
Maximum Weight Cliques with Mutex Constraints
for Video Object Segmentation

Tianyang Ma
Temple University

tuc09847@temple.edu

Longin Jan Latecki
Temple University
latecki@temple.edu

Abstract

In this paper, we address the problem of video object seg-
mentation, which is to automatically identify the primary
object and segment the object out in every frame. We pro-
pose a novel formulation of selecting object region candi-
dates simultaneously in all frames as finding a maximum
weight clique in a weighted region graph. The selected
regions are expected to have high objectness score (unary
potential) as well as share similar appearance (binary po-
tential). Since both unary and binary potentials are unre-
liable, we introduce two types of mutex (mutual exclusion)
constraints on regions in the same clique: intra-frame and
inter-frame constraints. Both types of constraints are ex-
pressed in a single quadratic form. We propose a novel
algorithm to compute the maximal weight cliques that sat-
isfy the constraints. We apply our method to challenging
benchmark videos and obtain very competitive results that
outperform state-of-the-art methods.

1. Introduction and Related Work

Given an unannotated video, our task is to automatically
identify the primary object, and segment that object out in
every frame. Unsupervised video object segmentation is
important for many potential applications, such as activity
recognition and video retrieval. Existing methods explore
tracking of regions or keypoints over time [4, 6, 22] or per-
form low-level grouping of pixels from all frames using ap-
pearance and motions cues [12, 10]. However, as pointed
out in [15], these methods lack an explicit notion ofwhat
a foreground object should look likein video,and therefore,
an ”over-segmentation” result is usually obtained.

Recently, exploring object-centered segmentation in
static image has become a very attractive topic, where sig-
nificant progress has been achieved [9, 7, 1]. In those meth-
ods, multiple object hypotheses in form of binary figure-
ground segmentation are generated. And the ranking of hy-
potheses based on their scores implies how plausible these

hypotheses are. Using several image cues such as color, tex-
ture, and boundary, the model is learned for a generic fore-
ground object, which is then object category independent.
An example of object hypothesis produced by the approach
[9] is shown in Fig.2.

By utilizing those figure-ground segmentations with ob-
jectness measure, Vicente et al. [27] obtain ”object co-
segmentation” from several static images. In contrast to im-
age co-segmentation methods like [24, 26, 14], their method
focus more on segmentingobjects(such as bird or a car).

Lee et al. extend similar idea to video object segmenta-
tion in [15]. Instead of only using static objectness measure
from [9], dynamic cue is also used to measure how likely
a region contains a moving object. They point out that an
object region in video should move differently from its sur-
roundings. Specially, their measure compares the optical
flow histogram of the region to its surroundings. This does
not require any assumptions about camera motion, while
being sensitive to different magnitudes of motion. Given
the scored regions, topK highest-scoring regions in each
frame are collected together to form a region candidate pool
C. While many regions inC belonging to the foreground
object,C may also contain other regions. Similarity based
on un-normalized color histogram is computed for every
pair of the regions in the pool. Finally, spectral clustering
is performed to obtain multiple binary inliers and outliers
partitions of the pool. Each cluster (inlier) corresponds to
a hypothesis of foreground object regions. Then the ob-
tained clusters are ranked according to the average object-
ness score of its member regions. The larger is the average
score, the more likely a cluster is to contain the primary ob-
ject in video.

We observe that the region candidate poolC combines
regions across all frames together and discards valuable in-
formation ofwhich frame each region originates from and
where it is located in this frame. The proposed approach
aims to leverage these information to obtain a better region
selection result. We do this by utilizing binary appearance
relation between regions in different frames and by enforc-
ing mutual exclusion (mutex) constraints on selected re-
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gions. For fair comparison, we adopt the same definition
of region objectness in video as [15].

We have the following three insights about selecting pri-
mary object regions in video, which make our approach
very different from [15]: (1) The selected regions in a clus-
ter should have high objectness score (unary potential) as
well as share similar appearance (binary potential) across
video frames. This implies the optimal way to select re-
gions is to maximize binary and unary potentials simulta-
neously, as apposed to [15] in which only binary potentials
are considered during spectral clustering. (2) The location
of the object in two neighboring frames should be relatively
close, considering that the movement of the object is usually
smooth. This information is extremely important consid-
ering there may be overlap between foreground and back-
ground color, which makes the similarity between regions
very noisy. (3) We also utilize the common assumption in
video segmentation that the primary object appears in ev-
ery frame. It may change its appearance and shape, due to
partial occlusion or self-occlusion, but it is present in each
video frame. Therefore, we select exactly one region in ev-
ery frame as the object region. This prevents the region
cluster to be dominated by regions from the same frame,
which is very likely to happen, since overlapping regions
in a single frame are much more likely to have similar ap-
pearance than true object regions in two different frames.
Hence, this constraint guarantees that the region selection
will not bias to regions in one frame, and pushes the re-
gion selection process to discover the true object regions
even under significant variations of shape and illumination
across the entire video.

We observe that insights (2) and (3) can be expressed
as mutex constraints on the object region selection process.
They strictly prohibit some regions to appear in the same
clique. In particular, insight (3) prohibits two regions from
the same frame from belonging to the same clique, and in-
sight (2) prevents two regions from adjacent frames that
are relatively far away from belonging to the same clique.
We observe that these two constraints cannot be enforced in
spectral clustering [21] used in [15].

For our approach to be successful, it is of primary im-
portance that these constraints are strictly enforced. To en-
sure that this is the case, we propose a novel optimization
method. Two example results of our system are shown in
Fig. 1. We express the region selection problem as the
problem of finding constrained Maximum Weight Cliques
(MWCs) in a weighted graphG, where each region corre-
sponds to a node. The diagonal entries of the affinity matrix
A of G hold the objectness score of each node. The off di-
agonal entries represent the appearance similarity between
two regions. The maximum weight clique in graphG is
the clique with the largest sum of its weights, which means
unary potentials and binary potentials are both considered.

In our framework, we also constrain the maximum weight
clique to satisfy the nonlinear, mutex constraints.

In 1965, Motzkin and Straus [19] established a connec-
tion between maximal cliques and the local maximizers of a
certain standard quadratic function. Since then, many meth-
ods compute MWCs as solutions of the quadratic function
relaxed to a simplex. In particular, the approach in [20]
has been proven to be a powerful model for many vision
problems, such as common pattern discovery [18] and find-
ing stereo correspondence [11]. These approaches compute
cliques with the maximum average weight. However, they
cannot guarantee that mutex constraints are satisfied.

Recently, [16] introduced a new optimization method
that can be interpreted as finding MWCs that satisfy linear
equality constraints. This algorithm has built in preference
for discrete solutions, and most of the time it converges at
a discrete solution which is locally optimal. However, con-
straints (2) cannot be expressed in a linear equality form,
which means that the algorithm in [16] cannot be applied to
solve our problem.

To the best of our knowledge, this is the first time video
object segmentation is formulated as finding constrained
MWCs. Single static image segmentation has been for-
mulated as finding maximal cliques in a very recent paper
[13], where maximal cliques are used to compose multiple
figure-groundhypotheses into larger interpretations (tilings)
of the entire image. Their algorithm adopts a two step solu-
tion: step 1 is sequential greedy heuristic, and step 2 is lo-
cal search heuristic. A similar approach is proposed in [5],
where image segmentation is formulated as finding maxi-
mum independent set, which is a dual problem to finding
maximal cliques. However, in this paper only unary poten-
tials (node weights) are considered.

In Sections2, 3, and4, we introduce the edge weights
in the region graph, the mutex constraints on regions, and
express region selection as finding constrained MWCs, re-
spectively. In Section5, we utilize the regions selected in
Section4 to achieve a more accurate pixel-level foreground
object segmentation. A description of our algorithm for
solving constrained MWCs is presented in Section6, fol-
lowed by the experimental results in Section7.

2. Region Graph Construction

Our goal is to segment a foreground object in video with-
out any model of the target. Since we assume no prior
knowledge on the size, location, shape or appearance of the
target object, we first produce a bag of object ”proposals” in
each frame using [9]. The model used in [9] is learned for a
generic object from Berkeley Segmentation data, and there-
fore, it is category independent. Each proposal is a region
in the image, an example is shown in Fig2.

For each frame in the video, we retrieveK regions. (We
setK = 300 in all experiments.) Given a video consist-



Figure 1. Our object segmentation results on two videosYu-Na KimandWaterskifrom [10].

Figure 2. Object proposals produced by [9]. (a) A video frame (b) Proposals ranked in order of ”objectness”.

ing of N frames, we haveK × N regions in total. Our
goal is to discover a small subset of regions that contain the
same foreground object across all the frames. We construct
a weighted graphG = (V,A), in which each node corre-
sponds to one of theK ×N regions, andA is its adjacency
matrix. The weightA(u, u) of the nodeu represents the
”objectness” of the regionu, while the weightA(u, v) be-
tween two nodesu andv represents the similarity between
the two regions. Both are defined below.

We follow the computation of the region ”objectness” in
[15]. Specifically, for a regionu

A(u, u) = ob(u) = sob(u) +mob(u), (1)

combines its static intra-frame objectness scoresob(u) and
motion inter-frame objectness scoremob(u). The static
scoresob(u) is computed using [9]. It reflects the confi-
dence that a region contains a generic object. Several static
cues are used to compute this score, such as the probability
of a surrounding occlusion boundary, and color differences
with nearby pixels.

In [15], the motion objectnessmob(u) is introduced to
complement to the static score in the case of videos. It mea-
sures the confidence that regionu corresponds to a coher-
ently moving object in the video. Optical flow histograms
are computed for the regionu and the pixelsu around it
within a loosely fit bounding box. The score is computed
as:

mob(u) = 1− exp(−χ2
flow(u, u)), (2)

where χ2
flow(u, u) is the χ2-distance betweenL1-

normalized optical flow histograms. The motion score es-
sentially describes how the motion of the region differs from
its closest surrounding regions. Both static score and mo-
tion score are normalized using the distributions of scores
across all regions in the video.

Each region is also described using its Lab color his-
togram. The similarity between two regionsu andv is com-
puted as:

A(u, v) = exp(−
1

Ω
χ2
color(u, v)), (3)

whereχ2
color(u, v) is theχ2-distance between unnormalized

color histograms ofu andv, andΩ denotes the mean of the
χ2-distance among all the regions. Consequently, if two
regions have similar color and similar size, their affinity is
high.

3. Mutex Constraints between Regions

One of the key contributions of the proposed work to
video segmentation lies in the utilization of hard, mu-
tex (short for mutual exclusion) constraints. They specify
which regions cannot be simultaneously selected as part of
the segmentation solution. They allow us to eliminate un-
reasonable configurations of regions, which otherwise have
large joint potentials, since both the unaryA(u, u) and bi-
nary potentialsA(u, v) are unreliable. Furthermore, the uti-
lized inference framework allows us to enforce that the so-
lutions satisfy all the constraints. The proposed mutex con-
straints are based on the following two insights.
Intra-frame mutex constraint: We assume that a true ob-
ject should appear ineveryframe, and within each frame,
only oneproposal region should be selected. However, the
object may be partially occluded or self occluded. This con-
straint implies that only one object regions candidate pro-
duced by [9] is selected for each frame. The same constraint
is also utilized in the problem of object co-segmentation
from static images [27]. The fact that exactly one object
region candidate is selected in each frame is essential for
a good selection of candidates mainly for two reasons: 1)



Since many regions in the same frame overlap, their affini-
ties are usually much higher than affinities of true object re-
gions in different frames due to inter-frame variations, such
as illumination change. Hence, by excluding affinities of
regions from the same frame from consideration in a single
clique, the comparison of affinities from different frames
becomes more informative. 2) Since we guarantee to select
one region foreveryframe, the region selected can be fur-
ther used as location prior.
Inter-frame proximity constraint: two regions selected
in two neighboring frames should be not spatially far away
from each other, since the change of the location of the same
object in adjacent frames should be smooth.
We encode these two constraints through a binary mutex
matrixM defined over all vertices of graphG as

M(u, v) =















1, if u andv are in the same frame
or (if u andv are in adjacent frames
andd(C(u), C(v)) > τ )

0, otherwise.
(4)

whereC(u) andC(v) are the centroid of two regions, andd
is their Euclidean distance in pixels.τ reflects the maximum
spatial displacement allowed betweenu andv. We setτ =
100 for all the experiments in order to allow for fast moving
objects.

4. Finding Objects as Constrained MWCs

We formulate a region selection problem as finding con-
strained maximum weight cliques in graph. The input is
a weighted graphG = (V,A), whereV = {v1, . . . , vn} is
the set of nodes representing the regions in all video frames,
n is the number of nodes, andA is a symmetricn×n affin-
ity matrix with all nonnegative entries, i.e.,Aij ≥ 0 for all
i, j = 1, . . . , n.

The selected regions are identified with an indicator vec-
tor x = (x1, . . . , xn) ∈ {0, 1}n, where a given regionvi is
selected if and only ifxi = 1.

We are also given a symmetric relationM ⊆ V × V be-
tween vertices of the graph. We callM a mutex(short for
mutual exclusion) relation and represent as binary matrix
M ∈ {0, 1}n×n. If M(i, j) = 1 then the two verticesi, j
cannot belong to the same maximum clique.M(i, i) = 0
for all vertices i. In other words, mutex represents in-
compatible vertices that cannot be selected together. For-
mally, this requirement can be expressed as a constraint on
the indicator vectorx ∈ {0, 1}n: if M(i, j) = 1, then
xi + xj ≤ 1. This formulation is equivalent to the require-
mentxTMx = 0.

We obtain the regions of primary object in a given video

by solving the following maximization problem

maximize f(x) = xTAx

s.t. x ∈ {0, 1}n and xTMx = 0.
(5)

The goal of (5) is to select a subset of vertices of graphG

such thatf is maximized and the mutex constraints are sat-
isfied. Sincef is the sum of unary and binary affinities of
the elements of the selected subset, the larger is the subset,
the larger is the value off . However, the size of the sub-
set is limited by mutex constraints. The problem (5) is a
combinatorial optimization problem and is NP-hard [2].

By settingW = A− γM with a sufficiently largeγ, we
reformulate problem (5) into the following dual form:

maximize xTWx = xTAx− γxTMx

s.t. x ∈ {0, 1}n.
(6)

Finally, we relax (6) to

maximize xTWx = xTAx− γxTMx

s.t. x ∈ [0, 1]n.
(7)

In Section6 an algorithm to solve problem (7) is described.
In all video segmentation experiments, we obtained discrete
solutions that satisfy all mutex constraints.

Since the maximal clique seeking algorithm we use con-
verges to a local optimum, multiple initializations are re-
quired to promise a better performance. We rank the regions
in graphG according to their unary scoreA(u, u), and find
the top-L best regions. Each time, we use one regionu

selected from those top-L best regions to initialize the max-
imal clique seeking algorithm. We denote the initialization
asx(0), then we set(x(0))u = 1 and (x(0))i = 0 for all
i 6= u. Starting from thex(0), we obtain a maximal clique
indicated by a binary vectorx∗. x∗ is a local maximizer of
xTAx while satisfyingx∗TMx∗ = 0.

Therefore, we obtainL maximal cliques in total. We se-
lect the best one according toxTAx. We find the selected
regions as one entries in the indicator vector of this solution.
Since the solution satisfies the constraintsM defined in Sec
3, we select only one region in each frame, and guarantee
every two regions selected in neighboring frames are rela-
tively close to each other. These regions reflect the rough
appearance and location of the object in each frame.

5. Foreground Object Segmentation

The obtained segmentation of the object in video in form
of selected regions is not very precise. In particular, the
segmentation error is lower-bounded by the object region
candidates produced by [9]. The error may come from the
inaccuracy of the original superpixel extraction or merging.
Therefore, we follow the strategy of utilizing the selected



regions to learn the appearance model for both foreground
and background, e.g., [15, 27]. In addition, we also utilize
the location priors. It is particularly easy in our framework,
since we have exactly one object region in each frame. Fi-
nally, we use GrabCut [23] to infer a more accurate pixel-
level object segmentation. For efficiency, rather than label-
ing pixels in three consecutive frames at once by construct-
ing a space-time graph as in [15], we simply run the Grab-
Cut [23] for each frame separately. This is possible in our
framework, since the data term, defined below, which is ob-
tained by our constrained MWCs is very informative.

We denote the pixels in each frame asS = {p1, . . . , pn},
and their labelsf = {f1, . . . , fn}, fi ∈ {0, 1} with 0 for
background and 1 for foreground. Then the energy function
for minimization is:

E(f) =
∑

i∈S

Di(fi) + δ
∑

i,j∈N

Vi,j(fi, fj) (8)

whereN consists of 8 spatially neighboring pixels.
For the smoothness termV , we use the standard contrast-

dependent function defined in [23], which favors assigning
the same label to neighboring pixels that have similar color.

Similar to [15], our data termDi(fi) defines the cost of
labeling pixelpi with labelfi as:

Di(fi) = − log(1− P c
i (fi) · P

l
i (fi)) (9)

whereP c
i (fi) is the probability of labeling pixelpi with

labelfi based on the appearance (color) cues,P l
i (fi) is the

probability based on location prior. Both are defined below.
To computeP c

i (fi), we first estimate two Gaussian Mix-
ture Models (GMM) in RGB color space to model the fore-
ground (fg) and background (bg) appearance. Since the
color may vary significantly over the video frames, we
need to learn the color models over all video frames, which
is an easy task since we have the object regions inferred
as the constrained MWCs. The foreground GMM model
fgcolor is learned from pixels in the regions selected in the
constrained MWCs computation. The background GMM
modelbgcolor is learned from pixels contained in the com-
plement of selected regions in all the frames. Then given
these two color distributionsfgcolor andbgcolor, we define
for each pixelpi:

P c
i (fi) =

{

P (pi|fg
color), if fi = 1

P (pi|bgcolor), if fi = 0
(10)

For the computation of location probabilityP l
i (fi), we

utilize the object regions selected in the constrained MWCs.
Given the selected region (we have only one region per
frame), we first compute its distance transform. Letd(pi)
denotes the distance of pixelpi to the selected object region.
We compute

P l
i (fi) =

{

exp(− d(pi)
σ

), if fi = 1

1− exp(− d(pi)
σ

), if fi = 0
(11)

Figure 3. (a) A single frame and the probabilities of the foreground
objectfi = 1. (b) Color prob.P c

i (fi). (c) Location prob.P l

i (fi).
(d) The joint foreground prob.P c

i (fi) · P
l

i (fi)

whereσ indicates the confidence of the location prior, the
larger is σ, the lower is the confidence. We compute
P c
i (fi) ·P

l
i (fi) as the probability of foreground (fi = 1) and

background (fi = 0). As illustrated in Fig3(b), the color
probability is not particularly informative in a global scale
of the whole frame, and the main information comes from
the possibilty map of the location shown in Fig.3(c). How-
ever, the color information is informative if constrained by
the location probability as illustrated by the joint probability
shown in Fig3(d).

After obtaining the data termD and smoothness term
V , we use the popular method in [3] to find the optimalf
that minimizes the energy function (8), and obtain the final
foreground objects in each video frame.

6. Algorithm Description

In this section, we introduce a novel algorithm for find-
ing the constrained MWCs.f(x) = xTWx denotes the
objective function of Eq. (7).

Our algorithm visits a sequence of continuous points
{y(k) ∈ [0, 1]n}k=1,2,.... In each iterationk, we have two
steps. First, giveny(k), for any pointy ∈ [0, 1]n in its
neighborhood, we compute the first-order Taylor approxi-
mation off(y) as

f(y) ≈ f(y(k)) + 2(y − y(k))
TWy(k)

= 2yWy(k) − f(y(k))
(12)

Since the second termf(y(k)) in (12) does not depend ony,
the first-order Taylor approximation off(y) only depends
onyWy(k), which is a linear function ofy. This fact allows
an easy computation of a discrete maximizer

x̃(k) = argmax
y∈[0,1]n

yTWy(k) (13)

as

(x̃(k))i =

{

1, if (Wy(k))i > 0
0, otherwise

(14)

In the second step of iterationk, we want to verify
whether the obtained̃x(k) can be accepted as a valid dis-
crete solution that increasesf . In the case thatf(x̃(k)) >



f(y(k)), we lety(k+1) = x̃(k). In the case thatf(x̃(k)) ≤
f(y(k)), we estimate the local maximizer off in the contin-
uous domain by performing a line search, i.e., by maximiz-
ing one dimensional functionh(α) = f(y(k) + α(x̃(k) −
y(k))) over the line segment from̃x(k) to y(k). It is easy to
show thath(α) obtains its maximum atα defined in (15). It
can also be shown that0 < α < 1, which guarantees that
line search will not reach outside the cube.

α = −
(x̃(k) − y(k))

TWy(k)

(x̃(k) − y(k))TW (x̃(k) − y(k))
(15)

Then we sety(k+1) = y(k) + α(x̃(k) − y(k))
Our algorithm stops when the followingstop condition

holds for all coordinatesi of vectorx∗ = y(k+1):

if (Wx∗)i > 0, then x∗
i = 1

if (Wx∗)i < 0, then x∗
i = 0

(16)

We observe thatWx∗ = 1
2∇f(x∗). Hence(Wx∗)i > 0

means that the direction of the increase off coincides the
direction ofith coordinate, while(Wx∗)i < 0 means that
the direction of the increase off is opposite to the direction
of ith coordinate. Therefore, the stop condition tells us that
f(x∗) already has the maximum possible value for every
increase direction off . In other words, we cannot increase
f without leaving our domain[0, 1]n, meaning thatx∗ is a
local maximum off over[0, 1]n.

We assume that the initial assignmenty(0) satisfies the

mutex constraints, i.e.,y(0)TMy(0) = 0. This implies
thatf(y(0)) ≥ 0, since all entries inA are non-negative.

The proposed algorithm is summarized in the following
pseudo code:

Algorithm 1
Input: Matrix W , f(y(0)) ≥ 0, andǫ > 0

1: repeat
2: Use (14) to find x̃(k) = argmaxy∈[0,1]n yWy(k)

3: if x̃(k) = y(k) then
4: y(k+1) = x̃(k)

5: else if f(x̃(k)) > f(y(k)) then
6: y(k+1) = x̃(k)

7: else
8: Use (15) to computeα.
9: y(k+1) = y(k) + α(x̃(k) − y(k))

10: end if
11: until y(k+1) satisfies (16) or f(y(k+1))− f(y(k)) < ǫ

Output: y(k+1)

In all experimental results in the next section, all solu-
tions are discrete. Thus, the proposed algorithm does not
require any postprocessing to obtain discrete solutions. We
have also verified experimentally that all obtained solutions
satisfy the mutex constraints.

7. Experimental Results

We first examine our method on the SegTrack dataset
[25]. There are six videos (monkeydog, bird, girl, birdfall,
parachutte, penguin). For each video, a pixel-level segmen-
tation ground-truth is provided for the primary foreground
object. This enables a statistical evaluation of our method.
Object segmentation in these videos are extremely challeng-
ing due to several facts, such as the primary object are with
large shape deformation and foreground and background
color has overlap. Same as [15], we do not evaluate our
method onpenguinvideo since only a single penguin is la-
beled as the foreground object among a group of penguins.

Given a video, we first produce [9] 300 object candidate
regions per frame. We use Lab space histograms to describe
color for each region. Each Lab channel has 20 bins. For
the color model of the foreground and background, we use
RGB color space, and two GMMs with 5 component are
learned. Same as [15], we describe motion using optical
flow histograms computed from [17] with 60 bins per x and
y direction. The region’s bounding box is dilated by 30 pix-
els when computing the background histograms. To initial-
ize the maximal clique computation, each time we select
one from the best50 object regions candidates according to
A(u, u) = ob(u). We setσ = 20 for the computation of
P l
i (fi). In the graph cut energy function (8), δ = 1 in all

our experiments.
Due to the efficiency of the proposed constrained MWCs

algorithm, on a PC with 3.4Ghz and 8GB RAM, it only
takes 2 minutes to select regions by constrained MWCs with
50 different initializations. The binary graph cut on single
frame takes about 0.1s in average.

We compare the results with three state-of-the-art meth-
ods [15], [25] and [8]. The method in [15] and our method
are unsupervised. They automatically discover the primary
object in image as well as segment the object out. The meth-
ods in [25] and [8] require minor supervision with the object
labeled in the first frame. The results are shown in Table1.
Our method has the lowest average per frame segmentation
error over the 5 test videos. It also achieves the lowest seg-
mentation error on 3 out of 5 videos. Compared to [15],
which also does not require manual object initialization, we
achieve better results on 4 out of 5 videos. Some segmenta-
tion results are shown in Fig.4.

The results in Table1 report the average per-frame, pixel
error rate computed in comparison to the ground-truth seg-
mentation. Specially, it is computed as [25]:

error =
XOR(f,GT )

F
(17)

wheref is the label for every pixel in a given video, GT is
the ground-truth label, andF is the total number of frames
in a given video. Since all videos are roughly of the same
size, the average error rate over the 5 videos is computed



Video (No. frames) Ours [15] [25] [8]

birdfall (30) 189 288 252 454
cheetah (29) 806 905 1142 1217

girl (21) 1698 1785 1304 1755
monkeydog (71) 472 521 563 683
parachute (51) 221 201 235 502

Average 542 592 594 791
Manual seg.: No No Yes Yes

Table 1. Segmentation error as measured by the average number
of incorrect pixels per frame. Lower values are better.

Figure 4. Segmentation results. Best viewed in color.

as average over all frames in all videos, i.e., we treat all 5
videos as a single video and apply (17).

As we mentioned above, even without the pixel-based
object segmentation described in Secion5, the object re-
gions selected by constrained MWCs in Section4 alone can
be regarded as the segmentation result. In Table2, we report
the pixel error of the constrained MWCs regions segmenta-
tion results, although it is lower-bounded by the accuracy of
the region candidates produced by [9]. The lower-bound er-
ror is computed as the error of the region candidate with the
lowest error as compared to the ground-truthpixels. This re-
flects the lowest segmentation pixel error we could achieve

Ours constrained MWC Lower bound

birdfall 189 311 295
cheetah 806 1258 700

girl 1698 3063 2973
monkeydog 472 497 493
parachute 221 803 680

Table 2. Segmentation error comparison. We compare our entire
proposed method (Ours) to the region segmentation results ob-
tained by the region selection as constrained MWCs. The lower
bound error is the lowest possible error of regions producedby
[9].

constrained MWC w/o constraints

birdfall 311 589
cheetah 1258 1772

girl 3063 3742
monkeydog 497 2024
parachute 803 883

Table 3. Segmentation error comparison of the constrained MWCs
optimization with and without the mutex constraints.

Figure 5. The trajectories of centroids of selected regions, green
dots connected with red lines, overlaid over the first frame:(a)
when inter-frame mutex constraints are used and (b) when inter-
frame mutex constraints arenot used.

by only selecting regions from computing the constrained
MWCs.

We can see that, for videosbirdfall, monkeydog, the re-
sults are very good merely using regions selected by con-
strained MWCs. Moreover, with the exception ofchee-
tah, the pixel error is rather close to the lower bound. This
demonstrates that the proposed region selection scheme as
constrained MWCs is a powerful tool for video segmenta-
tion.

As shown in Table3, the segmentation error increases
significantly if inter-frame proximity mutex constraints,
which express spatiotemporal coherency, are not taken as
input to the constrained MWC optimization. We also pro-
vide a visual illustration of the importance of these mu-
tex constraints in Fig.5. We compare the trajectories of
the constrained MWCs region centroids computed with and



without this mutex constraints. They are shown overlaid
over the first video frame. We can see that with the con-
straints, the trajectory of the centroid is very smooth, and
the selected regions are always focusing on the primary ob-
ject, i.e., the monkey in the example video. This shows
that the mutex constraints significantly increase the robust-
ness of the constrained MWCs optimization. They allow
us to eliminate unreasonable region selection hypotheses,
which result from unreliable region affinity relations, and
consequently, play a critical role in selecting correct object
regions.

We also examine our method on two videosYu-Na Kim
andWaterskifrom [10]. While [10] focus on labeling every
pixel in image using motion and appearance cues, we au-
tomatically identify the primary object, i.e., ice skater and
water skier, and segment them out in every frame. Qualita-
tive results are shown in Fig1.

8. Conclusions

We present a novel method for video object segmenta-
tion. It utilizes mutex constraints in order to obtain reliable
segmentations of foreground object under large variations
of shape, appearance, and illumination. The selection of
object regions is performed simultaneously for all frames
of the video. The computation is cast as finding maximum
weight cliques in the region graph. We propose a novel al-
gorithm for solving this problem. Since it yields discrete
solutions in all presented experimental results, it did notre-
quire any postprocessing to obtain discrete solutions. We
have also verified experimentally that all obtained solutions
satisfy the mutex constraints.
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