
Counting People in Crowds with a Real-Time Network of Simple Image Sensors

Danny B. Yang Héctor H. González-Baños Leonidas J. Guibas
dbyang@cs.stanford.edu hhg@hra.com guibas@cs.stanford.edu
Computer Science Dept. Honda R&D, Americas Computer Science Dept.
Stanford U., CA 94305 Mountain View, CA 94041 Stanford U., CA 94305

Abstract

Estimating the number of people in a crowded environment
is a central task in civilian surveillance. Most vision-based
counting techniques depend on detecting individuals in or-
der to count, an unrealistic proposition in crowded settings.
We propose an alternative approach that directly estimates
the number of people. In our system, groups of image sen-
sors segment foreground objects from the background, ag-
gregate the resulting silhouettes over a network, and com-
pute a planar projection of the scene’s visual hull. We in-
troduce a geometric algorithm that calculates bounds on
the number of persons in each region of the projection, af-
ter phantom regions have been eliminated. The computa-
tional requirements scale well with the number of sensors
and the number of people, and only limited amounts of data
are transmitted over the network. Because of these proper-
ties, our system runs in real-time and can be deployed as an
untethered wireless sensor network. We describe the major
components of our system, and report preliminary experi-
ments with our first prototype implementation.

1. Introduction
Real-time estimates of a crowd size are valuable in many
situations. A real-time count can be used to enforce the oc-
cupancy limit in a building, to actively manage city services
and allocate resources for public events, to aid with crowd
control during rallies, and to detect unusual situations at an
airport. Currently, there are no proven techniques for es-
timating crowd size. Existing techniques either use aerial
photographs or require people to estimate how many peo-
ple pass by several checkpoints. The first approach is only
possible outdoors. Also, automated counts from aerial pho-
tographs are difficult because of limited resolution and oc-
clusions. Furthermore, this count is only valid for the in-
stance in time when the photographs were taken. In the sec-
ond approach, the counts from the different checkpoints can
be combined to approximate the total count of the crowd.
However, people may have difficulty estimating the count
at a busy checkpoint. Both of these approaches are labor
intensive, and neither can produce real-time results.

Counting crowds is difficult because there are many oc-
clusions. Even with strong prior assumptions and no com-
putational limitations, often it is impossible to count the
crowd from a single view. A possible solution to this prob-
lem is to use many sensors in a sensor network. The sen-
sor network can form clusters according to the geometry so
that each cluster can count the number of people at a local
checkpoint. The clusters can communicate with each other
to determine the global count of the crowd in the area that
all the checkpoints enclose. The sensor nodes have limited
computation and the network has limited bandwidth. Thus,
only simple processing can be done on the images and the
data must be aggregated efficiently. Moreover, the algo-
rithms must be lightweight enough to run in real-time.

In this sensor network setting, we describe an approach
to count crowds. Our current prototype cluster consists
of 8 image sensor nodes networked to a central node that
counts people in real-time. The system is scalable and ro-
bust, so many of these clusters can be combined into a much
larger sensor network to count over a much larger area.

Traditionally, counting involves first locating all the in-
dividual objects. However, locating all the objects is a de-
manding task because objects often look alike or occlude
each other, making data association difficult. In crowded
situations some objects may be completely hidden from all
views and therefore impossible to localize individually. To
avoid these pitfalls, our technique is based on the compu-
tation of bounds on the number of objects in a region and
not on localizing individual objects. This crucial difference
allows our system to function well even in crowded settings.

In our system, each sensor extracts foreground objects
from the background and sends the resulting bitmaps (i.e.,
silhouettes) over the network. Both the processing and net-
work bandwidth required for this are low. The data from
all sensors is aggregated in order to compute a planar pro-
jection of the scene’s visual hull. This projection is used
to bound the number and possible locations of people, a
non-trivial task given that portions of the visual hull may
in fact be empty. The system tracks regions of space that
are determined to be occupied. Our approach is not based
on the explicit detection of people in the images, so there
is no pairwise matching of people across frames. Thus, our

1

computational requirements scale well with the number of
sensors and the number of people. Also, the resulting sys-
tem is robust to failures of individual sensors.

The paper is organized as follows: Section 2 describes
background work. Section 3 introduces the techniques de-
veloped for our sensor network. The system architecture
and experiments are presented in Section 4. Finally, in Sec-
tion 5, we make closing remarks and describe future work.

2 Background
Detecting People Several multi-camera systems tackle
the problem of tracking objects across multiple views [1, 4].
Some use stereo techniques to aggregate the information
from different cameras. For example, in [5, 8], a stereo
camera is used to locate the people, whereas in [17] two sets
of stereo cameras are used. Similarly, in the real-time sys-
tem proposed in [24] a stereo-like algorithm is applied to all
pairs of omnidirectional cameras. Although multi-baseline
stereo could be used to aggregate the data from more than
two pairs of cameras, the applicability of this method is lim-
ited due to its computational cost.

Other techniques depend on using a shape [8, 9] or
color [5, 17, 22] model to distinguish different objects in
each view. For instance, in [21], individual objects are ex-
tracted using both color and shape, and their locations are
determined by pairwise matching between cameras. Prob-
abilistic models [12, 21] can be used to determine whether
objects observed in different views are the same. However,
matching objects across pairs of views can be computation-
ally intensive due to the large number of possible matches.

Multiple objects have also been tracked from a single
view. In [15], a particle filter is used to track several people.
In [27], an MCMC approach is used to segment individual
people from a crowd. However, these two approaches are
currently too expensive in the sensor network setting.

Counting often follows tracking. If we can track objects,
then we can count them. One scenario for counting is to
use non-overlapping sensors placed along a route [12, 16]
and count the number of passing objects. Object correspon-
dences across views can be calculated using motion mod-
els. This approach still depends on tracking individual ob-
jects as they move between sensor and does not scale as the
number of objects gets large as in the case of a crowd.

Counting becomes most interesting when it is infeasible
to track all the people in a scene. This situation typically
arises in crowded scenes (Figure 1), where people are often
occluded from all views and therefore impossible to detect.

Sensor Network Architecture Our sensor network is as-
sumed to be composed of simple elements. Modern CMOS
fabrication techniques allow groups of logic gates to be
etched next to each pixel without significantly increasing

Figure 1: Typical views of 7 people in our setup.

the cost of the sensor [18]. But this added power is only
useful for computations involving neighboring elements to
each pixel. Thus, complex operations such as object detec-
tion or separation still require the use of a dedicated com-
puter, and are therefore disallowed in our architecture.

The sensor network also has limited bandwidth. It is un-
desirable to transmit images from all sensors to a powerful
central computer in order to compute pairwise matching be-
tween all sensors. At best we can assume that images can
be compared only among neighboring sensors. But even
this assumption causes complications in practice.

Additionally, our simple sensors have no object model
and only do background subtraction at the local level. No
object detection or separation is done for individual views.

For more background on sensor networks and their ar-
chitectural constraints, see [6, 10, 13, 20, 23].

Visual Hulls The visual hull is the intersection of all
cones swept out by the silhouettes of objects seen from all
camera views. It is the largest volume in which objects can
reside that is consistent with all the silhouette information.

The exact visual hull is computed in [19]. Voxel approx-
imations are computed in [3, 25, 26]. [3, 19] compute the
visual hull in real-time (15 fps) on a dedicated computer.
In this paper, only a planar projection of the visual hull is
required, reducing the computational cost even further.

Our projection approximates a top view of the scene.
In [14], an overhead camera tracks objects in a closed-world
setting. However, their technique represents objects explic-
itly and requires knowledge of the exact object count, which
may be unavailable, especially for crowded environments.

3 Techniques and Algorithms
Our goal is to determine bounds for the count and location
of people in a room from a planar projection of the visual
hull. The first step is to compute this projection from the sil-
houettes measured by the sensors through background sub-
traction. The projection is a set of polygons. The second
step is to compute bounds to the number of objects in each
polygon. As objects move, these bounds change and can be
improved over time. A tree is used to record their history.
Finally, the tree and its associated polygons are used to lo-

2

(a) (b)

(c) (d)

Figure 2: Projection of a silhouette cone. (a) and (c) are side
views; (b) and (d) are the corresponding top views showing the
projection onto the ground plane.

Figure 3: Different object arrangements can be consistent with a
given visual hull. Polygons devoid of objects are called phantoms.

calize those workspace regions that are occupied by people.
All of these steps are explained in detail in this section.

3.1 Projection of the Visual Hull

Ordinarily, people move along a plane. Therefore, the pro-
jection of the 3D visual hull onto this plane contains the
information most useful for counting and localizing people.

Figure 2 shows how we project the 3D visual hull. Each
measured silhouette sweeps a cone in 3D space. These
cones are projected onto a plane and intersected in 2D. The
side view of a camera looking at a person is depicted in
(a), with the plane of projection parallel to the floor. The
box shown in the figure marks the lower and upper bounds
of the projection that is to be flattened to the plane. The
shaded region is a cross-section of the 3D cone formed by
the silhouette of the person. This cone is projected onto the
plane as seen from the top in (b). The shaded area in (b)
represents the projected visual hull from one camera. (c)-
(d) show the projection with a different camera position and
narrower upper and lower bounds for the projection.

Our planar projection of the visual hull is the intersection
of the projected silhouette cones from all cameras. Note
that we project the silhouette cones and then intersect them
in 2D. This is not exactly equal to first computing the 3D
visual hull and then projecting the result. The latter can
be a subset of the former, but in our problem setting, both
are close to equal because people tend to occupy most of
the vertical space of their projection. The advantage of our
projection is that it is much cheaper to compute.

Figure 4: Two successive views showing an appearing phantom.

Pruning Polygons The polygons composing the pro-
jected visual hull represent all possible regions in the plane
that may contain an object. The projected visual hull is
ambiguous, because several arrangements of objects can be
consistent with a given visual hull (Figure 3). Some of the
polygons in the projection may be empty and we call these
polygons phantoms. The next step is to prune as many of
the phantoms as possible using geometric constraints.

Polygons are pruned based on size and temporal coher-
ence. The following must be phantoms and are pruned:

- Polygons smaller than the minimum object size.

- Polygons that appear from nowhere.

The second type of phantom is a property of three or more
cameras as shown in Figure 4. Two objects are observed
in two successive time steps, and a phantom appears on the
right. To check the temporal coherence of a polygon we test
if it intersects a polygon in the previous step. This assumes
that objects cannot leave the area created by their visual hull
in a single step. This maximum speed assumption can be
adjusted by growing the polygons in the previous step be-
fore computing the intersection.

3.2 Object Bounds Using a History Tree
After pruning, the next step is to bound the number of ob-
jects inside each polygon. We cannot do this exactly be-
cause objects may be fully occluded by other objects. In-
stead, we keep track of the lower and upper bounds of the
number of objects in each polygon. If these bounds con-
verge over time then we have an exact count of the objects
in that polygon.

Upper Bound Constraint (UBC) A constraint on the up-
per bound is the area of the polygon divided by the min-
imum object size. This bound is very loose because it as-
sumes the worst possible scenario: objects cluster and move
collusively together as a single target. This bound also as-
sumes that objects fill the entire area of the polygons regard-
less of their geometry (acting like water).

Lower Bound Constraint (LBC) A ray from a camera
intersects a polygon only if the corresponding line of sight
was blocked by an object. If only one polygon intersects
that ray then said object must be contained in the polygon.
Therefore, a polygon contains at least one object if there
exists a ray from a camera that intersects only that polygon.

3

This constraint is different from UBC in that it counts dis-
tinct objects directly. A real object was observed along a
ray and counted. In contrast, UBC hypothesizes about the
maximum number of objects that could fill a polygon.

Tree Structure (T) Although LBC only tells us if a poly-
gon contains at least one object, its behavior through time
conveys additional information. To this end, we keep track
of the bound’s history with a tree structure updated at each
time step. By propagating the bounds along this tree the
number of objects in the scene can be further constrained.

At time t, each leaf in the tree stores a newly observed
polygon and its associated object bounds. A node in the
tree represents the implicit union of all the polygons of its
descendants — it contains the bounds to the number of ob-
jects inside this union. From this, we have the following 4
properties on the object bounds across the tree:

li = max(li,
∑

∀j ∈ children(i)

lj) (1)

li = max(li, lparent(i) −
∑

∀j ∈ siblings(i)

uj) (2)

ui = min(ui,
∑

∀j ∈ children(i)

uj) (3)

ui = min(ui, uparent(i) −
∑

∀j ∈ siblings(i)

lj) (4)

Eqn. (1) states that if there are at least
∑

lj objects in the
children polygons then the original parent must contain at
least this many objects. Eqn. (2) states that if there are at
least lparent objects in the parent, and

∑
usiblings objects fit

inside the sibling polygons, then the difference must be in
the child. Reverse constraints apply for the upper bounds.
At the leaf level we have the constraints UBC and LBC for
individual polygons described before.

3.3 Updating the Tree
Let T be the structure of the tree at time t. Let Π(t + 1) be
the polygons observed at time t + 1. T is updated in three
steps: add new leaves to T , remove redundant nodes from
T , and update bounds across T .

Add Leaves Each P ∈ Π(t + 1) is added as a leaf to T
using the following operations:
ADD (P) TO (Q) : P intersects exactly one polygon Q ∈ Π(t)

—that is, objects in P must have originated from Q. P is
added as a child of Q. The bounds of the new leaf containing
P are initialized by UBC and LBC .

ADD (P) TO (Q1, Q2) : P intersects exactly two polygons
{Q1, Q2} ∈ Π(t). Objects in either Q1 or Q2 could have
moved to P . Adding P as a child to both Q1 and Q2 creates
a cycle in T . Instead, we create a new node Q(1,2), added as
a child to node N ∈ T —the closest common ancestor of
Q1 and Q2. Now P , Q1 and Q2 become children of Q(1,2):

P

Q1 Q2

N

P Q1 Q2

Q(1,2)

N

The bounds of the leaf containing P are initialized by
UBC and LBC . Additionally, in order to keep the properties
of the tree correct, the bounds of Q(1,2) are initialized to
be the combined bounds of Q1 and Q2. The lower bounds
of all the nodes along the path from Q1 to Q2 (before they
were moved) are decreased by the upper bound of P . These
include Q1 and Q2, but not N .

ADD (P) TO (Q1, . . . , Qk) : P intersects {Q1, . . . , Qk}
∈ Π(t). This is handled by several nested calls to ADD.
Initially, ADD (P) TO (Q1, Q2) is called. For subsequent
calls, P is removed from Q(i−1,i) and ADD (P) TO

(Q(i−1,i), Qi+1) is called.

Remove Redundant Once all new polygons in Π(t + 1)
are added, we proceed to remove those nodes in T that are
redundant:

REMOVE REDUNDANT(T) : Every element N ∈ T with one
child or less is removed, unless N ∈ Π(t + 1) (i.e., N is
a newly added polygon). The bounds for the child of N (if
any) are updated to be the tighter among the two.

This stage guarantees that only those polygons in Π(t +
1) are leaves of T , and that any other node in T has at least
two children. Therefore, the number of leaves in T is equal
to the number of observed polygons n, the depth of the tree
is less than or equal to n, and |T | < 2n.

Update Bounds Object bounds are updated across the
tree to ensure that Eqns. (1-4) hold for every node. This in-
volves two sweeps: First, new information from the leaves
is propagated up to the root of T . Afterwards, the updated
bounds for the root are propagated back down to the leaves.

3.4 Counting Algorithm
The basic structure of the counting algorithm is as follows:

1. Get new readings from each sensor. Compute the pla-
nar projection of each silhouette.

2. Compute the intersection of all projections. Store the
resultant polygons in Π(t + 1).

3. Remove small polygons and phantoms from Π(t + 1).

4. Update the tree structure T .

5. Report the new bounds on the number of objects in the
workspace.

Repeat for t← t + 1.

At first glance, Step 2 appears to be an expensive op-
eration. In fact the cost is only linear in the number of
cameras and takes very little time. In our implementation,

4

the workspace is discretized to be a 144 × 144 grid (corre-
sponding to 12 feet squared). The projections of all silhou-
ettes can be discretized and intersected in real-time using
graphics acceleration hardware. This operation is trivial in
a modern graphics card.

Step 4 is O(n2), where n is the number of observed
polygons. This is because the amortized cost of adding
one leaf is O(n). However, this cost is very different from
the quadratic number of comparisons associated with most
pairwise-matching algorithms. There, each comparison is
expensive because it is dependent on both the image resolu-
tion and the number of cameras. Their overall cost is more
than quadratic. In contrast, our overall cost is O(n2 + c),
where c is the number of cameras. Moreover, the actual
cost of maintaining T in practice is small and T can be
maintained in real time for very large values of n.

Objects Entering or Exiting the Workspace If we allow
objects to enter and exit the workspace, then some polygons
in Π(t + 1) will not intersect any polygons in Π(t). The
basic counting algorithm must be extended.

As objects enter or exit, their corresponding polygons
touch the workspace boundary. We call these border poly-
gons. Border polygons at t+1 that do not intersect polygons
in Π(t) could be objects entering the workspace. Therefore,
these polygons are added as children of the root node of T
and its upper bound is increased accordingly.

In contrast, border polygons that intersect polygons
in Π(t) could be objects either entering or exiting the
workspace. But these polygons have already been added
to T . For each of these border polygons, we set the lower
bound to zero. We decrease the lower bounds of its ances-
tors by the upper bound of the border polygon to account
for the possibility of an object exiting. Likewise, the upper
bound of the ancestors of a border polygon are increased to
account for the possibility of an object entering.

Localizing Objects The tree structure can be used to lo-
calize objects by using the bounds and leaf polygons. Each
leaf polygon is fitted with circles, which approximate the
cross sections of people. If a polygon contains a single ob-
ject, then the polygon — and its corresponding circle —
is a good approximation of the object inside. When these
polygons merge, we compute the locally optimum arrange-
ment of circles inside the new polygon. The circles inside
all polygons are an estimate of all possible locations of ob-
jects. These locations are pruned by choosing only circles
inside polygons with lower bound greater than or equal to
the number of circles, to prune out possible phantoms.

4 Implementation and Experiments
Cameras were placed pointed horizontally. We chose to test
this case because it is the most difficult case and results in

12 feet

1
2

8

7

6 5

4

3

Figure 5: Top view of workspace with the cameras’ FOV lines.

the most occlusions. The projection of the silhouette cones
onto the ground plane is the least constraining for horizon-
tal cameras. In Figure 2, the projection from a horizontal
camera (b) is much larger than that from a camera looking
downwards (d). The other extreme is to place the cameras
directly overhead pointed downwards. This makes the prob-
lem trivial because there is almost no occlusion and the pro-
jection from an overhead camera matches the actual objects
very accurately. Our counting algorithm becomes more ac-
curate with cameras that are more directly overhead. How-
ever, in many real world situations, it is not possible to cover
a space with overhead cameras. So we decided to test the
worst case scenario when all the cameras are horizontal.

Our system consists of 8 calibrated cameras arranged
around a rectangular room. Each camera is roughly 4 feet
off the ground and points horizontally towards the room’s
center. The cameras surround a 12 × 12 ft workspace. No
single camera covers the entire area (Figure 5).

The 8 cameras are connected to a pair of dual processor
933 MHz Pentium III computers. Background subtraction
is done using the technique described in [11]. Each com-
puter grabs images from 4 cameras, and undistorts and runs
background subtraction on each image. Each camera, with
its background subtraction process, is modelled as a simple
image sensor and establishes its own TCP/IP connection to
the central computer. The central computer, a 800 MHz
Pentium III, queries each sensor over TCP/IP for the sil-
houettes, computes the projected visual hull, and runs the
counting algorithm described in Section 3

The sensors are not synchronized and only send data
when queried. At a resolution of 640x240, the sensors do
background subtraction at 15 fps and constitute the sys-
tem bottleneck. With specialized hardware for background
subtraction, the rate can be much higher. The foreground
bitmaps can be transmitted very efficiently over the net-
work. The central computer is actually capable of running
the counting algorithm at 60 fps.

In the implementation, polygons are represented as a col-
lection of grid points. This makes the polygons more robust
to noisy silhouettes. Grid points are incremented when they
become part of a projected silhouette. However, as a grid
point ceases to be part of the visual hull, its value decays
exponentially instead of being reset to zero — grid points

5

0

5

10

15

20

25

3 4 5 6 7 8 9 10 11 12 13 14 15 16

number of cameras

n
u

m
b

er
 o

f
o

b
je

ct
s

0.08

0.11

0.14

0.18

object
diameter

Figure 6: Synthetic objects moving in a square room with width 1.
Plotted are the maximum number of objects that a given number
of cameras was able to count exactly.

are persistent. If there is a sudden erroneous cut through a
polygon because of a noisy silhouette, persistent grid points
prevent the polygon from fragmenting into smaller pieces.
The overall effect is a temporal smoothing of the polygons
(the weight drops to 10% in 0.22 seconds).

4.1 Synthetic Experiments
Synthetic experiments with noise-less data were done to de-
termine the best-case results for a group of horizontal cam-
eras. The synthetic cameras were evenly located along a
circle surrounding a square room and directed to its cen-
ter. Objects (people) were modeled as vertical ellipsoids of
known dimensions. The objects moved randomly around
the room, while avoiding collisions.

The simulation was run for different number of cameras
and different object sizes. Each simulation lasted the length
of time it would take one object to travel ten times the length
of the room. The number of objects was fixed in each run.

The maximum number of objects for which we get an
exact object count is plotted in Figure 6 (i.e., upper and
lower bounds converge). As expected, more objects can
be counted as the number of cameras increases. But this
eventually levels off when the scene becomes too crowded.
When the people density becomes sufficiently high, there
will be pairs of people that cannot be separated (and there-
fore distinguished) by any of the cameras. In the simu-
lations, the lower bound converges faster than the upper
bound. This is due to the fact that the LBC constraint is
actually counting distinct real objects.

The counting algorithm can be run at very fast rates. For
example, an Athlon 1900+ computer can process a scene of
20 objects at 200 fps.

4.2 Experiments with Real Data
In the real experiments, we also used 8 cameras to count
(Figure 5). We allow people to enter and exit the workspace
region through any point in its boundary. In relation to the
synthetic experiment, people correspond to an object size

0 500 1000 1500 2000

1

2

3

4

5

frame number

c
o
u

n
t

lower bound

actual count

Figure 7: Count of 5 people walking into and out of the workspace.

600 1200 18000

2

4

6

8

frame number

c
o
u

n
t

lower bound

actual count

Figure 8: Count of 8 people walking into and out of the workspace.

between 0.11-0.14. With 8 cameras, 9-12 people could be
counted in the ideal synthetic case, so this is the perfor-
mance ceiling for the real case.

Counting Experiments The purpose of these experi-
ments is to test the accuracy of the counting algorithm.
We had several people enter, walk around, and exit the
workspace. Figures 7 and 8 show two runs with 5 and 8 peo-
ple, respectively. The lower bound and the actual count is
plotted. The upper bound was very high and is not plotted.
The lower bound matches the actual count very well. As
explained earlier, the lower bound is tighter than the upper
bound because of the nature of the LBC constraint. In ad-
dition, the UBC constraint is even weaker here because the
actual object size is unknown and different for each person.
The smallest minimum object size must be used, making
the upper bound even bigger.

Also, allowing people to enter and exit weakens the
bounds for polygons near the edge. To get a better lower
bound for these edge polygons, when a polygon inside the
workspace moves to the edge, the lower bound is not im-
mediately set to zero (because people could have exited) as
would be required to guarantee correctness. Instead, the
lower bound is set to zero when the polygon disappears
from the edge. The tradeoff is that when people walk along
the edge, the lower bound is tighter, but when people exit,
there will be a lag in the lower bound before it catches up to
the actual count. This is why in the figures the lower bound
lags behind the actual count when people exit.

The erroneous spikes in the lower bound plots are due

6

Figure 9: Actual paths of 4 people in the workspace.

Figure 10: Left: Predicted locations in unused 8th view. Right:
Corresponding pruned projected visual hull.

to noise. A noisy silhouette caused a person to be split and
thus counted twice. This happened twice over 4000 frames
and both times the algorithm quickly recovered. Also, in the
run with 5 people, one of the cameras failed, so the whole
run only used information from 7 of the cameras.

In these runs, the lower bound is almost always equal to
the actual count. This is because the LBC constraint is very
good and because people do not always move collusively. If
people walk independently, even if their paths cross often,
the lower bound should be tight and will tend to be a good
approximation of the actual count.

Localization Experiment The purpose of this experi-
ment is to test the accuracy of localizing people. We used
7 of the cameras to count and localize. The 8th camera
view was not used in the computation and served as the
ground truth. We projected the computed locations of the
people into the unused 8th view and measured the accuracy
by checking when the computed locations were centered on
people. The data was generated by 4 people who entered,
walked around, and exited the workspace over a run of 700
frames. Figure 9 shows the actual paths of the 4 people.

The video (881.mov) shows the predicted locations of
people in the unused view. The vertical lines are the bound-
aries of the circles. The height of each horizontal bar repre-

sents the computed distance of each object from the camera
(3 frames are shown in Figure 10).

People were correctly localized in the unused view 87
percent of the time, with 5 percent false positives. The false
positives are caused by the lag of the lower bound when
people exit because the lower bounds of edge polygons are
not immediately decremented. These false positives can be
eliminated by immediately decrementing the lower bound
of edge polygons at the cost of increased false negatives
because people who walk along the edge are missed.

For more examples and future work, visit:
http://xenon.stanford.edu/∼dbyang/sensors.html.

5 Discussion and Future Work
We developed a system that counts people in a crowded
scene using a network of simple image sensors. We intro-
duced a geometric algorithm that computes bounds on the
number and possible locations of people using silhouettes
computed by each sensor through background subtraction.
The system requires no initialization and runs in real-time.
Our system does not compute any feature correspondences
across views. Thus, the computation cost increases linearly
with the number of cameras. The result is a scalable and
fault tolerant system —the effect of a camera failure is a
moderate increase in the size of the projected visual hull
because there is one less silhouette to intersect.

The current prototype uses centralized communication,
which may be effective for a small local cluster of sensors.
The next step is to implement a decentralized communi-
cation architecture which is appropriate for a much larger
sensor network. This would further minimize traffic across
the network, and improve robustness and scalability. In the
decentralized approach, instead of the central node, local
cluster heads would be elected to aggregate the data. Also,
instead of sending the foreground bitmap, the sensors can
just as easily send the 2D projection of this. For the setup
in this paper, the projection would be a 144 × 144 bitmap,
or a 2.6 kbyte packet uncompressed. Many of these sensors
can easily communicate their data over a bandwidth limited
network such as a 11 megabit wireless ad-hoc network.

In the larger network, the local leaders compute the ag-
gregated 2D projection and pass either this or the count up
the network. Non-overlapping sensors do not need to com-
municate with each other. Redundant nodes can be added
because the decentralized network is scalable, making the
system more robust. The larger network also allows us to
count a much larger crowd in a much larger area, perhaps
using the checkpoints strategy described in the introduction.

A drawback of the system is the sensitivity of silhouette
intersection to noise. Noisy silhouettes that underestimate
the size of objects may lead to an undercount. To prevent
this, we set a low background-subtraction threshold to force

7

silhouettes to become overestimates. This converges to the
correct visual hull as the number of sensors increases. An-
other effect of noise is spurious cuts through silhouettes that
are otherwise solid. We addressed this problem with per-
sistent grid points on the projection plane. Values at these
points decay exponentially once an object disappears.

Using a voting scheme among cameras may improve ro-
bustness at the cost of more conservative bounds. This may
be advantageous in a larger sensor network. Another ap-
proach is to use un-thresholded data from the background
subtraction, which can be interpreted as occupancy proba-
bility measures. This requires more communication band-
width but allows the background thresholding to be pushed
forward into the silhouette intersection stage, resulting in a
more reliable visual hull.

In our experiments, we placed the cameras on the
perimeter of the region of interest. This allows a small
number of cameras to cover a relatively large region, as-
suming the region is convex. Our framework also allows
for cameras inside the region, convex or not and over/above
the region when feasible. The number of sensors and their
placement affect the accuracy of the counting. The optimal
sensor placement problem needs further exploration [2, 7].

Acknowledgments
The authors wish to thank the DARPA Software for Dis-
tributed Robotics Program, the Stanford Networking Re-
search Center, and Honda R&D Americas for their support.

References
[1] Q. Cai, J.K. Aggarwal, “Automatic Tracking of Human Mo-

tion in Indoor Scenes Across Multiple Synchronized Video
Streams,” in ICCV, pp. 356-362, 1998.

[2] Xing Chen, “Designing Multi-Camera Tracking Systems for
scalability and Efficient Resource Allocation,” Ph.D. disser-
tation, Stanford University , June 2002.

[3] K.M. Cheung, T. Kanade, J. Bouguet, M. Holler, “A Real
Time System for Robust 3D Voxel Reconstruction of Human
Motions,” in CVPR, v.2, pp. 714-720, 2000.

[4] R. Collins, A. Lipton, T. Kanade, “A System for Video
Surveillance and Monitoring,” American Nuclear Soc. 8th Int.
Topical Meeting on Robotics and Remote Systems, 1999.

[5] T. Darrell, G. Gordon, M. Harville, J. Woodfill, “Integrated
person tracking using stereo, color, and pattern detection,” in
CVPR, pp. 601-609, 1998.

[6] L. Doherty, B.A. Warneke, B.E. Boser, K. Pister, “Energy and
Performance Considerations for Smart Dust,” Int. J. of Paral-
lel Distributed Systems, 2001.

[7] H.H. Gonzalez-Banos and J.C. Latombe, “A Randomized
Art-Gallery Algorithm for Sensor Placement,” Proc. 17th
ACM Symp. on Computational Geometry (SoCG’01), pp.
232-240, 2001.

[8] I. Haritaoglu, D. Harwood, L.S. Davis, “W4S: A Real-Time
System for Detecting and Tracking People in 2 1/2 D,” in
ECCV, 1998.

[9] I. Haritaoglu, D. Harwood, L.S. Davis, “Hydra: Multiple Peo-
ple Detection and Tracking Using Silhouettes,” Int. Conf. on
Image Analysis and Processing, 1999.

[10] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pis-
ter, “System Architecture Directions for Networked Sensors,”
ASPLOS, 2000.

[11] T. Horprasert, D. Harwood, L.S. Davis, “A Robust Back-
ground Subtraction and Shadow Detection,” in Proc. Asian
Conf. on Comp. Vision, January 2000.

[12] T. Huang, S. Russell, “Object identification: a Bayesian anal-
ysis with application to traffic surveillance,” Artificial Intelli-
gence, 103:1-17, 1998.

[13] C. Intanagonwiwat, R. Govindan, D. Estrin, “Directed dif-
fusion: a scalable and robust communication paradigm for
sensor networks,” MobiCom, 2000.

[14] S. Intille, J.W. Davis, A. Bobick, “Real-Time Closed-World
Tracking,” in CVPR, pp. 697-703, 1997.

[15] M. Isard, J. MacCormick, “BraMBLe: A Bayesian Multiple-
Blob Tracker,” in ICCV, v. 2, pp. 34-41, 2001.

[16] V. Kettnaker, R. Zabih, “Counting People from Multiple
Cameras,” ICMCS, pp. 267-271, 1999.

[17] J. Krumm, S. Harris, B. Meyers, B. Brumitt, M. Hale, S.
Shafer, “Multi-camera Multi-person Tracking for EasyLiv-
ing,” IEEE Inter. Workshop on Visual Surveillance, 2000.

[18] S.H. Lim, A. El Gamal, “Integration of Image Capture and
Processing – Beyond Single Chip Digital Camera,” Proc. of
SPIE Electronic Imaging Conf., 2001.

[19] W. Matusik, C. Buehler, L. McMillan, “Polyhedral Visual
Hulls for Real-Time Rendering,” Eurographics Workshop on
Rendering, 2001.

[20] W.M. Merrill, K. Sohrabi, L. Girod, J. Elson, F. New-
berg, W. Kaiser, “Open Standard Development Platforms for
Distributed Sensor Networks,” Proc. of SPIE, Unattended
Ground Sensor Technologies and Applications IV, 2002.

[21] A. Mittal, L.S. Davis, “M2Tracker: A Multi-View Approach
to Segmenting and Tracking People in a Cluttered Scene Us-
ing Region-Based Stereo,” in ECCV, 2002.

[22] J. Orwell, P. Remagnino, G.A. Jones, “Multi-Camera Color
Tracking,” IEEE Workshop on Visual Surveillance, 1999.

[23] G.J. Pottie, W.J. Kaiser, “Wireless integrated network sen-
sors,” CACM, v.43, n.5, pp. 51-58, 2000.

[24] T. Sogo, H. Ishiguro, M. Trivedi, “Real-Time Target Local-
ization and Tracking by N-Ocular Stereo,” IEEE Workshop on
Omnidirectional Vision, pp. 153-160, 2000.

[25] R. Szeliski, “Rapid Octree Construction from Image Se-
quences,” CVGIP: Image Understanding, v.58, n.1, pp. 23-
32, 1993.

[26] T. Wada, X. Wu, S. Tokai, T. Matsuyama, “Homography
Based Parallel Volume Intersection: Toward Real-Time Vol-
ume Reconstruction using Active Cameras,” IEEE Workshop
on Comp. Arch. for Machine Perception, pp. 331-339, 2000.

[27] T. Zhao, R. Nevatia, “Stochastic Human Segmentation from
a Static Camera,” IEEE Workshop on Motion and Video Com-
puting, 2002.

8

