Macro Instruction Synthesis

for Simple Embedded RISC Processor

CS252 class project report

Yunjian (William) Jiang and Pinhong Chen
EECS, UC Berkeley

Abstract

Synthesis of application specific macro instructions for
an embedded processor is an efficient realization of
computation on a limited silicon area. Commercial
solutions of configurable microprocessors lack the au-
tomation of generating specific instructions for a target
application domain. In this project, we explore algo-
rithms and CAD solutions for automatically generating
macro instructions from a set of benchmark programs
and associated hardware/software supports. However,
constrained by the limited time and effort, we base
our ideas and experiments on a simple RISC proces-
sor core. The algorithm we are exploring is based on
pattern enumeration for expression trees in the inter-
mediate representation (IR) of an application program.
During the enumeration we use annotated profiling in-
formation from our simulation results. Our target is
to automate the process of generating the code gener-
ator, assembler and simulator, since it is a very simple
process core(3000 gates in 0.25um with 200MHz).

1 Introduction

As the explosion of mobile and embedded computing
in the consumer market, e.g. cell phones, palm pi-
lots, palm-top computers and multimedia devices, ap-
plication specific instruction processors (ASIP) are be-
coming widely used and designed just for a limited set
of applications. The research topics associated with
the synthesis of ASIPs are basically application mod-
eling, architecture configuration and architecture map-
ping. There are different levels of architecture config-
uration, including (1) architecture organization level,
e.g. VLIW or superscalar, the number and types of ex-
ecution units; (2) instruction level, e.g. the instruction
set architecture and the control/data path; (3) param-
eterizable decisions, e.g. register files, cache size and
associativity, etc. In this project, we are particularly
interested in exploring the space of instruction set ar-

chitecture.

In this methodology, we start from a simple RISC
processor core. Given the set of applications being tar-
geted, we then generate the set of macro instruction
which would speed up the performance and reduce code
size significantly. Also, a software tool-set, including
code-generator, simulator and assembler, will be gener-
ated accordingly to utilize the generated instructions.
The advantage is that no midification is required on
the original algorithm or source code. The problems
are now how to identify special instruction patterns,
how to evaluate the profit of a particular macro in-
struction and how to implement the macro instruction
with hardware and software support. These are the
questions we are trying to solve.

A similar scenario is been commercialized by Tensil-
ica [1], which would allow users to configure their own
processor, including special instructions, and build the
associated software tool-set. However the extended in-
structions have to be generated manually by the de-
signer and the source code has to be modified man-
ually in order to use any newly designed instruction.
A related research in [2] addresses the instruction set
synthesis problem for DSP processors. They target a
special DSP micro architecture and address a problem
of building the entire instruction set from application.
They formulate the problem as a subset-sum problem
and make use of a combinatorial solver. It is more of a
low level hardware synthesis approach.

As will be elaborated in the remaining sections, the
contribution of this project is twofold: first the regis-
ter transfer level (RTL) tree pattern enumeration for
instruction identification and second the table-driven
assembly tool-set automation.

2 RTL pattern enumeration

Based on the expression tree-based intermediate repre-
sentation (IR) of a software application, we construct
a library of profitable macro instructions subject to re-

source constraints. The common flow of code genera-
tion in an embedded compiler is the following:

1. Code generation by pattern matching;
2. Register allocation;

3. Macro instrction expansion;

4. Assemblying;

In code generation phase, a high level machine inde-
pendent IR from a compiler front-end, like SUIF-IR, is
mapped into intruction patterns available in the ISA’
pattern library. This is called a register transfer level
(RTL) expression tree, which utilized symbolic regis-
ters. After register allocation, macro instructions are
expanded into real assembly codes provided by the ar-
chitecture. Finaly, the assemblying phase outputs bi-
nary machine code for simulation.

The expression tree is enumerated for identifying
complex instruction patterns as candidates for new
macro instructions. We have discovered that in order
to generate meaningful instruction patterns and auto-
mate the process of code generation, assembling and
simulation, we have to conduct the pattern enumera-
tion at the register transfer level after the code gener-
ation phase.

There has been research on instruction enumeration
at machine independent IR level. The disadvantages
are: the estimation of performance and code size saving
is crude; it is hard to integrate profiling information to
identify hot-spot. After register allocation, there is a
one-to-one mapping between the RTL expression tree
and macro assembly code. Thus performance and code
size can be precisely predicted. Furthermore, profiling
information can be back-annotated from our simulation
tool.

For instruction enumeration, we apply the following
algorithm for each expression tree in each basic block.

Traverse each node i in post-order
If i is leaf node
Store(Instr,0P(i,NULL),cost(0OP(i));
Continue;
Normalize sub-tree order;
Foreach u in Instr(left-node)
Foreach v in Instr(right-node)
cost (i) = OP(i)+cost(u)+cost(v);
save(i) = save(i)+save(u)+save(Vv);
Store(Instr,0p(i,u,v),cost,save);

Select the best instruction from Instr();
End

At each node of the expression tree: the sub-trees
are normalized; the performance gains and hardware
costs are estimated based on the information collected
from sub-tree nodes; then the new instruction pattern
and this information are hashed. Finally, the best in-
structions are selected from all patterns constructed
throughout the program. There is no hard limit on the
types of instructions to be identified. Through the ex-
periment, we actually found very complex instruction
patterns with a number of arithmetic operations and
memory accesses. These will be selected and imple-
mented if the performance saving outweigh the hard-
ware costs.

After code generation, the expression tree is built
based on non-terminals in the pattern matching gram-
mar. In particular, we retargeted the code-generator
generator olive from [3] to our RISCS8 instruction
set. The non-terminals includes 8-bit registers reg,
8-bit accumulator acc, 16-bit address registers areg
and different constants appearing as immediate values
const08, el at.. The identified instruction patterns di-
rectly correlate to the instruction patterns to be spec-
ified in the olive grammar. This greatly alleviates the
effort of reconfiguring the code-generator to take into
account the new instruction. We have implemented a
PERL tool which automatically builds the olive pat-
tern from the library of new identified instructions.
The following is an example of the olive patterns gen-
erated from a new instruction ADDCON.

acc : nAND (acc , uconst08)

{

$cost[0] .cost=1+$cost[2] .cost+$cost[3].cost;

$cost[0] = COST_INFINITY;

}=A

AsmRegister* r0 =new AsmRegister($action[2]());

AsmOperation* ao=new AsmOperation(aANDCON,
new AsmImmediate($3->value()),
NULL) ;

cil->Emit(new CompactedInstruction(ao,NULL));

return r0;

};

3 Assembly Level Instruction
Pattern Enumeration

It is also possible to recover data dependency at as-
sembly code level and identify new instructions. The
following is an example of a fragment of assembly code
and the corresponding RTL expression tree shown in
Figure 1(a).

1di 1r1,0x89
lda 1rO,variable_x

and ri
lda r2,variable_y
add r2

r0 is the accumulator denoted by ”acc”, r1 and r2
are general registers; 1di and lda are instructions for
loading a constant and a variable from memory, respec-
tively. An instruction pattern usually does not rely on
any specific data storage, thus we eliminate intermedi-
ate registers and obtain a more concise expression tree
as shown in Figure 1(b). The reduced expression tree is
ready for a new instruction candidate. It will be back-
annotated with the execution profiling information in
the instruction selection phase.

Acc

(byte) (Cons

(b) Reduced expression tree from assembly code

(a) Bxpression tree from assembly code

Figure 1: Assembly pattern recovery

4 Table-Driven Assembly tools

After the set of special instructions are identified, the
software support for implementing the instructions in-
volves

1. Configuring the code-generator with the new pattern;
2. Assigning an opcode for the new instruction;

3. Annotating the assembler with such opcode;
4

. Augmenting the simulator with the functionality of the
new instruction.

We are able to achieve automating all these processes
with the concept of table driven assembly tool-set con-
figuration. Figure 2shows how these programs interact
with each other.

The key in the automation of these tools is what we
call a table driven technique. We implement a complex
PERL data structure to act as the driving mechanism
to interpret a new instruction in various assembly tools.

New Instruction
Candidates

New Instr. Selectio

Special Instr. [] |

Instr. Table

Di bler

Figure 2: Automation of New Instruction Generation

For example, the table entry for a new instruction is
shown below:

@new_ins=(
>andcon’=>{
pattern=>’imm8’,
code=>[’01111100’,’$imm8"],
decode=>’$imm8=$memory [$pc++]’,
sim=>’$R[0]=$R[0] & $imm8;’,
cycles=>1
1},
)

Here, an instruction called andcon is defined with the
following features:

1. Operand: a single 8-bit immediate value, ”imm8”;

2. Op-code sequence: “01111100” (binary value) fol-
lowed by the immediate operand;

3. Decoding method: interpreting the next memory
data byte as the immediate operand value,

4. Simulation method: “reg&imm8”
5. Number of cycles: one.

PERL codes are used extensively to achieve efficient
reconfigurability. Actually, the assembler, simulator,
disassembler, instruction selector, and new instruction
table generator are all coded in PERL for seamless in-
tegration.

5 Profiling Information Back
Annotation

Back-annotation of instruction profiling information
is an important step for instruction selection. The
machine code generation process is divided into four
phased, as show in Figure 3. Code generation convert-
ers the expression tree into RTL trees using symbolic

register. The instruction patterns used at this step in-
clude macro instructions accounting for complex opera-
tions like 16-bit arithmetics, which are common in nor-
mal architectures but not implemented here in RISCS8.
These are expanded into real RISC8 assembly codes in
the macro expansion phase. The profiling results from
the simulation of binary machine codes need to traverse
back through all the four phases with different repre-
sentations. Therefore, in each of these steps we gener-
ate a mapping file to describe the relationship between
upper-level and lower-level codes. The instruction se-
lector maps the profiling information all the way back
to the code generation phase to annotate each IR node
at the RTL level.

Code Generation .
Register Allocation

Annotation~.
Macro Instruction

-7
Back _--7
Annotation

[
K
Profiling Data

Back
Annotation
\\

Instr.
Selector

Figure 3: Back Annotation Flow of Profiling Informa-
tion

6 Op-code Reuse

For a specific application, not each op-code may ap-
pear in the machine code. Namely, some of op-codes
are never used throughout a particular application pro-
gram. This appears in the cases where only a subset of
the operations specified in the ISA are used; or the code
generator does not generate the full spectrum of all in-
structions. We have studied some of the applications
and find a very interesting result. The used op-codes
are around one fifth of the total available opcodes for
each application we experimented, as shown in Table
1. This table implies that the op-codes can be reused to

Application | Opcodes
FIR 28
ADPCM 49
GSM 32

max7219 39
LCD4x20 40
PRN-IO 30

Table 1: Op-code Usage

reduce decoding hardware cost. The decoding logic can
be smaller and faster. Furthermore, some functional
units may be trimmed if it is not used in a specific ap-
plication. However, the flexibility and functionality of
the ISA is reduced. It may not be possible to adapt to
other applications after op-code reuse.

7 Experimental results

We base our experiment on a publically available 8-bit
RISC core [4]. In our implementation, we use SUIF [5]
as our compiler front end; we retargeted SPAM [3] for
the RISC8 processor, using the code-generator gener-
ator olive as our configurable code generator; we im-
plemented the RTL pattern enumeration algorithm in
C++, configurable RISC8 assembler and simulator in
PERL.

We collected the following benchmark applications
for our 8-bit configurable RISC processor as shown in
Table 2. We are able to generate a set of interesting
instructions for each applications. These are not shown
due to space limit. We focus our attention on the GSM
encoder and build some of the generated instruction.
These are shown in Table 3. The performance gains
and hardware cost estimations for each identified in-
struction are shown in Table 4. Comparing with the
original RISC8 implementation, we are able to obtain
about 40% reduction in the cycle count and about 30%
reduction in code size with little hardware overhead.

8 Conclusion

In conclusion, our contribution of this project is that we
experimented and implemented the flow of automatic
macro-instruction identification and construction. This
includes pattern enumeration at both RTL level and as-
sembly level and the automatic configuration of code-
generator, assembler and simulator. We have shown
that the architecture space exploration at instruction
level for a particular application can be achieved with
a push-button solution by the concepts and techniques
described in this report. This does not require any
effort from the designers for making changes at the al-
gorithm source level.

Apparently, performance gains come from configura-
tion at all levels, including algorithms, hardware soft-
ware partitioning, software implementations and pro-
cessor architecture organizations. As mentioned in sec-
tion 1, we only address the design space at instruction
set architecture level and achieve a full automation flow
for the exploration within basic blocks. The perfor-
mance and code size gain through our implementation
is 30%-40% without human effort. The comparison of

the potential performance gains from different imple-
mentation levels is out of the scope of this project.

Some of the future directions of this research are
pointed out below:

1. The repetition of possible tree patterns is depen-
dent on how the IR is generated, it is profitable to
expand the solution space by applying tree rewrit-
ing techniques based on some transformation rules.

2. Type information can be incorporated in pattern
construction process to pack multiple data opera-
tions into one instruction, or SIMD instructions.

3. Break the basic block limit and apply pattern con-
struction across control structures. This is the
most effective way for identifying instruction level
and loop level parallelism.

References

[1] “Tensilica inc..” http://www.tensilica.com.

[2] H. Choi, J.-S. Kim, C.-W. Yoon, I.-C. Park, S.-H.
Hwang, and C.-M. Kyung, “Synthesis of application
specific instructions for embedded dsp software,”
IEEE Trans on Computers, 1999.

[3] “SPAM project 2
http://www.ee.princeton.edu/spam/.

[4] “8-bit risc microprocessor core J
http://www.geocities.com/microprocessors.

[5] “SUIF project.” http://suif.stanford.edu.

examples

source

description

ADPCM
GSM
PRN-IO
LCD-4X20
max7219

MediaBench
MediaBench
micro-controller
micro-controller
micro-controller

16-bit voice compression and decompression
wireless communication voice encoder
printer IO controller

LCD display controller

LEC display driver and controller

Table 2: Benchmarks used for macro instruction synthesis

Pattern | Instruction

Name Pattern

Insl nASSIGN(addr16,nADD(nVAR(addrl6),reg))

Ins2 reg=nADD(nVAR(addr16),reg)

Ins3 nASSIGN(addr16,nAND (nCON(imm8),nVAR (addr16)))
Ins4 reg=nAND(nCON (imm8),nVAR (addr16))

Insb reg=nADD(nVAR(addr16),nRORC(reg))

Ins6 reg=nADD(nVAR(addr16),nASR(reg))

Table 3: Instruction Pattern for Profiling Information

Total Each | Instr. Total #Basic #Mem | Pattern
Saving | Saving | Count | ExeCyl | #Cycle Instr. | #Reg | #AReg | Access | Name
047 3 16 1460 8 3 1 0 2 | Insl
338 1 30 1692 5 2 2 0 1| Ins2
336 4 6 840 10 4 0 0 2 | Ins3
336 2 12 1176 7 3 1 0 1 | Ins4
260 2 10 910 7 3 2 0 1| Ins5
260 2 10 910 7 3 2 0 1 | Ins6

Table 4: Profiling Information

