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Abstract

Silo is a new in-memory database that achieves excel-
lent performance and scalability on modern multicore
machines. Silo was designed from the ground up to use
system memory and caches efficiently. For instance, it
avoids all centralized contention points, including that of
centralized transaction ID assignment. Silo’s key contri-
bution is a commit protocol based on optimistic concur-
rency control that provides serializability while avoid-
ing all shared-memory writes for records that were only
read. Though this might seem to complicate the en-
forcement of a serial order, correct logging and recov-
ery is provided by linking periodically-updated epochs
with the commit protocol. Silo provides the same guar-
antees as any serializable database without unnecessary
scalability bottlenecks or much additional latency. Silo
achieves almost 700,000 transactions per second on a
standard TPC-C workload mix on a 32-core machine, as
well as near-linear scalability. Considered per core, this
is several times higher than previously reported results.

1 Introduction

Thanks to drastic increases in main memory sizes and
processor core counts for server-class machines, modern
high-end servers can have several terabytes of RAM and
80 or more cores. When used effectively, this is enough
processing power and memory to handle data sets and
computations that used to be spread across many disks
and machines. However, harnassing this power is tricky;
even single points of contention, like compare-and-
swaps on a shared-memory word, can limit scalability.
This paper presents Silo, a new main-memory
database that achieves excellent performance on multi-
core machines. We designed Silo from the ground up
to use system memory and caches efficiently. We avoid
all centralized contention points and make all synchro-

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

Copyright is held by the Owner/Author(s).

SOSP’13, Nov. 3-6, 2013, Farmington, Pennsylvania, USA.
ACM 978-1-4503-2388-8/13/11.
http://dx.doi.org/10.1145/2517349.2522713

nization scale with the data, allowing larger databases to
support more concurrency.

Silo uses a Masstree-inspired tree structure for its un-
derlying indexes. Masstree [23] is a fast concurrent B-
tree-like structure optimized for multicore performance.
But Masstree only supports non-serializable, single-key
transactions, whereas any real database must support
transactions that affect multiple keys and occur in some
serial order. Our core result, the Silo commit protocol, is
a minimal-contention serializable commit protocol that
provides these properties.

Silo uses a variant of optimistic concurrency control
(OCC) [18]. An OCC transaction tracks the records it
reads and writes in thread-local storage. At commit time,
after validating that no concurrent transaction’s writes
overlapped with its read set, the transaction installs all
written records at once. If validation fails, the transaction
aborts. This approach has several benefits for scalability.
OCC writes to shared memory only at commit time, af-
ter the transaction’s compute phase has completed; this
short write period reduces contention. And thanks to the
validation step, read-set records need not be locked. This
matters because the memory writes required for read
locks can induce contention [11].

Previous OCC implementations are not free of scal-
ing bottlenecks, however, with a key reason being the re-
quirement for tracking “anti-dependencies” (write-after-
read conflicts). Consider a transaction #; that reads a
record from the database, and a concurrent transaction
tp that overwrites the value #; saw. A serializable sys-
tem must order #; before #, even after a potential crash
and recovery from persistent logs. To achieve this order-
ing, most systems require that #; communicate with #,,
such as by posting its read sets to shared memory or via
a centrally-assigned, monotonically-increasing transac-
tion ID [18, 19]. Some non-serializable systems can
avoid this communication, but they suffer from anoma-
lies like snapshot isolation’s “write skew” [2].

Silo provides serializability while avoiding all shared-
memory writes for read transactions. The commit proto-
col was carefully designed using memory fences to scal-
ably produce results consistent with a serial order. This
leaves the problem of correct recovery, which we solve
using a form of epoch-based group commit. Time is di-
vided into a series of short epochs. Even though transac-
tion results always agree with a serial order, the system
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does not explicitly know the serial order except across
epoch boundaries: if t;’s epoch is before #,’s, then ¢ pre-
cedes 1, in the serial order. The system logs transactions
in units of whole epochs and releases results to clients
at epoch boundaries. As a result, Silo provides the same
guarantees as any serializable database without unneces-
sary scalability bottlenecks or much additional latency.
Epochs have other benefits as well; for example, we use
them to provide database snapshots that long-lived read-
only transactions can use to reduce aborts.

On a single 32-core machine, Silo achieves roughly
700,000 transactions per second on the standard TPC-
C benchmark for online transaction processing (OLTP).
This is about 22,000 transactions per second per core.
Per-core transaction throughput at 32 cores is 91%
of that at 8 cores, a small drop indicating that Silo
scales well. For context, the database literature for high-
performance in-memory OLTP systems cites per-core
TPC-C throughput at least several times lower than
Silo’s [16, 25, 27, 28], and benchmarks on our hardware
with a commercial main-memory database system per-
form at most 3,000 transactions per second per core.

An important Silo design choice is its shared-memory
store: any database worker can potentially access the
whole database. Several recent main-memory database
designs instead use data partitioning, in which database
workers effectively own subsets of the data [25, 32]. Par-
titioning can shrink table sizes and avoids the expense of
managing fine-grained locks, but works best when the
query load matches the partitioning. To understand the
tradeoffs, we built and evaluated a partitioned variant of
Silo. Partitioning performs better for some workloads,
but a shared-memory design wins when cross-partition
transactions are frequent or partitions are overloaded.

Silo assumes a omne-shot request model in which
all parameters for each client request are available at
the start, and requests always complete without further
client interaction. This model is well-suited for OLTP
workloads. If high-latency client communication were
part of a transaction, the likelihood of abort due to con-
current updates would grow.

Our performance is higher than a full system would
observe since our clients do not currently use the net-
work. (In Masstree, network communication reduced
throughput by 23% [23]; we would expect a similar
reduction for key-value workloads, less for workloads
with more computation-heavy transactions.) Neverthe-
less, our experiments show that Silo has very high per-
formance, that transactions can be serialized without
contention, and that cache-friendly design principles
work well for shared-memory serializable databases.

2 Related work

A number of recent systems have proposed storage
abstractions for main-memory and multicore systems.
These can be broadly classified according to whether or
not they provide transactional support.

2.1 Non-transactional systems

The non-transactional system most related to Silo
is Masstree [23], an extremely scalable and high-
throughput main-memory B*-tree. Masstree uses tech-
niques such as version validation instead of read locks
and efficient fine-grained locking algorithms. It builds
on several prior trees, including OLFIT [4], Bronson et
al. [3], and BYi"_trees [20], and adds new techniques, in-
cluding a trie-like structure that speeds up key compar-
isons. Silo’s underlying concurrent BT -tree implemen-
tation was inspired by Masstree.

PALM [31] is another high-throughput B -tree struc-
ture designed for multicore systems. It uses a batch-
ing technique, extensive prefetching, and intra-core
SIMD parallelism to provide extremely high throughput.
PALM’s techniques could potentially speed up Silo’s
tree operations.

The Bw-tree [21] is a high-throughput multiversion
tree structure optimized for multicore flash storage. New
versions of data are installed using delta records and
compare-and-swaps on a mapping table; there are no
locks or overwrites (we found both helpful for perfor-
mance). Silo’s data structures are designed for main
memory, whereas many of the Bw-tree’s structures are
designed for flash. Like Silo, the Bw-tree uses RCU-
style epochs for garbage collection; Silo’s epochs also
support scalable serializable logging and snapshots.
LLAMA [22] adds support for transactional logging, but
its logger is centralized.

2.2 Transactional systems

Silo uses optimistic concurrency control [10, 18], which
has several advantages on multicore machines, including
a relatively short period of contention. However, OCC
and its variants (e.g., [1, 12, 34]) often induce contention
in the commit phase, such as centralized transaction ID
assignment or communication among all concurrently
executing transactions.

Larson et al. [19] recently revisited the performance
of locking and OCC-based multi-version concurrency
control (MVCC) systems versus that of traditional
single-copy locking systems in the context of multi-
core main-memory databases. Their OCC implementa-
tion exploits MVCC to avoid installing writes until com-
mit time, and avoids many of the centralized critical sec-
tions present in classic OCC. These techniques form the
basis for concurrency control in Hekaton [8], the main-
memory component of SQL Server. However, their de-



sign lacks many of the multicore-specific optimizations
of Silo. For example, it has a global critical section when
assigning timestamps, and reads must perform non-local
memory writes to update other transactions’ dependency
sets. It performs about 50% worse on simple key-value
workloads than a single-copy locking system even un-
der low levels of contention, whereas Silo’s OCC-based
implementation is within a few percent of a key-value
system for small key-value workloads.

Several recent transactional systems for multicores
have proposed partitioning as the primary mechanism
for scalability. DORA [25] is a locking-based system
that partitions data and locks among cores, eliminating
long chains of lock waits on a centralized lock manager
and increasing cache affinity. Though this does improve
scalability, overall the performance gains are modest—
about 20% in most cases—compared to a locking sys-
tem. Additionally, in some cases, this partitioning can
cause the system to perform worse than a conventional
system when transactions touch many partitions.

PLP [26] is follow-on work to DORA. In PLP, the
database is physically partitioned among many trees
such that only a single thread manages a tree. The par-
titioning scheme is flexible, and thus requires maintain-
ing a centralized routing table. As in DORA, running a
transaction requires decomposing it into a graph of ac-
tions that each run against a single partition; this necessi-
tates the use of rendezvous points, which are additional
sources of contention. The authors only demonstrate a
modest improvement over a two-phase locking (2PL)
implementation.

H-Store [32] and its commercial successor VoltDB
employ an extreme form of partitioning, treating each
partition as a separate logical database even when par-
titions are collocated on the same physical node. Trans-
actions local to a single partition run without locking at
all, and multi-partition transactions are executed via the
use of whole-partition locks. This makes single-partition
transactions extremely fast, but creates additional scala-
bility problems for multi-partition transactions. We com-
pare Silo to a partitioned approach and confirm the intu-
ition that this partitioning scheme is effective with few
multi-partition transactions, but does not scale well in
the presence of many such transactions.

Multimed [30] runs OLTP on a single multicore ma-
chine by running multiple database instances on separate
cores in a replicated setup. A single master applies all
writes and assigns a total order to all updates, which are
then applied asynchronously at the read-only replicas.
Multimed only enforces snapshot isolation, a weaker no-
tion of consistency than serializability. Read scalability
is achieved at the expense of keeping multiple copies of
the data, and write-heavy workloads eventually bottle-
neck on the master.

In Silo, we eliminate the bottleneck of a centralized
lock manager by co-locating locks with each record.
VLL [29] also adopts this approach, but is not focused
on optimizing for multicore performance.

Shore-MT [15], Jung et al. [17], and Horikawa [14]
take traditional disk- and 2PL-based relational database
systems and improve multicore scalability by removing
centralized locking and latching bottlenecks. However,
2PL’s long locking periods and requirement for read
locking introduce inherent scalability concerns on multi-
core architectures.

Porobic et al. [28] perform a detailed performance
analysis of shared-nothing versus shared-everything
OLTP on a single multicore machine, and conclude that
shared-nothing configurations are preferable due to the
effects of non-uniform memory accesses (NUMA). Our
results argue otherwise.

Snapshot transactions like Silo’s have been imple-
mented before, including in distributed transactional
systems [7]. Our implementation offers very recent
snapshots and tightly integrates with our epoch system.

2.3 Transactional memory

Silo’s goals (fast transactions on an in-memory
database) resemble those of a software transactional
memory system (fast transactions on arbitrary memory).
Recent STM systems, including TL2 [9], are based on
optimistic concurrency control and maintain read and
write sets similar to those in OCC databases. Some STM
implementation techniques, such as read validation and
collocation of lock bits and versions, resemble Silo’s.
(Many of these ideas predate STM.) Other STM im-
plementation techniques are quite different, and overall
Silo has more in common with databases than STMs.
Our durability concerns are irrelevant in STMs; Silo’s
database structures are designed for efficient locking and
concurrency, whereas STM deals with an arbitrary mem-
ory model.

STM would not be an appropriate implementation
technique for Silo. Our transactions access many shared
memory words with no transactionally relevant mean-
ing, such as nodes in the interior of the tree. Unlike STM
systems, Silo can distinguish relevant from irrelevant
modifications. Ignoring irrelevant modifications is crit-
ical for avoiding unnecessary aborts. Finally, we know
of no STM that beats efficient locking-based code.

3 Architecture

Silo is a relational database that provides tables of typed,
named records. Its clients issue one-shot requests: all pa-
rameters are available when a request begins, and the re-
quest does not interact with its caller until it completes.
One-shot requests are powerful; each consists of one



or more serializable database transactions that may in-
clude arbitrary application logic. We write one-shot re-
quests in C++, with statements to read and manipulate
the Silo database directly embedded. Of course a one-
shot request could also be written in SQL (although we
have not implemented that). Supporting only one-shot
requests allows us to avoid the potential for stalls that is
present when requests involve client interaction.

Silo tables are implemented as collections of index
trees, including one primary tree and zero or more sec-
ondary trees per table (see Figure 1). Each record in a
table is stored in a separately-allocated chunk of mem-
ory pointed to by the table’s primary tree. To access a
record by primary key, Silo walks the primary tree us-
ing that key. Primary keys must be unique, so if a table
has no natural unique primary key, Silo will invent one.
In secondary indexes, the index key maps to a secondary
record that contains the relevant record’s primary key(s).
Thus, looking up a record by a secondary index requires
two tree accesses. All keys are treated as strings. This
organization is typical of databases.

Each index tree is stored in an ordered key-value
structure based on Masstree [23]. Masstree read opera-
tions never write to shared memory; instead, readers co-
ordinate with writers using version numbers and fence-
based synchronization. Compared to other concurrent
B-trees [4, 31], Masstree adopts some aspects of tries,
which optimizes key comparisons. Each Masstree leaf
contains information about a range of keys, but for keys
in that range, the leaf may point either directly to a
record or to a lower-level tree where the search can be
continued. Although our implementation uses tree struc-
tures, our commit protocol is easily adaptable to other
index structures such as hash tables.

Each one-shot request is dispatched to a single
database worker thread, which carries out the request to
completion (commit or abort) without blocking. We run
one worker thread per physical core of the server ma-
chine, and have designed Silo to scale well on modern
multicore machines with tens of cores. Because trees are
stored in (shared) main memory, in Silo any worker can
access the entire database.

Although the primary copy of data in Silo is in main
memory, transactions are made durable via logging to
stable storage. Results are not returned to users until they
are durable.

Read-only transactions may, at the client’s discretion,
run on a recent consistent snapshot of the database in-
stead of its current state. These snapshot transactions
return slightly stale results, but never abort due to con-
current modification.

| Client | Client | | Client |
AN
Request Response

Transaction Logic:
T = FIND(A.x,>10)
foreach t in T:

UPDATE (t.x,10) thread 1 thread n

Primary Secondary
Tree for Trees
Table A for Table A

keyl,dat1]pplkey2, dat2] o

Records in leaves
Secondary leaves contain
primary key values

Figure 1: The architecture of Silo.

4 Design

This section describes how we execute transactions in
Silo. Our key organizing principle is to eliminate un-
necessary contention by reducing writes to shared mem-
ory. Our variant of OCC achieves serializability, even
after recovery, using periodically-updated epochs; epoch
boundaries form natural serialization points. Epochs also
help make garbage collection efficient and enable snap-
shot transactions. Several design choices, such as trans-
action ID design, record overwriting, and range query
support, simplify and speed up transaction execution
further, and the decentralized durability subsystem also
avoids contention. In the rest of this section we describe
the fundamentals of our design (epochs, transaction IDs,
and record layout), then present the commit protocol and
explain how database operations are implemented. Later
subsections describe garbage collection, snapshot trans-
action execution, and durability support.

4.1 Epochs

Silo is based on time periods called epochs, which are
used to ensure serializable recovery, to remove garbage
(e.g., due to deletes), and to provide read-only snapshots.
Each epoch has an epoch number.

A global epoch number E is visible to all threads. A
designated thread periodically advances E; other threads
access E while committing transactions. E should ad-
vance frequently, since the epoch period affects transac-
tion latency, but epoch change should be rare compared
to transaction duration so that the value of E is gener-
ally cached. Our implementation updates E once every
40 ms; shorter epochs would also work. No locking is
required to handle E.



Each worker w also maintains a local epoch num-
ber e,,. This can lag behind E while the worker com-
putes, and is used to determine when it is safe to collect
garbage. Silo requires that E and e,, never diverge too
far: E —e,, <1 for all w. This is not usually a prob-
lem since transactions are short, but if a worker does fall
behind, the epoch-advancing thread delays its epoch up-
date. Workers running very long transactions should pe-
riodically refresh their e,, values to ensure the system
makes progress.

Snapshot transactions use additional epoch variables
described below.

4.2 Transaction IDs

Silo concurrency control centers on transaction IDs, or
TIDs, which identify transactions and record versions,
serve as locks, and detect conflicts. Each record contains
the TID of the transaction that most recently modified it.

TIDs are 64-bit integers. The high bits of each TID
contain an epoch number, which equals the global epoch
at the corresponding transaction’s commit time. The
middle bits distinguish transactions within the same
epoch. The lower three bits are the starus bits described
below. We ignore wraparound, which is rare.

Unlike many systems, Silo assigns TIDs in a decen-
tralized fashion. A worker chooses a transaction’s TID
only after verifying that the transaction can commit.
At that point, it calculates the smallest number that is
(a) larger than the TID of any record read or written
by the transaction, (b) larger than the worker’s most re-
cently chosen TID, and (c) in the current global epoch.
The result is written into each record modified by the
transaction.

The TID order often reflects the serial order, but not
always. Consider transactions #; and #, where #; hap-
pened first in the serial order. If #; wrote a tuple that 7,
observed (by reading it or overwriting it), then #,’s TID
must be greater than ¢#;’s, thanks to (a) above. However,
TIDs do not reflect anti-dependencies (write-after-read
conflicts). If #; merely observed a tuple that #, later over-
wrote, #;’s TID might be either less than or greater than
t,’s! Nevertheless, the TIDs chosen by a worker increase
monotonically and agree with the serial order, the TIDs
assigned to a particular record increase monotonically
and agree with the serial order, and the ordering of TIDs
with different epochs agrees with the serial order.

The lower three bits of each TID word are status bits
that are logically separate from the TID itself. Includ-
ing these bits with the TIDs simplifies concurrency con-
trol; for example, Silo can update a record’s version
and unlock the record in one atomic step. The bits are
a lock bit, a latest-version bit, and an absent bit. The
lock bit protects record memory from concurrent up-
dates; in database terms it is a latch, a short-term lock

that protects memory structures. The latest-version bit
is 1 when a record holds the latest data for the corre-
sponding key. When a record is superseded (for instance,
when an obsolete record is saved temporarily for snap-
shot transactions), the bit is turned off. Finally, the ab-
sent bit marks the record as equivalent to a nonexistent
key; such records are created in our implementations of
insert and remove.

We use “TID” to refer to a pure transaction ID and
“TID word” for a TID plus status bits, including the lock.

4.3 Data layout
A record in Silo contains the following information:
e A TID word as above.

e A previous-version pointer. The pointer is null if
there is no previous version. The previous version is
used to support snapshot transactions (§4.9).

e The record data. When possible, the actual record
data is stored in the same cache line as the record
header, avoiding an additional memory fetch to ac-
cess field values.

Committed transactions usually modify record data
in place. This speeds up performance for short writes,
mainly by reducing the memory allocation overhead for
record objects. However, readers must then use a ver-
sion validation protocol to ensure that they have read a
consistent version of each record’s data (§4.5).

Excluding data, records are 32 bytes on our system.

4.4 Commit protocol

We now describe how we run transactions. We first dis-
cuss transactions that only read and update existing keys.
We describe how to handle inserts and deletes in §4.5
and range queries in §4.6.

As a worker runs a transaction, it maintains a read-set
that identifies all records that were read, along with the
TID of each record at the time it was accessed. For mod-
ified records, it maintains a write-set that stores the new
state of the record (but not the previous TID). Records
that were both read and modified occur in both the read-
set and the write-set. In normal operation, all records in
the write-set also occur in the read-set.

On transaction completion, a worker attempts to com-
mit using the following protocol (see Figure 2).

In Phase 1, the worker examines all records in the
transaction’s write-set and locks each record by acquir-
ing the record’s lock bit. To avoid deadlocks, workers
lock records in a global order. Any deterministic global
order is fine; Silo uses the pointer addresses of records.

After all write locks are acquired, the worker takes
a snapshot of the global epoch number using a single
memory access. Fences are required to ensure that this
read goes to main memory (rather than an out-of-date



Data: read set R, write set W, node set N,
global epoch number E

// Phase 1

for record, new-value in sorted(W) do
lock(record);

compiler-fence();

e+ F;

compiler-fence();

// Phase 2

for record, read-tid in R do
if record.tid # read-tid or not record.latest

or (record.locked and record ¢ W)

then abort();

for node, version in N do
if node.version # version then abort();

commit-tid < generate-tid(R, W, e);

// Phase 3

for record, new-value in W do
write(record, new-value, commit-tid);,
unlock(record);

// serialization point

Figure 2: Commit protocol run at the end of every
transaction.

cache), happens logically after all previous memory ac-
cesses, and happens logically before all following mem-
ory accesses. On x86 and other TSO (total store order)
machines, however, these fences are compiler fences that
do not affect compiled instructions; they just prevent the
compiler from moving code aggressively. The snapshot
of the global epoch number is the serialization point for
transactions that commit.

In Phase 2, the worker examines all the records in the
transaction’s read-set (which may contain some records
that were both read and written). If some record either
has a different TID than that observed during execution,
is no longer the latest version for its key, or is locked by
a different transaction, the transaction releases its locks
and aborts.

If the TIDs of all read records are unchanged, the
transaction is allowed to commit, because we know that
all its reads are consistent. The worker uses the snapshot
of the global epoch number taken in Phase 1 to assign
the transaction a TID as described in §4.2.

Finally, in Phase 3, the worker writes its modified
records to the tree and updates their TIDs to the transac-
tion ID computed in the previous phase. Each lock can
be released immediately after its record is written. Silo
must ensure that the new TID is visible as soon as the
lock is released; this is simple since the TID and lock
share a word and can be written atomically.

Serializability This protocol is serializable because
(1) it locks all written records before validating the TIDs

Thread 1
11 < read(x)
write(y <t + 1)

Thread 2
ty < read(y)
write(x <, + 1)

Figure 3: A read-write conflict between transactions.

of read records, (2) it treats locked records as dirty and
aborts on encountering them, and (3) the fences that
close Phase 1 ensure that TID validation sees all con-
current updates. We argue its serializability by reduction
to strict two-phase locking (S2PL): if our OCC valida-
tion protocol commits, then so would S2PL. To simplify
the explanation, assume that the write-set is a subset of
the read-set. S2PL acquires read locks on all records
read (which, here, includes all records written) and re-
leases them only after commit. Consider a record in the
read-set. We verify in Phase 2 that the record’s TID has
not changed since its original access, and that the record
is not locked by any other transaction. This means that
S2PL would have been able to obtain a read lock on that
record and hold it up to the commit point. For updated
records, S2PL can be modeled as upgrading shared read
locks to exclusive write locks at commit time. Our pro-
tocol obtains exclusive locks for all written records in
Phase 1, then in Phase 2 verifies that this is equivalent to
a read lock that was held since the first access and then
upgraded. The fences that close Phase 1 ensure that the
version checks in Phase 2 access records’ most recent
TID words.

The protocol also ensures that epoch boundaries agree
with the serial order. Specifically, committed transac-
tions in earlier epochs never transitively depend on trans-
actions in later epochs. This holds because the memory
fences ensure that all workers load the latest version of
E before read validation and after write locking. Plac-
ing the load before read validation ensures that com-
mitted transactions’ read- and node-sets never contain
data from later epochs; placing it after write locking en-
sures that all transactions in later epochs would observe
at least the lock bits acquired in Phase 1. Thus, epochs
obey both dependencies and anti-dependencies.

For example, consider two records x and y that both
start out with value zero. Given the two transactions
shown in Figure 3, the state x =y = 1 is not a valid seri-
alizable outcome. We illustrate why this final state is im-
possible in Silo. For it to occur, thread 1 must read x =0,
thread 2 must read y = 0, and both threads must com-
mit. So assume that thread 1 reads x = 0 and commits,
which means that thread 1’s Phase 2 validation verified
that x was unlocked and unchanged. Since thread 2 locks
x as part of its Phase 1, we know then that thread 2’s se-
rialization point follows thread 1’s. Thus, thread 2 will
observe either thread 1’s lock on y (which was acquired
before thread 1’s serialization point) or a new version



number for y. It will either set y <— 2 or abort.

4.5 Database operations

This section provides more detail about how we support
different database operations.

Reads and writes When a transaction commits, we
overwrite modified records if possible since this im-
proves performance. If it is not possible (e.g., because
the new record is larger), we create new storage to con-
tain the new data, mark the old record as no longer being
most recent, and modify the tree to point to the new ver-
sion. Modification in place means that concurrent read-
ers might not see consistent record data. The version val-
idation protocol described below is used to detect this
problem.

To modify record data during Phase 3 of the commit
protocol, a worker while holding the lock (a) updates the
record, (b) performs a memory fence, and (c) stores the
TID and releases the lock. The consistency requirement
is that if a concurrent reader sees a released lock, it must
see both the new data and the new TID. Step (b) ensures
that the new data is visible first (on TSO machines this
is a compiler fence); Step (c) exposes the new TID and
released lock atomically since the lock is located in the
TID word.

To access record data during transaction execution
(outside the commit protocol), a worker (a) reads the
TID word, spinning until the lock is clear, (b) checks
whether the record is the latest version, (c) reads the
data, (d) performs a memory fence, and (e) checks the
TID word again. If the record is not the latest version in
step (b) or the TID word changes between steps (a) and
(e), the worker must retry or abort.

Deletes Snapshot transactions require that deleted
records stay in the tree: linked versions relevant for snap-
shots must remain accessible. A delete operation there-
fore marks its record as “absent” using the absent bit and
registers the record for later garbage collection. Clients
treat absent records like missing keys, but internally, ab-
sent records are treated like present records that must
be validated on read. Since most absent records are reg-
istered for future garbage collection, Silo writes do not
overwrite absent record data.

Inserts Phase 2 handles write-write conflicts by re-
quiring transactions to first lock records. However, when
the record does not exist, there is nothing to lock. To
avoid this problem, we insert a new record for the insert
request before starting the commit protocol.

An insert operation on key k works as follows. If k al-
ready maps to an non-absent record, the insert fails and
the transaction is aborted. Otherwise, a new record r is

constructed in the absent state and with TID 0, a map-
ping from k — r is added to the tree (using an insert-
if-absent primitive), and r is added to both the read-set
and the write-set as if a regular put occurred. The insert-
if-absent primitive ensures that there is never more than
one record for a given key; Phase 2’s read-set validation
ensures that no other transactions have superseded the
placeholder.

A transaction that does an insert commits in the usual
way. If the commit succeeds, the new record is overwrit-
ten with its proper value and the transaction’s TID. If
the commit fails, the commit protocol registers the ab-
sent record for future garbage collection.

4.6 Range queries and phantoms

Silo supports range queries that allow a transaction to
access a range of the keys in a table. Range queries are
complicated by the phantom problem [10]: if we scanned
a particular range but only kept track of the records that
were present during the scan, membership in the range
could change without being detected by the protocol, vi-
olating serializability.

The typical solution to this problem in database sys-
tems is next-key locking [24]. Next-key locking, how-
ever, requires locking for reads, which goes against
Silo’s design philosophy.

Silo deals with this issue by taking advantage of the
underlying B*-tree’s version number on each leaf node.
The underlying B -tree guarantees that structural modi-
fications to a tree node result in a version number change
for all nodes involved. A scan on the interval [a,b)
therefore works as follows: in addition to registering all
records in the interval in the read-set, we also maintain
an additional set, called the node-set. We add the leaf
nodes that overlap with the key space [a,b) to the node-
set along with the version numbers examined during the
scan. Phase 2 checks that the version numbers of all tree
nodes in the node-set have not changed, which ensures
that no new keys have been added or removed within the
ranges examined.

Phantoms are also possible due to lookups and deletes
that fail because there is no entry for the key in the tree;
in either case the transaction can commit only if the key
is still not in the tree at commit time. In this case the
node that would contain the missing key is added to the
node-set.

The careful reader will have noticed an issue with
insert operations, which can trigger structural modi-
fications, and node-set tracking. Indeed, we need to
distinguish between structural modifications caused by
concurrent transactions (which must cause aborts) and
modifications caused by the current transaction (which
should nor). We fix this problem as follows. Recall that
the tree modifications for an insertion actually occur be-



fore commit time. For each tree node n that is affected by
the insert (there can be more than one due to splits), let
Vold be its version number before the insert, and vyey its
version number afterwards. The insertion then updates
the node-set: if n is in the node-set with version num-
ber vq1g, it is changed to vyew, Ootherwise the transaction
is aborted. This means only other concurrent modifica-
tions to n will cause an abort.

4.7 Secondary indexes

To Silo’s commit protocol, secondary indexes are sim-
ply additional tables that map secondary keys to records
containing primary keys. When a modification affects a
secondary index, the index is explicitly changed via ex-
tra accesses in the code for the transaction that did the
modification. These modifications will cause aborts in
the usual way: a transaction that used a secondary index
will abort if the record it accessed there has changed.

4.8 Garbage collection

Silo transactions generate two sources of garbage that
must be reaped: BT -tree nodes and database records.
Rather than reference count these objects (which would
require that all accesses write to shared memory), Silo
leverages its epochs into an epoch-based reclamation
scheme a la read-copy update (RCU) [11, 13].

When a worker generates garbage—for example, by
deleting a record or by removing a B™ -tree node—it reg-
isters the garbage object and its reclamation epoch in a
per-core list for that object type. The reclamation epoch
is the epoch after which no thread could possibly access
the object; once it is reached, we can free the object.
This could happen either in a separate background task
or in the workers themselves. We do it in the workers
between requests, which reduces the number of helper
threads and can avoid unnecessary data movement be-
tween cores.

Silo’s snapshot transactions mean that different kinds
of objects have different reclamation policies, though all
are similar. The simplest policy is for B -tree nodes. Re-
call that every worker w maintains a local epoch number
ey, that is set to E just before the start of each transaction.
A tree node freed during a transaction is given reclama-
tion epoch e,,. Thanks to the way epochs advance, no
thread will ever access tree nodes freed during an epoch
e < mine,, — 1. The epoch-advancing thread periodically
checks all e,, values and sets a global tree reclamation
epoch to mine,, — 1. Garbage tree nodes with smaller or
equal reclamation epochs can safely be freed.

4.9 Snapshot transactions

We support running read-only transactions on recent-
past snapshots by retaining additional versions for
records. These versions form a consistent snapshot that
contains all modifications of transactions up to some

point in the serial order, and none from transactions af-
ter that point. Snapshots are used for running snapshot
transactions (and could also be helpful for checkpoint-
ing). Managing snapshots has two tricky parts: ensuring
that the snapshot is consistent and complete, and ensur-
ing that its memory is eventually reclaimed.

We provide consistent snapshots using snapshot
epochs. Snapshot epoch boundaries align with epoch
boundaries, and thus are consistent points in the serial
order. However, snapshot epochs advance more slowly
than epochs. (We want to avoid frequent snapshot cre-
ation because snapshots are not free.) The snapshot
epoch snap(e) for epoch e equals k- |e/k]; currently
k =25, so a new snapshot is taken about once a second.

The epoch-advancing thread periodically computes a
global snapshot epoch SE < snap(E — k). Every worker
w also maintains a local snapshot epoch se,,; at the start
of each transaction, it sets se,, <— SE. Snapshot trans-
actions use this value to find the right record versions.
For record r, the relevant version is the most recent one
with epoch < se,,. When a snapshot transaction com-
pletes it commits without checking; it never aborts, since
the snapshot is consistent and is never modified.

Read/write transactions must not delete or overwrite
record versions relevant for a snapshot. Consider a trans-
action committing in epoch E. When modifying or delet-
ing a record r in Phase 3, the transaction compares
snap(epoch(r.tid)) and snap(E). If these values are the
same, then it is safe to overwrite the record; the new
version would supersede the old one in any snapshot.
If the values differ, the old version must be preserved for
current or future snapshot transactions, so the read/write
transaction installs a new record whose previous-version
pointer links to the old one. Snapshot transactions will
find the old version via the link. (When possible, we
actually copy the old version into new memory linked
from the existing record, so as to avoid dirtying tree-
node cache lines, but the semantics are the same.)

A record version should be freed once no snap-
shot transaction will access it. This is tied to snap-
shot epochs. When a transaction committing in epoch
E allocates memory for a snapshot version, it regis-
ters that memory for reclamation with epoch snap(E).
The epoch-advancing thread periodically computes a
snapshot reclamation epoch as minse,, — 1. Snapshot
versions with equal or smaller reclamation epochs can
safely be freed. The reclamation process need not ad-
just any previous-version pointers: the dangling pointer
to the old version will never be traversed, since any fu-
ture snapshot transaction will prefer the newer version.

Deletions, however, require special handling. Deleted
records should be unhooked from the tree, but this can-
not happen right away: snapshot transactions must be
able to find the linked older versions. The commit pro-



cess therefore creates an “absent” record whose status
bits mark the value as deleted; the space for record data
instead stores the relevant key. This absent record is reg-
istered for cleanup at reclamation epoch snap(E). When
the snapshot reclamation epoch reaches this value, the
cleanup procedure modifies the tree to remove the ref-
erence to the record (which requires the key), and then
registers the absent record for reclamation based on the
tree reclamation epoch (the record cannot be freed right
away since a concurrent transaction might be accessing
it). However, if the absent record was itself superseded
by a later insert, the tree should not be modified. The
cleanup procedure checks whether the absent record is
still the latest version; if not, it simply ignores the record.
No further action is required, because such a record was
marked for future reclamation by the inserting transac-
tion.

4.10 Durability

Durability is a transitive property: a transaction is
durable if all its modifications are recorded on durable
storage and all transactions serialized before it are
durable. Thus, durability requires the system to recover
the effects of a set of transactions that form a prefix of
the serial order. In Silo, epochs provide the key to re-
covering this prefix, just as they do for snapshot trans-
actions. Since epoch boundaries are consistent with the
serial order, Silo treats whole epochs as the durability
commit units. The results of transactions in epoch e are
not released to clients until all transactions with epochs
< e have been stored durably.

Durable storage could be obtained through replica-
tion, but our current implementation uses logging and lo-
cal storage (disks). All transactions in epoch e are logged
together. After a failure, the system examines the logs
and finds the durable epoch D, which is the latest epoch
whose transactions were all successfully logged. It then
recovers all transactions with epochs < D, and no more.
Not recovering more is crucial: although epochs as a
whole are serially consistent, the serial order within an
epoch is not recoverable from the information we log,
so replaying a subset of an epoch’s transactions might
produce an inconsistent state. This also means the epoch
period directly affects the average case latency required
for a transaction to commit.

Logging in Silo is handled by a small number of log-
ger threads, each of which is responsible for a disjoint
subset of the workers. Each logger writes to a log file on
a separate disk.

When a worker commits a transaction, it creates a log
record consisting of the transaction’s TID and the ta-
ble/key/value information for all modified records. This
log record is stored in a local memory buffer in disk for-
mat. When the buffer fills or a new epoch begins, the

worker publishes its buffer to its corresponding logger
using a per-worker queue, and then publishes its last
committed TID by writing to a global variable ctid,,.

Loggers operate in a continuous loop. At the start of
each iteration, the logger calculates ¢t = minctid,, for its
workers. From this TID, it computes a local durable
epoch d = epoch(t) — 1. All its workers have published
all their transactions with epochs < d, so as far as this
logger is concerned, epochs < d are complete. It appends
all the buffers plus a final record containing d to the end
of a log file and waits for these writes to complete. (It
never needs to examine the actual log buffer memory.)
It then publishes d to a per-logger global variable d; and
returns the buffers back to the workers for recycling.

A thread periodically computes and publishes a global
durable epoch D = mind;. All transactions with epochs
< D are known to have been durably logged. Workers
can thus respond to clients whose transactions occurred
in epochs < D.

Silo uses record-level redo logging exclusively, not
undo logging or operation logging. Undo logging is not
necessary for our system since we log after transactions
commit; logging at record level simplifies recovery.

To recover, Silo would read the most recent d; for each
logger, compute D = mind;, and then replay the logs,
ignoring entries for transactions whose TIDs are from
epochs after D. Log records for the same record must be
applied in TID order to ensure that the result equals the
latest version, but replaying can otherwise be performed
concurrently.

A full system would recover from a combination of
logs and checkpoints to support log truncation. Check-
points could take advantage of snapshots to avoid inter-
fering with read/write transactions. Though checkpoint-
ing would reduce worker performance somewhat, it need
not happen frequently. We evaluate common-case log-
ging, but have not yet implemented full checkpointing
or recovery.

5 Evaluation

In this section, we evaluate the effectiveness of the tech-
niques in Silo, confirming the following performance
hypotheses:

e The cost of Silo’s read/write set tracking for a simple
key-value workload is low (§5.2).

e Silo scales as more cores become available, even
when transactions are made persistent (§5.3).

e Silo’s performance is more robust to workload
changes compared to a partitioned data store, specfi-
cially as we increase the level of cross-partition con-
tention and the skew of the workload (§5.4).

e Large read-only transactions benefit substantially
from Silo’s snapshot transactions (§5.5). This mech-



anism incurs only a small space overhead, even for a
write heavy workload (§5.6).

We also show in §5.7 the relative importance of several
of Silo’s implementation techniques.

5.1 Experimental setup

All our experiments were run on a single machine with
four 8-core Intel Xeon E7-4830 processors clocked at
2.1GHz, yielding a total of 32 physical cores. Each
core has a private 32KB L1 cache and a private 256KB
L2 cache. The eight cores on a single processor share
a 24MB L3 cache. We disabled hyperthreading on all
CPUs; we found slightly worse results with hyperthread-
ing enabled. The machine has 256GB of DRAM with
64GB of DRAM attached to each socket, and runs 64-
bit Linux 3.2.0.

In all graphs, each point reported is the median of
three consecutive runs, with the minimum and maxi-
mum values shown as error bars. In our experiments, we
follow the direction of Masstree and size both internal
nodes and leaf nodes of our BT -tree to be roughly four
cache lines (a cache line is 64 bytes on our machine), and
use software prefetching when reading B -tree nodes.

We pay careful attention to memory allocation and
thread affinity in our experiments. We use a custom
memory allocator for both B*-tree nodes and records.
Our allocator takes advantage of 2MB “superpages” (a
feature supported in recent Linux kernels) to reduce TLB
pressure. We pin threads to cores so that the memory
allocated by a particular thread resides on that thread’s
NUMA node. Before we run an experiment, we make
sure to pre-fault our memory pools so that the scalabil-
ity bottlenecks of Linux’s virtual memory system [5] are
not an issue in our benchmarks.

For experiments which run with persistence enabled,
we use four logger threads and assign each logger a file
residing on a separate device. Three loggers are assigned
different Fusion IO ioDrive2 devices, and the fourth is
assigned to six 7200RPM SATA drives in a RAID-5 con-
figuration. Collectively, these devices provide enough
bandwidth that writing to disk is not a bottleneck.

Our experiments do not use networked clients. We
would expect networking to reduce our throughput
somewhat; in Masstree, networked clients reduced
throughput by 23% [23]. In our experiments, each thread
combines a database worker with a workload generator.
These threads run within the same process, and share
Silo trees in the same address space. We run each exper-
iment for 60 seconds. When durability is not an issue,
our experiments use MemSilo, which is Silo with log-
ging disabled.
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Figure 4: Overhead of MemSilo versus Key-Value
when running a variant of the YCSB benchmark.

5.2 Overhead of small transactions

This section shows that Silo’s read/write set tracking has
low overhead by comparing to the underlying key-value
store, which does not perform any tracking.

We evaluate two systems. The first system, Key-Value,
is simply the concurrent B -tree underneath Silo. That
is, Key-Value provides only single-key gets and puts. The
second system is MemSilo. We ran a variant of YCSB
workload mix A; YCSB [6] is Yahoo’s popular key-
value benchmark. Our variant differs in the following
ways: (a) we fix the read/write ratio to 80/20 (instead of
50/50), (b) we change write operations to read-modify-
writes, which in MemSilo happen in a single transaction,
and (c) we shrink the size of records to 100 bytes (in-
stead of 1000 bytes). These modifications prevent unin-
teresting overheads that affect both systems from hiding
overheads that affect only MemSilo. More specifically,
(a) prevents the memory allocator for new records from
becoming the primary bottleneck, (b) creates a transac-
tion that actually generates read-write conflicts, which
stresses MemSilo’s protocol, and (c) prevents memcpy
from becoming the primary bottleneck. Both transac-
tions sample keys uniformly from the key space. We fix
the tree size to contain 160M keys, and vary the number
of workers performing transactions against the tree.

Figure 4 shows the results of running the YCSB
benchmark on both systems. The overhead of MemSilo
compared to Key-Value is negligible; Key-Value outper-
forms MemSilo by a maximum of 1.07x.

Globally generated TIDs Figure 4 also quantifies
the benefits of designing Silo to avoid a single glob-
ally unique TID assigned at commit time. Mem-
Silo+GlobalTID follows an identical commit protocol
as Silo, except it generates TIDs from a single shared
counter. This is similar to the critical section found
in Larson et al. [19] Here we see a scalability col-
lapse after 24 workers; Key-Value outperforms Mem-
Silo+GlobalTID by 1.80x at 32 workers. This demon-
strates the necessity of avoiding even a single global
atomic instruction during the commit phase.
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Figure 5: Throughput of Silo when running the TPC-
C benchmark, including persistence.
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Figure 6: Per-core throughput of Silo when running
the TPC-C benchmark.

5.3 Scalability and persistence

Our next experiment shows that Silo scales effectively
as we increase the number of workers. We use the popu-
lar TPC-C benchmark [33], which models a retail oper-
ation and is a common benchmark for OLTP workloads.
Transactions in TPC-C involve customers assigned to
a set of districts within a local warehouse, placing or-
ders in those districts. Most orders can be fulfilled en-
tirely from the local warehouse, but a small fraction re-
quest a product from a remote warehouse. To run TPC-C
on Silo, we assign all clients with the same local ware-
house to the same thread. This models client affinity, and
means memory accessed by a transaction usually resides
on the same NUMA node as the worker. We size the
database such that the number of warehouses equals the
number of workers, so the database grows as more work-
ers are introduced (in other words, we fix the contention
ratio of the workload). We do not model client “think”
time, and we run the standard workload mix involving all
five transactions. To show how durability affects scala-
bility, we run both MemSilo and Silo.

Figures 5 and 6 show the throughput of running TPC-
C as we increase the number of workers (and thus ware-
houses) in both MemSilo and Silo. Scaling is close to lin-
ear for MemSilo up to 32 workers. The per-core through-
put of MemsSilo at 32 workers is 81% of the throughput
at one worker, and 98% of the per-core throughput at
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Figure 7: Silo transaction latency for TPC-C with
logging to either durable storage or an in-memory
file system.
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8 workers. This drop happens because of several fac-
tors, including increasing database size and sharing of
resources such as the L3 cache (particularly important
from one to 8 threads) as well as actual contention. Silo
performs slightly slower, and its scalability is degraded
by logging past 28 workers, since worker threads and the
four logger threads start to contend for cores.

We also ran experiments to separate the impact of
Silo’s logging subsystem from that of our durable stor-
age devices. With Silo’s loggers writing to an in-memory
file system instead of stable storage (Silo+tmpfs), we ob-
served at most a 1.03x gain in throughput over Silo.
This argues that most of the loss in throughput when en-
abling durability is due to the overhead of transferring
log records from worker threads to logger threads, rather
than the overhead of writing to physical hardware (given
sufficient hardware bandwidth).

Figure 7 shows transaction latency for this experiment
(the latency of MemsSilo is negligible and therefore not
shown). For both Silo+tmpfs and Silo, we see a spike in
latency around 28 workers due to worker/logger thread
contention. The effect is more pronounced with Silo, il-
lustrating the fact that latency is more sensitive to real
hardware than throughput is.

Overall, we see that logging does not significantly de-
grade the throughput of Silo and incurs only a modest
increase in latency. MemsSilo outperforms Silo by only a
maximum of 1.16x at 32 workers.

5.4 Comparison with Partitioned-Store

This section describes our evaluation of Silo versus a
statically partitioned data store, which is a common con-
figuration for running OLTP on a single shared-memory
node [25, 30, 32]. Most of the time Silo is preferable.

Tables in TPC-C are typically partitioned on
warehouse-id, such that each partition is responsible for
the districts, customers, and stock levels for a particu-
lar warehouse. This is a natural partitioning, because as
mentioned in §5.3, each transaction in TPC-C is cen-
tered around a single local warehouse.
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Figure 8: Performance of Partitioned-Store versus
MemSilo as the percentage of cross-partition trans-
actions is varied.

The design of Partitioned-Store is motivated by H-
Store/VoltDB [32]. We physically partition the data by
warehouse so that each partition has a separate set of
BT -trees for each table, and we associate each parti-
tion with a single worker. The workers are all in the
same process to avoid IPC overhead. We then associate
a global partition lock with each partition. Every trans-
action first obtains all partition locks (in sorted order).
Once all locks are obtained, the transaction can pro-
ceed as in a single-threaded data store, without the need
for additional validation. We assume that we have per-
fect knowledge of the partition locks needed by each
transaction, so once the locks are obtained the trans-
action is guaranteed to commit and never has to ac-
quire new locks. We implement these partition locks us-
ing spinlocks, and take extra precaution to allocate the
memory for the locks on separate cache lines to pre-
vent false sharing. When single-partition transactions
are common, these spinlocks are cached by their local
threads and obtaining them is inexpensive. We believe
this scheme performs at least as well on a multicore ma-
chine as the cross-partition locking schemes described
for H-Store. Partitioned-Store does not support snap-
shot transactions, so it incurs no overhead for maintain-
ing multiple record versions. Partitioned-Store uses the
same B*-trees that Key-Value and Silo use, except we
remove the concurrency control mechanisms in place in
the BT -tree. Additionally, we remove the concurrency
control for record values (which Key-Value needed to
ensure atomic reads/writes to a single key). Partitioned-
Store does not implement durability.

We evaluate the costs and benefits of partitioning by
comparing a partitioned version of Silo (Partitioned-
Store) with Silo itself (MemSilo). We run two separate
experiments: the first varies the percentage of cross-
partition transactions in the workload, and the sec-
ond varies the number of concurrent workers executing
transactions against a fixed-size database.
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Figure 9: Performance of Partitioned-Store versus
MemSilo as the number of workers processing the
same size database is varied.

Cross-partition transactions We first fix the database
size and number of workers, and vary the percentage of
cross-partition transactions.

As in our previous experiments on TPC-C, Silo exe-
cutes transactions by associating each worker with a lo-
cal warehouse and issuing queries against the shared B™-
trees. We focus on the most frequent transaction in TPC-
C, the new-order transaction. Even though the new-order
transaction is bound to a local warehouse, each transac-
tion has some probability, which we vary, of writing to
records in non-local warehouses (these records are in the
stock table). Our benchmark explores the tradeoffs be-
tween Partitioned-Store and various versions of Silo as
we increase the probability of a cross-partition transac-
tion from zero to over 60 percent.

Figure 8 shows the throughput of running all new-
order transactions on various versions of Silo and
Fartitioned-Store as we increase the number of cross-
partition transactions. Both the number of warehouses
and the number of workers are fixed at 28. The parameter
varied is the probability that a single item is drawn from
a remote warehouse. On the x-axis we plot the proba-
bility that any given transaction will touch at least one
remote warehouse (each new-order transaction includes
between 5 to 15 items, inclusive) and thus require grab-
bing more than one partition lock in Partitioned-Store.

The curves in Figure 8 show that Partitioned-Store is
clearly the optimal solution for perfectly partitionable
workloads. The advantages are two-fold: no concurrency
control mechanisms are required, and there is better
cache locality due to the partitioned trees being smaller.
Fartitioned-Store outperforms MemSilo by 1.54x at no
cross-partition transactions. However, performance suf-
fers as soon as cross-partition transactions are intro-
duced. At roughly 20%, the throughput of Partitioned-
Store drops below MemSilo and gets worse with increas-
ing contention, whereas MemSilo maintains relatively
steady throughput for the entire experiment. At roughly
60% cross-partition transactions, MemSilo outperforms
Fartitioned-Store by 2.98 x. The results here can be un-



derstood as the tradeoff between coarse and fine-grained
locking. While Silo’s OCC protocol initially pays a non-
trivial overhead for tracking record-level changes in low
contention regimes, this work pays off as the contention
increases.

To understand the overhead in more detail, we intro-
duce MemSilo+Split, which extends MemSilo by phys-
ically splitting its tables the same way as Partitioned-
Store does. This yields a 13% gain over MemSilo. The
remaining difference is due to Partitioned-Store requir-
ing no fine-grained concurrency control.

Skewed workloads This next experiment shows the
impact of workload skew, or “hotspots,” on performance
in Partitioned-Store and Silo. We run a 100% new-order
workload mix, fixing the database size to four ware-
houses in a single partition. We then vary the number
of available workers, which simulates increased work-
load skew (more workers processing transactions over a
fixed size database). Figure 9 shows the results of this
experiment.

For Partitioned-Store, the throughput stays constant
as we increase workers, because multiple workers can-
not execute in parallel on a single partition (they serial-
ize around the partition lock). For MemSilo, throughput
increases, but not linearly, because of actual workload
contention when running 100% new-order transactions.
Specifically, a counter record per unique (warehouse-id,
district-id) pair is used to generate new-order IDs. As
we add more workers, we increase the number of read-
write conflicts over this shared counter, which increases
the number of aborted transactions. Note that this is not
unique to OCC; in 2PL, conflicting workers would seri-
alize around write locks held on the shared counter. In
Figure 9, we see that MemSilo outperforms Partitioned-
Store by a maximum of 8.20x at 24 workers.

Because the contention in this workload is a property
of the workload itself and not so much the system, it
is interesting to see how MemSilo responds if the con-
tention is removed. We substantially reduce this con-
tention in MemSilo+Fastlds by generating IDs outside
the new-order transaction. The new-order client request
runs two transactions, where the first generates a unique
ID and the second uses that ID. (This sacrifices the in-
variant that the new-order ID space is contiguous, since
counters do not roll back on abort.) The result is through-
put scaling nicely until 28 workers, when the next
contention bottleneck in the workload appears. Over-
all MemSilo+Fastlds outperforms Partitioned-Store by
a maximum of 17.21 x at 32 workers.

5.5 Effectiveness of snapshot transactions

In this section we show that Silo’s snapshot transactions
are effective for certain challenging workloads. Main-
taining snapshots is not free (see §5.7); for some work-

Transactions/sec  Aborts/sec
MemsSilo 200,252 2,570
MemSilo+NoSS 168,062 15,756

Figure 10: Evaluation of Silo’s snapshot transactions
on a modified TPC-C benchmark.

loads where the frequency of large read-only transac-
tions is low, such as the standard TPC-C workload, the
benefits of snapshots do not outweigh their overhead.
However, for other workloads involving many large
read-only transactions over frequently updated records,
such as the one evaluated in this section, we show that
snapshots provide performance gains.

We again use the TPC-C benchmark, changing the
setup as follows. We fix the number of warehouses to 8
and the number of workers to 16 (each warehouse is as-
signed to two workers). We run a transaction mix of 50%
new-order and 50% stock-level; this is the largest of two
read-only queries from TPC-C. On average, stock-level
touches several hundred records in tables frequently up-
dated by the new-order transaction, performing a nested-
loop join between the order-line table and the stock ta-
ble.

We measure the throughput of Silo under this load
in two scenarios: one where we use Silo’s snapshot
transactions to execute the stock-level transaction at
roughly one second in the past (MemSilo), and one
where we execute stock-level as a regular transaction
in the present (MemSilo+NoSS). In both scenarios, the
new-order transaction executes as usual.

Figure 10 shows the results of this experiment. Mem-
Silo outperforms MemSilo+NoSS by 1.19x. This is due
to the larger number of aborts that occur when a large
read-only transaction executes with concurrent modifi-
cations (recall that snapshot transactions never abort).

5.6 Space overhead of snapshots

This section shows that the space overhead of main-
taining multiple versions of records to support snapshot
transactions is low, even for update heavy workloads.

We run a variant of YCSB where every transaction is a
read-modify-write operation on a single record. We pick
this operation because each transaction has a very high
probability of generating a new version of a record (since
we size the tree to contain 160M keys). This stresses
our garbage collector (and memory allocator), because
at every snapshot epoch boundary a large number of old
records need to be garbage collected. As in §5.2, we
use 100 byte records and uniformly sample from the key
space. We run MemSilo with 28 workers.

In this experiment, the database records initially oc-
cupied 19.5GB of memory. Throughout the entire run,
this increased by only a maximum of 672.3MB, repre-
senting a 3.4% increase in memory for snapshots. This
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Figure 11: A factor analysis for Silo. Changes are
added left to right for each group, and are cumula-
tive.

shows that, despite having to keep old versions around,
space overhead is reasonable and garbage collection is
very effective at reaping old versions.

5.7 Factor analysis

To understand in greater detail the overheads and bene-
fits of various aspects of Silo, we show a factor analysis
in Figure 11 that highlights the key factors for perfor-
mance. The workload here is the standard TPC-C mix
running with 28 warehouses and 28 workers. We per-
form analysis in two groups of cumulative changes: the
Regular group deals with changes that do not affect the
persistence subsystem, and the Persistence group deals
only with changes in the persistence layer.

In the Regular group, Simple refers to Silo running
with no NUMA aware memory allocator and allocat-
ing a new record for each write. +Allocator adds the
NUMA aware allocator described in §5.1. +Overwrites
allows Silo to write record modifications in place when
possible (and is equivalent to MemSilo as presented in
Figure 5). + NoSnapshots disables keeping multiple ver-
sions of records for snapshots, and does not provide
any snapshot query mechanism. +NoGC disables the
garbage collector described in §4.8.

The two major takeaways from Figure 11 are that per-
forming in-place updates is an important optimization
for Silo and that the overhead of maintaining snapshots
plus garbage collection is low.

For persistence analysis, we break down the follow-
ing factors: MemSilo refers to running without logging.
+SmallRecs enables logging, but only writes log records
that are eight bytes long (containing a TID only, omitting
record modifications); this illustrates an upper bound on
performance for any logging scheme. +FullRecs is Silo
running with persistence enabled (and is equivalent to
Silo in Figure 5). +Compress uses LZ4 compression! to
compress log records before writing to disk.

Uhttp://code.google.com/p/lz4/

The takeaways from Figure 11 are that spending extra
CPU cycles to reduce the amount of bytes written to disk
surprisingly does not pay off for this TPC-C workload,
and that the overhead of copying record modifications
into logger buffers and then into persistent storage is low.

6 Conclusions

We have presented Silo, a new OCC-based serializable
database storage engine designed for excellent perfor-
mance at scale on large multicore machines. Silo’s con-
currency control protocol is optimized for multicore per-
formance, avoiding global critical sections and non-local
memory writes for read operations. Its use of epochs fa-
cilitates serializable recovery, garbage collection, and ef-
ficient read-only snapshot transactions. Our results show
Silo’s near-linear scalability on YCSB-A and TPC-C,
very high transaction throughput on TPC-C, and low
overheads relative to a non-transactional system. To-
gether, these results show that transactional consistency
and scalability can coexist at high performance levels in
shared-memory databases.

Given the encouraging performance of Silo, we are in-
vestigating a number of areas for future work, designed
to further improve its performance and augment its us-
ability. These include further exploiting “soft partition-
ing” techniques to improve performance on highly parti-
tionable workloads; fully implementing checkpointing,
recovery, and replication; investigating how to balance
load across workers most effectively, perhaps in a way
that exploits core-to-data affinity; and integrating into a
full-featured SQL engine.
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