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Anomaly Detection in IP Networks

Marina Thottan and Chuanyi Ji

Abstract—Network anomaly detection is a vibrant research referred to as network tomography [4], there is no assumption
area. Researchers have approached this problem using various made about the network, and through the use of probe measure-
techniques such as artificial intelligence, machine learning, and ents one can infer the characteristics of the network. This is a
state machine modeling. In this paper, we first review these ' - -
anomaly detection methods and then describe in detail a statistical useful approach when character_lzmg nonpo_oper_aﬂve networks
signal processing technique based on abrupt change detection. WeOr networks that are not under direct administrative control. In
show that this signal processing technique is effective at detecting the case of a single administrative domain where knowledge of
several network anomalies. Case studies from real network data the basic network characteristics such as topology are available,
that demonstrate the power of the signal processing approach 5, entity-hased study would provide more useful information
to network anomaly detection are presented. The application of to the network administrator. Using some basic knowledge of
signal processing techniques to this area is still in its infancy, and : . o
we believe that it has great potential to enhance the field, and the network layout as well as the traffic characteristics at the
thereby improve the reliability of IP networks. individual nodes, it is possible to detect network anomalies and

Index Terms—Adaptive signal processing, autoregressive pro- performance_bottlenecks. The detection of these events can then
cesses, eigenvalues and eigenfunctions, network performance, netbe used to trigger alarms to the network management system,
work reliability. which, in turn, trigger recovery mechanisms. The methods pre-
sented in this paper deal with entity-based measurements.

The approaches used to address the anomaly detection
problem are dependent on the nature of the data that is avail-

ETWORKS are complex interacting systems and are comble for analysis. Network data can be obtained at multiple

prised of several individual entities such as routers amglels of granularity such as end-user-based or network-based.
switches. The behavior of the individual entities contribute tBnd-user-based information refers to the transmission control
the ensemble behavior of the network. The evolving nature pfotocol (TCP) and user datagram protocol (UDP) related data
internet protocol (IP) networks makes it difficult to fully un-that contains information that is specific to the end application.
derstand the dynamics of the system. Internet traffic was firgetwork-based data pertains to the functioning of the network
shown to be composed of complex self-similar patterns by Ldevices themselves and includes information gathered from
landet al.[1]. Multifractal scaling was discovered and reportethe router’s physical interfaces as well as from the router’s
by Levy-Vehelet al. [2]. To obtain a basic understanding offorwarding engine. Traffic counts obtained from both types of
the performance and behavior of these complex networks, veata can be used to generate a time series to which statistical
amounts of information need to be collected and processefnal processing techniques can be applied [5], [6]. However,
Often, network performance information is not directly availin some cases, only descriptive information such as the number
able, and the information obtained must be synthesized to @j-open TCP connections, source-destination address pairs, and
tain an understanding of the ensemble behavior. In this pagssrt numbers are available. In such situations, conventional
we review the use of signal processing techniques to addrepdroaches of rule-based methods would be more useful [7].
the problem of measuring, analyzing, and synthesizing networkThe goal of this paper is to show the potential to apply signal
information to obtain normal network behavior. The normal neprocessing techniques to the problem of network anomaly
work behavior thus computed is then used to detect netwafktection. Application of such techniques will provide better
anomalies. insight for improving existing detection tools as well as provide

There are two main approaches to studying or characteriziggnchmarks to the detection schemes employed by these
the ensemble behavior of the network: The first is the infeteols. Rigorous statistical data analysis makes it possible to
ence of the overall network behavior through the use of netwagjantify network behavior and, therefore, more accurately
probes [3] and the second by understanding the behavior of Hescribe network anomalies. The scope of this paper is to
individual entities or nodes. In the first approach, which is ofteslescribe the problem of IP network anomaly detection in a

single administrative domain along with the types and sources
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[8]. Furthermore, there is no single variable or metric thgterformance degradation in the network. Based on this intu-
captures all aspects of normal network function. This preseiitige model currently being used, we premise the following:
the problem of synthesizing information from multiple metricd\etwork anomalies are characterized by correlated transient
each of which have widely differing statistical propertieschanges in measured network data that occur prior to or during
To address this issue, we use an operator matrix to correlateanomalous everithe terntransient changesefers to abrupt
information from individual metrics [5]. The paper also idenchanges in the measured data that occurs in the same order as
tifies some of the challenges posed to the signal processthg frequency of the measurementinterval. The duration of these
community by this new application. abrupt changes varies with the nature of the triggering anoma-
The paper is organized as follows: Section Il describes thals event.
characteristics of network anomalies along with some examples.
The different sources from which network data can be obtainéd Examples of Network Anomalies

are described in Section Ill. Section IV surveys the commonly Network anomalies can be broadly classified into two
used methods for anomaly detection. In Section V, we descriggtegories. The first category is related to network failures
a statistical technique to solve the same problem. We presengag performance problems. Typical examples of network
evaluation criteria for the effectiveness of the signal processipgrformance anomalies are file server failures, paging across
technique and summarize its performance in detecting variah® network, broadcast storms, babbling node, and transient
network anomalies. We describe four in-depth case studies ghgestion [13], [14]. For example, file server failures, such as
anomalous events in real networks as well as the performarceeb server failure, could occur when there is an increase in
of the statistical approach in each of these cases. Section VI ghe2 number oftp requests to that server. Network paging errors
scribes relevant issues in the application of signal processimgcur when an application program outgrows the memory
techniques to network data analysis. In Section VII, we disculisitations of the work station and begins paging to a network
some of the open issues that provide interesting avenues tofég- server. This anomaly may not affect the individual user

plore for future work. but affects other users on the network by causing a shortage of
network bandwidth. Broadcast storms refer to situations where
II. NETWORK ANOMALIES broadcast packets are heavily used to the point of disabling the

Network anomalies typically refer to circumstances Wher#]etwork. A babbling node is a situation where a node sends
. ypically .out small packets in an infinite loop in order to check for some
network operations deviate from normal network behavio

. . . hformation such as status reports. Congestion at short time
Network anomalies can arise due to various causes such

L ; >UCNBles occurs due to hot spots in the network that may be a
malfunctioning network devices, network overload, malicio

. ) . ) . sult of some link failure or excessive traffic load at that point
denial of service attacks, and network intrusions that disrupt the

normal delivery of network servi Th nomal " the network. In some instances, software problems can also
ormai defivery of NEIWOTK SErvices. 1Nese anomalous EVeRts qirast themselves as network anomalies, such as a protocol
will disrupt the normal behavior of some measurable netwo

. . lementation error that triggers increased or decreased traffic
data. In this paper, we present techniques that can be emplo% characteristics. For example, arceptprotocol error in a

to detect such types of anomalies. _ super serverifietd) results in reduced access to the network,
The definition of normal network behavior for measured ne\t,\—l ich. in turn. affects network traffic loads

work data is dependent on several network specific factors suc he second major category of network anomalies is secu-
as the dynamics of the network being studied in terms of traffig, o|ated problems. Denial of service attacks and network
volume, the type of network data available, and types of applrsions are examples of such anomalies. Denial of service

cations running on the network. Accurate modeling of normak- ~ks occur when the services offered by a network are
network behavior is still an active field of research, especialmjacked by some malicious entity. The offending party could

the online modeling of network traffic [9]. There exists parsigisaple a vital service such as domain name server (DNS)
monious traffic models that accurately capture fractal and Myl ns and cause a virtual shutdown of the network [15], [16].
tifractal scaling properties, such as the self-5|mlla_r models iBor this event, the anomaly may be characterized by very low
troduced by Norros [10] and cascade models originally sugsroyghput. In case of network intrusions, the malicious entity
gested by Croussa al.[11]. While Crousetal.concentrate on ¢qy|d hjjack network bandwidth by flooding the network with

the signal processing issues and statistical matching to ”etWGHﬁecessary traffic, thus starving other legitimate users [6],

traffic, Gilbertet al. provide a more network centric descriptior[ﬂ]_ This anomaly would result in heavy traffic volumes.
of cascade-scaling [12]. Within these parsimonious modeling

frameworks, different approaches can be used to do anomaly
detection.

Today’s commercially available network management sys- Obtaining the right type of network performance data is es-
tems continuously monitor a set of measured indicators to detgential for anomaly detection. The types of anomalies that can
network anomalies. A human network manager observes thedetected are dependent on the nature of the network data. In
alarm conditions or threshold violations generated by a grotlps section, we review some possible sources of network data
of individual indicators to determine the status of the health afong with their relevance for detecting network anomalies. For
the network. Such alarm conditions represent deviations frahre purpose of anomaly detection, we must characterize normal
normal network behavior and can occur before or during draffic behavior. The more accurately the traffic behavior can be
anomalous event. These deviations are often associated witbdeled, the better the anomaly detection scheme will perform.

[ll. SOURCES OFNETWORK DATA
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A. Network Probes provider’'s network management software. However, these pro-

Network probes are specialized tools suchiagandtracer- tocols provide a wealth of information that is available at very

oute[18] that can be used to obtain specific network parametéi@e granularity. The following subsection will describe this data

such as end-to-end delay and packet loss. Probing tools provig&rce in greater detail.

an instantaneous measure of network behavior. These methody SimPle Network Management Protocol (SNMNMP
do not require the cooperation of the network service providdfOTKs in a client-server paradigm [22]. The protocol provides a

However, it is possible that the service providers could choo@ee_(:han'sm to communicate betwgenthe manager and the agent.
not to allow ping traffic through their firewall. Furthermore, the® single SNMP manager can monitor hundreds of SNMP agents

specialized IP packets used by these tools need not follow fﬁé‘t are located on the network devices. SNMP is implemented

same trajectory or receive the same treatment by network @éj{he application layer and runs over the UDP. The SNMP man-

vices as do the regular IP packets. This method also assumed@e’ has the ability to collect management data that is provided

existence of symmetric paths between given source—destinal}fynthe SNMP agent but does not have the ability to process this

pairs. On the Internet, this assumption cannot be guarante%?itfi' The SNMP server maintains a database of management

Thus, performance metrics derived from such tools can provi?ﬂ@”ableS called the managemen_t informatipn base (N_”B) vari-
only a coarse grained view of the network. Therefore, the daﬁgles [23]. These variables contain information pertaining to the

obtained from probing mechanisms may be of limited value fg]jfferent functions performed by the network devices. Although
the purpose of anomaly detection this is a valuable resource for network management, we are only

beginning to understand how this information can be used in
problems such as failure and anomaly detection.

Every network device has a set of MIB variables that are spe-

In packet filtering, packet flows are sampled by capturingific to its functionality. MIB variables are defined based on
the IP headers of a select set of packets at different pOintSﬂifé type of device as well as on the pro[oc0| level at which
the network [19]. Information gathered from these IP headggsoperates. For example, bridges that are data link-layer de-
is then used to provide detailed network performance informgices contain variables that measure link-level traffic informa-
tion. For flow-based monitoring, a flow is identified by sourcetion. Routers that are network-layer devices contain variables
destination addresses and source-destination port numbers. thag provide network-layer information. The advantage of using
packet filtering approach requires sophisticated network sagNMP is that it is a widely deployed protocol and has been
pling techniques as well as specialized hardware at the netwgglndardized for all different network devices. Due to the fine-
devices to do IP packet lookup. Data obtained from this methgghined data available from SNMP, it is an ideal data source for
could be used to detect anomalous network flows. However, thétwork anomaly detection.

hardware requirements required for this measurement methog) SNMP—MIB Variables:The MIB variables [24] fall into

B. Packet Filtering for Flow-Based Statistics

makes it difficult to use in practice. the following groups: system, interfacef) (address translation
(at), internet protocol if), internet control message protocol
C. Data From Routing Protocols (icmp), transmission control protocalop), user datagram pro-

Information about network events can be obtained throudpc0! Udp), exterior gateway protocotgp, and simple network
the use of routing peers. For example by using an open shorf@&nagement protocaiimp. Each group of variables describes
path first (OSPF) peer, it is possible to gather all routing tab{8€ functionality of a specific protocol of the network device.
updates that are sent by the routers [20]. The data collected 8§Pending on the type of node monitored, an appropriate group
be used to build the network topology and provides link stat§f variables can.be con3|dered.. If the node belpg monitored is
updates. If the routers run OSPF with traffic engineering (TEOUter, then thép group of variables are investigated. Tipe
extensions, it is possible to obtain link utilization levels [Zl]yarlablgs descrlbe_ the traffic characteristics at.the netyvork layer.
Since routing updates occur at frequent intervals, any changd/ip variables areimplemented as counters. Time series data for
link utilization will be updated in near real time. However, sinc€ach MIB variable is obtained by differencing the MIB variables
routing updates must be kept small, only limited informatiofit WO subsequent time instances called the polling interval.

pertaining to link statistics can be propagated through routing T here is no single MIB variable that is capable of capturing
updates. all network anomalies or all manifestations of the same network

anomaly. Therefore, the choice of MIB variables depends on
the perspective from which the anomalies are detected. For ex-

ample, in the case of a router, tipegroup of MIB is chosen,
Network management protocols provide information aboyfhereas for a bridge, thiégroup is used.

network traffic statistics. These protocols support variables that
correspond to traffic counts at the device level. This information
from the network devices can be passively monitored. The infor-
mation obtained may not directly provide a traffic performance In this section, we review the most commonly used net-
metric but could be used to characterize network behavior amehrk anomaly detection methods. The methods described are
therefore, can be used for network anomaly detection. Usinge-based approaches, finite state machine models, pattern
this type of information requires the cooperation of the servigratching, and statistical analysis.

D. Data From Network Management Protocols

IV. ANOMALY DETECTION METHODS
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A. Rule-Based Approaches imum cardinality such that all entities in the set explain all the

Early work in the area of fault or anomaly detection was bas@fMs and at least one of the nodes in the set is the most likely
on expert systems. In expert systems, an exhaustive dataf¥¥ © be in fault. In this approach, there is an underlying as-
containing the rules of behavior of the faulty system is used §yMPtion that the alarms obtained are true. No attempt is made
determine if a fault occurred [25], [26]. Rule-based systems atRegenerate_ the |nd|v.|dual alarms themsglves. A review of such
too slow for real-time applications and are dependent on pritiat® machine techniques can be found in [32] and [33].
knowledge about the fault conditions on the network [27]. The The difficulty encountered in using the finite state machine

identification of faults in this approach depends on sympton'i‘%ethOd is that not all faults can be captured by a finite sequence

that are specific to a particular manifestation of a fault. Exar@! &larms of reasonable length. This may cause the number of

ples of these symptoms are excessive utilization of bandwid§{t€S required to explode as a function of the number and com-
number of open TCP connections, total throughput exceed8fXity of faults modeled. Furthermore, the number of param-

etc. These rule-based systems rely heavily on the expertiséli's 0 be learned increases, and these parameters may not

the network manager and do not adapt well to the evolving nég_main constant as the network evolves. Accounting for this

work environment. Thus, it is possible that entirely new fault\éariability would require extensive off-line learning before the
may escape detection. In [25], the authors describe an expifieme can be deployed on the network.

system model using fuzzy cognitive maps (FCMs) to overcome _

this limitation. FCM can be used to obtain an intelligent mod<- Pattern Matching

eling of the propagation and interaction of network faults. FCMs A new approach proposed and implemented by Maxion and
are constructed with the nodes of the FCM denoting managgers [34], [35] describes anomalies as deviations from normal
objects such as network nodes and the arcs denoting the fgilhavior. This approach attempts to deal with the variability in
propagation model. the network environment. In this approach, online learning is
Case-based reasoning is an extension of rule-based systggii to build a traffic profile for a given network. Traffic pro-
[26]. It differs from FCM in that, in addition to just rules, a pic-files are built using symptom-specific feature vectors such as
ture of previous fault scenarios is used to make the decisiofigk utilization, packet loss, and number of collisions. These
A picture here refers to the circumstances or events that lggbfiles are then categorized by time of day, day of week, and
to the fault. In order to adapt the case-based reasoning schejpecial days, such as weekends and holidays. When newly ac-
to the changing network environment, adaptive learning teciuired data fails to fit within some confidence interval of the
niques are used to obtain the functional dependence of relevaabeloped profiles then an anomaly is declared.
criteria such as network load, collision rate, etc., to previous|n [34], normal behavior of time series data is captured as
trouble tickets [28]. The trouble ticketing system is used to pe'emplates and tolerance limits are set based on different levels of
form two functions: Prepare for problem diagnostics through fistandard deviation. These limits were tested using extensive data
tering, and infer the root cause of the problem. Using case-baselysis. The authors also propose a pattern matching scheme
reasoning for describing fault scenarios also suffers from heawydetect address usage anomalies by tracking each address at
dependence on past information. Furthermore, the identifigmin intervals. A template of the mean and standard deviation
tion of relevant criteria for the different faults will, in turn, re-on the usage of each address is then used to detect anomalous
quire a set of rules to be developed. In addition, using any furtsehavior. The anomaly vectors from any new data are checked
tional approximation scheme, such as back propagation, caugsisig the template feature vector for a given anomaly and if a
an increase in computation time and complexity. The numbermiatch occurs it is declared as indicating a fault. Similar tech-
functions to be learned also increases with the number of fautisiues have been used to study service anomalies [35]. Here,

studied. the anomaly detector analyzes transaction records to produce
alarms corresponding to service performance anomalies.
B. Finite State Machines The efficiency of this pattern matching approach depends on

Anomaly or fault detection using finite state machines modgTe accuracy of the traffic profile generated. Given a new net-

alarm sequences that occur during and prior to fault events.v.v,grk’ |t_m_a y be necessary to spend a con5|dera_1ble amount of

L . . X ime building traffic profiles. In the face of evolving network
probabilistic finite state machine model is built for a known net- . : " .

: . : : ﬂpologles and traffic conditions, this method may not scale

work fault using history data. State machines are designed wi 1T ceful
the intention of not just detecting an anomaly but also possib%/ Y-
identifying and diagnosing the problem. The sequence of alarms
obtained from the different points in the network are modeldd:
as the states of a finite state machine. The alarms are assumeks the network evolves, each of the methods described
to contain information such as the device name as well as thisove require significant recalibration or retraining. However,
symptom and time of occurrence. The transitions between thsing online learning and statistical approaches, it is possible
states are measured using prior events [29]-[31]. A given clustercontinuously track the behavior of the network. Statistical
of alarms may have a number of explanations, and the objectarmalysis has been used to detect both anomalies corresponding
is to find the best explanation among them. The best explanationnetwork failures [5], as well as network intrusions [6].

is obtained by identifying a near-optimal set of nodes with minnterestingly, both of these cases make use of the standard

Statistical Analysis
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Fig. 1. Schematic representation of the proposed model for network anomalies.

sequential change point detection approach. Hmeoding A. Characterization of Network Anomalies
Detection Systemwhich was proposed by the authors in [6], | statistical analysis, a network anomaly is modeled as cor-
uses measured network data that describes TCP operationggied abrupt changes in network data. An abrupt change is de-
detect SYN flooding attacks. SYN flooding attacks capitaliz&ined as any change in the parameters of a time series that occurs
on the limitation that TCP servers maintain all half-0pegp the order of the sampling period of the measurement. For ex-
connections. Once the queue limit is reached, future TGple, when the sampling period is 15 s, an abrupt change is de-
connection requests are denied. The sequential change pgifid as a change that occurs in the period of approximately 15 s.
detection employed here makes use of the nonparametfigis approach models the intuition of network managers who
cumulative sum (CUSUM) method. Using this approach oise hard threshold violations to generate alarms. The scheme
trace-driven simulations, it has been shown that SYN ﬂOOdl%ed by most commercial management tools is similar to ma-
attacks can be detected with high accuracy and reasongplty voting. However, statistical signal processing techniques
short detection times. reduce the number of false alarms as well as increase the proba-
When detecting anomalies due to failures, we are confrontgifity of detection as compared with simple majority voting and
with the problem of detecting a host of potential failure scevard thresholds [5].
narios. Each of these failure scenarios differ in their manifes- Abrupt changes in time series data can be modeled using an
tations as well as their characteristics. Thus, it is necessaryaifto-regressive (AR) process [8]. The assumption here is that
obtain a rich set of network information that could cover a widgbrupt changes are correlated in time, yet are short-range de-
variety of network operations. The primary source for such pendent. In our approach, we use an AR process of grdet
depth information is in the SNMP MIB data. Designing a failuréo model the data in a 5-min window. Intuitively, in the event
detection system using MIB data necessitates the use of a ggfran anomaly, these abrupt changes should propagate through
eral method since MIB variables exhibit varying statistical chathe network, and they can be traced as correlated events among
acteristics [5]. Furthermore, there is no accurate fault modék different MIB variables. This correlation property helps dis-
available. The following section describes such a general faildisguish the abrupt changes intrinsic to anomalous situations

detection approach from the perspective of a router. from the random changes of the variables that are related to
the network’s normal function. Therefore, we propose that net-
V. ANOMALY DETECTION USING STATISTICAL work anomalies can be defined by their effect on network traffic
ANALYSIS OF SNMP MIB as follows:Network anomalies are characterized by traffic-re-

lated MIB variables undergoing abrupt changes in a correlated

_ MIB variables prov_ide infqrmatiqn that is_ specific to _the in'fashion A pictorial representation of this is provided in Fig. 1.
dividual network devices. Since this work is on detecting net- Using the above model for network anomalies, the anomaly
work anomalies at the resolution of the device-level, this daﬁ%tection problem can be posed as follows: '

source is sufficient. Furthermore, the widespread deploymen iven a sequence of traffic-related MIB variables sampled

and standardization of SNMP makes this data readily available, fiyeq interval, generate a network health function that can
on network devices. In this section, a statistical analysis methgg used to declare alarms corresponding to anomalous network
we developed using the theory of change detection is discus§@gnts

in greqter detail, along with its advantages_. We also provide arq, getect anomalies from the perspective of a router, we focus
detection theory-based performance criteria to evaluate the &fftheip layer. Three MIB variables are chosen from ipé1B
fectiveness of our approach. We present case studies of fgus,,, "These variables represent a cross section of the traffic
different performance anomalies and provide some intuitive €Xsen at the router. The variabfgiR (which stands for In Re-
planation on the usefulness of signal processing techniques,iQ,es), represents the total number of datagrams received from
detect such network anomalies. all the interfaces of the routeiplDe (which stands for In De-

1SYN means packets used to synchronize sequence numbers to initiate a liygrs), represents the m_]mber of datagrar-ns corre_ctlyldelivered
nenction. to the higher layers as this node was their final destinaipdiR
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t

Fig. 2. Contiguous piecewise stationary windaig) : Learning windowsS (¢) : Test window.

(which stands for Out Requests) represents the number of d&a-Combining the Abnormality Vector&(t)
grams passed on from the higher layers of the node to be forre jngividual abnormality vectors must be combined to pro-

warded by thep layer. The traffic associated with thelDe jqe 4 health function. This network health function is obtained
andipOR variables comprise only a fraction of the entire nefy jncorporating the spatial dependencies between the abrupt
work traffic. However, in the event of an anomaly, these aig anges in the individual MIB variables. This is accomplished
relevant variables since the router does some route table Qigng g linear operatot. Such operators are frequently used in
cessing, which would be reflected in these variables. The thr&l‘?antum mechanics [37]. The linear operator is designed based

MIB variables chosen are not strictly independent. The average ihe correlation between the chosen MIB variables. In partic-
cross correlation oipIR with ipIDe is 0.08 and withpORis |, |5¢ the quadratic functional

0.05. The average cross correlation betwip€dR andiplDe is )
0.32. F5(1) = () AP() 2)

B. Abrupt Change Detection is used to generate a continuous scalar indicator of network

| tatistical h. th twork health function i health. This network health indicator is interpreted as a mea-
h our statistical approach, the network health function IS oghre of abnormality in the network, as perceived by the specific

tained using a combination of abnormality indicators from trW’ode. The network health indicator is bounded between 0 and

individual MIB variables. The abnormality in the MIB data is1 by an appropriate transformation of the operatds]. In the
determined by detecting abrupt changes in their statistics. Sirl"feﬁwork health function, a value of O represents a healthy net-
the statistical distribution of the individual MIB variables arg o and a value of 1 répresents maximum abnormality in the
significantly different it is difficult to do joint processing of '

; ) network.
these variables. Therefore, the abrupt changes in each of thﬁ"he operator matrixt is anM x M matrix (M is the number
MIB variables is first obtained. Change detection is done usinz f

. ) T ; MIB variables). In order to ensure orthogonal eigenvectors
hypothesis test based on the generalized likelihood ratio (G ) 9 9

361 Thi d b lity indi hat i I t form a basis foRR™ and real eigenvalues, the matrixis
[36]. This test provides an abnormality indicator that is sca signed to be symmetric. Thus, it Wasorthogonal eigenvec-

between 0 and 1. tors with M real eigenvalues. A subset of these eigenvectors can

Abrupt change; Al detected by_ comparing the varlanceb%f identified to correspond to anomalous states in the network
the residuals obtained from two adjacent windows of data t'"[-%ﬁ If A\ and\,s are the minimum and maximum eigenvalues
are referred to as the learnifig(¢)) and tes{S(t)) windows, that correspond to these anomalous states, the problem of de-

as shown in Fig. 2. Residuals are obtained by imposing an %&ting network anomalies can then be expressed as
model on the time series data in each of the windows. The like-

lihood ratio for a single variable is obtained as shown in (1) t, = inf{t: f(qﬁ(t)) > An} (3)
. . wheret, is the earliest time at which the functionAl(t))
_ &;AL &gNS 1) exceeds\y. By virtue of the design of the operator matrix (dis-
N Ry ~—Ne |~ (No+Ks) cussed below), the functiof(+(¢)) has an upper bound
o "0s " top
F@(1) < Aar = 1. @)

whered, andagg are the variance of the residual in the learning

window and the test window, respectively,, = Nr — p. Each time the condition expressed in (3) is satisfied, we have a
whereyp is the order of the AR process, amd;, is the length geclaration of an anomalous condition.

of the learning window. SimilarlyNs = Ns —p, whereNs is  pesign of the Operator Matrixl: The primary goal of the

the length of the test window. is the pooled variance of the operator matrix is to incorporate the correlation between the

learning and test windows. The abnormality indicators thus ofgividual components of the abnormality vector. The abnor-
tained from the individual MIB variables are collected to fornmajity vectors(t) is a(1 x m) vector with components

an abnormality vector)(¢). The abnormality vectop(t) is a 5
measure of the abrupt changes in normal network behavior. () =[1(t) - Ym(t)] (5)
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where each component of this vector corresponds to the abreme non-negative and, hence, the solution to the characteristic
mality associated with the individual MIB variables, as obtaineguation

from the likelihood ratio test. In order to complete the basis set . .

so that all possible states of the system are included, an addi- Aupper = A (11)
tional componenty,(t) that corresponds to the normal func- S

tioning of the network is added. The final component allows f&onsists of orthogonal eigenvectof; } 2, with eigenvalues

proper normalization of the input vector. The new input vectdri }11 - The eigenvectors obtained are normalized to form an
P(t) orthonormal basis set. The firgf components of)(¢) can

B therefore be decomposed as a linear combination of the eigen-
() =alpi(t) - Ym(t) Po(t)] (6) vectors ofA,pper, NAMeELlY,P;

is_normalized with o as the normalization constant o Mo
((4p(t), %(t)) = 1). By normalizing the input vectors the ()= cidi. (12)
expectation of the observablB()\) of the operator can be =1
constrained to !|e between 0 and 1 [sge (18)] The(M+1)th component of;(t) is present only for normaliza-
The appropriate operator matrik will therefore be(M + . . . )

. . ..._tion purposes and is therefore omitted in the subsequent calcu-

1) x (M + 1). We design the operator matrix to be Hermitian .. : ; .
I?gon of network abnormality. Incorporating the spatial depen-

in order to have an eigenvector basis. Taking the normal st . .
to be uncoupled to the abnormal states, we get a block diago% r)c;ess through the operator transforms the abnormality vector

matrix with anM x M upper blockA pper and a 1x 1 lower ’

block, as in (7), shown at the bottom of the page. , M
The elements of the upper block of the operator madrix,er A11p1>er1/7(t) = Z Ci)\ﬂ;i- 13)
are obtained as follows: When# j, we have i=1
Aupper(iy 7) = [(0i (), 1 (1))] (8) Here,c; measures the degree to which a given abnormality
Ll vector falls along theth eigenvector. This value; can be
= Z Vi () (t) (9) mterp_retgd as a pr(_)bab|llty amplitude arfdas the probability
=1 of being in theith eigenstate.

A subset of the eigenvectofs;} M/ ,, wherel < N < M,

whichis the the ensemble average of the two point spatial Crogsz 5 jed the fault vector set and can be used to define a faulty re-
correlation of the abnormality vectors estimated over a time 'Bl'on. The fault vectors are chosen based on the magnitude of the

tervalT [38]. Fori = j, we have components of the eigenvector. The eigenvector that has com-

. . ponents proportional td 1 1] (since it is normalized) is identi-
Aupper (i, 1) =1 = Z A(i, g). (10) " fied as the most faulty%ect(])r since it corresponds to maximum
i abnormality in all its components. Furthermore, based on our
Using this transformation ensures that the maximum eigenvalfiaellt model of correlated abrupt changes, the eigenvector pro-
of the matrixAupper is 1. portional to thd1 1 1] vector signifies the maximum correlation
The a(ar41)ar+1) element indicates the contribution of thédetween all the abnormality indicators.

healthy state to the indicator of abnormality for the network If a given input abnormality vector can be completely ex-

node. Since the healthy state should not contribute to the abriessed as a linear combination of the fault vectors

mality indicator, the component ;. 1)(ar+1) IS assigned as,

which, in the limit, tends to 0. Therefore, for the purpose of de- fz/7(/t) _ i c'(/; (14)
tecting faults, we only consider the upper block of the matrix o ~ v
Aupper- -

The entries of the matrix describe how the operator causes then we say that the abnormality vector falls in the fault domain.
components of the input abnormality vector to mix with eachhe extent to which any given abnormality vector lies in the
other. The matrixd,pper iS Symmetric, real, and the elementsault domain can be obtained in the following manner: Since

[ a1 a12 . . ar(M-1) a1Mm 0 1
a1 22 . . ag(p—1)  Q2Mm 0
0
A= 0 (7)
apm1  apm2 GapM3 AM. AM(M-1) OMM 0
L 0 0 0 0 0 0 a<M+1)(M+1)_
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any general abnormality vectd;r(t) is normalized, we have the
following condition:

1
T
‘/T_\/\/\
* f * * *

atrue alarm set

Dl

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 8, AUGUST 2003

M :
¢ =1. (15) |
1=1 Y\Tp,/ ! ] ¥
alarms A4
Asthere ard/ different values for;, an average scalar measure ! Ty
of the transformation in the input abnormality vector is obtaine: ’ :
by using the quadratic functional time = !
Fh(t) = P()AG(t). (16) fultperiod

Using (16) and the fact thati;i¢;) = 6,; the Kronecker delta,
we have

Fig. 3. Quantities used in performance analysis.

TABLE |
, M SUMMARY OF RESULTSOBTAINED USING THE STATISTICAL TECHNIQUE
- - 9
G AP(E) =D A (17)
i=1 Anomaly Avg.Prediction || Avg.Detection || Avg.Mean Time
= E()\) (18) Type Time Time Between
The measurd? () is the indicator of the average abnormality T, (mins) Ty(mins) False Alarms
in the network as per(?elved by the nqde. ' T (mins)
Now, consider an input abnormality vector that lies com- - -
pletely in the fault domain. Using the condition in (15), we__ File server failures % 30 435
obtain a bound fOE(/\) as Network Access problems 26 23 260
min ()\Z) S E()\) S max ()\z) Protocol Error 15
NE{AN, ANF1, - Au NE{AN ANF1, s A}
( 19) Runaway process 1 - 235

where); are the eigenvalues corresponding to the set of fault|y some cases, alarms are obtained only after the anomaly has
vectors. Thus, using these bounds on the functigt@lt)), an  occurred. In these instances, we only detect the problem. The
alarm is declared when time for detectiorll; is measured as the time elapsed between
the occurrence of the anomaly and the declaration of the alarm.
There are also some instances where alarms were obtained both
preceding and after the anomaly. In these cases, the alarms that
Loellow are attributed to thaysteresis effeaf the anomaly.

E(X) > (M\i). (20)

min
NE€{AN, ANF15 - A}
Note that since the maximum eigenvaluedgf, .. is 1, E(A) <

1. The maximum eigenvalue by design is associated with t 2) Application of the Statistical Approach to Network Data
most faulty eigenvector. . - .From SNMP MIB: The statistical techniques described above
M(:t)hc?(ir?lr]rgaggffori\\/:rl]%?auoc:} ?kre tifati?i?:gjtl;?éoﬁ?]iysilﬁa.lve be_en successfully used to detect eight out of_ nine file server
express.ed in terms of the prediction tirig and the mean Yailures in the campus network and 14 gut of 15 file server f?.l|-
ures on the enterprise network. Interestingly, the same algorithm

time between false alarm$;. Prediction time is the time _ . o T
. W{th no modifications was able to detect all eight instances of
to the anomalous event from the nearest alarm preceding |

A true anomaly prediction is identified by a declaration thaqetwork access problems, one protocol implementation error,

s corlated wih an sccute aul el fom an ndepofl2 I SH) P onan enose s v
dent source such asyslog messages and/or trouble tickets: d Y9

Therefore, anomaly prediction implies two situations: a) Iﬂetect different types of network anomalies. Further evidence

the case of predictable anomalies such as file server failufgéh's Is provided by using case StUd'E_ES from _real network fa_ul-
and network access problems, true prediction is possible BFS: ,A summary ,Of th? results obtained using the statlst|c-al
observing the abnormalities in the MIB data, and b) in the cal&eniques is provided in Table I. It was observed that a plain
of unpredictable anomalies such as protocol implementatiB}RiOrity voting scheme on the variable level abnormality indi-
errors, early detection is possible as compared with the existfigors Was able to detect only file server failures and not any of
mechanisms such ayslogmessages and trouble reports. Anyfi€ Other three types of failures [13].

anomaly declaration that did not coincide with a label was 3) Case Studiesinthis section, we present examples of net-
declared a false alarm. The quantities used in studying tyark faﬂurgs obtained from two different production networks:
performance of the agent are depicted in Fig: B the number a0 enterprise petwork and a campus network. Both these net-
of lags used to incorporate the persistence criteria in orderW@ks were being actively monitored and were well designed to
declare alarms corresponding to fault situations. Persistefe@€t customer requirements. The types of anomalies observed
criteria implies that for an anomaly to be declared, the ala-rmszln the collected data set, there was only one instance each of protocol imple-

must persist for- consecutive time lags. mentation error and runaway process
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Fig. 4. Case (1) file server failure. Average abnormality at the router.

Fig. 5.

Case (1) file server failure. Abnormality indicatoripfR.

were the following: file server failures, protocol implementa- 1s
tion errors, network access problems, and runaway proces:
[5]- Most of these anomalous events were due to abnormal ug;
activity, except for protocol implementation errors. However, alZ
of these cases did affect the normal characteristics of the MI§ o5l
data and impaired the functionality of the network. We show the2

by using signal processing techniques, it is possible to detectt

dicators

L N

* kxk kx - - e
* ..

*

presence of network anomalies prior to their being detected | °

the existing alarm systems suchsgslog messages and trouble

time in hours

tickets.
Case Study (1): File Server Failure Due to Abnormal Use g*|
Behavior: In this case study, we describe a scenario corres s
sponding to a file server failure on one of the subnets of thézo_
campus network. Twelve machines on the same subnet and g

machines outside the subnet reported the problensysdog
0

10

L L L i L

messages. The duration of the failure was from 11:10 am = %
11:17 am (7 min) on December 5, 1995, as determined by the

0.5 1 1.5 2 25 3 35 4
time in hours

syslogmessages. The cause of the file server failure was an rig 6. case (1) file server failure. Abnormality indicatoripiDe.

unprecedented increase in user traffip (equests) due to the
release of a new web-based software package.

This case study represents a predictable network proble '°
where the traffic related MIB variables show signs of abnorg
mality before the occurrence of the file server failure. The fau$ °
was predicted 21 min before the server crash occurred. Figs. 42
show the output of the statistical algorithm at the router and i§ 05
the individualip layer variables. The fault period is shown by*®

[ % K Kk * K

EE R R R R R R I DR S B

vertical dotted lines. In Fig. 4, for router health, the “x” denote: ¢,
the alarms that correspond to input vectors that are abnorma
The variable level indicators capture the trends in abno

mality. Note that there is a drop in the mean level of the traffi
in theiplIR variable immediately prior to the failure. Among the §30‘
three variables considered, the variables ipOR and iplDe &3
the most well-behaved, i.e., not bursty, and the ipIR variable §

they lend easily to conventional signal processing techniqu
(see Figs. 6 and 7). °

time in hours

3Syslognessages are system generated messages in response to some failureFig. 7. Case (1) file server failure. Abnormality indicatoripOR
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Fig. 8. Case (2) protocol error. Average abnormality at the router. Fig.9. Case (2) protocol error. Abnormality indicatoripfR.

However, the combined information from all the three vari-
ables is able to capture the traffic behavior at the time of t
anomaly, as shown in Fig. 4. There are very few alarms at t

router level, and the mean time between false alarms inthis ci § /[ *,*% **,7 Tt r e e ]
was 1032 min (approx 17 h). 5 : *

Case Study (2): Protocol Implementation Error$his case  £°°[ * 1
study is one where the fault itself is not predictable but the sym ~  |+* * . e .
toms of the fault can be observed. Typically, a protocol imple % os 1 s 2 2 ER s, s

time in hours

mentation error is an undetected software problem that could
triggered by a specific set of circumstances on the network. O so0 ‘ . , : : ; :
such fault detected on the enterprise network was that of a su
serverinetd protocol error. The super server is the server thé
listens for incoming requests for various network servers, th |
serving as a single daemon that handles all server requests fi§ 200
the clients. The existence of the fault was confirmedspsiog =100
messages and trouble ticke®yslognessages reported aretd

error. In addition, other faulty daemon process messagesw  ° 08 ! S meihows T 8 85 4
also reported during this time. Presumably, these faulty daemon

messages are related to the super server protocol error. During Fig. 10. Case (2) protocol error. Abnormality indicatoripiDe.

the same time interval, trouble tickets also reported problems
such as the inability to connect to the web server, send mail.1
or print on the network printer, as well as difficulty in logging
onto the network. The super server protocol problem is of co

4000

Incr

2
siderable interest since it affected the overall performance of t § '[* « A LT
network for an extended period of time. g s : ’ L
The prediction time of this network failure relative to the g°°f * oo, |
syslogmessages was 15 min. The existing trouble ticketir * * * * *
scheme only responded to the fault situation and, heni %5 " 25 5 R
detected the failure after its onset. fime in hours

Figs. 8-11 show the alarms generated at the router and 2o :
abnormality indicators at the individual variables. Again, th
combined information from all the three variables captures ti§ '*° ' 1
abnormal behavior leading up to the fault. Note that since tts , | ) |
problem was a network-wide failure, th@R and thaplDe vari-
ables show significant changes around the fault region. Sirs soo : 1
there was a distinct change in behavior in two of the three va OMMMMMWUMWWWM
ables, the combined abnormality at the router was less prone  ° 05 ! 5 2 25 3 35 4

time in hours
error. Thus, there were no false alarms reported in this data set,
but rather, persistent alarms were observed just before the fault. Fig. 11. Case (2) protocol error. Abnormality indicatorig®R

remel
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Fig. 15. Case (3) network access. Abnormality indicatap@flR
Fig. 13. Case (3) network access. Abnormality indicataptR.

be a security risk to the network. This fault was reported by the

Case Study (3): Network Access Problenietwork access trouble tickets but much after the network had run out of process
problems were reported primarily in the trouble tickets. Thesgentification numbers. In spite of having a large number of
faults were often not reported by thgslognessages. Due to thesyslogmessages generated during this period, there was no clear
inherent reactive nature of trouble tickets, it is hard to determingessage indicating that a problem had occurred. The prediction
the exact time when the problem occurred. The trouble repotit®ie was 1 min, and the mean time between false alarms was 235
received ranged from the network being slow to inaccessibilitgin (about 4 h). Figs. 16—19 show the performance of the statis-
of an entire network domain. The prediction time was 6 mitical technique in the detection of the runaway process. In this
The mean time between false alarms was 286 min (4 h and&nario, théplIR variable shows a noticeable change in mean
min). Figs. 12—-15 show the alarms obtained at the router leweimediately prior to the fault being detected by conventional
as well as the abnormality indicators at the variables. Note ttsthemes such ayslogand trouble tickets. However, the statis-
theiplIR variable shows a gradual increase in the baseline asidal analysis method captures this anomalous behavior ahead
nears the fault region. of the syslogreports, as seen in thelR variable, as well as in

Case Study (4): Runaway Processésrunaway process is the combined router indicator.
an example of high network utilization by some culprit user 4) Effectiveness of Statistical Techniquékhe effectiveness
that affects network availability to other users on the networkf the statistical approach can be seen from its ability to dis-
A runaway process is an example of an unpredictable fault birtguish between different failures. Once an alarm is obtained,
whose symptoms can be used to detect an impending failuising the behavior of the abnormality indicators 1 h prior to the
This is acommonly occurring problem in most computation-oranomaly time, we were able to identify the nature of the anomaly
ented network environments. Runaway processes are knowfi3®]. Since network anomalies typically cause deviations from
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5051 o * * % o, 1 festation of the failure, it is possible to observe in advance the
£ * ; ) : . . .
® *, I O ey failure signatures corresponding to the impending failure. The
. . . o S S | . it indi i
o o5 . TR »s : v ., average values of the abnormality |nd|c_ators computed over this
time in hours period are used to locate the anomaly in the problem space de-
2000 . . " . . . fined by the anomaly vectors. As shown in Fig. 20, the four
* anomaly types are clustered in different areas of the problem
* . .
g 1s00p i 1 space. The Euclidean distance between the center vector of the
£ 1000l H | file server failures and the network access problems is approxi-
g mately 1.16. The standard deviation for the network file server
2 sooff 1 | cluster is 0.43, and that for the network access cluster is 0.07.
‘ These results show that the two clusters do not overlap.
0 05 1 15 2 25 3 35 4 We have limited data on the other two types of anomalies, but

time in hours

it is interesting to note that they are distinct from both file server
Fig. 18. Case (4) runaway process: Abnormality indicatdptide. failures and network access problems. In the case of file server
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failures (shown as “x” in Fig. 20), the abnormality in ti®OR  ality of the operator matrix. The construction of the operator will
andipIDe variables are much more significant thariptR. On  be similar to the methods described in this paper.

the contrary, network access problems (shown as “0” in Fig. 20)

are expressed only in thiglR variable. The fact that these faults VII. CONCLUSION AND FUTURE DIRECTIONS

were predicted or detected by the quadratic functigiei(t)), This paper provides a review of the area of network anomaly

which isolates a very narrow region of the problem space, SUgsiation. Based on the case studies presented, it is clear that
gests thathe abnormality in the feature vectors increases as thfere is 4 significant advantage in using the wide array of signal

fault event approaches. processing methods to solve the problem of anomaly detection.
A greater synergy between the networking and signal processing
D. More Related Work areas will help develop better and more effective tools for de-
In our early work, we used duration filter heuristics to obtaitecting network anomalies and performance problems. A few of
real-time alarms for anomaly detection in conjunction with MIBhe open issues in the application of statistical analysis methods
variables [40]. In [41] and [42], Bayesian Belief networks wert0 network data are discussed below.
used together with MIB variables for nonreal time detection of The change detection approach presented in this paper makes
anomalies. Signal processing and statistical approaches are H1§o@ssumption that the traffic variables are quasistationary.
gaining more applications in detecting anomalies related to nfa0Wever, it was observed that some of the MIB variables

licious events [6] and network services such as VolP [43]. exhibit_ nonstationary bghavior. A method to qgantify the bursty
behavior of the MIB variables could lead to using better models

for the traffic and improve the false alarm rates at the variable
level, thus increasing the optimality of statistical methods.
The statistical signal processing tools presented here are v&t- accurate estimation of the Hurst parameter for the MIB
satile in their applicability to time series data obtained fromariables was difficult due to the lack of high-resolution data
other sources of network information such as probing and pack#8]. Often, the alarms corresponding to anomalous events
filtering techniques. In [5], the authors present the applicatidrave to check for a persistence criteria to reduce the number
of the methods described above to thierfacelayer variables. of false alarms. The major reason for false alarms come from
The statistical techniques using the CUSUM approach [6] atlte abnormality indicators obtained for the bursty variables
the likelihood ratio test have been shown to be applicable to twach adplR. Increasing the order of the AR model may help
sources of traffic traces and to two different network topologietsy reducing the false alarm rate, but there is a tradeoff since
respectively. In this section, we provide a discussion on sorfe resolution in detection time would decrease. Another open
issues relevant to using the statistical analysis methods on misaue is that not all abrupt changes in MIB data correspond to
sured network data. network anomalies. Thus, the accurate definition of the nature
It was observed that the use of fine-grained data significan®hj the abrupt changes corresponding to anomalous events is
improves detection times since the confidence of statistical an@$sential for increased detection accuracy.
ysis techniques is only constrained by sample sizes. For exThe SNMP protocol runs over the UDP transport mechanism
ample, in the work presented here, using MIB variables, a safid, therefore, could result in lost SNMP queries and responses
pling frequency of 15 s was used. However, it would be pofom the devices. From the signal processing perspective, this
sible to obtain a finer sampling frequency if the polling entitiegould result in missing samples, and it is necessary to design
were optimally located [44]. The primary limiting factor to in-efficient algorithms to deal with missing data.
creasing the polling frequency in the case of MIB data is the From the study presented here, it is clear that signal pro-
priority given to processing SNMP packets by the router beirgjzssing technigues can add significant advantage to existing net-
polled. Independent of the load on the router, it was observ¥@Tk management tools. By improving the capability of pre-
that typically there is a 20-ms delay in poll responses. dicting |mpgnd|ng ngtwork failures, itis pc')sslll'ale to'reduce net-
In terms of time synchronization, there is a requirement th§Prk downtime and increase network reliability. Rigorous sta-
the chosen feature variables are all of the same time granularfi§tical analysis can lead to better characterization of evolving
To the best of our knowledge, the problem of simultaneous‘l}?twork bghawor aqd eventually Iea}d to more efficient methods
handling multiple feature variables with different time granulafO" POth failure and intrusion detection.
ities is still an open problem. Time synchronization issues also
arise from the difference in time stamps between the polled en- ACKNOWLEDGMENT

tity and the polling node. This issue can be resolved using theThe authors would like to thank D. Hollinger, N. Schimke,
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The operator matrix described here can be easily appliediép helpful discussions on the topic.

any other system that can be described using time series data.
The number of feature variables define the eigenstates of the op-
erator matrix. Therefore, if a broader set of anomalies must be - , .
detected, then additional feature vectors must be added Thuél] W. E. Leland, M. S. Tagqu, W. Willinger, and D. V. Wilson, *On the

e ' ) - et X " ' self-similar nature of ethernet traffic (extended versiohEEE/ACM
the scope of the detector is primarily limited by the dimension-  Trans. Networkingvol. 2, pp. 1-15, Feb. 1994.
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