
International Journal of Computer Applications (0975 – 8887)

Volume 54– No.15, September 2012

24

A Semantic Approach for Automatic Structuring and

Analysis of Software Process Patterns

Nahla JLAIEL
RIADI Research Laboratory
National School of Computer

Science
La Manouba 2010, Tunisia

Khouloud Madhbouh
Higher Institute of Multimedia and

Computer Science
University campus Erriadh city

6072 Zirig Gabès, Tunisia

Mohamed BEN AHMED
RIADI Research Laboratory
National School of Computer

Science
La Manouba 2010, Tunisia

ABSTRACT

The main contribution of this paper, is to propose a novel

semantic approach based on a Natural Language Processing

technique in order to ensure a semantic unification of

unstructured process patterns which are expressed not only in

different formats but also, in different forms. This approach is

implemented using the GATE text engineering framework and

then evaluated leading up to high-quality results motivating us

to continue in this direction.

General Terms

Software patterns reuse, information extraction, natural

language processing, semantic annotation.

Keywords

Software process patterns, patterns unification, patterns

analysis, patterns structuring, patterns reuse.

1. INTRODUCTION
Software process patterns are being considered as a valuable

mechanism to capture and disseminate best practices during

software development processes. Consequently, they have

been successfully and increasingly used within software

development communities to reuse proven solutions.

In this context, many formalisms and languages have been

proposed to describe software process patterns. This

multiplicity makes capitalization and/or reuse of process

patterns, difficult to be achieved [1].

In this paper, we propose a semantic approach named ASAP

acronym for ’’Automatic Structuring and Analysis of process

Patterns’’ based on a linguistic method of Natural Language

Processing (NLP) in order to provide architectural and

semantic unification of unstructured patterns which are

described in different formats (e.g. PDF, WORD, HTML, etc.)

and different forms (e.g. Ambler, Störrle, PPDL, UML-PP,

PPL, etc.) using the GATE API. The remainder of this paper

is organized into six sections. Section 2 introduces the context

of our research work. Section 3 provides background

information on process patterns unification and the NLP

methodology. Section 4 describes the proposed approach

named ASAP. Section 5 details the experimentations results

of the proposed approach. Section 6 concludes the paper by

giving a discussion of our contibiution as well as an overview

of our future work.

2. PROCESS PATTERNS REUSE
Patterns are increasingly being recognized by software

development communities, as an effective method to reuse

knowledge and best practices gained during software

development processes [2] [3]. Indeed, they are growing to be

widely used as proven solutions to recurring problems

consisting essentially of a triplet of problem, context and

solution. In addition, patterns are not restricted to a particular

domain to be applied in or to emerge of. Instead, they have

been developed for several domains e.g. Architecture,

Software Engineering, Organization, Pedagogy as well as

Human Computer Interaction.

Consequently, software patterns nowadays exist for a wide

range of topics including requirement patterns, analysis,

design, implementation or code patterns, test patterns and

even maintenance patterns.

Most of these latters consist of product or result patterns

whose role is to capitalize specifications or implementations

of a goal. Concerning process patterns, whose main role is to

capitalize good specifications or implementations of a method

to be followed to achieve a goal [4], they become commonly

used by software development communities as an excellent

medium to share software development knowledge that is

often encapsulated in experiences and best practices [1] [5] [6]

[7].

Indeed, process patterns are growingly being adopted by

different development processes such as Agile processes [8],

Object-oriented Software Development processes [9],

Component Based Software Development processes [10],

Service-Oriented Development processes [11] as well as

Aspect-oriented Development processes [12].

As consequence to the huge proliferation of the process

patterns practice, these latters are being used in an informal

manner, through traditional textbooks or better with modest

hypertext systems providing weak semantic relationships. In

addition to the huge number of process patterns that are

available in books or Web-based resources [3], they

significantly differ in format, coverage, scope, architecture

and terminology used [1].

All of these observations conspire to create barriers to the

efficient use and reuse of process patterns.

In fact, patterns users are expected to investigate different

patterns resources such as books, magazines, papers and Web

collections to find the most appropriate patterns. This

investigation really needs cognitive efforts, abilities and time

to identify, understand, select, adapt and apply relevant ones.

For these reasons, we have argued in a previous work [13],

that efforts are needed to more formally capitalize patterns

knowledge in order to help software development

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.15, September 2012

25

communities use, reuse and create process patterns during any

given software development process.

Consequently, we have set ourselves as an overall goal of

research to build up an intelligent framework supporting

process patterns capitalization and reuse. For this purpose, we

proposed a holistic approach named SCATTER [13], acronym

for “SemantiC Approach for sofTware process paTErns

capitalization and Reuse”, which aims to disseminate software

process best practices by making process patterns described in

a unified and formal form. The proposed approach is based on

two main processes namely, process patterns warehousing and

process patterns mining.

The present work takes place into the targeted framework and

forms a first part of the overall proposed approach. In this

context, we implement a semantic approach for process

patterns unification by analyzing and structuring their

description in order to facilitate and enhance patterns reuse

within software development communities.

3. BACKGROUND
This section is intended to provide background information

for the proposed approach ASAP. The first subsection is

devoted to the description of the process pattern unification

model as the building block of the proposed approach. The

next subsection deals with the natural language processing

method and tools as the adopted methodology in this work.

3.1 Process Patterns’ Unification

3.1.1 Process Patterns’ Reality
Different initiatives have been carried out in the literature of

patterns dealing with process patterns’ description and

formalization. These are classified into description models

such as Ambler [9], RHODES[14], Gnatz [15], P-Sigma [4],

Störrle [16] and other as languages, such as PROMENADE

[17], PPDL [6], PROPEL [18], PLMLx [19], UML-PP [7] and

PPL [20].

Several lacks have been revealed from the survey that we

carried out in a previous work [21] concerning the

aforementioned works, based on eleven evaluation criteria.

Detailed in [1] and [21], these latters conspire to create

barriers to patterns’ knowledge capitalization and reuse.

Among these, we notice the lacks of architectural as well as

terminological consent in patterns descriptions.

The lack of architectural consent means that different process

pattern descriptions have been proposed using disparate

architectures. In fact, when comparing the eleven selected

works from the literature, we identified eleven different

pattern description facets, namely: identification,

classification, problem, context, solution, role, artifact,

relationship, guidance, management and evaluation [1]. In

addition, these are differently covered by process patterns

descriptions and most of them pay more attention to the four

main facets: context, solution, problem and relationships of a

pattern.

The lack of terminological consent refers to the problems of

polysemy and synonymy addressed in labels used to describe

patterns. Indeed, we find terms such as Consequences used to

express a Resulting Context in PPL as well as a Guideline in

Gnatz. Moreover, others different terms are being used to

address the same concept such as Intention in RHODES to

describe a pattern Problem, instead, the term Intent is used in

Störrle. [13]

3.1.2 A Unified Description of Process Patterns
To overcome the afore mentioned lacks, a first step was to

create a unified conceptualization of process patterns. Thus,

mappings efforts [1] were necessary to achieve this goal

leading to a process patterns’ meta-model unifying patterns

knowledge representations. In this latter, we consider a

process pattern information description from six facets: [13]

The identification facet encapsulates a set of properties

identifying a pattern such as pattern name, author(s),

keywords, pattern’s classification (type, category, abstraction

level, and aspect) as well as pattern origin (project and

participants) and pattern artifacts (used and/or produced). The

core information is the main pattern facet embodying details

about the well-known triplet: problem, context and solution.

The relationships facet expresses how a pattern could interact

with other patterns (e.g. similar patterns, refinement patterns,

subsequent patterns, and anti-patterns). The guidance facet

refers to the support level provided by a pattern to be

comprehended and used (e.g. known uses, example, literature,

illustration, etc.). The evaluation facet provides feedbacks on

pattern application (e.g. discussion, confidence, maturity,

etc.). The management facet provides general information

about a given pattern (e.g. version, creation-date).

Figure 1 illustrates the proposed unified description of process

patterns according to the above mentioned facets.

Figure 1: The adopted unified description of a process

pattern

3.2 NLP Methodology

3.2.1 Natural Language Processing
The Natural Language Processing (NLP) is a computerized

approach to analyzing language data, expressed in a language

called “natural”, that is spoken or written.

The NLP is based on both a set of theories and a set of

technologies and is being a very active area of research and

development. So, there is not a single agreed-upon definition

that would satisfy everyone [22].

it aims to model and reproduce, using computers, the human

capacity to produce and understand natural languages.

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.15, September 2012

26

The NLP involves different areas of investigation, namely:

Computer Science, Linguistic, Mathematics and Artificial

Intelligence.

Figure 3 reveals the main tasks that are commonly included in

most of the NLP applications:

Figure 2: The processing levels in NLP

The morpholexical processing level aims to recognize the

structure of words.

The syntactic processing level strives for structuring the

formal relationships between words of the statement.

The semantic processing level searches for understanding the

meaning of individual words of the statement.

The pragmmatic procesing looks for contextualizing words by

analyzing the meaning in the context.

Different NLP systems implement or all of these tasks and

even a combination of some of them [23].

3.2.2 NLP Tools
Many NLP tools have been created in research as well as in

industry. However, there are already tools that are well

recognized for their mastery in NLP namely: GATE (General

Architecture for Text Engineering) [24], Open NLP [25],

UIMA (Unstructured Information Management Architecture)

[26] and IDE (Insight Discoverer Extractor) [27].

Moreover, since the targeted approach is NLP and text mining

based, we have argued that we do not need to reinvent the

wheel by rebuilding an NLP tool from the scratch. This is why

we choose to reuse one of these latters. To do this, we have

searched for their own characteristics and assessed them.

Table 2 sums up the assessment results and provides

comparisons of the four well known tools: GATE, OpenNLP,

UIMA and IDE.

Table 1: Comparison of NLP tools

 GATE OpenNLP UIMA IDE

Creation 1995 1998 2001 2002

Licence GNU

LGPL

LGPL Apache

(since

2005)

Commerci

al

Input’s

type

Text Text Text,

image

audio

and

video

Text

Supported

language(s)

8 Without

precision

Many

(without

16

precision

)

Programm

ing

language(s)

Java Java,Pytho

n

Java,

c++

Java

Architectu

re

Well

defined

Absent Well

defined

Absent

Usage High Medium Medium Weak

Documenta

tion

Rich Medium Quite

rich

Weak

Maturity High Medium Medium Weak

Capacity of

integration

Good Weak (with

UIMA)

Good

(GATE

and

OpenNL

P)

Not

indicated

Performan

ce metrics

Support

ed

Not

indicated

Not

indicated

Not

indicated

The examination of these results reveals that GATE is the

most suitable tool since it is open source and very well

documented as well as used in research and industry.

Indeed, GATE is an open source and general framework for

text engineering which is capable to solve any text processing

problem [24]. It also, supports a diversity of formats (doc, pdf,

html, xml, rtf, email, etc.) and multilingual data processing

using Unicode as its default text encoding.

In order to analyze process patterns, we use the GATE

information extraction tool, named: ANNIE [28] acronym for
A Nearly-New Information Extraction system.

As it is illustrated in Figure 4, ANNIE corresponds to

pipelined components consisting of a Tokeniser, a Gazetteer

(system of lexicons), a Sentence Splitter and a Named Entity

Transducer.

Figure 3: The ANNIE’s Components

The sentence splitter identifies and annotates the beginning

and the end of each sentence. The tokeniser applies basic rules

to input text to identify textual objects e.g. punctuation,

numbers, symbols and different types. The gazetteer creates

annotation to offer information about entities (e.g. persons,

organizations, etc.) using lookup lists. The POS tagger

Corpus (Doc,

XML, Html)

GATE

Document

management

GATE Documents

Annotated Corpus

Sentence Splitter

Tokenizer

Gazetteer

Named Entity Transducer

ANNIE

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.15, September 2012

27

produces tags to words or symbols. The Named Entity

transducer applies JAPE (Java Annotations Pattern Engine)

rules [29] to input text in order to generate new annotations.

4. ASAP
Acronym for “Automatic Structuring and Analysis of process

Patterns”, ASAP aims to improve process patterns reuse by

structuring and unifying patterns descriptions.

It is a linguistic approach using performing a NLP technique

for the identification of key segments in the descriptions of

process patterns, their semantic annotation and then their

XML structuring following a unified format.

ASAP comprises two main phases (cf. Figure 4). A first

analysis phase consisting in performing lexical, syntactic and

semantic analysis of different and unstructered descriptions of

process patterns. A second structuring phase converting the

analysed patterns to patterns that are semantically annotated

following the adopted unification model (cf. Figure 1).

Hence, ASAP consists of an information extraction process

from heterogenous and unstructured patterns descriptions and

especially a recognition of relevant parts in patterns

descriptions and their annotation. So, patterns become

described in a unified manner.

In order to reach this goal by implementing the proposed

approach, process patterns are analyzed using an extended

version of the GATE platform. In fact, to perform the desired

annotations, we extended GATE with additional Gazetteer

lists as well as additional extraction rules (JAPE rules) to help

identify relevant entities in patterns (cf. Figure 5) such as

pattern’s context, problem, solution, role, etc.

To perform the approch, we considered a corpus of 15

patterns with different formats (Ambler, Gnatz, PROPEL,

etc.). Figure 6 illustrates the implementation details of ASAP.

The ASAP’s implementation is taking place in two main

phases: Analysis and Structuring.

Figure 4: The proposed ASAP’s approach

 Figure 5: The added concepts (lists and rules) to ANNIE

In the first phase of analysis, patterns are analyzed using

GATE based on the added concepts and rules. In fact,

ANNIE’s component begins by recognizing sentences in the

processed patterns using the Sentence Splitter component. The

sentences are consequently identified using annotations

generated by the Sentence Splitter. After that, the Tokeniser

splits the text into very simple tokens such as numbers,

punctuation and words of different types. Next, Named

Ambler’s
patterns

P-Sigma’s

patterns
Störrle’s
patterns

Gnatz’s

patterns

PPDL’s

patterns

PROPEL’s

patterns

UML-PP’s

patterns

Analysis

(lexical, syntactic and semantic)

Unification
Model

Analysed and Annotated

Patterns Invalid

Format

PROMENADE

’s patterns

RHODES’

s patterns

PLMLx’s

patterns

Text mining +

Java code

Unification

Model

Unified Structuring

Java Code

 Structured pattern

 +

unified structuring

XML

Format

validated

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.15, September 2012

28

Entities are identified in the sentence using annotations such

as "Context", "Problem", "Solution", etc. generated from the

"Gazetteer Lists" and the "Named Entity Transducer".

The Named Entity Transducer works based on a reference

annotation model storing annotations in annotation graphs. A

GATE annotation consists of an ID which is unique, a type

which denotes the type of the annotation, start and end nodes,

and a set of features which provides additional information.

As a result, an XML file (GATE Output) is generated for each

pattern provided as input. These XML files involve not only

the desired annotations but also other ones that are useless for

our purpose, to name just a few, <sentence>, <token> , etc.

These annotations should be removed, during the structuring

phase.

Figure 6: The implementation details of ASAP

The structuring phase aims to clean and validate XML

generated files in order to obtain Valid XML files according

to the adopted unified pattern description model. Indeed,

during this phase, the ASAP’s system should check the

integrity of the information obtained from the analysis phase

with respect to the grammar used for representing the desired

unified format of process patterns.

The GATE extensions that we made concerns :

Gazetteer lists: these lists store the terminologies used to

represent pattern’s concepts such as: evaluation list, artifact

list, classification list, domain list, type list, context list,

guidance list, identification list, name list, identifier list,

management list, problem list, relationships list, alternative

list, similar list, use list, roles list, solution list, author list,

abstraction level list, collection list. All these new lists have

been successfully integrated and tested on our patterns’

corpus. Figure 7 provides an illustration of a gazetteer list

representing the pattern’s solution.

Figure 7: The solution list terminology

Figure 8 : The Solution JAPE rule

JAPE rules: JAPE rules have been added to recognize the

terminology used in a given pattern’s description and to

annotate it in a unified manner . these rules are regrouped into

phases such as context phase, solution phase, problem phase,

classification phase, relationship phase, identification phase,

role phase, artifact phase, guidance phase, evaluation phase

and management phase.

Figure 8 shows an excerpt of a JAPE rule identifying a

pattern’s Solution whose candidate terms are illustrated in

Figure 7 i.e. “activity”, “intent”, “process”, “solution”, etc.

5. EXPERIMENTATIONS
As stated before, we have built our corpus by collecting 15

patterns with different forms and formats. The proposed

approach, ASAP, has been implemented with Java

programming language and on NetBeans IDE 6.8. The

ASAP’s system integrates GATE as well as ANNIE as APIs

in order to reach the approach goals.

Figure 9 illustrates the experimentation’s result of the

proposed approach given one process pattern. At the

beginning, GATE is being loaded into the ASAP’s system and

the processing pipeline is performed to generate an XML file

Activity

Formal solution

Intent

process

Rule

Sample execution

Semi-formal solution

Solution

Solution modèle

Solution démarche

Phase: Solution

Input: Token

Options: control = appelt

Rule: solution

((({Token.string == "Activity"}|{Token.string ==

"ACTIVITY"}| {Token.string == "activity"}) ({Token.string

== " "}| {Token.string == ":"})+)| (({Token.string ==

"PROCESS"}|{Token.string == "Process"}| {Token.string ==

"process"})({Token.string == " "}| {Token.string == ":"})+)|

(({Token.string == "RULE"}|{Token.string == "Rule"}|

 {Token.string == ":"})+)| (({Token.string ==

"SOLUTION"}|{Token.string =="Solution"}| {Token.string

== "solution"}|{Token.string == "solution"}) ({Token.string

== " "}|{Token.string == ":" })+)| (({Token.string ==

"SAMPLE"}|{Token.string == "Sample"} ({Token.string ==

"EXECUTION"}| {Token.string == "execution"}|

{Token.string == "execution"})({Token.string == "

"}|{Token.string == ":"})+) (({Token.string ==

"SEMI"}|{Token.string == "Semi"}| {Token.string == "semi-

formal solution"}))) :Solution --> :Solution.Solution =

{kind= "Solution", rule= "solution" }

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.15, September 2012

29

containing all the targeted annotations. Then, the file is being

automatically, cleaned and structured by removing all the

unnecessary tags like <sentence>, <token>, via the ASAP’s

system and according to the unification model.

Figure 9: An illustrative example

In order to evaluate the ASAP’s system performance, we

compared it to the GATE framework in term of response time.

Table 2 reveals the comparison results for 1, 5, 10 and finally

the total number of patterns. In fact, our goal is to evaluate the

response time analysis while increasing the size of the corpus.

Table 2. Response time evaluation

Patterns’

number

Response time

of GATE

(in seconds)

Response time

of ASAP

(in seconds)

1 6 2
5 12 4
10 35 10
15 40 17

Given that the response time in ASAP’s system presents the

response time of analysis and structuring, we notice that the

response time is not sensitive to the size of the corpus, for

example, a corpus of 10 patterns did not take 10 * 2s (8s is

the response time for analyzing a pattern in ASAP) and

ASAP is faster than GATE while increasing the size of

patterns’corpus.

This speed is justified by the use of the Java programming

language and the GATE embedded library as well as ANNIE

rather than loading the general GATE platform.

Another kind of evaluation concerns the annotation extraction

performance. This latter could be evaluated in terms of three

metrics: Precision, Recall and F-measure [30].

The Precision metric measures the number of items correctly

identified compared to the number of elements identified. In

other words, it measures how many terms were correctly

identified by the system. More the precision is close to 1,

more identification (annotation) is correct. The Precision is

calculated as follows:

 Precision =
 (

)

 (

)

The Recall metric measures the number of correctly identified

items as a percentage of the total number of correct items.

Indeed, it measures how many of the items that should have

been identified were identified regardless of how much false

identifications were made. Higher the recall, better the system

could correctly identify all the elements. Recall is calculated

as follows:

Recall =
 (

)

 (

)

The F-measure metric combines the precision and recall with

weights (β> 0). This measure is calculated as follows:

F-mesure =
(

(

 Each measure is calculated using three different criteria:

"strict" "lenient" and "average". The measure "Strict"

considers all partially correct answers as incorrect answers.

However, the measure "Lenient" considers all partially correct

answers as correct answers. The measure "Average" affects

half weight to partially correct answers.

In order to measure the annotation extraction performance,

GATE provides a tool named AnnotationDiff [31] enabling

two sets of annotations in one or two documents to be

compared, in order either to compare a system-annotated text

with a reference (hand-annotated) text, or to compare the

output of two different versions of the system (or two different

systems). For each annotation type (e.g. context, problem,

solution, relationship, etc.), figures are generated for precision,

recall, F-measure. Each of these can be calculated according

to 3 different criteria: strict, lenient and average.

To measure the performance of the annotation extraction, we

manually identified semantic annotations from a pattern

description. Then, using the AnnotationDiff Tool, we

compared

The generated set of annotations with the ones extracted

through the ASAP’s system as depicted in Figure 10.

The key document “patrons.xml” represents the hand

annotated document and the response document

“patrons.docx” is the ASAP’s system one document. So, the

AnnotationDiff Tool could compare these two documents

annotation by annotation. For example in the Figure 10, the

comparison concerns the annotation “Problem”.

GATE Output

<Pattern><Token>
Business </Token><Token>Architecture</Token>
<Sentence><Token><Identification></Token><Toke
n></Identification></Sentence></Token><Sentence
><Token><classification></Token><Token><Type><
/Token><Token></Type>.</Token><Sentence><Tok
en> </Classification> </Token><Token>
<Problem></Token></Sentence><Sentence><Token
>How</Token><Token>can</Token><Token>you</
Token> <Token>make</Token><Token> sure
</Token><Token> that</Token><Token> all
</Token><Token>the </Token><Token>applications
</Token><Token>in</Token><Token> your
</Token><Token>enterprise</Token><Token> can
inter-operate</Token><Token> properly</Token>
<Token>? </Sentence><Sentence><</Problem>
<Context>
<InitialContext>You are building a system which will
need to inter-operate with other applications within
your enterprise. </InitialContext>
<ResultingContext>The Business Objects may
become quite large due the varied requirements of
the many applications which use them. You may
find it necessary to use Business Object
Extensions2 to add the additional behavior and
attributes which are only required by some
Business Processes. </ResultingContext>
</Context>
<Solution>Define a Business Architecture based on
the structure of the business. The business
architecture defines the vocabulary of the business
to ensure that all applications mean the same thing
when they use a particular noun. Assign an
Architect (or ArchitectureTeam) to own it.
(ArtifactOwner) Validate it using the
BusinessUseCases which capture the
BusinessProcesses. The Business Architecture will
describe the BusinessObjects in your domain
complete with all the operations (including
attributes) they support and the associations they
may have with other BusinessObjects .
</Solution>

Unified XML File

<Pattern>
Business Architecture
<Problem>How can you make sure that all the applications in your
enterprise can inter-operate properly?</Problem>
<Context>
<InitialContext>You are building a system which will need to inter-operate
with other applications within your enterprise.</InitialContext>
<ResultingContext>The Business Objects may become quite large due the
varied requirements of the many applications which use
them.</ResultingContext>
</Context>
<Solution>Define a Business Architecture based on the structure of the
business. The business architecture defines the vocabulary of the business
to ensure that all applications mean the same thing when they use a
particular noun.
</Solution>
<Pattern>

Process Pattern

Business Architecture

Context:

You are building a system which will need to

inter-operate with other applications within your

enterprise.

 Resulting Context:
 The Business Objects may become quite large

due the varied requirements of the many

applications which use them.

 Problem:

 How can you make sure that all the applications

in your enterprise can inter-operate properly?

Solution :

 Define a Business Architecture based on the

structure of the business. The business

architecture defines the vocabulary of the

business to ensure that all applications mean the

same thing when they use a particular noun.

Analysis

Structuring

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.15, September 2012

30

Figure 10: Annotation quality evaluation

The results shown on the left side represent problem

annotations extracted by the system and the other ones on the

right side concern problem annotations that were manually

created. The interpretation of these results, regarding the three

introduced metrics, reveals that all annotations are correct (8

correct annotations), Recall, Precision and F-measure

measures are always equal to 1, which explains the good

performance of our system.

6. CONCLUSION
This paper presents a part of our ongoing research work in

which we propose a semantic approach for process patterns

unification through the automatic analysis and the structuring

of their descriptions.

The conducted experimentations show that the approach and

its implementation generate high-quality annotations of

unstructured and heterogeneous descriptions of process

patterns.

The proposed approach ASAP, provides a good starting point

as well as a strong foundation for a holistic semantic approach

improving process patterns capitalization and reuse [13].

As future work, we aim to extend ASAP by developing a

method to automatically convert process patterns provided as

XML unified files (ASAP’s outputs) to semantic OWL files as

ontology’s instances.

In addition, we are planning to integrate information

extraction possibilities from images (diagrams, figures, tables)

that could be achieved using the UIMA java library.

7. ACKNOWLEDGMENTS
The authors would like to thank GATE users and developers

for their attention and help.

8. REFERENCES
[1] Jlaiel, N., and Ben Ahmed, M. 2011. MetaProPOS: a

meta-process patterns ontology for software development

communities. In Proceedings of the KES Conference on

Knowledge-Based and Intelligent Information &

Engineering Systems. Part I, LNCS 6881 Springer, 516-

527.

[2] Buschmann, F., Henney, K., and Schmidt, D.C. 2007.

Pattern-oriented Software Architecture: On Patterns and

Pattern Languages. Wiley & Sons.

[3] Henninger, S., Corrêa, V. 2007. Software pattern

communities: current practices and challenges. In ACM

Proceedings of the International Conference on Pattern

Languages of Programming, 1-19.

[4] Conte, A., Fredj, M., Giraudin J.P., and Rieu, D. 2001. P-

Sigma: a formalism for A unified representation of

patterns (in French). In Proceedings of 19ème Congrès

Informatique des Organisations et Systèmes

d'Information et de Décision, 67-86.

[5] Hagen, M. 2002. Support for the definition and usage of

process patterns. In Proceedings of the European

Conference on Pattern Languages of Programs.

[6] Hagen, M., and Gruhn, V. 2004. Process patterns - a

means to describe processes in a flexible way. In

Proceedings of the International Workshop on Software

Process Simulation and Modeling, ICSE, 32-39.

[7] Tran, H.N., Coulette, B., and Dong, B.T. 2007. Modeling

process patterns and their application. In IEEE

Proceedings of the International Conference on Software

Engineering Advances, 15-20.

[8] Tasharofi, S., and Raman, R. 2007. Process patterns for

agile methodologies, Situational Method Engineering:

Fundamentals and Experiences. In Proceedings of the

IFIP WG 8.1 Working Conference, 222-237.

[9] Ambler, S.W. 1998. Process Patterns: Building Large-

Scale Systems Using Object Technology. Cambridge

University Press/SIGS Books.

[10] Kouroshfar, E., Yaghoubi Shahir, H., and Ramsin, R.

2009. Process patterns for component-based software

development. In Proceedings of the Component-Based

Software Engineering CBSE, LNCS 5582, 54-68.

[11] Fahmideh, M., Sharifi, M., Jamshidi, P., Feridoon, S.,

and Haghighi, H. 2011. Process patterns for service-

oriented software development. In proceedings of the

IEEE International Conference on Research Challenges

in Information Science RCIS, 1-9.

[12] Khaari, M., and Ramsin, R. 2010. Process patterns for

aspect-oriented software development. In Proceedings of

the IEEE International Conference on Engineering of

Computer-Based Systems, ECBS, 241-250.

[13] Jlaiel, N., and Ben Ahmed, M. 2012. Towards a novel

semantic approach for process patterns’ capitalization

and reuse. To appear in Proceedings of the International

Conference on Software Engineering and Knowledge

Engineering, SEKE.

[14] Coulette, B., Crégut, X., Dong, T.B., and Tran, D.T.

2000. RHODES, a process component centered software

engineering environment. In Proceedings of the

International Conference on Enterprise Information

Systems, 253-260.

[15] Gnatz, M., Marschall, M., Popp, G., Rausch, A., and

Schwerin, W. 2001. Towards a tool support for a living

software development process. In Proceedings of the

European Workshop on Software Process Technology

EWSPT, LNCS 2077, 182-202.

[16] Störrle, H. 2001. Describing process patterns with UML.

In Proceedings of the European Workshop on Software

Process Technology EWSPT, LNCS 2077, 173-181.

[17] Ribó, J.M., and Franch X. 2002. Supporting Process

Reuse in PROMENADE. Research report, Politechnical

University of Catalonia.

[18] Hagen, M., and Gruhn, V. 2004. Towards flexible

software processes by using process patterns. In

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.15, September 2012

31

Proceedings of the IASTED Conference on Software

Engineering and Applications, 436-441.

[19] PLMLx,

http://www.cs.kent.ac.uk/people/staff/saf/patterns/diethel

m/plmlx_doc

[20] Meng, X.X., Wang, Y.S., Shi, L., and Wang, F.J. 2007.

A process pattern language for agile methods. In

Proceedings of the Pacific Software Engineering

Conference, 374-381.

[21] Jlaiel, N., and Ben Ahmed, M. 2010. Reflections on how

to improve software process patterns capitalization and

reuse. In Proceedings of the International Conference on

Information and Knowledge Engineering, IKE, 30-35.

[22] Liddy, E. D. Natural Language Processing. In

Encyclopedia of Library and Information Science.

[23] TALN. http ://aune.lpl.univ-aix.fr/

bigi/Doc/SeminaireTALN-2011.pdf

[24] GATE http ://gate.ac.uk/

[25] OpenNLP http ://opennlp.apache.org/

[26] UIMA http ://uima.apache.org/

[27] IDE www.temis-group.com

[28] ANNIE

http://gate.ac.uk/sale/tao/splitch6.html#chap:annie

[29] JAPE http://gate.ac.uk/sale/tao/splitch8.html#chap:jape

[30] van Rijsbergen, C., Butterworth, H. 1979. Information

Retrieval.

[31] AnnotationDiff.

http://gate.ac.uk/sale/tao/splitch10.html#x14-26800010.2

