
1

Penguin: Objects for Programs,
Relations for Persistence

Arthur M. Keller and Gio Wiederhold
Computer Science Dept., Stanford University

September 1999

Abstract
Penguin is designed to support object-orientation for application programs
while using relational databases as the persistent backing store. Objects are
attractive to customers and programmers of applications because they
structure information into a relevant and effective view. The use of relational
databases that store of large amounts of base data for long periods of time
enables Penguin to take advantage of mature solutions for sharing of
information, concurrency, transactions, and recovery. We expect that
application programs will be best designed with their own object schemata, so
each object schema is supported as a series of views of the underlying
relational databases. Penguin provides for multiple mappings to diverse
object configurations, enhancing inter-application interoperation. This
approach supports coexistence and sharing data among programs using
relational technology with diverse application programs using object
technology, as well as facilitating a migration to object technology.

1. Introduction
Penguin is an object data management system that relies on relational
databases for persistent storage. Object views of the relational databases allow
each application to have its own object schema rather than requiring all
applications to share the same object schema [Wied86]. In this paper, we
discuss the principles, architecture, and implementation of the Penguin approach
to sharing persistent objects.

The primary motivation for using a database management system (DBMS) is to
allow sharing of data among multiple customers and multiple applications. To
support sharing among independent transactions, DBMSs have evolved services
including transaction independence, persistence, and concurrency control.
When a database is shared among multiple applications, these applications
typically have differing requirements for data access and representation. Such
differences are supported by having views, which present diverse subsets of the
base data [ChamGT75].

The primary motivation for defining objects is to include sharable semantics and
structure in the information. Must all applications sharing objects use the same
object schema, or is it better to give each application its own object schema and
somehow to integrate them? If multiple applications differ in view the needed
compromise reduces the relevance and effectiveness of the object
representation [AbitB91]. For instance, customers will have an orthogonal view
of an inventory versus the suppliers.

2

When combining independently developed applications, we do not have the
luxury of choosing a common object schema. Many legacy databases and
legacy data are still being used. We must retain the investment in existing
application software and databases, while building new software using the object
approach. When creating a federation of heterogeneous (pre-existing)
databases, we must support a degree of interoperation among these databases
and their schemas. Consider also that current projects will become legacy in a
few years hence, but their semantics will remain. Whatever solutions we create in
shared settings must support evolution and maintenance.

Object-oriented database management systems (OODBMSs) define an object
schema that is used to support all information for its applications. Typically, that
object schema is designed for one initial application, and other applications that
want to share the information will have their needs grafted on [TsicB89]. To us, it
appears preferable for each application to use the object schema most
convenient for it. Typical OODBMSs do not support mappings between object
schemas. Encapsulation provides data independence only from outsiders, but
does not support integrating new applications.

Database development was greatly influenced by the three-level data modeling
architecture from the ANSI/SPARC committee [Steel80]. Their model partitions
the concerns of information management into a view level, a conceptual level,
and a physical level. The view level is comprised of multiple user data models,
one for each application, that cover only part of the database and provide for
logical data independence. The conceptual level describes a common data
model for the entire database and provides for physical data independence.
Today, in a distributed environment, there may not be a single conceptual model,
but rather one for each configuration of databases used in a set of applications.
The physical level describes the implementation of the database at an abstract
level, including distribution, data structures, and access paths. Most RDBMSs ,
support the view level, and many views may be defined corresponding to various
user roles. In contrast, OODBMSs typically do not support the view level; there is
only one view corresponding to the conceptual level [ShilS89].

The Penguin approach builds on mature relational database management
system (RDBMS) technology by creating object views. Our techniques could be
used to create object views of alternate object databases, but we have not yet
done this work, so it is beyond the scope of this paper.

2. Mapping from the Object Model to the Relational Model
An object schema defines data elements as well as its structure. Object classes
may have single or multiple inheritance. Object instances within an object class
may have internal structure, such as object classes being composed of other
object classes by reference or embedding.

Let us consider a database design approach, in which multiple object schemas
and schemas of legacy databases are mapped into the relational model, and
then integrated into a common database schema. Figure 1 illustrates this
approach.

3

User1 C++
Object

Schema

User2 C++
Object

Schema

User3
Smalltalk

Object
Schema

Structural
Model

Schema1

Structural
Model

Schema2

Structural
Model

Schema3

Integrated Structural Model Schema

Relational
Data Model

Schema

Object
Data Model

Schema

User-specific
Data Models

Individual
Conceptual
Data Models

Integrated
Conceptual
Data Model

Physical
Data Models

Application4
Object

Schema

Structural
Model

Schema4

Figure 1. Database Mapping and Integration.

Object schemata have semantics. Inheritance and composition hierarchies
organize elements so that they are convenient for the current task. Object
methods contain further semantics but these are not needed for mapping to the
relational model nor for integration. Relational structures have few semantics:
there is no defined hierarchy. Rather the elements are composed as needed by
the application through views and queries.

To perform a mapping from object schemata to a relational model, we integrate
the object hierarchies into a semantic model network, which is more general than
a hierarchy. The semantic model we use is the Structural Model, which only
describes systematic relationships, and does not require separate instance
storage over that in the relational database [WiedE80]. Additional classes can be
defined within this framework by augmenting the model, Storage of data
elements from the object is accomplished by creating base relations as needed.
If appropriate relations exist they can be augmented and connected.

Once the base relations are populated, instances of links can be computed from
the model and the stored base relations. The Structural Model can reconstruct
component object classes as well as new potential object classes by recognizing
hierarchies within its network. New classes can be created as well, by and
connecting them to each other and to relevant existing relations.

For each of the input object schemata, the Penguin approach converts the
inheritance (IS-A) and composition (PART-OF) structures into directed graphs.
To handle inheritance, horizontal and vertical partitioning are supported. Also
supported is the option where (part of) an inheritance hierarchy is stored in a
universal relation containing all attributes in the hierarchy along with an attribute
indicating the type of the object instance [Ullm83]. We normalize object nodes

4

into Third Normal Form (3NF) using standard relational database design
techniques. The result is a network representation.

The Structural Model recognizes various types of relationships, formalized into 3
types of connections. A Structural Model is a graph where each node represents
a relation and each edge represents a connection (or relationship) among two
relations. This model is comparable to the Entity-Relationship (E-R) Model, but
uses the relational model as a base. Connections require a feasible join path.
Penguin also defines an information metric which assigns strengths to each
combination of each direction of the 3 connections types. The types are

(1) Ownership connection, which links instances that depend on the owner.
The linked instances disappear when the owner is removed. For example,
Equipment owns its Maintenance records. Its cardinality is n:1. This
connection type is also used to represent part-of semantics, as vehicle
has engine, wheels, etc. Penguin considers ownership a strong
relationship (0.9), and being owned weak (0.3).

(2) Reference connection, which links to abstract entities. The referenced
entities must exist while there are references to them. For example,
Hazard refers to Hazard Codes. Its cardinality is 1:n. Reference
connections are weak (0.3, 0.5).

(3) Subset connection, which links a generalization to a subtype. The subtype
instance disappears when its generalization instance is deleted. For
example, Resource is linked to Equipment (because Equipment IS-A
Resource). Its cardinality is 1:1 partial. The selection may be based on a
predicate. Subset connections have strengths weaker than full ownership
(0.75, 0.2).

The m:n relationship of an E-R model is modeled by pairing two structural
connections, since in relational implementations the instances of m:n links are
explicitly represented in a joining relation. For example, a relation
Equipment-location is needed to represent such a relationship, and may
use an ownership connection from Equipment and a reference connection to
a Location relation [WiedE80].

Once we have a structural model for each input schema (object, relational, or
legacy), we can proceed to integrate these schemata. There has been extensive
research on integrating relational database schemata or E-R schemata
[NavaEL86], and little work in integrating object database schemata [SaltR:97].
Using the Penguin approach, research results on integrating relational and entity-
relationship schemata becomes applicable to integrating object schemata. In
addition, there is even some work on integrating structural models that is directly
applicable.

An integrator identifies and coalesces common elements (relations and
connections). Problems occur due to semantic heterogeneity among the input
schemata, such as differences in naming, value representation, schema, and
data semantics. To solve these, it may be necessary to add mediating services,
creating intermediate connections and relations. Such research is being
undertaken at many sites, for instance [HammMG97].

5

Warehouses provide high performance through physical integration and
replication of data [QuaW97]. However, physical integration of the component
databases is not needed, as long as access paths to data instances, direct or
mediated, can be provided.

Relational Database Storage and Semantic Modeling.
The relations of the integrated structural model are ordinary 3NF relations
representing entities. Actual data instances are stored as tuples in a relational
database system. Connections in the structural model are relationships among
those relations to which formal semantics have been attached. Connections
instances are represented as matching values in the connected relations, they
are not stored as instances. View instances can be created by joining sets of
tuples along these connections.

We will discuss concurrency control and transaction processing below after we
discuss caching for Penguin. Note that data partitioning and replication
approaches to handling multiple persistent data stores is orthogonal to the issues
of having an object layer above the DBMS.

Defining Object Views of Relational Database
In this section, we describe the definition of object classes (view-objects) in
Penguin as object views of the underlying persistent data store [BarsW90]. The
input is the integrated structural model. We will refer to the person controlling
this process as the object base administrator (OBA), corresponding to the term
database administrator (DBA), the definer of database models and schemas.

There are three steps involved in the definition of a view-object

(1) Choosing a pivot relation. The entities that define the root for the desired
object class are identified by determining a pivot relation (R). The pivot
relation will have a one-to-one correspondence between tuples in the
relation and object instances in the desired object class. The key of the
pivot relation becomes the semantic key of the object class.

R

Structural Model

Figure 2. Structural Model and Candidate Set.

6

Once the pivot relation has been selected by the OBA, the Penguin
system computes the closeness from the pivot to all connected relations,
using the information metric values sketched above. The closeness is
computed by computing the product of strength values associated with the
connections along the paths. It then displays those relations that are
closer in terms of the path than an OBA-defined threshold to the pivot
relation. The candidate set consists of these semantically nearby relations.
Figure 2 shows a structural model with pivot relation marked with R and
the candidate set shaded. The ODB can eliminate relations containing
irrelevant data from the candidate set, keeping the objects trim. Figure 3
shows the names of the relations in the candidate set.

R

Candidate Set

A

B

C

D F

E
Figure 3. Candidate Set Labeled.

The Penguin system then converts the candidate set to a candidate bag.
The candidate bag is a covering tree of the candidate set, that is, nodes
creating cycles in the graph are replicated so that there is a copy of node
for each acyclic path from the pivot relation. Edges are typically not
replicated. Figure 4 shows the candidate bag.

R

A

E D

BC

D F

Candidate Bag

Figure 4. Candidate Bag.

(2) Choosing instance variables. The tree now represents the object structure,
containing all attributes from the candidate bag. Now the ODB can select

7

or deselect variables for the object class. Attributes values can refer to
object sub-classes that have their pivot relations in the candidate bag, to
support PART-OF hierarchies. Attributes can be inherited from other
object classes to support IS-A hierarchies. Figure 5 shows the object
class.

R

A

E D

Object Class

B

Figure 5. Object Class

(3) Specify inheritance. Next the ODB can indicate the object class(es)
pivoted on the same relation from which this new object class should
inherit. This approach can support multiple inheritance if the programming
language does. (For example, in C++ we instantiate the object instance of
the right type and populate it with the data from the database.) This
approach is compiler independent. Figure 6 illustrates how a new object
class inherits from object classes R1 and R2. Attributes in relations A and
E are inherited from R1. A reverence to an object class pivoted on B is
inherited from R2. Any new instance variables from relation D are added.

8

R

A

E D

BC

D F

Parent Object Class R1

R

A

E D

BC

D F

Parent Object Class R2

R

A

E D

New Object Class

B

D F

Figure 6. Inheritance Example.

Updating Base Relations from Objects
We have also developed methods that validate potential updates from the
defined object types [BSKW91]. Here the ODB is informed of all possible update
ambiguities, which typically involve understanding relations beyond those
included in the object view [BlakCL89]. The ODB selects one of the alternatives,
which choice is then to be recorded in the object schema [Kell86]. End-users are
then not faced with update ambiguities at execution type. These methods have
not been integrated into Penguin systems at this time, since implementations
have focused on distributed resources and read-only object retrieval
[LWBSSZ90]. All updates then originated at the sources. When the ODB has
completed the definition of a Penguin object schema it can be made available to
users and their applications. We have only created C++ object definitions,
although the process is language independent.

Heterogeneous Data Sources
This data mapping is straightforward if the persistent store’s schema is described
by the structural model. However, we must handle legacy data as well. We

9

handle legacy data by describing it as a structural model and wrapping the
source to provide adequate access [Hamm*97]. The result is included as one of
the constituent schemata input to the integration phase.

Wrapping source objects is relatively simple. Internal object semantics focus on
ownership connections, while linkages between objects are commonly
references. Multiple inheritance could require m:n relationships. Any Penguin
objects which match one-to-one should be able to be copied directly from the
sources, but we have not developed such a shortcut. Instead applications may
prefer to retain direct access, which is not a problem if update is constrained to
one of the access mechanisms.

Methods
Penguin generates basic methods for fetch, store, and update automatically
based on declarative descriptions of the object classes. Navigation methods are
generated for navigating among object instances using object class references.
Query methods are generated that support path expressions on each object
class. Update methods are generated that support changing a cached object,
making the change persistent, and committing or aborting change transactions.

Databases also support updates to sets of tuples and relations. Penguin could
support a such an approach, which will allow changes to be made to multiple
objects, and the corresponding changes could be made as one SQL statement to
the base relations. Providing a method which can update more than object at a
time would require generation of additional C++ code.

Penguin also supports methods defined by the user. The object classes defined
by Penguin are object classes that obey the normal inheritance mechanism of
the object programming language (e.g., C++), so user object methods are
inherited correctly. Unfortunately, user methods defined for one application’s
object schema are not applicable to another application’s object schema, even if
they share the same data.

Concurrency Control.
We need to coordinate concurrency control and transaction processing of the
object layer and conceptual layer with the persistent data store. Thus
transactions of the object layer are based on transactions of the persistent data
store. Concurrency control in the object layer is based on concurrency control on
the underlying data in the persistent data store. For example, the object layer
can implement optimistic concurrency control on objects in an in-memory cache.
When the object layer transaction commits, the transaction is validated, and a
(distributed) transaction is invoked to commit the changes to the (multiple)
underlying persistent data store(s).

3. Performance Issues
The conversion of relational base data into objects incurs a performance penalty.
There are two aspects to reduced performance versus direct use of an
OODBMS. First of all, the single application focus of the object paradigm allows

10

substantial user control at the physical level [Wied87]. An RDBMS, focused on
sharing, must compromise, and tries to overcome that compromise by extensive
query optimization. Since Penguin supports sharing, that aspect is intrinsic.

The second aspect the additional cost of dynamic object creation. Here, many
well-known techniques can be adapted, of which caching is the primary one.
Since we expect to operate in a client-server environment, some data-shipping
improvements can also make a significant difference [DeliR92].

Caching Structure
Navigating a relational database tuple-at-a-time is very inefficient. In contrast,
issuing a query to a relational database and then loading the result into a cache
provides for much more efficient navigation [FranCL93]. Penguin improves
performance in navigation by using a cache [WangR91]. We first discuss the
organization of the cache, and then we discuss concurrency control and
transactions.

Penguin uses a two-level cache. The lower level of the cache is a network
representation corresponding to the structural model. The upper level of the
cache corresponds to the object classes of the ODB defined object schema. In a
server-client architecture the caches would by physically distributed. There is
also a virtual level of the cache that is language-specific.

R

Network Cache

round nodes: model

 rectangular nodes: cached instances

Figure 7. Network Cache.

The lower level of the cache contains a network representation that matches the
structural model. In the cache tuples are linked together according to the joins
based on the connections of their relations. We use semantic pointer swizzling
to turn semantic key references (foreign key to primary key) into pointers in
memory [WhitD92]. Data in this level of the cache are stored non-redundantly.
The lower level of the cache is shared among all applications on the same
computer. Figure 7 illustrates the network level of the cache.

11

The upper level of the cache corresponds to the object classes of the user object
schema. Data is stored in hierarchical form according to the object classes of the
application. References to other object instances are also swizzled. Data in the
object cache is stored redundantly if necessary. The object cache is for a single
application client and lives in the application’s address space. Figure 8 illustrates
the object cache.

R

A

E D

Object Cache

B

D F
Figure 8. Object Cache.

The virtual level of the cache is language-specific. For C++, we need to specify
the type of each object instance when there is multiple inheritance [Stro86]. To
make an object accessible in C++, Penguin copies the data, if necessary, from
the source data or the network cache into the object cache and determines the
type based on the data contents. To determine the matching application type, a
user-supplied method is required that refers to the data contents. Penguin then
creates an object instance of the correct type and links the C++ object root to the
corresponding data in the object cache [KellH93]. Figure 9 illustrates the virtual
level of the cache. The ovals represent the C++ object of the correct type, which
refers to the data in the object cache. The virtual cache is maintained in the
application’s address space.

12

R

A

E D

Virtual Cache

B

D F
Figure 9. Virtual Cache.

Cache Management
To improve performance, Penguins loads the cache using relational, set-based
queries and then navigates the cached data [DeWi*90]. Data in the cache is
reused when issuing queries through the technique of predicate-based cache
descriptions [KellB96]. These descriptions address two questions. First, do we
know whether the desired query is entirely contained in the cache? Second, do
we know whether we have the latest data in our cache [GuptMSD93]?

If we know that the desired query is entirely contained within the cache, then the
Penguin client can avoid going to the persistent data store for data. We use a
conservative cache description. That is, everything in the description is found in
the cache, but the description can omit objects that are in the cache. If an object
really in the cache is omitted from the conservative cache description, its
processing will be non-optimal but not wrong. The conservative cache
description is based on queries used to load the cache. It is used instead of the
exact cache description because it can be simpler to use, although it requires
some extra effort to maintain this cache description in a simple form. Queries
contained in the cache can be processed (in memory) locally. Such processing
requires that local indexes be built on-the-fly. That is, server data indexes are
not used, so contention is reduced among multiple clients. If the query is not
entirely contained in the cache, then the query must go to the server (persistent
data store). If only part of the query is contained in the cache, the query may be
trimmed to omit the part already cached if trimming speeds up server query
processing or data transmission.

To support serializability, it is important to know that the cache contains the latest
data [GrayR93]. If a client is the only client performing updates (or perhaps only
to this part of the data), then the client has the latest data. The client can lock
data at the server to ensure that no other client updates the data. If we choose
to use optimistic concurrency control, when a transaction commits the updates
are propagated to the server (the persistent store). The server uses a liberal
cache description to determine which clients to notify. The description includes

13

everything in a client’s cache, but it can include objects not actually found in the
cache. If an updated object is in the liberal cache description but not actually in
the cache, processing will be non-optimal but not wrong. The liberal cache
description is based on queries used to load the cache, and notifications of cache
cleanup or flush.

Data transfer
In object-oriented client-server systems the overhead required for data
transmission from server to client and the control of such transmissions is
significant, As users of protocols as CORBA have noticed, fetching and updating
data from many small objects kept at a remote object store is costly. Larger
objects also incur costs due to pointer swizzling [CFLS91]. The Penguin
approach can move the relational, value-based linkage references to the client,
and perform all swizzling at the client.

We have analyzed three data transfer alternatives: objects, views, and relation
fragments, and concluded that for a wide range of situations relation fragments
are best [LeeW94]. Relation fragments are the selected and projected subsets of
the base relations needed to construct the object view. They avoid the
redundancy in relational views when owner tuples are replicated by the join
operations which create views. While foreign and base keys are replicated, this
cost is close to the information needed for swizzling. At the same time, the
number if instances is much smaller, determined by the complexity of the query,
than the number of object instances typically needed, which is determined by the
cardinality of the pivot. A low cardinality greatly reduces transmission overhead.

4. Future Directions
The concepts developed in Penguin lead to many further alternatives. Object-
oriented access is direct and fast. The generality of an RDBMSs requires more
accesses and processing, reducing performance, which gives a significant
incentive to using an OODBMSs. But our navigation in the structural model
generalizes to navigation among object classes, allowing object-oriented storage
as well. For instance, if one object model dominates, then mapping costs can be
reduced by storage of the data a primary object database, while keeping the
integrated structural model available for mapping to secondary object
configurations, or even back to relations. A mapping to object instances would
require that the object store supports a powerful query language, such as that of
ODMG-93 [Catt91].

As RDBMSs move to hybrid configurations, they should evolve to provide more
control over an increased variety of data structures. Then the performance
advantage over OODBMSs will diminish. Unless OODBMSs provide increased
view support, they will find it increasingly difficult to compete with enhanced
RDBMSs.

The Penguin approach does not allow persistent object-identifiers. Cross
references are hence always resolved with content-based queries. It is unclear to
what extent this is a liability and should be addressed [KatoM92].

14

As with all independently defined objects, methods defined for one application’s
object schema are not applicable to another application’s object schema, even if
they share the same data. To increase sharing to more general methods than
the access methods provided in Penguin, we propose that these methods be
described declaratively. When the data schemata are integrated, the declarative
method descriptions should also be integrated. When object classes are defined,
the declarative method descriptions should be carried with them. Then, user
methods could be generated. This process would mitigate maintenance costs
incurred by sharing data among multiple applications. However, we have not
explored these ideas in detail.

The interaction of storage granularity, data transfer approaches, and caching is
complex and will be subject to ongoing analysis as the relationships of latency,
bandwidth and user patterns changes. The development of data warehouses
encourages much larger views to be transmitted for analysis, although much of
the processing may be statistical, so that object concepts are less relevant, while
data transpositions (i.e., storage by columns of tables) will again become
important [Bato79]. Similar mapping notions as used in Penguin may be
applicable.

5. Conclusion
The Penguin system supports multiple object views for multiple applications
sharing data. All data is currently stored in a relational DBMS, but our approach
extends to storing data also in an object DBMS. Our approach is based on a
formal model of object views on relational databases. We propose an approach
to object schema integration that takes advantage of the large body of work on
relational and entity-relationship schema integration.

There is an operational prototype for Penguin. Some of the concepts have been
developed and tested outside of that prototype. Furthermore, some of the ideas
used in Penguin are reflected in commercial products currently on the market
[KellJA93].

Acknowledgements
The Penguin project was the thesis work of Thierry Barsalou at the Stanford
Section for Medical Informatics. Subsequent developments addressed issues in
Civil Engineering and Integrated Circuit Manufacturing. Julie Basu is developed
the caching and evaluated the caching algorithms with Meikel Poess while
supported by Oracle Corporation. Many other students at Stanford contributed to
these projects. The effort leading to this paper was supported in part by the
Microelectronics Manufacturing Science and Technology project as a subcontract
to Texas Instruments on DARPA contract number F33615-88-C-5448 task
number 9, and the Center for Integrated Systems. Earlier work leading to these
concepts was supported by The National Library of Medicine (NLM) and by
ARPA funding for Knowledge-based Management Systems (KBMS) (N039-84-C-
0211).

15

References
[AbitB91] S.Abiteboul and A.Bonner: Objects and Views; ACM SIGMOD Conf. on

the Management of Data, Boulder, May1991.

[BarsW90] T. Barsalou and G. Wiederhold: Complex Objects for Relational
Databases; Computer Aided Design, Vol. 22 No. 8, Buttersworth, Great
Britain, October 1990.

[BSKW91] T. Barsalou, N. Siambela, A. M. Keller, and G. Wiederhold: Updating
Relational Databases through Object-Based Views; ACM SIGMOD,
Denver, May 1991.

[Bato79] D.S. Batory: On Searching Transposed Files; ACM Transactions on
Database Systems, Dec. 1979, vol.4 No.4. pages 531-544.

[BlakCL89] J.A. Blakeley, N. Coburn, and P. Larson: Updating Derived Relations:
Detecting Irrelevant and Autonomously Computable Updates; ACM
Transactions on Database Systems, Vol. 14, No. 3, 1989, 369-400.

[CFLS91] M. Carey, M. Franklin, M. Livny, and E. Shekita: Data Caching
Tradeoffs in Client-Server DBMS Architecture; ACM SIGMOD Int. Conf.
on Management of Data, Denver, CO, May 1991, 357-366.

[Catt91] R. Cattell: Object Data Management: Object Oriented and Extended
Relational Systems; Addison-Wesley, 1991.

[ChamGT75] D.D. Chamberlin, J.N. Gray, and I.L. Traiger,I.L.: Views, Authori-
zation, and Locking in a Relational Data Base System, Proc. of the
National Computer Conference 1975, Vol.44, AFIPS Press, pages 425-
430.

[DeliR92] A. Delis and N. Roussopoulos: Performance and Scalability of Client-
Server Database Architectures; 18th Int. Conf. on Very Large Data Bases,
Vancouver, British Columbia, Canada, 1992, 610-623.

[DeWi*90] D. J. DeWitt, D. Maier, P. Futtersack, and F. Velez: A Study of Three
Alternative Workstation-Server Architectures for Object-Oriented
Database Systems; 16th Int. Conf. on Very Large Data Bases, Brisbane,
Australia, 1990.

[FranCL93] M.J. Franklin, M.J. Carey, and M. Livny: Local Disk Caching for
Client-Server Database Systems; 19th Int. Conf. on Very Large Data
Bases, Dublin, Ireland, August 1993, 641-654.

[GuptMS93] A. Gupta, I.S. Mumick, and V.S. Subrahmanian: Maintaining Views
Incrementally; ACM SIGMOD Int. Conf. on Management of Data,
Washington, D.C., May 1993, 157-166.

[GrayR93] J. Gray and A. Reuter: Transaction Processing: Concepts and
Techniques; Morgan Kaufmann Publishers, 1993.

[Hamm*97] J. Hammer, M. Breunig, H. Garcia-Molina, S.Nestorov, V. Vassalos,
R. Yerneni: Template-Based Wrappers in the TSIMMIS System; in
Proceedings of the 26th SIGMOD International Conference on
Management of Data, Tucson, Arizona, May 1997.

16

[HammMG97] J. Hammer , J. McHugh , H. Garcia-Molina: Semistructured Data:
The TSIMMIS Experience; in Proceedings of the First East-European
Workshop on Advances in Databases and Information Systems-ADBIS
'97, St. Petersburg, Russia, September 1997.

[HoubG97] Geert-Jan Houben, Frank Dignum: Integrating Information for
Organized Work; Proceedings of the 4th Workshop KRDB-97, Athens,
Greece, August 1997, F. Baader, MA. Jeusfeld, and W. Nutt (eds.), RWTH
Aachen, Aachen, Germany.

[KatoM92] K. Kato and T. Masuda: Persistent Caching: An Implementation
Technique for Complex Objects with Object Identity; IEEE Transactions on
Software Engineering, July 1992.

[Kell86] A.M. Keller: Choosing a View Update Translator by Dialog at View
Definition Time; 12th Int. Conf. on Very Large Data Bases, Kyoto, Japan,
August 1986, Morgan Kaufman, pubs.

[KellJA93] A.M. Keller, R. Jensen, S. Agarwal: Persistence Software: Bridging
Object-Oriented Programming and Relational Databases; ACM SIGMOD,
International Conference on Management of Data, May 1993.

[KellH93] A.M. Keller and C. Hamon: A C++ Binding for Penguin: a System for
Data Sharing among Heterogeneous Object Models; 4th Int. Conf.
Foundations of Data Organization and Algorithms, Evanston, October
1993.

[KellB 94] A.M. Keller and J. Basu: A Predicate-based Caching Scheme for
Client-Server Database Architectures; The VLDB Journal, Vol.5 No.1, Jan
1996, pp.35-47

 [LWBSSZ90] K. H. Law, G. Wiederhold, T. Barsalou, N. Sambela, W. Sujansky,
and D. Zingmond: Managing Design Objects in a Sharable Relational
Framework; ASME meeting, Boston, August 1990.

 [LeeW94] B.S. Lee and G. Wiederhold: Efficiently Instantiating View-objects
from Remote Relational Databases; The VLDB Journal, Vol.3 No.3, July
1994, pages 289-323.

[NavaEL86] S.B. Navathe, R.El Masri, and J.A. Larson: Integrating User Views in
Database Design; IEEE Computer, Jan. 1986, Vol. 19 No.1, pages 50-62.

 [QuaW97] D. Quass , J. Widom: On-Line Warehouse View Maintenance for
Batch Updates; Proc. ACM SIGMOD '97, June 1997.

 [SaltR:97] Felix Saltor, Elena Rodriguez: On Intelligent Access to
Heterogeneous Information; Proceedings of the 4th Workshop KRDB-97,
Athens, Greece, August 1997, F. Baader, MA. Jeusfeld, and W. Nutt
(eds.), RWTH Aachen, Aachen, Germany. F

 [ShilS89] J.J. Shilling and P.F. Sweeney: Three Steps to Views: Extending the
Object-Oriented Paradigm; OOPSLA 89, pages 353-361.

 [Steel80] T.B. Steel jr.: Status Report on ISO/TC97/SC5/WG3--Data Base
Management Systems; Proceedings of VLDB 6, Oct. 1980, Morgan
Kaufman pubs., pages 321-325.

17

 [Stro86] B. Stroustrup: The C++ Programming Language; Addison-Wesley,
1986.

 [TsicB89] D.C. Tsichritzis and T. Bogh: Fitting Round Objects into Square
Databases; OOPSLA 1989, New Orleans.

[Ullm88] J. D. Ullman: Principles of Database and Knowledge-base Systems,
Volume 1: Classical Database Systems; Computer Science Press, 1988.

[WangR91] Y. Wang and L.A. Rowe: Cache Consistency and Concurrency
Control in a Client-Server DBMS Architecture.; ACM SIGMOD Int. Conf.
on Management of Data, Denver, CO, May 1991, 367-376.

[WhitD92] S.J. White and D.J. DeWitt: A Performance Study of Alternative Object
Faulting and Pointer Swizzling Strategies; Proc. VLDB 18, Vancouver ,
Morgan Kaufman pubs., Aug. 1992.

[WiedE80] G. Wiederhold and R. ElMasri: The Structural Model for Database
Design; Entity-Relationship Approach to System Analysis and Design,
North-Holland, 1980.

[Wied86] G. Wiederhold: Views, Objects and Databases; IEEE Computer, Vol.19
No.2, 1986.

[Wied87] G. Wiederhold: File Organization for Database Design; McGraw-Hill,
1987.

-- o --

