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Abstract

This chapter covers three principle morphometric methods, that will be called voxel-
based, deformation-based and tensor-based morphometry.

Deformation-based morphometry (DBM) is a method for identifying macroscopic
anatomical differences among the brains of different populations of subjects. The
method involves spatially normalizing the structural MR images of a number of sub-
jects so that they all conform to the same stereotaxic space. Multivariate statistics
are then applied to the parameters describing the estimated nonlinear deformations
that ensue.

Tensor-based morphometry (TBM) is introduced as a method of identifying re-
gional structural differences from the gradients of deformations fields. Deformation
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2 CHAPTER 6. MORPHOMETRY

fields encode the relative positions of different brain structures, but local shapes
(such as volumes, lengths and areas) are encoded in their gradients (Jacobian ma-
trix field). Various functions of these tensor-fields can be used to characterize shape
differences.

At its simplest, voxel-based morphometry (VBM) involves a voxel-wise compar-
ison of the local concentration of grey matter between two groups of subjects. The
procedure is relatively straight-forward, and involves spatially normalizing high-
resolution MR images from all the subjects in the study into the same stereotaxic
space. This is followed by segmenting the grey matter from the spatially normalized
images, and smoothing these grey-matter segments. Voxel-wise parametric statisti-
cal tests are performed which compare the smoothed grey-matter images from the
groups. Corrections for multiple comparisons are made using the theory of Gaussian
random fields.

6.1 Introduction

The morphometric methods described in this chapter relate to ways of statistically identifying
and characterizing structural differences among populations, or for finding correlations between
brain shape and, for example, disease severity. A large number of approaches for characterizing
differences in the shape and neuro-anatomical configuration of different brains have recently
emerged due to improved resolution of anatomical human brain scans and the development of
new sophisticated image processing techniques.

Studies of brain shape have been carried out by many researchers on a number of differ-
ent populations, including patients with schizophrenia, autism, dyslexia and Turner’s syndrome.
Often, the morphometric measurements used in these studies have been obtained from brain
regions that can be clearly defined, resulting in a wealth of findings pertaining to these partic-
ular measurements. The measures are typically volumes of unambiguous structures such as the
hippocampi or the ventricles. However, there are a number of morphometric features that may
be more difficult to quantify by inspection, meaning that many observable structural differences
may be overlooked. This chapter describes morphometric approaches that are not biased to one
particular structure or tissue and give even-handed and comprehensive assessments of anatomical
differences throughout the brain.

The approaches described here require the images of multiple subjects to be registered to-
gether by some form of spatial normalization. The primary result of spatially normalizing a
series of images is that they all conform to the same stereotaxic space, enabling region-by-region
comparisons to be performed. A second result is a series of deformation fields that describe the
spatial transformations required to match the different shaped brains to the same template. En-
coded within each deformation field is information about the individual image shapes, which can
be further characterized using a number of statistical procedures.

The terms deformation-based and tensor-based morphometry will be used to denote meth-
ods of studying brain shape that are based on deformation fields. When comparing groups,
deformation-based morphometry (DBM) uses deformation fields to identify differences in the rel-
ative positions of structures within subjects’ brains. Tensor-based morphometry (TBM) refers to
those methods that identify differences in the local shape of brain structures (see Figure 6.1).

Characterization using DBM can be global, pertaining to the entire field as a single obser-
vation, or can proceed on a voxel by voxel basis to make inferences about regionally specific
positional differences. This simple approach to the analysis of deformation fields involves treat-
ing them as vector fields representing absolute displacements. However in this form, in addition to
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Figure 6.1: The term “deformation-based morphometry” will be used to describe methods of
studying the positions of structures within the brain (left), whereas the term “tensor-based mor-
phometry” will be used for methods that look at local shapes (right). Currently, the main
application of tensor-based morphometry involves using the Jacobian determinants to examine
the relative volumes of different structures. However, there are other features of the Jacobian
matrices that could be used, such as those representing elongation and contraction in different
directions. The arrows in the panel on the left show absolute displacements after making a global
correction for rotations and translations, whereas the ellipses on the right show how the same
circles would be distorted in different parts of the brain.
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shape information, the vector fields also contain information on position and size that is likely to
confound an analysis. Much of the confounding information is first removed by global rotations,
translations and a zoom of the fields [4].

When applied on a global scale, DBM simply identifies whether there are significant differ-
ences in overall shapes (based on a small number of parameters) among the brains of different
populations. Generally, a single multi-variate test is performed using parameters describing the
deformations - often after parameter reduction with singular value decomposition. The Hotelling’s
T2 statistic can be used for such simple comparisons between two groups of subjects [4, 6, 13],
but for more complex experimental designs, a multi-variate analysis of covariance can be used to
identify differences via the Wilk’s λ statistic.

An alternative approach to DBM involves producing a statistical parametric map that locates
any regions of significant positional differences among the groups of subjects. An example of
this approach involves using a voxel-wise Hotelling’s T2 test on the vector field describing the
displacements at each and every voxel [23, 17]. The significance of any observed differences can be
assessed by modeling the statistic field as a T2 random field [9]. Note that this approach does not
directly localize brain regions with different shapes, but rather identifies those brain structures
that are in relatively different positions. The locations of the results will be highly dependent
upon how the positions and sizes of the brains are standardized.

If the objective is to localize structures whose shapes differ among groups, then some form
of tensor-based morphometry is preferable for producing statistical parametric maps of regional
shape differences. A deformation field that maps one image to another can be considered as a
discrete vector field. By taking the gradients at each element of the field, a Jacobian matrix field
is obtained, in which each element is a tensor describing the relative positions of neighboring
elements. Morphometric measures derived from such a tensor field can be used to locate regions
with different shapes. The field obtained by taking the determinants at each point gives a map
of structural volumes relative to those of a reference image [14, 18, 11, 10]. Statistical parametric
maps of these determinant fields can then be used to compare the anatomy of groups of subjects.
A number of other measures derived from tensor fields have also been used by other researchers
[23, 22].

Another form of morphometry involves examining the local composition of brain images. Grey
and white matter voxels can be identified by image segmentation, before applying morphometric
methods to study the spatial distribution of the tissue classes. These techniques will be referred to
as voxel-based morphometry (VBM). Currently, the difficulty of computing very high resolution
deformation fields (required for TBM at small scales) makes voxel-based morphometry a simple
and pragmatic approach to addressing small scale differences that is within the capabilities of
most research units.

Morphometric methods have a number of different aims. They can be used for localizing
significant structural differences among populations, or for showing that overall brain structure is
related to some effect of interest. When testing the overall brain structure, multivariate statistical
methods are used to analyze groups of parameters for the whole brain (e.g., the deformation-
based morphometry described in this chapter). The result of the forms of morphometry that
localize structural differences would typically be a statistical parametric map [16] of regional
differences. Statistical parametric maps (SPMs) can be derived from uni-variate data where
there is a single variable at each voxel (e.g., the voxel-based morphometry method described
here), or from multi-variate data, where there are several different variables at each voxel (e.g.,
tensor-based morphometry).

Another use for morphometric methods is for characterizing essential differences, or for pro-
ducing some form of classification. Linear methods such as canonical correlation analysis, or
nonlinear classification methods can be used for these purposes. This chapter will be restricted
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to simple linear classification methods, which model data as multivariate normal distributions.
Nonlinear classification methods can assume more complex distributions for the data, but they
tend to be much more computationally expensive.

6.2 Deformation-Based Morphometry

Deformation-based morphometry (DBM) is a characterization of the differences in the vector fields
that describe global or gross differences in brain shape. These vector fields are the deformation
fields used to effect nonlinear variants of spatial normalization, when one of the images is a
template that conforms to some standard anatomical space.

Spatially normalizing a series of image volumes to match the same template will result in a
series of deformation fields – one for each image. A deformation field can be considered as a
continuous 3D vector field, containing a three element vector at each point. After spatial nor-
malization, what each deformation field contains is a mapping from each voxel in the template
image1 to its corresponding voxel in the un-warped image. A simple representation of a deforma-
tion field is a series of three volumes of the same dimensions as the template image. The lattice
location in one of these volumes corresponds to the same location in the template. The contents
of a lattice location in the three volumes constitutes a vector that points to the co-ordinate of
the equivalent structure in the un-normalized image. Therefore, the contents of voxel x in each
of the deformation fields will be the co-ordinate of the same structure in each of the un-warped
images. This allows statistical analysis methods to be used for comparing the positions of struc-
tures in different subject’s images. The shape of an object is defined by the relative positions of
its components, so in studying the relative positions of structures within a brain, we are actually
finding out about the brain’s shape.

In addition to encoding the shape of a subject’s brain, a deformation field also encodes its
pose and size. To make inferences about shape alone, these confounding components need to be
removed.

Because deformation fields are multivariate, standard multivariate statistical techniques can
be employed to estimate the nature of the differences and to make inferences about them. The
endpoint of this form of DBM is a p value, derived via the Wilk’s λ or Hotelling’s T2 statistic,
pertaining to the significance of the effect and one or more canonical vectors, or deformations, that
characterize their nature. These results can be obtained using multivariate analysis of covariance
(MANCOVA) and canonical correlation analysis (CCA) respectively. Before proceeding with the
multivariate analyses, it is necessary for the information in the deformations to be compacted
to just a few parameters. This is usually done by generating “eigen-warps” (principal modes of
variation of the warps [18]) using singular value decomposition.

6.2.1 Extracting Shape Information

Given a series of deformation fields, it is necessary to decompose each deformation into compo-
nents relating to global position, orientation and size2 (uninteresting components), and shape (the
components of interest). Each field provides a mapping from points in the template to points in
the source image, allowing well known landmark methods [5, 13] to be used to extract the size and
positional information. The extracted measures are such that the remaining shapes minimize the

1 Actually, it is a mapping from each voxel in a spatially normalized image to its voxel in the original un-warped
image. We are assuming that the spatial normalization is 100% accurate, such that each voxel in the template
exactly matches the same voxel in the normalized image.

2Although the total size of a brain is also often of interest.
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squared Procrustes distance between the template and images. Rather than basing the procedure
on a few landmarks, all the elements of the deformation field corresponding to voxels within the
brain are considered. This involves first determining translations by computing centers of mass:

x̄ =
∑I
i=1 xiwi∑I
i=1 wi

ȳ =
∑I
i=1 yiwi∑I
i=1 wi

where xi is the co-ordinate of the ith voxel of the template, yi is the location that it maps to,
and wi is a weighting for that element. Non-brain voxels are typically given zero weighting. The
rotations are computed from the cross-covariance matrix (C) between the elements and deformed
elements (after removing the effects of position):

cjk ∝
I∑
i=1

wi(xij − x̄j)(yik − ȳk)

The 3× 3 matrix C is decomposed using singular value decomposition to give three matrices, U,
S and V (such that C = USVT , where U and V are unitary, and S is a diagonal matrix). The
rotation matrix (R) can then be reconstituted from these matrices by R = UVT . If size effects
are to be removed, then finally, moments around the centers are used to correct for relative size
differences (z):

z =

√√√√∑3
j=1

∑I
i=1(xij − x̄j)2wi∑3

j=1

∑I
i=1(yij − ȳj)2wi

6.2.2 Multivariate Analysis of Covariance

Following this, a data matrix is generated, where each row contains a corrected deformation field
for one subject represented by a single vector. For multivariate analysis, it is necessary to have a
representation of each deformation that is parameterized by far fewer variables than the number
of subjects included in the study. Singular value decomposition can be used to compact this
information, such that most of the variance of the nonlinear deformations can be represented by
only a few parameters for each subject. MANCOVA is then used to make inferences about the
effects of interest (i.e., provide p values).

A multivariate analysis of covariance (MANCOVA) assumes that there are several dependent
variables for each observation, where an observation refers to a collection of data for a subject.
This data can be represented by an M × I matrix X, where M is the number of subjects in the
analysis, and I is the number of variables for each subject.

The columns of X are modeled by a linear combination of basis functions. Some of these
basis functions represent effects that are not considered interesting in the study, but may still be
significant. For example, linear age effects may confound a study of handedness. If a left-handed
group is not perfectly age matched with a right-handed group, then findings that are actually due
to age could be attributed to handedness differences. In addition, the inclusion of confounding
effects (such as age) in a model can result in a better fit to the data, possibly making the test
more sensitive to the effects of interest.

Confounding effects are modeled by an M ×K design matrix G. Each column of G can be a
vector of covariates (e.g., the age of each subject), or alternatively can be arranged in blocks (e.g.,
there may be a column containing ones for left-handed subjects, and zeros for right-handed). In
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almost all cases, a column of ones is included in order to model a mean effect. First of all, any
variance in the data that could be attributed to the confounds is removed by an orthogonalization
step:

Xa = X−G
(
GTG

)−1
GTX (6.1)

Similarly, the effects of interest are modeled by an M × J design matrix Y. The columns
of Y can represent group memberships, where elements contain a one for subjects who are in
a particular group, or a zero if they do not. Alternatively, the columns may contain covariates
of interest such as disease severity for each subject. The columns in this design matrix are
orthogonalized with respect to matrix G:

Ya = Y −G
(
GTG

)−1
GTY (6.2)

A MANCOVA involves assessing how the predictability of the observations change when the
effects of interest are discounted. This is based on the distributions of the residuals, which
are assumed to be multi-normal. The statistic is related to the determinants of the covariance
matrices describing these distributions. In practice, the residual sum of squares and products
(SSP) matrix (W), is compared to the SSP matrix of the fitted effects (B). These matrices are
obtained by:

T = Ya(Ya
TYa)−1Ya

TXa

B = TTT
W = (Xa −T)T (Xa −T)

The statistic is called Wilk’s Lambda (Λ), and is based upon the ratios of the determinants:

Λ =
|W|

|B + W|

The Wilk’s Lambda statistic can range between zero and one, where a value of one suggests no
relationship between the effects of interest and the data, and a value of zero indicates a perfect
relationship. This statistic is transformed to a χ2 statistic (with IJ degrees of freedom under the
null hypothesis) using the approximation of Bartlett 3:

χ2 ≈ −(M −K − (I + J + 1)/2)loge(Λ)

Finally, the cumulative χ2 distribution function is used to make inferences about whether the
null hypothesis (that there is no difference between the distributions) can be rejected.

This multivariate approach fails when the number of variables approaches the number of
subjects (M − K − (I + J + 1)/2 approaches zero, or becomes negative). In many situations,
it is necessary to regularize the problem by reducing the number of variables with respect to
the number of subjects. One way of doing this involves using singular value decomposition to
decompose the original data matrix X into unitary matrices U and V, and diagonal matrix S,
such that X = USVT . The diagonal elements of S are arranged in decreasing importance, so
it is possible to reconstruct an approximation of X using only the first L diagonal elements of
S and the first L columns of U and V, such that X ' U∗S∗V∗T . The MANCOVA would be
performed using U∗ (the first L columns of U).

3 This is true provided the matrices do not contain any redundant columns, otherwise matrix pseudo-inverses
are required in the computations, and the numbers of columns replaced by the matrix ranks.
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6.2.3 Canonical Correlation Analysis

To characterize differences among groups of subjects, one usually uses CCA, which is a device
that finds the linear combination of dependent variables (in this case the deformations) that is
maximally correlated with the explanatory variables (e.g., male vs. female). In a simple case
of one categorical explanatory variable (e.g., sex) this will be the deformation field that best
discriminates between the groups. Note that this is not the same as simply subtracting the
deformation fields of two groups. This is because (i) the MANCOVA includes the effects of
confounds that are removed and (ii) some aspects of the deformations may be less reliable than
others (CCA gives deformations that explicitly discount error in relation to predicted differences).
The canonical deformations can either be displayed directly as deformation fields, or can be
applied to some image to “caricature” the effect detected.

Canonical correlation analysis (CCA) is used to measure the strength of association between
two sets of variables. In this case, the variables are Xa and Ya, which are the data and design
matrix from Section 6.2.2 after having been orthogonalized with respect to a set of confounding
effects. The first canonical variate pair is the linear combination of columns of Xa and the
linear combination of columns of Ya, that has the maximum correlation. The second canonical
variate pair consists of linear combinations that maximize the correlation subject to the constraint
that they are orthogonal to the first pair of canonical variables. Similarly, all subsequent pairs
maximize the correlations and are orthogonal to all the previous pairs.

The weights used to determine the linear combinations are derived from the unitary matrices
(U and V) obtained by singular value decomposition:

USVT =
(
Xa

TXa

)− 1
2
(
Xa

TYa

)(
Ya

TYa

)− 1
2

Then the weights (A and B) are derived by:

A =
(
Xa

TXa

)− 1
2

U and B =
(
Ya

TYa

)− 1
2

V

The canonical variate pairs are obtained from the columns of XaA and YaB.

When the number of variables approaches the number of observations, the problem needs to
be regularized. This can be done by computing the canonical variates from data that has been
compacted using singular value decomposition as in Section 6.2.2. If X has been decomposed such
that it can be approximated by X ' U∗S∗V∗T , and canonical correlation analysis performed on
U∗ and Y to give weight matrices A∗ and B∗, then the weights to be applied to the original data
(X) can be reconstructed by V∗S∗−1A∗.

Figure 6.2 shows CCA as it would be used to graphically describe the differential features
of three groups. However, it can also be used to aid classification. Once derived, the same
weighting matrix (A) can be applied to new data-sets that were not involved in its derivation.
If there are only two groups involved in a study, then CCA can be used directly to assign group
memberships to new observations4. With more groups, CCA serves as a graphical aid for assigning
new observations to the groups.

6.3 Tensor-Based Morphometry

There is a near infinite number of ways in which the shapes of brains can differ among populations
of subjects. Many thousands or millions of parameters are required to precisely describe the shape

4 Providing that the signs of the canonical variates are adjusted accordingly.
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Figure 6.2: This figure illustrates canonical correlation analysis using simulated data. The two
matrices on the left are a 600 × 10 data matrix (Xa) and a 600 × 2 design matrix (Ya) after
centering by orthogonalizing with respect to a column of ones as described in Equations 6.1 and
6.2. The design matrix represents a partitioning of the data into three groups. The canonical
variates for Xa and Ya are shown in the third and fourth matrices (XaA and YaB). The left-
hand columns of these two matrices contain the first canonical variate pair, whereas the second
pair are in the right-hand columns. The graph on the right shows the two columns of XaA
plotted against each other, where the different symbols used represent memberships of the three
different groups.

of a brain at the resolution of a typical structural MR image. Given, say, 10 schizophrenic and
10 control brain images, there are lots of ways of inventing a measure that would differentiate
between the groups. In most cases though, this measure will not provide any distinguishing
power in a comparison between further groups of schizophrenics and controls. In other words,
the measure would be specific to the subjects included in the study, and not generalizable to
the populations as a whole. It is therefore not feasible to use methods that try to detect any
difference. One has to be specific about the types of differences that are searched for.

The multivariate methods described in Section 6.2 require that the deformations are param-
eterized by only a few “eigen-warps”, on which the statistical tests are performed. This only
allows inferences about those eigen-warps included in the analyses, so much of the information in
the deformation fields is lost.

A more useful analysis involves identifying focal differences in the form of a statistical para-
metric map (SPM). SPMs of univariate statistical measures often allow relatively simple questions
to be addressed, such as where is there significantly more of a particular measure that happens to
correlate with a particular effect of interest. Standard parametric statistical procedures (t-tests
and F-tests) can be used to test the hypotheses within the framework of the general linear model
(GLM – see Chapter 7), whereby a vector of observations is modeled by a linear combination
of user specified regressors [16]. The GLM is a flexible framework that allows many different
tests to be applied, ranging from group comparisons and identifying differences that are related
to specified covariates such as disease severity or age, to complex interactions between different
effects of interest.

Performing comparisons at each voxel results in many statistical tests being done. Without
any correction, the number of false-positive results would be proportional to the number of
independent tests. A Bonferroni correction would be applied if the tests were independent, but
this is not normally the case because of the inherent spatial smoothness of the data. In practice,
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the effective number of independent statistical tests is determined using Gaussian Random Field
(GRF) theory [15, 25] (see Chapters 14 and 15). By using GRF theory, a correction for multiple
dependent comparisons can be made to produce the appropriate rate of false-positive results.

SPMs can also be obtained from the results of voxel-wise multi-variate tests. Instead of one
variable per voxel of a subject, multivariate tests could effectively involve two or more variables.
Following the voxel-wise multivariate tests, similar corrections based on GRF theory can be
applied as in the univariate case. GRF theory has not yet been extended for Wilk’s Λ fields, so
approximations would need to be made that involve transforming the resulting Wilk’s Λ fields to
random fields of other statistics, such as χ2 or F fields. Subsequent processing would then need
to assume that the transformed fields have the same properties as true χ2 or F fields. Another
useful multivariate measure is the Hotelling’s T2 statistic, for which GRF theory has recently
been extended [9].

The objective of TBM is to localize regions of shape differences among groups of brains, based
on deformation fields that map points in a template (x1, x2, x3) to equivalent points in individual
source images (y1, y2, y3). In principle, the Jacobian matrices of the deformations (a 2nd order
tensor field relating to the spatial derivatives of the transformation) should be more reliable
indicators of local brain shape than absolute deformations. Absolute deformations represent
positions of brain structures, rather than local shape, and need to be quantified relative to some
arbitrary reference position.

A Jacobian matrix contains information about the local stretching, shearing and rotation
involved in the deformation, and is defined at each point by:

J =

∂y1/∂x1 ∂y1/∂x2 ∂y1/∂x3

∂y2/∂x1 ∂y2/∂x2 ∂y2/∂x3

∂y3/∂x1 ∂y3/∂x2 ∂y3/∂x3


A simple form of TBM involves comparing relative volumes of different brain structures,

where the volumes are derived from Jacobian determinants at each point (see Figures 6.3 and
6.4). Simple uni-variate statistics (t- or F- tests) can then be used to make inferences about
regional volume differences among populations. This type of morphometry is useful for studies
that have specific questions about whether growth or volume loss has occurred.

When many subjects are included in a study, a potentially more powerful form of TBM can be
attained using multi-variate statistics on other measures derived from the Jacobian matrices. This
use of multivariate statistics does not only test for volumetric differences, but indicates whether
there are any differences among lengths, areas and the amount of shear. It may therefore be
useful when there is no clear hypothesis about the nature of the differences, as may be the case
when studying the effects of maturation on the human brain. This form of morphometry should
be able to identify shape differences even when volumes are the same.

Because a Jacobian matrix encodes both local shape (zooms and shears) and orientation, it is
necessary to remove the latter before making inferences. According to the polar decomposition
theorem [21], a non-singular Jacobian matrix can be decomposed into a rotation matrix (R)
and a symmetric positive definite matrix (U or V), such that J = RU = VR. Matrices U
and V (called the right and left stretch tensors respectively) are derived by U =

(
JTJ

)1/2 and

V =
(
JJT

)1/2. Matrix R is then given by R = JU−1 or R = V−1J. For a purely rigid body
transformation, U = V = I (the identity matrix). Similarly, if R = I, then the deformation
can be considered as pure strain. Deviations of U or V away from I indicate a shape change,
which can be represented by a strain tensor E. Depending upon the reference co-ordinate system,
the strain tensor is referred to as either a Lagrangean or an Eulerian strain tensor. When the
strain tensor is derived from U, it is referred to as a Lagrangean strain tensor, whereas when
it is derived from V, it is Eulerian. Spatial normalization of a series of source images involves
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Figure 6.3: This figure illustrates warping together a pair of serial scans of the same Alzheimers
subject, using the three dimensional method presented in Chapter 4. The data were provided
by the Dementia Research Group, National Hospital for Neurology and Neurosurgery, London,
UK. From left to right, the top row shows a slice from the late scan (used as the template),
the early scan after rigid body registration followed by warping, and the early scan after rigid
registration only. The bottom row shows the difference between the late and early scan, with
and without warping. All images are displayed with the same intensity scaling. With only rigid
registration, the difference between the early and late scan exhibits a difference at the edges of
the ventricles (among other regions). This difference is greatly reduced by including warping
in the spatial transformation. The information contained in the difference image is transferred
to the deformation fields. One informative feature of the deformation fields are the Jacobian
determinants, which reflect volume changes. These are shown in Figure 6.4.
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Figure 6.4: This figure illustrates the volume changes estimated by warping together the images
shown in Figure 6.3. The relative volumes are the Jacobian determinants of the deformation field.
Smaller determinants are obtained when a region of the template maps to a smaller region in the
source image. In this example, they represent regions that have expanded between the early and
late scans. Regions where there are no measurable volume changes have Jacobian determinants
with a value of one.
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Figure 6.5: This figure illustrates polar decomposition, whereby the regular shape in the left-
hand panel is transformed via shears and zooms to give the shape in the center, before being
rotated to give the right-hand shape.

determining a mapping from each point in the template image, to corresponding points in the
source images. To compare image shapes, it is necessary to derive measures of shape within the
co-ordinate system of the template image, rather than within the different co-ordinate systems
of the individual source images. Therefore, the Lagrangean framework should be used.

For any deformation, there is a whole continuum of ways of defining strain tensors, based
on a parameter m. When m is non-zero, the family of Lagrangean strain tensors E are given
by E(m) = m−1 (Um − I). For the special case when m is zero, the strain tensor is given by
E(0) = ln (U), where the ln refers to a matrix logarithm. When m assumes values of -2, 0, 1
or 2, then the tensors are called the Almansi, Hencky, Biot or Green strain tensors respectively.
For deformations derived using the methods in Chapter 45, the Hencky tensor may be the most
appropriate measure of local shape, providing the priors exert enough influence on the resulting
deformation fields. One advantage of basing measures on the Hencky tensor is that it allows
relative changes in length, volume and area to be modeled using similar log-normal distributions.
This would not be possible if the measures were modeled by normal distributions, because if
a variable l is normally distributed, then l3 is not. Also, it would not make sense to assume
distributions that allow negative lengths or volumes, if these are explicitly prohibited by the
warping algorithm.

In three dimensions, a strain tensor has six unique elements (as it is a symmetric 3 × 3 ma-
trix). Within a TBM framework, multivariate statistics would be applied to these elements in
order to localize volume, area and length differences, whereas DBM would involve performing
a single, global multivariate test to compare the shapes. In principle, the difference between
these approaches need not be quite so distinct. Rather than basing the tests either on infor-
mation at each voxel, or on information from the whole brain, it is easy to see that forms of
morphometry could be devised that are based on regional analyses. For example, DBM could
be done region by region (after factoring out positional information), or multivariate TBM could
be applied such that the tests include information from strain tensors in regions of neighboring
lattice locations. Both of these approaches should produce similar results. The regions could be
based on pre-defined structures on the template image. Alternatively, they could involve some
weighted combination of information from the neighborhood of each voxel, with weights based
on a function such as a Gaussian kernel, or some other windowing function.

5 It should be noted that the sum of squares of the Hencky tensor elements is equivalent to the sum of squares
of the logs of the singular values of J, meaning that the priors described in Chapter 4 are effectively minimizing
the squares of the Hencky tensor.
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6.4 Voxel-Based Morphometry

A number of studies have already demonstrated structural brain differences among different
patient populations using the technique of Voxel-Based Morphometry (VBM) [27, 26, 2], or a
related method that involves parceling the images into different regions [19, 11].

VBM is another technique for producing SPMs of volumetric differences. Structural MR
images of brains can differ among subjects in many ways. A useful measure of structural difference
among populations is derived from a comparison of the local composition of different brain tissue
types (e.g., grey matter, white matter etc). Voxel-based Morphometry (VBM) has been designed
to be sensitive to these differences, while discounting positional and other large scale volumetric
differences in gross anatomy. The technique involves spatially normalizing all the subjects’ MR
images to the same stereotaxic space, extracting the grey matter from the normalized images,
smoothing, and finally performing a statistical analysis to localize, and make inferences about,
group differences. The output from the method is an SPM showing regions where grey matter
concentration differs significantly among the groups.

VBM was originally devised to detect cortical thinning in a way that was not confounded by
volume changes of the sort that are characterized by classical volumetric analyses of large brain
structures (e.g., the temporal lobe). It does this by removing positional and volume difference
(down to a specified spatial scale) through spatial normalization. Differences in grey matter
density are then detected by comparing the local intensities of grey matter maps after smoothing.
Since its inception [27] VBM has become an established tool in morphometry being used to detect
cortical atrophy and differences in slender white matter tracts. The classical perspective on VBM
partitions volume changes into two spatial scales (i) macroscopic volume or shape differences that
can be modeled in the spatial normalization procedure and (ii) mesoscopic volume differences
that cannot. The latter persist after normalization and are detected after spatial smoothing of
grey matter maps (i.e., partitions or segments) – smoothing transforms these volume differences
into image intensity differences through the partial volume effect.

More recently, this perspective has changed with the incorporation of an additional step,
introduced to compensate for the effect of spatial normalization. When warping a series of
images to match a template, it is inevitable that volumetric differences will be introduced into
the warped images. For example, if one subject’s temporal lobe has half the volume of that of the
template, then its volume will be doubled during spatial normalization. This will also result in
a doubling of the voxels labeled grey matter. To remove this confound, the spatially normalized
grey matter (or other tissue class) is adjusted by multiplying by its relative volume before and
after warping. If warping results in a region doubling its volume, then the correction will halve the
intensity of the tissue label. This whole procedure has the effect of preserving the total amount of
grey matter signal in the normalized partitions [19, 12] 6. Classical VBM assumed that the warps
were so smooth that these volume changes could be ignored. However, advances in normalization
techniques now allow for high-resolution warps.

If brain images from different subjects can be matched together exactly 7, then a complete
analysis of the volumetric differences could proceed using only the derived warps. Expansions
and contractions occur when an image from one subject is warped to match that of another.
These volume changes (hence also the relative volumes of structures) are encoded by the warps.
One form of tensor-based morphometry (TBM) involves analyzing these relative volumes (more

6Note that a uniformly smaller brain will have uniformly lower grey matter intensities after the correction. Any
detected differences are therefore less regionally specific, unless some kind of “global” measures are modeled as
confounding effects during the statistical analyses. These could pertain to the total amount of grey matter in each
brain, or, more usefully in many cases, the intra-cranial volume of each subject.

7Registered so that corresponding brain structures are matched, rather than solving the simpler problem of
matching grey matter with grey matter, white with white and CSF with CSF.
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formally, the Jacobian determinants of the deformation field) in order to identify regions of
systematic volumetric difference. The adjustment step mentioned above can be considered from
the perspective of TBM, in which volumetric changes derived from the warps are endowed with
tissue specificity. By multiplying the relative volumes by the tissue class of interest, volumetric
information about other tissue classes is discounted (i.e., there will be no changes attributed to
grey matter in purely white matter regions). In other words, the product of grey matter and
volume change has two equivalent interpretations: (i) in VBM it represents the proportion of the
voxel that is grey matter, having adjusted for the confounding effects of warping the brains, and
(ii) it represents the proportion of volume change attributable to grey matter.

By including the multiplication step, a continuum is introduced between the methods of VBM
and TBM. At the extreme where little or no warping is used, most of the information pertaining
to volumetric differences will be derived from systematic differences in the spatial distribution of
the tissue under study. At the other extreme, where registration between images is exact, all the
volumetric information will be encoded by the warps (because the normalized partitions will be
identical). The product remains sensitive to differences at either extreme and can be regarded as
an integration of classical VBM and TBM.

This dual perspective is illustrated in Figure 6.6, using brain images of a subject suffering from
Alzheimers disease. This example illustrates progressive volumetric changes of CSF, particularly
in the ventricles. The first column of the figure shows how the later of the two images was
processed by classifying the CSF (see Chapter 5) and smoothing it using an isotropic 12mm
FWHM Gaussian kernel. The column in the center shows the processing of the earlier image,
which was first rigidly registered (see Chapter 2) with the late image and then the CSF was
classified and smoothed. The difference between the smoothed CSF of the two images can be
considered as analogous to VBM, where the spatial normalization is restricted to a rigid body
registration.

The third column shows processing that is analogous to the augmented approach. After rigid
registration, the early image is precisely warped to match the late one. The warping method
(see Chapter 4) attempts to estimate exact displacements at every voxel, so is able to model the
relative shapes of the pair of brains. The warped image is then classified, producing an image
of CSF that is very similar to the CSF of the late image. A subtraction of these images would
probably not show any meaningful differences. If the segmentation and warping were perfect, then
the late CSF image would be identical to the warped early CSF image. To localize CSF volume
differences, the volume changes resulting from the warping must also enter into the comparison.
To do this, the warped CSF is simply multiplied by the relative volumes estimated from the
warps. This means that the procedure preserves the amount of CSF from the original image,
while also achieving a good registration. The figure shows an image of relative volumes, where
lighter areas indicate a smaller volume in the early image. Following this multiplication, the data
are smoothed. The difference between this image and the processed late image shows a picture
of volumetric differences based on the warps (c.f., TBM). As can be seen from the bottom row
of Figure 6.6, the pattern of CSF volume differences estimated using the two methods is very
similar.

6.4.1 Method

The steps involved in VBM are:

• The procedure begins by spatially normalizing all subjects’ data to the same stereotaxic
space, which is achieved by registering each image to the same template. The methods
described in Chapter 3 can be used to do this, although more precise methods can also be
used. It is important that the quality of the registration is high, and that the choice of
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Figure 6.6: An illustration of the continuum between VBM and TBM. The center column
illustrates a VBM processing stream, whereas the column on the right illustrates a TBM-like
stream. The data were obtained from the Dementia Research Group, Queen Square, London.
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template image does not bias the final solution. An ideal template consists of the average of
a large number of MR images that have been registered to within the accuracy of the spatial
normalization technique. The spatially normalized images should have a relatively high-
resolution (1mm or 1.5mm isotropic voxels), so that the following grey matter extraction
method is not excessively confounded by partial volume effects, where voxels contain a
mixture of different tissue types.

The basis function approach of Chapter 3 is far from perfect 8, but, with the right data, it
gives a good “global” match between brain images. Because of this, there are cases when
structural differences, not directly related to grey matter volumes, can be identified as
significant. One obvious example is when one population has larger ventricles. Because the
spatial normalization method [1] cannot achieve an exact match, it has to change the volume
of surrounding tissue when it attempts to make the ventricles of the individual subjects the
same size. For example, if the ventricles are enlarged during spatial normalization, then
grey matter near to them also also needs to be enlarged. It is then possible that structural
differences pertaining to ventricular volume can show up in a VBM study of grey matter
volume. A way of circumventing this would be to base the spatial normalization on only
the segmented grey matter. If all the data entering into the statistical analysis were only
derived from grey matter, then any significant differences must be due to grey matter.

• The spatially normalized images are then typically partitioned into different tissue classes
using the segmentation technique described in Chapter 5. Note that if the segmentation step
does not require prior probability maps of different tissue classes to be overlayed, then it
should probably be performed first, in order to reduce the partial volume effects incurred by
re-sampling the data. A further possible step after segmentation would be the binarization
of the resulting tissue class images. Many tissue classification methods produces images
where each voxel is the a posteriori probability that that voxel should be assigned to a
particular tissue type according to the model. These probabilities are values between zero
and one. Binarization would involve assigning each voxel to its most likely tissue class.

• Nonlinear spatial normalization results in the volumes of certain brain regions increasing,
whereas others decrease [19, 12]. This has implications for the interpretation of what VBM
actually tests. The objective of VBM is to identify regional differences in the amount of
a particular tissue (grey or white matter). To preserve the actual amounts of grey matter
within each structure, a further processing step can be incorporated that multiplies the
partitioned images by the relative voxel volumes. These relative volumes are simply the
Jacobian determinants of the deformation field (see above). Without this adjustment, VBM
can be thought of as comparing the relative concentration of grey matter (i.e., the proportion
of grey matter to other tissue types within a region). With the adjustment, VBM compares
the absolute amount of grey matter in different regions.

• The grey matter images are now smoothed by convolving with an isotropic Gaussian ker-
nel. This makes the subsequent voxel by voxel analysis comparable to a region of interest
approach, because each voxel in the smoothed images contains the average amount of grey
matter from around the voxel (where the region around the voxel is defined by the form of
the smoothing kernel). This is often referred to as “grey matter density”, but should not
be confused with cell packing density measured cytoarchitectonically. By the central limit
theorem, smoothing also has the effect of rendering the data more normally distributed,
thus increasing the validity of parametric statistical tests. Whenever possible, the size of

8Brain warping methods are still in their infancy. Most warping methods involve making MAP-like estimates
of deformations, making use of sub-optimal guesses for the likelihood and prior probability distributions. A
single high-dimensional MAP estimate is not that useful when there are many other possible solutions with
similar posterior probability, and estimating expectations over all MAP estimates is not feasible given the high-
dimensionality of the parameter space.
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the smoothing kernel should be comparable to the size of the expected regional differences
between the groups of brains. The smoothing step also helps to compensate for the inexact
nature of the spatial normalization.

• Following the pre-processing, which involves spatial normalization, tissue classification and
spatial smoothing, the final step in a VBM analysis is to perform voxel-wise statistical tests.
The results of these tests are a statistical parametric map (SPM) [16] showing significant
regional differences among the populations included in the study. Corrections for multiple
dependent comparisons are then made using the theory of Gaussian random fields [15, 25,
24].

Statistical analysis using the general linear model (GLM) is used to identify regions of grey
matter concentration that are significantly related to the particular effects under study [16].
The GLM is a flexible framework that allows many different tests to be applied, ranging
from group comparisons and identification of regions of grey matter concentration that
are related to specified covariates such as disease severity or age, to complex interactions
between different effects of interest. Standard parametric statistical procedures (t-tests and
F-tests) are used to test the hypotheses, so they are valid providing the residuals, after
fitting the model, are independent and normally distributed. If the statistical model is
appropriate there is no reason why the residuals should not be independent, but there
are reasons why they may not be normally distributed. The original segmented images
contain values between zero and one, where most of the values are very close to either of
the extremes. Only by smoothing the segmented images does the behavior of the residuals
become more normally distributed.

Following application of the GLM, the significance of any differences is ascertained using
GRF theory [15, 25]. A voxel-wise statistical parametric map (SPM) comprises the result
of many statistical tests, so it is necessary to correct for multiple dependent comparisons.

Classical statistical tests cannot be used to prove a hypothesis, only to reject a null hy-
pothesis. Any significant differences that are detected could be explained by a number of
different causes, which are not disambiguated by the statistical inference. In other words,
these tests are not concerned with accepting a specific hypothesis about the cause of a
difference, but involve rejecting a null hypothesis with a given certainty. When the null
hypothesis has been rejected, it does not impute a particular explanation for the difference
if there are many potential causes that could explain it. The pre-processing employed by
VBM manipulates the data so that the ensuing tests are more sensitive to some causes than
others. In particular, VBM has been devised to be sensitive to systematic differences in the
volumes of grey matter structures, but significant results can also arise for other reasons.
Attribution of what may be the cause of any detected difference generally requires a careful
characterization of the parameter estimates after the inference has been made.

An objection to VBM is that it is sensitive to systematic shape differences attributable
to misregistration from the spatial normalization step [7]. This is one of a large number
of potential systematic differences that can arise [3]. For example, a particular subject
group may move more in the scanner, so the resulting images contain motion artifact. This
motion may interact with the segmentation to produce systematic classification differences.
Another group may have systematic differences in the relative intensity of grey matter voxels
compared to white matter, or may have to be positioned differently in the scanner. All these
reasons, plus others, may produce differences that are detectable by VBM. They are all real
differences among the data, but may not necessarily be due to reductions in grey matter
density.
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6.5 Discussion

The morphometric methods developed here all attempt to automatically identify neuro-anatomical
differences, either from features of spatially normalized images, or from deformation fields that
encode information about image shapes. Rather than focusing on particular structures, one
important aspect of these methods is that the entire brain can be examined in a balanced way.

The different forms of morphometry have their own advantages and disadvantages, and the
optimum approach may depend on the types of structural difference expected among the data.
Where there are global patterns of difference, then the global approaches (that do not produce a
SPM) may be more powerful, as they can model covariances between shapes of different structures.
In contrast, the SPM approaches may be preferable where discrete focal differences are expected.
The main disadvantages of global testing methods (as opposed to SPM methods), is that there
are generally far more variables for each brain than there are brains in a study. This implies that
covariances between all variables cannot be computed, so some form of dimensionality reduction
(or regularization) is required, leading to inevitable data loss.

A related issue is about how to normalize morphometric measures in order to produce the
most useful results. This is particularly true for voxel-wise approaches, because relationships
between other, more global, factors are not modeled. For example, consider a group of subjects
with smaller hippocampi, but also smaller brains. Should the reduced hippocampi be considered
significantly different if they correlate with a smaller brain? This size difference could also relate
to lengths or volumes of temporal lobe, or to a whole number of other measurements. Consider
another example. If the right temporal lobe is relatively larger than the left temporal lobe for a
particular group of subjects, then should these differences be localized in the left or right lobes?
These are arguments for using global multivariate approaches.

Another challenge concerns visualizing and communicating the results of morphometric tests.
Three dimensional volumes are quite difficult to visualize, especially within the limited space of
most journals. However, the results of morphometric tests are often vector or tensor fields. These
are quite difficult to visualize in two dimensions, but in three dimensions the challenge becomes
much worse. The more useful results of global morphometric methods are the canonical variates
that characterize the differences, and these are often some form of three dimensional vector or
tensor field. In comparison, differences localized by voxel-wise methods can be relatively easily
presented as a SPM. Although the reasons may appear trivial, voxel-wise approaches will probably
come to dominate because their results can be explained and presented much more easily.

When parametric statistical methods are used, statistical designs such as comparisons between
single subjects and whole groups may not be as reliable as more balanced designs involving
comparisons between groups of several subjects. It may be necessary to resort to non-parametric
methods [20, 8] for such cases. The alternative may involve developing suitable transforms for
the data that render them better behaved.

Other factors also influence the validity and sensitivity of the different morphometric ap-
proaches. In particular, the warping method, used to register the images to the same stereotaxic
space, has a significant influence on the results. For DBM and TBM, the statistical tests are based
entirely on the deformation fields produced by the warping methods. The warping methods de-
scribed in this book are all nonlinear optimization procedures, and therefore can be susceptible
to reaching local minima, and hence non-optimal solutions. These local minima have negative
consequences for subsequent statistical tests, as the estimated shapes do not reflect the true
shapes of anatomical structures. Other problems occur when warping brains containing severe
pathologies. For example, if a brain contains features that are not present in the template image,
then an accurate match can not be achieved. The effects of this mismatch may also propagate
to other brain regions because of the inherent smoothness of the deformation fields. Much more
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work is necessary in order to develop warping methods that can model the various forms of severe
pathology that may be encountered.
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