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Understanding individual human mobility patterns
Marta C. González1, César A. Hidalgo1,2 & Albert-László Barabási1,2,3

Despite their importance for urban planning1, traffic forecasting2

and the spread of biological3–5 and mobile viruses6, our under-
standing of the basic laws governing human motion remains
limited owing to the lack of tools to monitor the time-resolved
location of individuals. Here we study the trajectory of 100,000
anonymized mobile phone users whose position is tracked for a
six-month period. We find that, in contrast with the random tra-
jectories predicted by the prevailing Lévy flight and random walk
models7, human trajectories show a high degree of temporal and
spatial regularity, each individual being characterized by a time-
independent characteristic travel distance and a significant prob-
ability to return to a few highly frequented locations. After
correcting for differences in travel distances and the inherent
anisotropy of each trajectory, the individual travel patterns col-
lapse into a single spatial probability distribution, indicating that,
despite the diversity of their travel history, humans follow simple
reproducible patterns. This inherent similarity in travel patterns
could impact all phenomena driven by human mobility, from
epidemic prevention to emergency response, urban planning
and agent-based modelling.

Given the many unknown factors that influence a population’s
mobility patterns, ranging from means of transportation to job- and
family-imposed restrictions and priorities, human trajectories are often
approximated with various random walk or diffusion models7,8.
Indeed, early measurements on albatrosses9, followed by more recent
data on monkeys and marine predators10,11, suggested that animal tra-
jectory is approximated by a Lévy flight12,13—a random walk for which
step sizeDr follows a power-law distribution P(Dr) ,Dr2(1 1 b), where
the displacement exponent b , 2. Although the Lévy statistics for some
animals require further study14, this finding has been generalized to
humans7, documenting that the distribution of distances between con-
secutive sightings of nearly half-a-million bank notes is fat-tailed. Given
that money is carried by individuals, bank note dispersal is a proxy
for human movement, suggesting that human trajectories are best
modelled as a continuous-time random walk with fat-tailed displace-
ments and waiting-time distributions7. A particle following a Lévy
flight has a significant probability to travel very long distances in a
single step12,13, which seems to be consistent with human travel pat-
terns: most of the time we travel only over short distances, between
home and work, whereas occasionally we take longer trips.

Each consecutive sighting of a bank note reflects the composite
motion of two or more individuals who owned the bill between
two reported sightings. Thus, it is not clear whether the observed dis-
tribution reflects the motion of individual users or some previously
unknown convolution between population-based heterogeneities and
individual human trajectories. Contrary to bank notes, mobile phones
are carried by the same individual during his/her daily routine, offering
the best proxy to capture individual human trajectories15–19.

We used two data sets to explore the mobility pattern of indivi-
duals. The first (D1) consisted of the mobility patterns recorded over

a six-month period for 100,000 individuals selected randomly from a
sample of more than 6 million anonymized mobile phone users. Each
time a user initiated or received a call or a text message, the location of
the tower routeing the communication was recorded, allowing us
to reconstruct the user’s time-resolved trajectory (Fig. 1a, b). The
time between consecutive calls followed a ‘bursty’ pattern20 (see
Supplementary Fig. 1), indicating that although most consecutive
calls are placed soon after a previous call, occasionally there are long
periods without any call activity. To make sure that the obtained
results were not affected by the irregular call pattern, we also studied
a data set (D2) that captured the location of 206 mobile phone users,
recorded every two hours for an entire week. In both data sets, the
spatial resolution was determined by the local density of the more
than 104 mobile towers, registering movement only when the user
moved between areas serviced by different towers. The average ser-
vice area of each tower was approximately 3 km2, and over 30% of the
towers covered an area of 1 km2 or less.

To explore the statistical properties of the population’s mobility
patterns, we measured the distance between user’s positions at con-
secutive calls, capturing 16,264,308 displacements for the D1 and
10,407 displacements for the D2 data set. We found that the distri-
bution of displacements over all users is well approximated by a
truncated power-law:

P Drð Þ~ DrzDr0ð Þ{b
exp {Dr=kð Þ ð1Þ

with exponent b 5 1.75 6 0.15 (mean 6 standard deviation),
Dr0 5 1.5 km and cutoff values k D1

j ~400 km and k D2
j ~80 km

(Fig. 1c, see the Supplementary Information for statistical valida-
tion). Note that the observed scaling exponent is not far from
b 5 1.59 observed in ref. 7 for bank note dispersal, suggesting that
the two distributions may capture the same fundamental mechanism
driving human mobility patterns.

Equation (1) suggests that human motion follows a truncated
Lévy flight7. However, the observed shape of P(Dr) could be explained
by three distinct hypotheses: first, each individual follows a Lévy tra-
jectory with jump size distribution given by equation (1) (hypothesis
A); second, the observed distribution captures a population-based
heterogeneity, corresponding to the inherent differences between indi-
viduals (hypothesis B); and third, a population-based heterogeneity
coexists with individual Lévy trajectories (hypothesis C); hence, equa-
tion (1) represents a convolution of hypotheses A and B.

To distinguish between hypotheses A, B and C, we calculated the
radius of gyration for each user (see Supplementary Information), inter-
preted as the characteristic distance travelled by user a when observed up
to time t (Fig. 1b). Next, we determined the radius of gyration distri-
bution P(rg) by calculating rg for all users in samples D1 and D2, finding
that they also can be approximated with a truncated power-law:

P rg

� �
~ rgzr0

g

� �{br

exp {rg

�
k

� �
ð2Þ
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with r0
g ~5:8 km, br 5 1.65 6 0.15 and k 5 350 km (Fig. 1d, see

Supplementary Information for statistical validation). Lévy flights
are characterized by a high degree of intrinsic heterogeneity, raising
the possibility that equation (2) could emerge from an ensemble of
identical agents, each following a Lévy trajectory. Therefore, we
determined P(rg) for an ensemble of agents following a random walk
(RW), Lévy flight (LF) or truncated Lévy flight (TLF) (Fig. 1d)8,12,13.
We found that an ensemble of Lévy agents display a significant degree
of heterogeneity in rg; however, this was not sufficient to explain the
truncated power-law distribution P(rg) exhibited by the mobile
phone users. Taken together, Fig. 1c and d suggest that the difference
in the range of typical mobility patterns of individuals (rg) has a
strong impact on the truncated Lévy behaviour seen in equation
(1), ruling out hypothesis A.

If individual trajectories are described by an LF or TLF, then
the radius of gyration should increase with time as rg(t) , t3/(2 1 b)

(ref. 21), whereas, for an RW, rg(t) , t1/2; that is, the longer we
observe a user, the higher the chance that she/he will travel to areas
not visited before. To check the validity of these predictions, we
measured the time dependence of the radius of gyration for users
whose gyration radius would be considered small (rg(T) # 3 km),
medium (20 , rg(T) # 30 km) or large (rg(T) . 100 km) at the end
of our observation period (T 5 6 months). The results indicate that

the time dependence of the average radius of gyration of mobile
phone users is better approximated by a logarithmic increase, not
only a manifestly slower dependence than the one predicted by a
power law but also one that may appear similar to a saturation
process (Fig. 2a and Supplementary Fig. 4).

In Fig. 2b, we chose users with similar asymptotic rg(T) after
T 5 6 months, and measured the jump size distribution P(Drjrg)
for each group. As the inset of Fig. 2b shows, users with small rg travel
mostly over small distances, whereas those with large rg tend to
display a combination of many small and a few larger jump sizes.
Once we rescaled the distributions with rg (Fig. 2b), we found that the
data collapsed into a single curve, suggesting that a single jump size
distribution characterizes all users, independent of their rg. This
indicates that P Dr rg

��� �
*r{a

g F Dr
�

rg

� �
, where a < 1.2 6 0.1 and

F(x) is an rg-independent function with asymptotic behaviour, that
is, F(x) , x2a for x , 1 and F(x) rapidly decreases for x? 1.
Therefore, the travel patterns of individual users may be approxi-
mated by a Lévy flight up to a distance characterized by rg. Most
important, however, is the fact that the individual trajectories are
bounded beyond rg; thus, large displacements, which are the source
of the distinct and anomalous nature of Lévy flights, are statistically
absent. To understand the relationship between the different expo-
nents, we note that the measured probability distributions are related

Figure 1 | Basic human mobility patterns. a, Week-long trajectory of 40
mobile phone users indicates that most individuals travel only over short
distances, but a few regularly move over hundreds of kilometres. b, The
detailed trajectory of a single user. The different phone towers are shown as
green dots, and the Voronoi lattice in grey marks the approximate reception
area of each tower. The data set studied by us records only the identity of the
closest tower to a mobile user; thus, we can not identify the position of a user
within a Voronoi cell. The trajectory of the user shown in b is constructed
from 186 two-hourly reports, during which the user visited a total of 12
different locations (tower vicinities). Among these, the user is found on 96
and 67 occasions in the two most preferred locations; the frequency of visits

for each location is shown as a vertical bar. The circle represents the radius of
gyration centred in the trajectory’s centre of mass. c, Probability density
function P(Dr) of travel distances obtained for the two studied data sets D1

and D2. The solid line indicates a truncated power law for which the
parameters are provided in the text (see equation (1)). d, The distribution
P(rg) of the radius of gyration measured for the users, where rg(T) was
measured after T 5 6 months of observation. The solid line represents a
similar truncated power-law fit (see equation (2)). The dotted, dashed and
dot-dashed curves show P(rg) obtained from the standard null models (RW,
LF and TLF, respectively), where for the TLF we used the same step size
distribution as the one measured for the mobile phone users.
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by P Drð Þ~
Ð?

0
P Dr rg

��� �
P rg

� �
drg, which suggests (see Supplemen-

tary Information) that up to the leading order we have
b 5 br 1 a 2 1, consistent, within error bars, with the measured
exponents. This indicates that the observed jump size distribution
P(Dr) is in fact the convolution between the statistics of individual
trajectories P(Drgjrg) and the population heterogeneity P(rg), con-
sistent with hypothesis C.

To uncover the mechanism stabilizing rg, we measured the
return probability for each individual Fpt(t) (first passage time
probability)21,22, defined as the probability that a user returns to the
position where he/she was first observed after t hours (Fig. 2c). For a
two-dimensional random walk, Fpt(t) should follow ,1/(t ln2(t))
(ref. 21). In contrast, we found that the return probability is char-
acterized by several peaks at 24 h, 48 h and 72 h, capturing a strong
tendency of humans to return to locations they visited before,
describing the recurrence and temporal periodicity inherent to
human mobility23,24.

To explore if individuals return to the same location over and over,
we ranked each location on the basis of the number of times an
individual was recorded in its vicinity, such that a location with
L 5 3 represents the third-most-visited location for the selected indi-
vidual. We find that the probability of finding a user at a location with
a given rank L is well approximated by P(L) , 1/L, independent of the
number of locations visited by the user (Fig. 2d). Therefore, people
devote most of their time to a few locations, although spending their
remaining time in 5 to 50 places, visited with diminished regularity.
Therefore, the observed logarithmic saturation of rg(t) is rooted in
the high degree of regularity in the daily travel patterns of individuals,
captured by the high return probabilities (Fig. 2b) to a few highly
frequented locations (Fig. 2d).

An important quantity for modelling human mobility patterns is
the probability density function Wa(x, y) to find an individual a in a
given position (x, y). As it is evident from Fig. 1b, individuals live and
travel in different regions, yet each user can be assigned to a well
defined area, defined by home and workplace, where she or he can
be found most of the time. We can compare the trajectories of dif-
ferent users by diagonalizing each trajectory’s inertia tensor, provid-
ing the probability of finding a user in a given position (see Fig. 3a) in
the user’s intrinsic reference frame (see Supplementary Information
for the details). A striking feature of W (x, y) is its prominent spatial
anisotropy in this intrinsic reference frame (note the different scales
in Fig. 3a); we find that the larger an individual’s rg, the more pro-
nounced is this anisotropy. To quantify this effect, we defined the
anisotropy ratio S ; sy/sx, where sx and sy represent the standard
deviation of the trajectory measured in the user’s intrinsic reference
frame (see Supplementary Information). We found that S decreases
monotonically with rg (Fig. 3c), being well approximated with
S*r{g

g for g < 0.12. Given the small value of the scaling exponent,
other functional forms may offer an equally good fit; thus, mecha-
nistic models are required to identify if this represents a true scaling
law or only a reasonable approximation to the data.

To compare the trajectories of different users, we removed the
individual anisotropies, rescaling each user trajectory with its
respective sx and sy. The rescaled ~WW x=sx ,y

�
sy

� �
distribution

(Fig. 3b) is similar for groups of users with considerably different
rg, that is, after the anisotropy and the rg dependence are removed
all individuals seem to follow the same universal ~WW ~xx,~yyð Þ probabi-
lity distribution. This is particularly evident in Fig. 3d, where we
show the cross section of ~WW x=sx ,0ð Þ for the three groups of
users, finding that apart from the noise in the data the curves are
indistinguishable.

Taken together, our results suggest that the Lévy statistics observed
in bank note measurements capture a convolution of the population
heterogeneity shown in equation (2) and the motion of individual
users. Individuals display significant regularity, because they return
to a few highly frequented locations, such as home or work. This
regularity does not apply to the bank notes: a bill always follows
the trajectory of its current owner; that is, dollar bills diffuse, but
humans do not.

The fact that individual trajectories are characterized by the
same rg-independent two-dimensional probability distribution
~WW x=sx ,y

�
sy

� �
suggests that key statistical characteristics of indi-

vidual trajectories are largely indistinguishable after rescaling.
Therefore, our results establish the basic ingredients of realistic
agent-based models, requiring us to place users in number propor-
tional with the population density of a given region and assign each
user an rg taken from the observed P(rg) distribution. Using the
predicted anisotropic rescaling, combined with the density function
~WW x,yð Þ, the shape of which is provided as Supplementary Table 1,
we can obtain the likelihood of finding a user in any location. Given
the known correlations between spatial proximity and social links,
our results could help quantify the role of space in network develop-
ment and evolution25–29 and improve our understanding of diffusion
processes8,30.
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Figure 2 | The bounded nature of human trajectories. a, Radius of gyration
Ærg(t)æ versus time for mobile phone users separated into three groups
according to their final rg(T), where T 5 6 months. The black curves
correspond to the analytical predictions for the random walk models,
increasing with time as Ærg(t)æ | LF,TLF , t3/2 1 b (solid curve) and
Ærg(t)æ | RW , t0.5 (dotted curve). The dashed curves corresponding to a
logarithmic fit of the form A 1 B ln(t), where A and B are time-independent
coefficients that depend on rg. b, Probability density function of individual
travel distances P(Dr | rg) for users with rg 5 4, 10, 40, 100 and 200 km. As the
inset shows, each group displays a quite different P(Dr | rg) distribution. After
rescaling the distance and the distribution with rg (main panel), the different
curves collapse. The solid line (power law) is shown as a guide to the eye.
c, Return probability distribution, Fpt(t). The prominent peaks capture the
tendency of humans to return regularly to the locations they visited before,
in contrast with the smooth asymptotic behaviour ,1/(t ln(t)2) (solid line)
predicted for random walks. d, A Zipf plot showing the frequency of visiting
different locations (loc.). The symbols correspond to users that have been
observed to visit nL 5 5, 10, 30 and 50 different locations. Denoting with (L),
the rank of the location listed in the order of the visit frequency, the data are
well approximated by R(L) , L21. The inset is the same plot in linear scale,
illustrating that 40% of the time individuals are found at their first two
preferred locations; bars indicate the standard error.
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29. González, M. C., Lind, P. G. & Herrmann, H. J. A system of mobile agents to model
social networks. Phys. Rev. Lett. 96, 088702 (2006).

30. Cecconi, F., Marsili, M., Banavar, J. R. & Maritan, A. Diffusion, peer pressure, and
tailed distributions. Phys. Rev. Lett. 89, 088102 (2002).

Supplementary Information is linked to the online version of the paper at
www.nature.com/nature.

Acknowledgements We thank D. Brockmann, T. Geisel, J. Park, S. Redner,
Z. Toroczkai, A. Vespignani and P. Wang for discussions and comments on the
manuscript. This work was supported by the James S. McDonnell Foundation 21st
Century Initiative in Studying Complex Systems, the National Science Foundation
within the DDDAS (CNS-0540348), ITR (DMR-0426737) and IIS-0513650
programs, and the US Office of Naval Research Award N00014-07-C. Data
analysis was performed on the Notre Dame Biocomplexity Cluster supported in
part by the NSF MRI grant number DBI-0420980. C.A.H. acknowledges support
from the Kellogg Institute at Notre Dame.

Author Information Reprints and permissions information is available at
www.nature.com/reprints. Correspondence and requests for materials should be
addressed to A.-L.B. (alb@neu.edu).

–15 0 15
–15

0

15

–150 0 150
–150

0

150

–1,200 0 1,200
–1,200

0

1,200

Fmin

Fmax

x (km) x (km) x (km)
y 

(k
m

)

y 
(k

m
)

y 
(k

m
)

y/
s y

 

y/
s y

 

x/sx

0.1

0.2

0.3

0.4

s y
/s

x

10 100 1,0001
rg (km)

–15 0 15
–15

0

15

–15

0

15

–15

0

15

–15 0 15 –15 0 15

–10 –5 0 5 10
10–6

10–4

10–2

100

(x
/s

x,
0)

 

rg ≤ 3 km

20 km < rg < 30 km

rg > 100 km

~

10–2

10–3

10–4

10–5

10–6

a

b

dc

y/
s y

 
x/sx x/sx

x/sx

F

Figure 3 | The shape of human trajectories.
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�
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standard error. d, ~WW x=sx ,0ð Þ representing the
x-axis cross-section of the rescaled distribution
~WW x=sx ,y

�
sy

� �
shown in b.

LETTERS NATURE | Vol 453 | 5 June 2008

782
Nature   Publishing Group©2008

www.nature.com/nature
www.nature.com/reprints
mailto:alb@neu.edu

	Title
	Authors
	Abstract
	References
	Figure 1 Basic human mobility patterns.
	Figure 2 The bounded nature of human trajectories.
	Figure 3 The shape of human trajectories.

