
BacillOndex: An Integrated Data Resource for Systems and 
Synthetic Biology 

Goksel Misirli1, Anil Wipat1, Joseph Mullen1, Katherine James1, Matthew Pocock1,3, 
Wendy Smith1, Nick Allenby2 and Jennifer S. Hallinan1,*

1School of Computing Science, Newcastle University, Newcastle upon Tyne, UK, NE1 7RU 

 

2Demuris Ltd., Newcastle upon Tyne, UK, NE2 4HH 

3TAMH Ltd., Newcastle upon Tyne 

Summary 

BacillOndex is an extension of the Ondex data integration system, providing a 
semantically annotated, integrated knowledge base for the model Gram-positive 
bacterium Bacillus subtilis. This application allows a user to mine a variety of B. 
subtilis data sources, and analyse the resulting integrated dataset, which contains data 
about genes, gene products and their interactions. The data can be analysed either 
manually, by browsing using Ondex, or computationally via a Web services interface. 
We describe the process of creating a BacillOndex instance, and describe the use of 
the system for the analysis of single nucleotide polymorphisms in B. subtilis Marburg. 
The Marburg strain is the progenitor of the widely-used laboratory strain B. subtilis 
168. We identified 27 SNPs with predictable phenotypic effects, including genetic 
traits for known phenotypes. We conclude that BacillOndex is a valuable tool for the 
systems-level investigation of, and hypothesis generation about, this important 
biotechnology workhorse. Such understanding contributes to our ability to construct 
synthetic genetic circuits in this organism. 

1 Introduction 

1.1 Data Integration and Synthetic Biology 

The aim of synthetic biology is to produce organisms with novel, desirable biological 
functionality, either by re-engineering existing systems, or by designing new organisms from 
scratch. At the moment, the re-design of existing systems is the most promising approach, 
although whole-genome design is becoming more feasible [1]. When working with existing 
organisms it makes sense to integrate and incorporate as much existing information as 
possible. However, these data are spread amongst a variety of sources, including the scientific 
literature and numerous online databases [2]. Drawing together these data means that 
synthetic biologists can use the wealth of data available to inform the design of new genetic 
circuits. 

Integrated data are often represented as networks, in which nodes represent either genes or 
gene products, while edges represent some form of interaction between the nodes. Such 
interactions may be physical, such as protein-protein binding; genetic, such as synthetic lethal 
interactions; or more indirect, such as co-citation in a publication [3, 4]. Networks are easy to 
visualise and browse, and are thus particularly valuable for the exploratory analysis of 
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complex datasets. Network analysis is particularly valuable for users who have an interest in a 
specific biological question, but who lack the time or training to investigate individual data 
sources exhaustively. Integrated datasets also provide synergistic views of disparate data 
sources, putting a diverse range of biological interactions into a systems-level context. 
Integrated networks lend themselves well to manual browsing, and can also be made 
computationally accessible, using technology such as Web services [5].

Humans bring large amounts of background domain knowledge to the manual analysis of 
integrated datasets. In order to facilitate computational analysis of such data, including 
automated reasoning and hypothesis generation [6], the addition of semantic annotations to 
integrated datasets is particularly valuable. Such annotations are generated from the 
knowledge captured in the literature, or stored in databases, converted to a standard, 
unambiguous format. Ideally, this data-representation format should be built upon an 
ontology: a standardised model of the way in which entities interact. Stevens and colleagues 
[7] define a biomedical ontology as including, at a minimum, a “vocabulary of terms, and 
some specification of their meaning”. Using an ontology, nodes and edges in a network may 
carry metadata about the type of entity represented: for example, a node of type protein 
may be related to a node of type gene by the relationship is_product_of.

1.2 The Ondex Data Integration System 

One computational tool for the integration and analysis of semantically-enriched networks is 
Ondex [8]. Ondex uses purpose-written parsers to extract data from diverse sources and 
integrate them into a network annotated with semantic metadata. Issues such as reformatting 
data and matching up the disparate identifiers used by different databases are handled by the 
system, and users are presented with a network in which nodes may represent any type of 
concept (proteins, genes, publications, protein families, and so on) interacting via relations. 
Both concepts and relations carry semantic attributes. All concepts, relations and attributes 
have ‘types’, which are organised hierarchically. For example, the concept type Protein is 
a subtype of Molecule, which is itself a subtype of Thing. This hierarchy means that every 
Protein concept is also a Molecule and a Thing. Similarly, the relation type 
catalyzes is a subtype of actively participates in. Therefore, every statement 
that p::Protein catalyzes r::Reaction means that p actively participates in r 
[9].  

Ondex networks have been developed for several different organisms, including the yeast 
Saccharomyces cerevisiae [9] and the model plant Arabidopsis thaliana [10]. A human Ondex 
network has been used to identify potential drug repositioning candidates [11]. However, 
Ondex networks have not yet been constructed for microorganisms, and because microbial 
data are often stored in different databases from eukaryotic data, existing parsers are not 
adequate to quickly produce integrated microbial networks. We are interested in engineering 
novel genetic circuits in the bacterium Bacillus subtilis [12, 13]. However, despite being a 
widely-used model organism, this bacterium is in many ways poorly understood. We 
developed an Ondex-based integrated dataset, BacillOndex, to facilitate the genome-scale 
analysis of B. subtilis. 

1.3 Engineering Bacillus subtilis 

Bacillus subtilis is a model prokaryote. This bacterium is ubiquitous in soil environments, 
non-pathogenic, and has a number of characteristics which make it valuable for the 
biotechnology industry, including the ability take up foreign DNA under certain 
circumstances, a capacity for spore formation, and the ability to secrete a range of proteins 
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[14]. B. subtilis is widely studied, and much information about its genetics and physiology has 
been generated.  

Even for B. subtilis, however, many of the details of interactions between physical elements 
are not fully understood. Identifying interactions and obtaining biochemical parameters for 
those interactions and corresponding biochemical reactions has been a challenge [15]. 
However, qualitative models such as graph-based biological networks can capture the 
relationships between biological concepts and provide insights into cellular systems [16-19]. 
In simple, manual genetic circuit designs, interactions between individual parts are specified 
by a domain expert. In order to automate circuit design, this knowledge must be machine 
accessible.  

The most widely-used strain of B. subtilis is 168. This strain is used in almost all academic 
studies, and for a wide range of industrial processes. Strain 168 was generated from the less 
malleable parent strain, Marburg, via mutagenesis with X-rays, in the 1940s [20], and is 
popular largely because it is easily transformed with foreign DNA. Strain 168 is a tryptophan 
auxotroph, and also has a number of other phenotypic differences from the parent strain, 
including differences in motility, sporulation and cell wall physiology [21]. However, the 
genetic bases of these phenotypic differences are still not well understood, and the full extent 
of the phenotypic effects of the original random mutagenesis is not clear. 

B. subtilis 168 has one circular chromosome of 4.2 Megabases (Mb) containing 4354 genes 
(4176 protein coding genes and 178 RNAs) and is believed to have 192 indispensable, as well 
as 79 essential genes [22]. The genome of the strain was first sequenced in 1997 [23]. The 
project had contributions from 25 European laboratories, seven Japanese, two US and one 
Korean laboratory. Bacterial strains tend to evolve rapidly in laboratory environments and re-
sequencing of the genome took place in 2009. This project utilized faster, more accurate 
sequencing techniques and a recently developed high-level annotation platform, MaGe [24]. 
In stark contrast to the significant effort required only fifteen years ago, it is now possible to 
sequence a complete bacterial genome for a few hundred pounds in an afternoon [25]. The 
potential for large-scale analysis of important organisms such as B. subtilis is only just about 
to be realised. 

There is considerable current interest in single nucleotide polymorphism (SNP) analysis. A 
number of stand-alone tools for SNP analysis are available [26-28], and support for SNP 
analysis is built into free statistical analysis packages such as R1 29 and Excel [ ], and 
commercial tools such as Lasergene2

Here, we describe the development of an integrated, semantically-annotated Ondex network 
for B. subtilis, and the application of this network to the analysis of SNPs generated when B. 
subtilis 168 was generated from its parent strain, Marburg.  

. Most synthetic biology focuses on the manipulation of 
large segments of DNA, whole genes and their attendant control sites, and even entire 
pathways. The ability to rapidly generate insight into the relationship between small 
mutations—SNPs—and phenotypic effects could allow future synthetic biologists to carry out 
fine-grained tuning of bacterial chassis. 

  

                                                 
1 http://www.bioconductor.org/ 
2 http://www.dnastar.com/t-sub-nextgen-genome-solutions-snp-analysis.aspx 
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2 Methods 

2.1 Data Sources 

Data about the sequence, functional annotation and interactions of all B. subtilis genes and 
their proteins were obtained from a range of databases (Table 1). In addition, B. subtilis 
microarray data from the KEGG EXPRESSION3

One of the advantages of the Ondex system is its ability to reuse database parsers in order to 
rapidly build new datasets. Parsers can be time consuming to write, but once written become a 
resource for the entire community. Constructing a new knowledge base, such as BacillOndex, 
using existing parsers takes around an hour, whereas querying the knowledge base is almost 
instantaneous. We used data sources for which parsers had already been written wherever 
possible. However, it was necessary to write several new parsers for B. subtilis-specific 
datasets. Although we chose to use KEGG EXPRESSION, other relevant data, such as 
microarray data from the NCBI Gene Expression Omnibus [

 database were parsed to find the normalised 
minimum and maximum level of gene expression for each gene over all expression datasets, 
in order to assess the relative strengths of different promoters. BacillOndex includes 
information about the expression of genes from 79 microarray experiments.  In the network, 
concepts for these coding sequences (CDSs) were linked to promoter concepts. Therefore, the 
expression levels of CDS concepts can be used to infer the strengths of upstream promoters. 

30], could be used once the 
appropriate parsers become available.  

 
Table 1: Data sources used to construct BacillOndex. 

Source Data Type Reference 
BacilluScope Sequence, annotations [24] 
KEGG Metabolic pathways [31] 
DBTBS Transcription factor binding [32] 
STRING Protein interactions [33] 
KEGG Expression Microarray [34] 
Gene Ontology Annotations [35] 
UniProt Protein sequence features [36] 

 

New parsers were implemented to convert data from the BacilluScope, DBTBS, STRING and 
KEGG EXPRESSION databases. For Gene Ontology (GO) terms and annotations existing 
parsers were used. The Ondex file for KEGG was downloaded from the Ondex Web site. The 
new concepts were given the “user friendly” names from BacilluScope as preferred names. 
Concepts and relations were linked to literature and public databases using the appropriate 
accession numbers. Following integration the Ondex network was searched for motifs 
representing positive and negative auto-regulation. Concepts for feed-forward loops (FFLs) 
representing these interactions were added to the knowledge base, along with links to the 
participating genes. 

                                                 
3 http://www.genome.jp/kegg/expression/ 
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2.2 Data Integration Strategy 

Although the Ondex ontology includes a large number of types of biological concepts, the 
encoding of proteins and RNAs, and transcriptional relationships can be modelled at the gene 
level using Ondex. However, in synthetic biology it is necessary to work with finer-grained 
elements of genes, such as promoters and CDSs. Therefore, concept types representing 
sequence features, including promoters, operators, CDSs, ribosome binding sites (RBSs), 
shims, terminators and operons, were added to the Ondex ontology in order to construct 
BacillOndex. In addition, network motifs such as FFLs can be used to construct biological 
devices, and hence FFL concepts were identified in the network and included in the metadata. 
GO terms are useful to annotate gene products, the Clusters of Orthologous Groups (COG) 
numbers can also be used to classify proteins and also find orthologous parts from other 
species. Therefore, concept types for COG numbers and their categories were also included.  

The BacillOndex data model was designed to encompass a wide range of concepts from a 
variety of source databases (Table 1). Biological concepts such as Protein and CDS are 
modelled as concept classes as required by the Ondex system. Instances of concept classes 
inherit the relationships defined in the model. For example, the relationships between proteins 
and CDSs are represented by is_encoded_by, while those between TFs and proteins are 
annotated as is_equivalent_to. Proteins, TFs and enzymes can share properties such as 
names, but are represented by different concepts. This approach helps to encapsulate role-
specific attributes. 

The BacillOndex dataset includes the following types of concept:  

• CDS, promoter, operator, operon, terminator, shim and RBS concepts derived from 
sequence-based features; 

• Protein, RNA, enzyme, TF and protein complex concepts representing gene products and 
their aggregates; 

• COG class, COG class category, KEGG orthologs enzyme (KOEN), KEGG orthologs 
gene (KOGE) and KEGG orthologs protein (KOPR) concepts classifying other concepts 
using orthology terms; 

• Cellular component, molecular function, biological process and enzyme classification 
concepts for location-, function- and biological process-based classifications; 

• Reaction, pathway and compound concepts forming the core of the pathways in the 
network; 

• Concepts for FFLs and promoter strength data derived from microarray experiments. 

2.3 Systems-level Analysis of Single Nucleotide Polymorphisms 

The parent strain, Marburg ATCC 6051, was sequenced by ACGT, Inc.4 using Illumina5 
HiSeq technology. We obtained 5,092,107 reads, of an average length of 36 bp, providing 
approximately 40 times coverage. The Marburg sequence was assembled using the Lasergene 
Core Suite from DNAStar6

                                                 
4 http://www.acgtinc.com/ 

. The assembled sequence was compared with that of B. subtilis 
168 in order to identify SNPs.  

5 http://www.illumina.com/index.ilmn 
6 http://www.dnastar.com/   
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For each strain SNPs were identified using the DNAStar SeqMan Pro7

2.3.1 CatSNP  

 tool and a SNP report 
created, which identified the SNP type of those occurring in CDS: silent SNPs, which do not 
change the amino acid (sSNPs); non-silent SNPs, which do alter the protein produced 
(nsSNPs); expression SNPs, occurring in the control regions of genes (eSNPs); or single-base 
insertions or deletions (INDELs). If the software could not identify the SNP type, it was 
annotated manually. Manual analysis was also employed to identify the coverage and 
accuracy of each SNP, and the location of the SNP with respect to the reads; SNPs at read 
boundaries are less likely to be accurate than those in the middle of a read. BacillOndex was 
then used to map these SNPs to specific pathways, and infer the possible phenotypic 
implications of the mutations. 

The Cellular Analysis Tool for SNPs (CatSNP) is a SNP filter plug-in for the BacillOndex 
dataset. It runs in the Ondex Integrator interface, as part of an automated workflow. 

CatSNP takes as input the genomic locations, identifies the associated concepts in the 
BacillOndex dataset, and produces an Ondex subgraph linking genomic location, protein, 
pathway and other available data.  

The CatSNP workflow contains an OXL parser (which takes in the BacillOndex integrated 
dataset), a SNP parser (which takes in a SNP.txt file containing SNP locations), a filter (which 
filters SNPs into BacillOndex dataset) and an OXL exporter (Figure 1). 

 
Figure 1. Visualisation of the CatSNP workflow within the Integrator of the Ondex platform. 

3 Results 

We produced an integrated knowledge base for B. subtilis from a range of sources, together 
with a set of parsers that allow the network to be easily rebuilt and kept up to date. The 
knowledge base combines genome annotations with data about the genetic regulatory 
network, biochemical reactions, microarray experiments and protein-protein interactions. The 
Ondex network contains a number of different concepts: Coding sequence (CDS), Protein, 
Transcription Factor, Operon, Operator, Promoter, Terminator, RNA, Enzyme, Enzyme 
Classification, Reaction, Pathway, Compound, COG Class, COG Class Category, Cellular 
Component, Molecular Function, Biological Process, KEGG Orthologs Enzyme, KEGG 

                                                 
7 http://www.dnastar.com/t-sub-products-lasergene-seqmanpro.aspx 
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Orthologs Gene, Protein Complex, KEGG Orthologs Protein, Feed-Forward Loop, 
Microarray Experiment, Ribosome Binding Site (RBS) and Spacer sequence (Shim). The 
knowledge base is in the form of an XML file, which can be imported into Ondex. The dataset 
contains 33,043 concepts and 94,774 relations. We also provide the workflows and relevant 
parsers to perform the integration, in the form of an Ondex plugin. 

BacillOndex will facilitate the accession, visualisation, analysis and exchange of data by the 
B. subtilis research community, and forms the basis for the production of integrated 
knowledge bases for other microorganisms. BacillOndex is underpinned by a formal 
ontology, built as an extension of the standard Ondex ontology (Figure 2). 

 
Figure 2. The BacillOndex ontology. 

Journal of Integrative Bioinformatics, 10(2):224, 2013 http://journal.imbio.de

doi:10.2390/biecoll-jib-2013-224 7

C
op

yr
ig

ht
 2

01
3 

Th
e 

A
ut

ho
r(

s)
. P

ub
lis

he
d 

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e 

B
io

in
fo

rm
at

ic
s.

 
Th

is
 a

rti
cl

e 
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s 
3.

0 
U

np
or

te
d 

Li
ce

ns
e 

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).



3.1.1 CatSNP Analysis 

BacillOndex, in conjunction with a purpose-designed tool, CatSNP, was applied to a genome-
wide analysis of the genetic differences between the widely-used laboratory strain of B. 
subtilis, 168, and its parent strain, Marburg. This process produced a set of BacillOndex 
subgraphs linking each SNP with all available data, at every level of biological organisation 
(Figure 3). Not all of the concepts shown in Figure 3 were available for every SNP. 

 

 
Figure 3. An overview of the concept classes and relation types contained within the graph 
produced by the BacillOndex dataset showing the relationship between concept classes. 

 

The problem of missing data occurred at all stages of the analysis process. The applicability 
of any integrated dataset is dependent upon the data available, and even for a well-studied and 
frequently-used organism such as B. subtilis significant amounts of data are unavailable, 
particularly for genes and proteins of secondary interest to industry. For example, although 65 
high-quality SNPs were identified in the alignment of 168 and Marburg, only 57 could be 
located in BacillOndex. Although we had genomic location information for all SNPs, some 
genes were simply not represented in the databases upon which we drew. Overall, 44 nsSNPs 
or INDELS, 5 sSNPs and 8 eSNPs were identified. 

The genes containing SNPs had a range of annotations when investigated using GO and 
KEGG  (Table 2). A wide range of concepts was associated with these SNPs (Table 3). There 
was, however, enough data for some SNPs to allow analysis from the genomic level up to 
pathways, and even to the inference of biological function (Figure 4). 
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Table 2: SNPs Identified in B. subtilis 168 compared with the parent Marburg strain. 

Protein Annotation Protein Annotation 

Non-synonymous SNPs Expression SNPs 

TrpC Phenylalanine, tyrosine and 
tryptophan biosynthesis 

YesS Transcription, DNA 
dependent 

AroH Phenylalanine, tyrosine and 
tryptophan biosynthesis 

YisR Transcription, DNA 
dependent 

SfP Antibiotic anabolism PerR Regulation of transcription 

PspC Antibiotic anabolism FlgM Regulation of transcription 

GerAA Spore germination MtnK Cysteine and methionine 
metabolism 

SpovG Cellular spore formation DegQ  

SigH Cellular spore formation Synonymous SNPs 

MbL Cellular morphogenesis PpsC Antibiotic anabolism 

PiT Phosphate transport KipA Cellular spore formation 

AmyD Transport PgdS Hydrolase 

PhoD Folate biosynthesis IlvC Valine, leucine and 
isoleucine biosynthesis 

SacA Starch & sucrose metabolism   

Glt Alanine, aspartate and glutamate 
metabolism 

  

HemA Porphyrin and chlorophyll 
metabolism 

  

RbsR Regulation of transcription   

TrmD Methylation   

Rlub RNA modification   

 
Table 3: Concepts associated with the high-probability SNPs. 

Concept Number Concept Number 

SNP 57 Promoter 3 

Pathway 18 Shim 1 

Reaction 19 Ribosomal Binding Site 1 

Enzyme Classification 11 Operator 1 

Enzyme 10 GO Cellular Component 8 

Protein 40 GO Molecular Function 59 

CDS 39 GO Biological Process 48 

Protein Sequence Feature 55   

Journal of Integrative Bioinformatics, 10(2):224, 2013 http://journal.imbio.de

doi:10.2390/biecoll-jib-2013-224 9

C
op

yr
ig

ht
 2

01
3 

Th
e 

A
ut

ho
r(

s)
. P

ub
lis

he
d 

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e 

B
io

in
fo

rm
at

ic
s.

 
Th

is
 a

rti
cl

e 
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s 
3.

0 
U

np
or

te
d 

Li
ce

ns
e 

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).



 
Figure 4. SNPs can be linked to phenotype at several levels of complexity. A: 16 SNPs (1sSNP & 
15 nsSNPs- of which 9 are INDELs) associated with the protein chain of the plipistatin synthase 
subunit C, PpsC. 6 SNPs are found within the adenylation 1 region of the protein chain with 9 
found within the epimerization region (please note that for the purpose of this graph the 
SNP_Labels as well as SNP_relation labels (is_subfeature_of) have been hidden).B: An eSNP 
within the promoter region of the pleiotropic regulator, DegQ. C: Visualisation of the insertion 
within the protein chain of the Surfactin synthetase-activating enzyme, SfP. D: It is clear that 
both SfP and PpsC are involved in the formation of antibiotics. 
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4 Discussion 

The BacillOndex and CatSNP tools together facilitate the analysis of very large amounts of 
data. In this application we compared two complete bacterial genomes, each of 4.2MB, and 
reduced this data to 65 SNPs most likely to be relevant to our interests. Although this process 
still required considerable human input, particularly with respect to establishing the likelihood 
that the SNPs identified are valid, many of the tasks we did manually could be automated in 
the future. Even with the manual analysis steps, our workflow allows much more data to be 
analysed that would be possible without it. 

Although the purpose of the workflow is, essentially, to eliminate irrelevant data, it is still 
possible to produce a useful level of biological detail (Figure 4). As synthetic biologists, we 
are interested in understanding the genetic basis of differences between the laboratory 
workhorse B. subtilis 168 and its parent strain, Marburg. Our aim is to engineer organisms 
with novel, predictable behaviour, and in order to do so a systems-level understanding of the 
organisms in question is valuable [37]. In the case of B. subtilis the mutations which created 
strain 168 were introduced at random, but the organism has had 65 years of laboratory 
existence in which to evolve both to fit life in a lab, and to adjust the effect of the initial 
mutations to work together. 

We found that many of the SNPs identified were in CDSs involved in biological processes 
contributing to phenotypic differences known to exist between Marburg and 168. For 
example, in a laboratory 168 grown on rich medium is generally under very little pressure to 
form spores. A number of the SNPs we identified occur in proteins related to sporulation. It 
has previously been speculated that sporulation deficiency in 168 is due to small indels and 
substitutions [38]. We also identified some previously known mutations, including one in 
TrpC2, essential for tryptophan metabolism [39], and several that interfere with motility in 
168. Some other pathways which are strongly represented in the data, however, such as 
phenylalanine, tyrosine and tryptophan biosynthesis, and antibiotic anabolism, are less well 
represented in the literature, and are worth further investigation. 

Although we had specific interests underlying the development of our workflow, BacillOndex 
and CatSNP could be applied to the investigation of many other aspects of Bacillus biology. 
Ondex has already been used to identify candidates for drug repurposing in a human dataset 
[11], and its application to drug target identification in bacteria would be straightforward. 

Many industrial applications involve the production of novel biomolecules. An obvious 
extension of BacillOndex, with particular value to synthetic biology, would be the 
incorporation of data from other organisms. By identifying commonalities and differences 
between different organisms, it should be possible to identify compatible pathways which 
could easily be moved between organisms, or unexpected interactions, regulatory or 
otherwise, between chassis and novel circuits. 

An obvious limitation of BacillOndex is the lack of data available for some genes, proteins 
and interactions. Of the 65 SNPs which we identified as potentially interesting using sequence 
alignment and analysis, only 57 could be identified in BacillOndex. Recent technological 
advances in both data generation and bioinformatics analysis mean, however, that more data 
is constantly becoming available. Much of this data, generated by high-throughput 
experiments, is not published in the peer-reviewed literature, but is deposited in online 
databases, and is therefore valuable grist to the data miner’s mill. We have made BacillOndex 
and its associated parsers freely available so that new data can be added to the system as it 
becomes available, by any user. Many of the parsers are generic enough to be used for any 
organism, making the development of new integrated bacterial datasets relatively 
straightforward. New parsers can also be developed as data sources come online or change. 
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Ondex, BacillOndex and the CatSNP plugin are data integration and workflow development 
tools which we believe will be valuable to systems and synthetic biologists interested in 
making maximal use of the variety of data available for microbes. We have applied them to an 
evolutionary analysis of B. subtilis, but they are potentially much more widely applicable, and 
should aid in the investigation of a wide range of biological questions. 
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