
μ4s

, Dμ(ζ) ∼
∞∑

s=0

(−1)s ds(ζ)
μ4s

.

(10)

Details on the coefficients as, bs, cs and ds can be found in [12, §3.1].
Scaled Airy functions [8] are defined for x > 0 as

Âi(x) = e
2
3x3/2

Ai(x) , Âi′(x) = e
2
3x3/2

Ai′(x) ,

B̂i(x) = e
−2

3 x3/2

Bi(x) , B̂i′(x) = e
−2

3x3/2

Bi′(x) ,
(11)

while Âi(x) = Ai(x) when x < 0 and the same applies for the derivative and for
Bi(x) and its derivative.

The module for the computation of Airy functions uses a Fortran 90 version of
the code by Fullerton [3] (the Fortran 77 code is available at Netlib).

3. REGIONS OF APPLICABILITY OF THE METHODS AND TESTING.

The curves fi, i = 1, ..., 6 appearing in Figures 1 and 2 correspond to the fitting
curves separating regions of applicability of the methods. Explicit expressions for
these curves are given by:

f1 : a = 7(x − 2)2 + 2.5 if x < 2; x = 2 and 0 ≤ a ≤ 2.5
f2 : a = 1.1x2 + 30.5,
f3 : a = 0.2(x − 12)2 + 33,
f4 : a = 0.22x2 − 40,
f5 : a = −2(x − 4.6)2 − 3 if f5 > f6 and x < 3.8;

a = −4 and 3.8 ≤ x ≤ 4.5; x = 4.5 and − 4 < a ≤ 0
f6 : a = 0.13x2 − 25
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Figure 1. Regions in the (a, x)-plane (a > 0) where different methods of computation are

considered. The curve a = x2/4, frontier between the monotonic (a > x2/4) and the oscillatory

(a < x2/4) behaviour of the functions, is also shown. The methods used are: A) Maclaurin series;

B) Local Taylor series; C) Airy expansions; D),E) Expansions in terms of elementary functions.
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Figure 2. Regions in the (a, x)-plane (a < 0) where different methods of computation are

considered. The methods used are: A) Maclaurin series; B) Local Taylor series; F) Asymptotic

expansions for a < 0.

3.1 Wronskian tests

We test the Wronskian relation between W (a, x) and W (a,−x), which is given by

W [W (a, x), W (a,−x)] = 1. (12)

This relation means that

W (a, x)W ′(a,−x) + W ′(a, x)W (a,−x) = −1. (13)
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We compute the maximum relative errors for the Wronskian test using 107 ran-
dom points in selected regions of the (x, a)-plane. For unscaled functions we obtain:

(1) [0, 100]× [0, 200]: 1.5 10−13,
(2) [0, 10000]× [0, 200]: 1.22 10−13,
(3) [0, 100]× [−1000, 0]: 1.7 10−13,
(4) [0, 1000]× [−10000, 0]: 1.4 10−13,
(5) [0, 10000]× [−100000, 0]: 5.5 10−14,

For scaled functions, the results for the Wronskian test are

(1) [0, 100]× [50.01, 1000]: 1.1 10−14,
(2) [0, 1000]× [50.01, 10000]: 9 10−15,

Based on these Wronskian tests, we claim an accuracy better than 5 × 10−13

in the computable range of unscaled functions and a relative accuracy better than
5 × 10−14 for scaled functions.

4. COMPARISON WITH EXISTING SOFTWARE

To our knowledge, no reliable (refereed) software is available for computing the
functions W (a,±x). A few algorithms have been described in [1; 11] with a claimed
accuracy not better than eight digits. But according to the Digital Library of
Mathematical Functions [2], the only existing routines are those included in the
book [14]. However, these routines are built for a very limited range of validity (only
0 < a < 5, 0 < x < 5) Complex variable computations for the W (a,±x) functions
are available in Maple (or Mathematica) through complex confluent hypergeometric
functions, but for large values of the parameters, and particularly for computing
W (a, x) for large a > 0, these are very inefficient in comparison with the Fortran 90
calculations provided, because the representation of W (a, x) in terms of confluent
hypergeometric functions becomes unstable [4].
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