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We describe a maximum entropy approach for computing volumes and counting in-

teger points in polyhedra. To estimate the number of points from a particular set
X ⊂ Rn in a polyhedron P ⊂ Rn, by solving a certain entropy maximization prob-

lem, we construct a probability distribution on the set X such that a) the probability
mass function is constant on the set P ∩X and b) the expectation of the distribution

lies in P . This allows us to apply Central Limit Theorem type arguments to deduce

computationally efficient approximations for the number of integer points, volumes,
and the number of 0-1 vectors in the polytope. As an application, we obtain as-

ymptotic formulas for volumes of multi-index transportation polytopes and for the

number of multi-way contingency tables.

1. Introduction

In this paper, we address the problems of computing the volume and counting
the number of integer points in a given polytope. These problems have a long his-
tory (see for example, surveys [GK94], [DL05] and [Ve05]) and, generally speaking,
are computationally hard. We describe a maximum entropy approach which, in a
number of non-trivial cases, allows one to obtain good quality approximations by
solving certain specially constructed convex optimization problems on polytopes.
Those optimization problems can be solved quite efficiently, in theory and in prac-
tice, by interior point methods, see [NN94].

The essence of our approach is as follows: given a discrete set S ⊂ R
n of interest,

such as the set Z
n
+ of all non-negative integer points or the set {0, 1}n of all 0-1

points, and an affine subspace A ⊂ R
n we want to compute or estimate the number

|S ∩ A| of points in A. For that, we construct a probability measure µ on S with
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the property that the probability mass function is constant on the set A ∩ S and
the expectation of µ lies in A. These two properties allow us to apply Local Central
Limit Theorem type arguments to estimate |S ∩ A|. The measure µ turns out to
be the measure of the largest entropy on S with the expectation in A, so that
constructing µ reduces to solving a convex optimization problem. We also consider
a continuous version of the problem, where S is the non-negative orthant R

n
+ and

our goal is to estimate the volume of the set S ∩ A.
Our approach is similar in spirit to that of E.T. Jaynes [Ja57] (see also [Go63]),

who, motivated by problems of statistical mechanics, formulated a general princi-
ple of estimating the average value of a functional g with respect to an unknown
probability distribution on a discrete set S of states provided the average values
of some other functionals f1, . . . , fr on S are given. He suggested estimating g by
its expectation with respect to the maximum entropy probability distribution on S
such that the expectations of fi have prescribed values. Our situation fits this gen-
eral framework when, for example, S is the set Z

n
+ of non-negative integer vectors,

fi are the equations defining an affine subspace A, functional g is some quantity of
interest, while the unknown probability distribution on S is the counting measure
on S ∩A (in interesting cases, the set S ∩A is complicated enough so that we may
justifiably think of the counting measure on S ∩A as of an unknown measure).

(1.1) Definitions and notation. In what follows, R
n is Euclidean space with

the standard integer lattice Z
n ⊂ R

n. A polyhedron P ⊂ R
n is defined as the set

of solutions x = (ξ1, . . . , ξn) to a vector equation

(1.1.1) ξ1a1 + . . .+ ξnan = b,

where a1, . . . , an; b ∈ R
d are d-dimensional vectors for d < n, and inequalities

(1.1.2) ξ1, . . . , ξn ≥ 0.

We assume that vectors a1, . . . , an span R
d, in which case the affine subspace

defined by (1.1.1) has dimension n − d. We also assume that P has a non-empty
interior, that is, contains a point x = (ξ1, . . . , ξn), where inequalities (1.1.2) are
strict. One of our goals is to compute the (n−d)-dimensional volume volP of P with
respect to the Lebesgue measure in the affine subspace (1.1.1) induced from R

n.
Often, we use a shorthand Ax = b, x ≥ 0 for (1.1.1)–(1.1.2), where A = [a1, . . . , an]
is the matrix with the columns a1, . . . , an and x is thought of as a column vector

x = [ξ1, . . . , ξn]
T
.

We are also interested in the number |P ∩Z
n| of integer points in P . In this case,

we assume that vectors a1, . . . , an and b are integer, that is, a1, . . . , an; b ∈ Z
d. The

number |P ∩Z
n| as a function of vector b in (1.1.1) is known as the vector partition

function associated with vectors a1, . . . , an, see for example, [BV97].
Finally, we consider a version of the integer point counting problem where we

are interested in 0-1 vectors only. Namely, let {0, 1}n be the set (Boolean cube) of
all vectors in R

n with the coordinates 0 and 1. We estimate |P ∩ {0, 1}n|.
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(1.2) The maximum entropy approach. Let us consider the integer counting
problem first. One of the most straightforward approaches to computing |P ∩ Z

n|
approximately is via the Monte Carlo method. As in Section 1.1, we think of P
as defined by a system Ax = b, x ≥ 0. One can place P in a sufficiently large
axis-parallel integer box B in the non-negative orthant R

n
+ of R

n, sample integer
points from B independently at random and count what proportion of points lands
in P . It is well understood that the method is very inefficient if P occupies a
small fraction of B, in which case the sampled points will not land in P unless
we use great many samples, see for example, Chapter 11 of [MR95]. Let X be a
random vector distributed uniformly on the set of integer points in box B. One
can try to circumvent sampling entirely by considering the random vector Y = AX
and interpreting the number of integer points in P in terms of the probability
mass function of Y at b. One can hope then, in the spirit of the Central Limit
Theorem, that since the coordinates of Y are linear combinations of independent
coordinates x1, . . . , xn ofX , the distribution of Y is somewhat close to the Gaussian
and hence the probability mass function of Y at b can be approximated by the
Gaussian density. The problem with this approach is that, generally speaking, the
expectation EY will be very far from the target vector b, so one tries to apply the
Central Limit Theorem on the tail of the distribution, which is precisely where it
is not applicable.

We propose an “exponential tilting” remedy, see, for example, Section 13.7 of
[Te99], to this naive Monte Carlo approach. Namely, by solving a convex optimiza-
tion problem on P , we construct a multivariate geometric random variable X such
that

(1.2.1) The probability mass function of X is constant on the set P ∩ Z
n of

integer points in P ;

(1.2.2) We have EX ∈ P , or, equivalently, EY = b for Y = AX .

Condition (1.2.1) allows us to express the number |P ∩ Z
n| of integer points in

P in terms of the probability mass function of Y , while condition (1.2.2) allows
us to prove a Local Central Limit Theorem for Y in a variety of situations. We
have X = (x1, . . . , xn) where xj are independent geometric random variables with
expectations ζj such that z = (ζ1, . . . , ζn) is the unique point maximizing the value
of the strictly concave function, the entropy of X ,

g(x) =

n∑

j=1

(

(ξj + 1) ln (ξj + 1) − ξj ln ξj

)

on P . In this case, the probability mass function of X at every point of P ∩ Z
n is

equal to e−g(z); see Theorem 3.1 for the precise statement.
Similarly, to estimate the number of 0-1 vectors in P , we construct a multivariate

Bernoulli random variable X , such that (1.2.2) holds while (1.2.1) is replaced by
3



(1.2.3) The probability mass function of X is constant on the set P ∩ {0, 1}n of
0-1 vectors in P .

In this case, X = (x1, . . . , xn), where xj are independent Bernoulli random vari-
ables with expectations ζj such that z = (ζ1, . . . , ζn) is the unique point maximizing
the value of the strictly concave function, the entropy of X ,

h(x) =

n∑

j=1

(

ξj ln
1

ξj
+ (1 − ξj) ln

1

1 − ξj

)

on the truncated polytope

P ∩
{

0 ≤ ξj ≤ 1 : for j = 1, . . . , n
}

.

In this case, the probability mass function of X at every point of P ∩ {0, 1}n is
equal to e−h(z); see Theorem 3.3 for the precise statement.

Finally, to approximate the volume of P , we construct a multivariate exponential
random variable X such that (1.2.2) holds and (1.2.1) is naturally replaced by

(1.2.4) The density of X is constant on P .

Condition (1.2.4) allows us to express the volume of P in terms of the density
of Y = AX at Y = b, while (1.2.2) allows us to establish a Local Central Limit
Theorem for Y in a number of cases. In this case, each coordinate xj is sam-
pled independently from the exponential distribution with expectation ζj such that
z = (ζ1, . . . , ζn) is the unique point maximizing the value of the strictly concave
function, the entropy of X ,

f(x) = n+

n∑

j=1

ln ξj

on P . In this case, the density of X at every point of P is equal to e−f(z); see
Theorem 3.6 for the precise statement. In optimization, the point z is known as
the analytic center of P and it played a central role in the development of interior
point methods, see [Re88].

Summarizing, in each of the three cases (counting integer points, counting 0-
1 points and computing volumes), we construct a random d-dimensional vector
Y , which is a linear combination of n independent (discrete or continuous) random
vectors. We express the quantity of interest as the probability mass function (in the
discrete case) or density (in the continuous case) of Y at its expectation b = EY ,
multiplied by constants eg(z), eh(z) or ef(z) respectively. Using a Local Central
Limit argument, we consider a Gaussian d-dimensional vector Y ∗ with the same
expectation and covariance matrix as Y and approximate the density of Y by the
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density of Y ∗ in the continuous case (see Section 3.7) and the probability mass
function of a lattice random vector Y by the density of Y ∗ multiplied by the volume
of the fundamental domain in the discrete case (see Section 3.2).

These three examples (counting integer points, counting 0-1 vectors, and com-
puting volumes) are important particular cases of a general approach to counting
through the solution to an entropy maximization problem (cf. Theorem 3.5) with
the subsequent asymptotic analysis of multivariate integrals needed to establish
Local Central Limit Theorem type results. Although the intuition for our formu-
las is supplied by probability, the formulas we obtain are entirely deterministic.
This makes our approach very different from Monte Carlo type algorithms (see, for
example, Chapter 11 of [MR95] and [C+05]).

2. Main results

(2.1) Gaussian approximation for volume. Let P ⊂ R
n be a polytope, defined

by a system Ax = b, x ≥ 0, where A is an d×n matrix with the columns a1, . . . , an.
We assume that rankA = d < n. We find the point z = (ζ1, . . . , ζn) maximizing

f(x) = n+
n∑

j=1

ln ξj , x = (ξ1, . . . , ξn) ,

on P . Let B be the d×n matrix with the columns ζ1a1, . . . , ζnan. We approximate
the volume of P by the Gaussian formula

(2.1.1) volP ≈ 1

(2π)d/2

(
detAAT

detBBT

)1/2

ef(z).

We consider the standard scalar product 〈·, ·〉 and the corresponding Euclidean
norm ‖ · ‖ in R

d.
We prove the following main result.

(2.2) Theorem. Let us consider a quadratic form q : R
d −→ R defined by

q(t) =
1

2

n∑

j=1

ζ2
j 〈aj , t〉2.

Suppose that for some λ > 0 we have

q(t) ≥ λ‖t‖2 for all t ∈ R
d

and that for some θ > 0 we have

ζj‖aj‖ ≤ θ for j = 1, . . . , n.
5



Then there exists an absolute constant γ such that the following holds:

let 0 < ǫ ≤ 1/2 be a number and suppose that

λ ≥ γθ2ǫ−2

(

d+ ln
1

ǫ

)2

ln
(n

ǫ

)

.

Then the number

1

(2π)d/2

(
detAAT

detBBT

)1/2

ef(z)

approximates volP within relative error ǫ.

Let us consider the columns a1, . . . , an of A as vectors from Euclidean space R
d

endowed with the standard scalar product 〈·, ·〉. The quadratic form q defines the
moment of inertia of the set of vectors {ζ1a1, . . . , ζnan}, see, for example, [Ba97].
By requiring that the smallest eigenvalue of q is sufficiently large compared to the
lengths of the vectors ζjaj , we require that the set is sufficiently “round”. For a
sufficiently generic (random) set of n vectors, we will have q(t) roughly proportional
to ‖t‖2 and hence λ will be of the order of nd−1 maxj=1,... ,n ζ

2
j ‖aj‖2.

We prove Theorem 2.2 in Section 6.
In Section 4, we apply Theorem 2.2 to approximate the volume of a multi-index

transportation polytope, see, for example, [Y+84], that is, the polytope P of ν-
dimensional k1 × . . .× kν arrays of non-negative numbers (ξj1...jν

) with 1 ≤ ji ≤ ki

for i = 1, . . . , ν with prescribed sums along the coordinate hyperplanes ji = j.
We show that Theorem 2.2 implies that asymptotically the volume of P is given
by a Gaussian formula (2.1.1) as long as ν ≥ 5. We suspect that the Gaussian
approximation holds as long as ν ≥ 3, but the proof would require some additional
considerations beyond those of Theorem 2.2. In particular, for ν ≥ 5 we obtain the
asymptotic formula for the volume of the polytope of polystochastic tensors, see
[Gr92].

For ν = 2 polytope P is the usual transportation polytope. Interestingly, its
volume is not given by the Gaussian formula, cf. [CM07b].

In [Ba09], a much cruder asymptotic formula ln (volP ) ≈ f(z) was proved under
much weaker assumptions.

(2.3) Gaussian approximation for the number of integer points. For a
polytope P , defined by a system Ax = b, x ≥ 0, we find the point z = (ζ1, . . . , ζn)
maximizing

g(x) =
n∑

j=1

(

(ξj + 1) ln (ξj + 1) − ξj ln ξj

)

, x = (ξ1, . . . , ξn) ,

on P . Assuming that a1, . . . , an ∈ Z
d are the columns of A, we define B as the

d× n matrix whose j-th column is
(
ζ2
j + ζj

)1/2
aj for j = 1, . . . , n.
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We assume that A is an integer d × n matrix of rank d < n. Let Λ = A (Zn)
be image of the standard lattice, Λ ⊂ Z

d. We approximate the number of integer
points in P by the Gaussian formula

(2.3.1) |P ∩ Z
n| ≈ eg(z) det Λ

(2π)d/2(detBBT )1/2
.

In this paper, we consider the simplest case of Λ = Z
d, which is equivalent to the

greatest common divisor of the d× d minors of A being equal to 1.
Together with the Euclidean norm ‖ · ‖ in R

d, we consider the ℓ1 and ℓ∞ norms:

‖t‖1 =
d∑

i=1

|τi| and ‖t‖∞ = max
i=1,... ,d

|τi| where t = (τ1, . . . , τd) .

Clearly, we have
‖t‖1 ≥ ‖t‖ ≥ ‖t‖∞ for all t ∈ R

d.

Compared to the case of volume estimates (Sections 2.1–2.2), we acquire an additive
error which is governed by the arithmetic of the problem.

Let e1, . . . , ed be the standard basis of Z
d. We prove the following main result.

(2.4) Theorem. Let us consider a quadratic form q : R
d −→ R defined by

q(t) =
1

2

n∑

j=1

(
ζj + ζ2

j

)
〈aj, t〉2.

For i = 1, . . . , d let us choose a non-empty finite set Yi ⊂ Z
n such that Ay = ei for

all y ∈ Yi and let us define a quadratic form ψi : R
n −→ R by

ψi(x) =
1

|Yi|
∑

y∈Yi

〈y, x〉2.

Suppose that for some λ ≥ 0 we have

q(t) ≥ λ‖t‖2 for all t ∈ R
d,

that for some ρ > 0 we have

ψi(x) ≤ ρ‖x‖2 for all x ∈ R
n and i = 1, . . . , d,

that for some θ ≥ 1 we have

‖aj‖1 ≤ θ

√

ζj

(1 + ζj)
3 for j = 1, . . . , n
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and that

ζj(1 + ζj) ≥ α for j = 1, . . . , n

and some α ≥ 0.
Then, for some absolute constant γ > 0 and for any 0 ≤ ǫ ≤ 1/2, as long as

λ ≥ γǫ−2θ2

(

d+ ln
1

ǫ

)2

ln
(n

ǫ

)

,

we have

|P ∩ Z
n| = eg(z)

(

κ

(2π)d/2 (detBBT )
1/2

+ ∆

)

,

where

1 − ǫ ≤ κ ≤ 1 + ǫ

and

|∆| ≤
(

1 +
2

5
απ2

)−m

for m =

⌊
1

16π2ρθ2

⌋

.

While the condition on the smallest eigenvalue of quadratic form q is very similar
to that of Theorem 2.2 and is linked to the metric properties of P , the appearance
of quadratic forms ψi is explained by the arithmetic features of P . Let us choose
1 ≤ i ≤ d and let us consider the affine subspace Ai of the points x ∈ R

n such
that Ax = ei. Let Λi = Ai ∩ Z

n be the point lattice in Ai. We would like to
choose a set Yi ⊂ Λi in such a way that the maximum eigenvalue ρi of the form ψi,
which defines the moment of inertia of Yi, see [Ba97], becomes as small as possible,
ρi ≪ 1, so that the additive error term ∆ becomes negligibly small compared to

the Gaussian term (2π)−d/2
(
detBBT

)−1/2
. For that, we would like the set Yi to

consist of short vectors and to look reasonably round. Let us consider the ball
Br = {x ∈ R

n : ‖x‖ ≤ r} of radius r and choose Yi = Br ∩Λi. If the lattice points
Yi are sufficiently regular in Br ∩Ai then the moment of inertia of Yi is roughly the
moment of inertia of the section Br ∩Ai, from which it follows that the maximum
eigenvalue of ψi is about r2/ dimAi = r2/(n− d). Roughly, we get

ρ ≈ r2

(n− d)
,

where r is the smallest radius of the ball Br such that the lattice points Br ∩ Λi

are distributed regularly in every section Br ∩Ai for i = 1, . . . , d.
We prove Theorem 2.4 in Section 8.
In Section 5, we apply Theorem 2.4 to approximate the number of 1-margin

multi-way contingency tables, see for example, [Go63] and [DO04], that is, ν-
dimensional k1 × . . .× kν arrays of non-negative integers (ξj1...jν

) with 1 ≤ ji ≤ ki

for i = 1, . . . , ν with prescribed sums along coordinate hyperplanes ji = j. We
8



show that Theorem 2.4 implies that asymptotically the number of such arrays is
given by a Gaussian formula (2.3.1) as long as ν ≥ 5. We suspect that the Gaussian
approximation holds as long as ν ≥ 3, but the proof would require some additional
considerations beyond those of Theorem 2.4.

In [Ba09], a much cruder asymptotic formula ln |P ∩ Z
n| ≈ g(z) is shown to hold

for flow polytopes P (a class of polytopes extending transportation polytopes for
ν = 2).

A. Yong [Yo08] at our request computed a number of examples, and then J. A.
De Loera [DL09a] and [DL09b] conducted extensive numerical experiments. Here
is one of the examples, originating in [DE85] and then often used as a benchmark
for various computational approaches:

we want to estimate the number of 4× 4 non-negative integer matrices with the
row sums 220, 215, 93 and 64 and the column sums 108, 286, 71 and 127. The exact
number of such matrices is 1225914276768514 ≈ 1.23× 1015. Framing the problem
as the problem of counting integer points in a polytope in the most straightforward
way, we obtain an over-determined system Ax = b (note that the row and column
sums of a matrix are not independent). Throwing away one constraint and apply-
ing formula (2.3.1), we obtain 1.30× 1015, which overestimates the true number by
about 6%. The precision is not bad, given that we are applying the Gaussian ap-
proximation to the probability mass-function of the sum of 16 independent random
7-dimensional integer vectors, see also Section 3.2.

Here is another example from [DL09b]:

we want to estimate the number of 3 × 3 × 3 arrays of non-negative integers
with the prescribed sums [31, 22, 87], [50, 13, 77], [42, 87, 11] along the affine coor-
dinate hyperplanes, cf. Sections 4 and 5. The exact number of such arrays is
8846838772161591 ≈ 8.85 × 1015. Again, the constraints are not independent and
this time we throw away two constraints. The relative error of the approximation
given by formula (2.3.1) is about 0.185%. This time, we are applying the Gaussian
approximation to the probability mass function of the sum of 27 independent ran-
dom 7-dimensional integer vectors. It is therefore not surprising that the precision
improves; see Section 3.2.

Regarding the CPU time used, De Loera writes in [DL09b]: “Overall the eval-
uation step takes a negligible amount of time in all instances, so we do not record
any time of computation.”

(2.5) Gaussian approximation for the number of 0-1 points. For a polytope
P defined by a system Ax = b, 0 ≤ x ≤ 1 (shorthand for 0 ≤ ξj ≤ 1 for x =
(ξ1, . . . , ξn)), we find the point z = (ζ1, . . . , ζn) maximizing

h(x) =

n∑

j=1

(

ξj ln
1

ξj
+ (1 − ξj) ln

1

1 − ξj

)

, x = (ξ1, . . . , ξn) ,

on P . Assuming that A is an integer matrix of rank d < n with the columns
a1, . . . , an ∈ Z

d, we compute the d × n matrix B whose j-th column is
9



(
ζj − ζ2

j

)1/2
aj . We approximate the number of 0-1 vectors in P by the Gauss-

ian formula

(2.5.1) |P ∩ {0, 1}n| ≈ eh(z) det Λ

(2π)d/2(detBBT )1/2
,

where Λ = A (Zn). Again, we consider the simplest case of Λ = Z
d. We prove the

following main result.

(2.6) Theorem. Let us consider a quadratic form q : R
d −→ R defined by

q(t) =
1

2

n∑

j=1

(
ζj − ζ2

j

)
〈aj, t〉2.

For i = 1, . . . , d let us choose a non-empty finite set Yi ⊂ Z
n such that Ay = ei for

all y ∈ Yi and let us define a quadratic form ψi : R
n −→ R by

ψi(x) =
1

|Yi|
∑

y∈Yi

〈y, x〉2.

Suppose that for some λ > 0 we have

q(t) ≥ λ‖t‖2 for all t ∈ R
d,

that for some ρ > 0 we have

ψi(x) ≤ ρ‖x‖2 for all x ∈ R
n and i = 1, . . . , d,

that for some θ ≥ 1 we have

‖aj‖1 ≤ θ
√

ζj (1 − ζj) for j = 1, . . . , n

and that for some 0 < α ≤ 1/4 we have

ζj(1 − ζj) ≥ α for j = 1, . . . , n.

Then, for some absolute constant γ > 0 and for any 0 < ǫ ≤ 1/2, as long as

λ ≥ γǫ−2θ2

(

d+ ln
1

ǫ

)2

ln
(n

ǫ

)

,

we have

|P ∩ {0, 1}n| = eh(z)

(

κ

(2π)d/2 (detBBT )
1/2

+ ∆

)

,
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where

1 − ǫ ≤ κ ≤ 1 + ǫ

and

|∆| ≤ exp

{

− α

80θ2ρ

}

.

We note that in [Ba08] a much cruder asymptotic formula ln |P ∩ {0, 1}n| ≈ h(z)
is shown to hold for flow polytopes P .

We prove Theorem 2.6 in Section 7.
In Section 5, we apply Theorem 2.6 to approximate the number of binary 1-

margin multi-way contingency tables, see for example, [Go63] and [DO04], that is,
ν-dimensional k1 × . . . × kν arrays (ξj1...jν

) of 0’s and 1’s with 1 ≤ ji ≤ ki for
i = 1, . . . , ν with prescribed sums along coordinate hyperplanes ji = j. Alterna-
tively, the number of such arrays is the number of ν-partite uniform hypergraphs
with prescribed degrees of all vertices. We show that Theorem 2.6 implies that
asymptotically the number of such arrays is given by the Gaussian formula (2.5.1)
as long as ν ≥ 5. We suspect that the Gaussian approximation holds as long as
ν ≥ 3, but the proof would require some additional considerations beyond those of
Theorem 2.6.

3. Maximum entropy

We start with the problem of integer point counting.
Let us fix positive numbers p and q such that p+q = 1. We recall that a discrete

random variable x has geometric distribution if

Pr
{
x = k

}
= pqk for k = 0, 1, . . . .

For the expectation and variance of x we have

Ex =
q

p
and varx =

q

p2

respectively. Conversely, if Ex = ζ for some ζ > 0 then

p =
1

1 + ζ
, q =

ζ

1 + ζ
and varx = ζ + ζ2.

Our first main result is as follows.

(3.1) Theorem. Let P ⊂ R
n be the intersection of an affine subspace in R

n and

the non-negative orthant R
n
+. Suppose that P is bounded and has a non-empty

interior, that is contains a point y = (η1, . . . , ηn) where ηj > 0 for j = 1, . . . , n.
Then the strictly concave function

g(x) =

n∑

j=1

(

(ξj + 1) ln (ξj + 1) − ξj ln ξj

)

for x = (ξ1, . . . , ξn)

11



attains its maximum value on P at a unique point z = (ζ1, . . . , ζn) such that ζj > 0
for j = 1, . . . , n.

Suppose now that xj are independent geometric random variables with expecta-

tions ζj for j = 1, . . . , n. Let X = (x1, . . . , xn). Then the probability mass function

of X is constant on P ∩Z
n and equal to e−g(z) at every x ∈ P ∩Z

n. In particular,

|P ∩ Z
n| = eg(z)Pr

{
X ∈ P

}
.

Proof. It is straightforward to check that g is strictly concave on the non-negative
orthant R

n
+, so it attains its maximum on P at a unique point z = (ζ1, . . . , ζn).

Let us show that ζj > 0. Since P has a non-empty interior, there is a point
y = (η1, . . . , ηn) with ηj > 0 for j = 1, . . . , n. We note that

∂

∂ξj
g = ln

(
ξj + 1

ξj

)

,

which is finite for ξj > 0 and equals +∞ for ξj = 0 (we consider the right derivative
in this case). Therefore, if ζj = 0 for some j then g

(
(1 − ǫ)z + ǫy

)
> g(z) for all

sufficiently small ǫ > 0, which is a contradiction.
Suppose that the affine hull of P is defined by a system of linear equations

n∑

j=1

αijξj = βi for i = 1, . . . , d.

Since z is an interior maximum point, the gradient of g at z is orthogonal to the
affine hull of P , so we have

ln

(
1 + ζj
ζj

)

=
d∑

i=1

λiαij for j = 1, . . . , n

and some λ1, . . . , λd. Therefore, for any x ∈ P , x = (ξ1, . . . , ξn), we have

n∑

j=1

ξj ln

(
1 + ζj
ζj

)

=
n∑

j=1

d∑

i=1

λiξjαij =
d∑

i=1

λiβi,

or, equivalently,

(3.1.1)
n∏

j=1

(
1 + ζj
ζj

)ξj

= exp

{
d∑

i=1

λiβi

}

.

Substituting ξj = ζj for j = 1, . . . , n, we obtain

(3.1.2)

n∏

j=1

(
1 + ζj
ζj

)ζj

= exp

{
d∑

i=1

λiβi

}

.

12



From (3.1.1) and (3.1.2), we deduce





n∏

j=1

(
ζj

1 + ζj

)ξj









n∏

j=1

1

1 + ζj



 =exp

{

−
d∑

i=1

λiβi

}



n∏

j=1

1

1 + ζj





=

n∏

j=1

ζ
ζj

j

(1 + ζj)
1+ζj

= e−g(z).

The last identity states that the probability mass function of X is equal to e−g(z)

for every integer point x ∈ P . �

One can observe that the random variable X of Theorem 3.1 has the maximum
entropy distribution among all distributions on Z

n
+ subject to the constraint EX ∈

P .

(3.2) The Gaussian heuristic for the number of integer points. Below we
provide an informal justification for the Gaussian approximation formula (2.3.1).

Let P be a polytope and let X be a random vector as in Theorem 3.1. Suppose
that P is defined by a system Ax = b, x ≥ 0, where A = (αij) is a d× n matrix of
rank d < n. Let Y = AX , so Y = (y1, . . . , yd), where

yi =

n∑

j=1

αijxj for i = 1, . . . , d.

By Theorem 3.1,

|P ∩ Z
n| = eg(z)Pr

{
Y = b

}

and
EY = Az = b.

Moreover, the covariance matrix Q = (qij) of Y is computed as follows:

qij = cov (yi, yj) =
n∑

k=1

αikαjkvarxk =
n∑

k=1

αikαjk

(
ζk + ζ2

k

)
.

We would like to approximate the discrete random variable Y by the Gaussian
random variable Y ∗ with the same expectation b and covariance matrix Q. We
assume now that A is an integer matrix and let Λ =

{
Ax : x ∈ Z

n
}
. Hence

Λ ⊂ Z
d is a d-dimensional lattice. Let Π ⊂ R

d be a fundamental domain of Λ, so
volΠ = det Λ. For example, we can choose Π to be the set of points in R

d that are
closer to the origin than to any other point in Λ. Then we can write

|P ∩ Z
n| = eg(z)Pr

{
Y ∈ b+ Π

}
.

13



Assuming that the probability density of Y ∗ does not vary much on b+Π and that
the probability mass function of Y at Y = b is well approximated by the integral
of the density of Y ∗ over b+ Π, we obtain (2.3.1).

Next, we consider the problem of counting 0-1 vectors.
Let p and q be positive numbers such that p + q = 1. We recall that a discrete

random variable x has Bernoulli distribution if

Pr {x = 0} = p and Pr {x = 1} = q.

We have
Ex = q and varx = qp.

Conversely, if Ex = ζ for some 0 < ζ < 1 then

p = 1 − ζ, q = ζ and varx = ζ − ζ2.

Our second main result is as follows.

(3.3) Theorem. Let P ⊂ R
n be the intersection of an affine subspace in R

n

and the unit cube
{
0 ≤ ξj ≤ 1 : j = 1, . . . , n

}
. Suppose that P has a non-

empty interior, that is, contains a point y = (η1, . . . , ηn) where 0 < ηj < 1 for

j = 1, . . . , n. Then the strictly concave function

h(x) =

n∑

j=1

(

ξj ln
1

ξj
+ (1 − ξj) ln

1

1 − ξj

)

for x = (ξ1, . . . , ξn)

attains its maximum value on P at a unique point z = (ζ1, . . . , ζn) such that 0 <
ζj < 1 for j = 1, . . . , n.

Suppose now that xj are independent Bernoulli random variables with expecta-

tions ζj for j = 1, . . . , n. Let X = (x1, . . . , xn). Then the probability mass function

of X is constant on P ∩ {0, 1}n and equal to e−h(z) for every x ∈ P ∩ {0, 1}n. In

particular,

|P ∩ {0, 1}n| = eh(z)Pr
{
X ∈ P

}
.

�

One can observe that X has the maximum entropy distribution among all distri-
butions on {0, 1}n subject to the constraint EX ∈ P . The proof is very similar to
that of Theorem 3.1. Besides, Theorem 3.3 follows from a more general Theorem
3.5 below.

(3.4) Comparison with the Monte Carlo method. Suppose we want to sam-
ple a random 0-1 point from the uniform distribution on P ∩{0, 1}n. The standard
Monte Carlo rejection method consists in sampling a random 0-1 point x, accept-
ing x if x ∈ P and sampling a new point if x /∈ P . The probability of hitting P

14



is, therefore, 2−n |P ∩ Z
n|. It is easy to see that the largest possible value of h

in Theorem 3.3 is n ln 2 and is attained at ζ1 = . . . = ζn = 1/2. Therefore, the
rejection sampling using the maximum entropy Bernoulli distribution of Theorem
3.3 is at least as efficient as the standard Monte Carlo approach and is essentially
more efficient if the value of h(z) is small.

Applying a similar logic as in Section 3.2, we obtain the Gaussian heuristic
approximation of (2.5.1).

We notice that

h(ξ) = ξ ln
1

ξ
+ (1 − ξ) ln

1

1 − ξ

is the entropy of the Bernoulli distribution with expectation ξ while

g(ξ) = (ξ + 1) ln(ξ + 1) − ξ ln ξ

is the entropy of the geometric distribution with expectation ξ. One can suggest
the following general maximum entropy approach, cf. also a similar computation
in [Ja57].

(3.5) Theorem. Let S ⊂ R
n be a finite set and let conv(S) be the convex hull

of S. Let us assume that conv(S) has a non-empty interior. For x ∈ conv(S), let

us define φ(x) to be the maximum entropy of a probability distribution on S with

expectation x, that is,

φ(x) = max
∑

s∈S

ps ln
1

ps

Subject to:
∑

s∈S

ps = 1

∑

s∈S

sps = x

ps ≥ 0 for all s ∈ S.

Then φ(x) is a strictly concave continuous function on conv(S).
Let A ⊂ R

n be an affine subspace intersecting the interior of conv(S). Then φ
attains its maximum value on A ∩ conv(S) at a unique point z in the interior of

conv(S). There is a unique probability distribution µ on S with entropy φ(z) and

expectation in A. Furthermore, the probability mass function of µ is constant on

the points of S ∩ A and equal to e−φ(z) :

µ{s} = e−φ(z) for all s ∈ S ∩ A.

In particular,

|S ∩A| = eφ(z)µ{S ∩A}.
15



Proof. Let

H
(

ps : s ∈ S
)

=
∑

s∈S

ps ln
1

ps

be the entropy of the probability distribution {ps} on S.
Continuity and strict concavity of φ follows from continuity and strict concavity

of H. Similarly, uniqueness of µ follows from the strict concavity of H.
Since

∂

∂ps
H = ln

1

ps
− 1,

which is finite for ps > 0 and is equal to +∞ for ps = 0 (we consider the right
derivative), we conclude that for the optimal distribution µ we have ps > 0 for all
s.

Suppose that A is defined by linear equations

〈ai, x〉 = βi for i = 1, . . . , d,

where ai ∈ R
n are vectors, βi ∈ R are numbers and 〈·, ·〉 is the standard scalar

product in R
n. Thus the measure µ is the solution to the following optimization

problem:

∑

s∈S

ps ln
1

ps
−→ max

Subject to:
∑

s∈S

ps = 1

∑

s∈S

〈ai, s〉ps = βi for i = 1, . . . , d

ps ≥ 0 for all s ∈ S.

Writing the optimality conditions, we conclude that for some λ0, λ1, . . . , λd we have

ln ps = λ0 +
d∑

i=1

λi〈ai, s〉.

Therefore,

ps = exp

{

λ0 +

d∑

i=1

λi〈ai, s〉
}

.

In particular, for s ∈ A we have

ps = exp

{

λ0 +
d∑

i=1

λiβi

}

.
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On the other hand,

φ(z) =H
(

ps : s ∈ S
)

= −
∑

s∈S

ps

(

λ0 +
d∑

i=1

λi〈ai, s〉
)

= − λ0 −
d∑

i=1

λiβi,

which completes the proof. �

Finally, we discuss a continuous version of the maximum entropy approach.
We recall that x is an exponential random variable with expectation ζ > 0 if the

density function ψ of x is defined by

ψ(τ) =

{
(1/ζ)e−τ/ζ for τ ≥ 0

0 for τ < 0.

We have
Ex = ζ and varx = ζ2.

The characteristic function of x is defined by

E eiτx =
1

1 − iζτ
for τ ∈ R.

(3.6) Theorem. Let P ⊂ R
n be the intersection of an affine subspace in R

n and a

non-negative orthant R
n
+. Suppose that P is bounded and has a non-empty interior.

Then the strictly concave function

f(x) = n+

n∑

j=1

ln ξj for x = (ξ1, . . . , ξn)

attains its unique maximum on P at a point z = (ζ1, . . . , ζn), where ζj > 0 for

j = 1, . . . , n.
Suppose now that xj are independent exponential random variables with expecta-

tions ζj for j = 1, . . . , n. Let X = (x1, . . . , xn). Then the density of X is constant

on P and for every x ∈ P is equal to e−f(z).

Proof. As in the proof of Theorem 3.1, we establish that ζj > 0 for j = 1, . . . , n.
Consequently, the gradient of f at z must be orthogonal to the affine span of P .
Assume that P is defined by a system of linear equations

n∑

j=1

αijξj = βi for i = 1, . . . , d.

17



Then

1

ζj
=

d∑

i=1

λiαij for j = 1, . . . , n.

Therefore, for any x ∈ P , x = (ξ1, . . . , ξn), we have

n∑

j=1

ξj
ζj

=
d∑

i=1





n∑

j=1

αijξj



 =
d∑

i=1

λiβi.

In particular, substituting ξj = ζj , we obtain

n∑

j=1

ξj
ζj

= n.

Therefore, the density of X at x ∈ P is equal to




n∏

j=1

1

ζj



 exp






−

n∑

j=1

ξj
ζj






= e−f(z).

�

Again, X has the maximum entropy distribution among all distributions on R
n
+

subject to the constraint EX ∈ P .

(3.7) The Gaussian heuristic for volumes. Below we provide an informal
justification of the Gaussian approximation formula (2.1.1)

Let P be a polytope and let x1, . . . , xn be the random variables as in Theorem
3.6. Suppose that P is defined by a system Ax = b, x ≥ 0, where A = (αij) is a
d× n matrix of rank d < n. Let Y = AX , so Y = (y1, . . . , yd), where

yi =
n∑

j=1

αijxj for i = 1, . . . , d.

In view of Theorem 3.6, the density of Y at b is equal to

(volP )e−f(z)
(
detAAT

)−1/2

(we measure volP as the (n−d)-dimensional volume with respect to the Euclidean
structure induced from R

n).
We have EY = b. The covariance matrix Q = (qij) of Y is computed as follows:

qij = cov (yi, yj) =

n∑

k=1

αikαjkvarxk =

n∑

k=1

αikαjkζ
2
k .

Assuming that the distribution of Y at Y = b is well approximated by the Gaussian
distribution, we obtain formula (2.1.1).
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(3.8) Extensions to exponential sums and exponential integrals. Let ℓ :
R

n −→ R,
ℓ(x) = γ1ξ1 + . . .+ γnξn, where x = (ξ1, . . . , ξn) ,

be a linear function. For a (not necessarily bounded) polyhedron P ⊂ R
n, defined as

the intersection of an affine subspace and the non-negative orthant R
n
+, we consider

the sums

(3.8.1)

∑

x∈P∩Zn

exp {ℓ(x)} ,
∑

x∈∈P∩{0,1}n

exp {ℓ(x)}

and the integral

∫

P

exp {ℓ(x)} dx.

It is not hard to show that the infinite sum and the integral converge as long as ℓ
is bounded from above on P and attains its maximum on P at a bounded face of
P . Let us modify the functions

g 7−→ gℓ := g + ℓ, h := hℓ + ℓ, and f 7−→ fℓ := f + ℓ

of Theorems 3.1, 3.3 and 3.6 respectively. Since the functions gℓ, hℓ and fℓ are
strictly concave, the optimum in Theorems 3.1, 3.3 or 3.6 is attained at a unique
point z ∈ P and we define random vectors X with EX = z in the same way.
Then the sums and the integral of (3.8.1) are equal to Pr {X ∈ P} multiplied by
exp {gℓ(z)}, exp {hℓ(z)} and exp {fℓ(z)} respectively.

4. Volumes of multi-index transportation polytopes

We apply Theorem 2.2 to compute volumes of multi-index transportation poly-
topes.

Let us fix an integer ν ≥ 2 and let us choose integers k1, . . . , kν > 1. We consider
the polytope of P of k1 × . . . × kν arrays of non-negative numbers ξj1...jν

, where
1 ≤ ji ≤ ki for i = 1, . . . , ν, with prescribed sums along the affine coordinate
hyperplanes. Thus P lies in the non-negative orthant R

k1···kν

+ and is defined by
k1 + . . .+ kν linear equations. The equations are not independent since if the add
the sums over each family of parallel affine coordinate hyperplanes, we obtain the
total sum N of the entries of the array.

We define P by the following non-redundant system of equations and inequalities.
Given positive numbers βij (sums along the affine coordinate hyperplanes), where
1 ≤ j ≤ ki for i = 1, . . . , ν and such that

∑

j

βij = N

for some N and all i = 1, . . . , ν, we define P by the inequalities

ξj1...jν
≥ 0 for all j1, . . . , jν
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and equations

(4.1)

∑

j1,... ,ji−1,ji+1,... ,jν

ξj1...ji−1,j,ji+1...jν
= βij

for i = 1, . . . , ν and 1 ≤ j ≤ ki − 1 and
∑

j1,... ,jν

ξj1...jν
= N.

Let us choose a pair of indices 1 ≤ i ≤ ν and 1 ≤ j ≤ ki − 1. We call the first sum
in (4.1) the j-th sectional sum in direction i. Hence for each direction i = 1, . . . , ν
we prescribe all but the last one sectional sum and also prescribe the total sum of
the entries of the array.

We observe that every column a of the matrix A of the system (4.1) contains at
most ν + 1 non-zero entries (necessarily equal to 1), so ‖a‖ ≤

√
ν + 1.

Let z = (ζj1...jν
) be the point maximizing

f(z) = k1 · · ·kν +
∑

j1,... ,jν

ln ξj1...jν

on P . We describe the quadratic form q : R
d −→ R which Theorem 2.2 associates

with system (4.1). We have d = k1 + . . .+kν −ν+1 and it is convenient to think of
R

d as of a particular coordinate subspace of a bigger space V = R
k1 ⊕ . . .⊕R

kν ⊕R.
Namely, we think of V as of the set of vectors (t, ω), where

t = (τij) for 1 ≤ j ≤ ki and i = 1, . . . , ν,

and τij and ω are real numbers. We identify R
d with the coordinate subspace

defined by the equations

τ1k1
= τ2k2

= . . . = τνkν
= 0.

Next, we define a quadratic form p : V −→ R by

p(t, ω) =
1

2

∑

j1,... ,jν

ζ2
j1...jν

(τ1j1 + . . .+ τνjν
+ ω)

2
.

Then the quadratic form q of Theorem 2.2 is the restriction of p onto R
d.

To bound the eigenvalues of q from below, we consider a simpler quadratic form
q̂ which is the restriction of

p̂(t, ω) =
∑

j1,... ,jν

(τ1j1 + . . .+ τνjν
+ ω)

2

onto R
d.
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For i = 1, . . . , ν, let us consider the (ki − 2)-dimensional subspace Hi ⊂ R
d

defined by the equations

ki−1∑

j=1

τij = 0, τi′j = 0 for i′ 6= i and all j, and ω = 0.

Then Hi is an eigenspace of q̂ with the eigenvalue

λi = k1 · · ·ki−1ki+1 · · ·kν ,

since the gradient of q̂ at x ∈ Hi is equal to 2λix. Let L ⊂ R
d be the orthogonal

complement to H1 ⊕ . . . ⊕ Hν in R
d. Then dimL = ν + 1 and L consists of the

vectors 


α1, . . . , α1
︸ ︷︷ ︸

k1−1 times

, 0;α2, . . . , α2
︸ ︷︷ ︸

k2−1 times

, 0; . . . , αν, . . . , αν
︸ ︷︷ ︸

kν−1 times

, 0;ω






for some real α1, . . . , αν ;ω. Denoting

µ0 = (k1 − 1) · · · (kν − 1) and

µi = (k1 − 1) · · · (ki−1 − 1) (ki+1 − 1) · · · (kν − 1) ,

We observe that the restriction of q̂ onto L satisfies

q̂




α1, . . . , α1
︸ ︷︷ ︸

k1−1 times

, 0;α2, . . . , α2
︸ ︷︷ ︸

k2−1 times

, 0; . . . , αν , . . . , αν
︸ ︷︷ ︸

kν−1 times

, 0;ω






≥ µ0 (α1 + . . .+ αν + ω)
2
+

ν∑

i=1

µi (α1 + . . .+ αi−1 + αi+1 + . . .+ αν + ω)
2
.

Since

(α1 + . . .+ αν + ω)
2
+

ν∑

i=1

(α1 + . . .+ αi−1 + αi+1 + . . .+ αν + ω)
2

≥ δ

(

ω2 +

ν∑

i=1

α2
i

)

for some δ = δ(ν) > 0 and all α1, . . . , αν and ω, we conclude that the eigenvalues
of q̂ exceed

δ(ν) min
i=1,... ,ν

(ki − 1)
−2

ν∏

j=1

(kj − 1) ,
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where δ(ν) > 0 is a constant depending on ν alone.
Suppose now that ν is fixed and let us consider a sequence of polytopes Pn

where k1, . . . , kν grow roughly proportionately with n and where the coordinates
ζj1...jν

remain in the interval between two positive constants. Then the minimum
eigenvalue of the quadratic form q in Theorem 2.2 grows as Ω

(
nν−2

)
. In particular,

if ν ≥ 5 then Theorem 2.2 implies that the Gaussian formula (2.1.1) approximates
the volume of Pn with a relative error which approaches 0 as n grows.

As an example, let us consider the (dilated) polytope Pk of polystochastic ten-

sors, that is k × . . .× k arrays of non-negative numbers with all sums along affine
coordinate hyperplanes equal to kν−1, cf. [Gr92]. By symmetry, we must have

ζj1...jν
= 1.

Theorem 2.2 implies that for ν ≥ 5

volPk =
(
1 + o(1)

) ekν

(2π)(νk−ν+1)/2
as k −→ +∞.

Interestingly, for ν = 2, where our analysis is not applicable, the formula is smaller
by a factor of e1/3 than the true asymptotic value computed in [CM07b]. For ν = 2
there is an Edgeworth correction factor to the Gaussian density, cf. [BH09a] and
[BH09b].

5. The number of multi-way contingency tables

We apply Theorems 2.4 and 2.6 to compute the number of multi-way contingency
tables. The smallest eigenvalue of the quadratic form q is bounded as in Section 4
and hence our main goal is to bound the additive error ∆.

Let us consider the ν-index transportation polytope P of Section 4. We assume
that the affine span of P is defined by system (4.1), where numbers βij are all
integer. The integer points in P are called sometimes multi-way contingency tables
while 0-1 points are called binary multi-way contingency tables, see [Go63] and
[DO04].

To bound the additive error term ∆ in Theorems 2.4 and 2.6, we construct a set
Yij of k1 × . . . × kν arrays y of integers such that the total sum of entries of y is
0, the j-th sectional sum in the i-th direction is 1 and all other sectional sums are
0, where by “all other” we mean all but the ki-th sectional sums in every direction
i = 1, . . . , ν. For that, let us choose ν − 1 integers m1, . . . , mi−1, mi+1, . . . , mν ,
where

1 ≤ m1 ≤ k1, . . . , 1 ≤ mi−1 ≤ ki−1, 1 ≤ mi+1 ≤ ki+1, . . . , 1 ≤ mν ≤ kν

and define y = (ηj1...jν
) by letting

ηm1...mi−1,j,mi+1...mν
= 1, ηm1...mi−1,ki,mi+1...mν

= −1
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and letting all other coordinates of y equal to 0.
Thus the set Yij contains k1 · · ·ki−1ki+1 · · ·kν elements y, and the corresponding

quadratic form ψij can be written as

ψij(x) =
1

|Yij |
∑

m1,... ,mi−1,mi+1,... ,mν

(
ξm1···mi−1,j,mi+1···mν

− ξm1···mi−1,ki,mi+1···mν

)2

for x = (ξj1...jν
) ,

from which the maximum eigenvalue ρij of ψij is 2/k1 · · ·ki−1ki+1 · · ·kν .
Next, we construct a set Y0 of arrays y of k1 · · ·kν integers (ηj1...jν

) such that
the total sum of entries of y is 1 while all sectional sums, with a possible exception
of the ki-th sectional sum in every direction i, are equal 0. For that, let us choose
ν integers m1, . . . , mν , where

1 ≤ m1 ≤ k1 − 1, . . . , 1 ≤ mν ≤ kν − 1

and define y = (ηj1,... ,jν
) by letting

ym1...mν
= 1 − ν

yk1,m2...mν
= 1

ym1,k2,m3...mν
= 1

. . . . . . . . . . . .

ym1...mν−1,kν
= 1

and by letting all other coordinates equal to 0.
The set Y0 contains (k1 − 1) · · · (kν − 1) elements and the corresponding qua-

dratic form ψ0 of Theorems 2.4 and 2.6 can be written as

ψ0(x) =
1

|Y0|
∑

y∈Y0

〈y, x〉2

=
1

|Y0|
∑

1≤m1≤k1−1
............

1≤mν≤kν−1

(
(1 − ν)ξm1...mν

+ ξk1,m2...mν
+ . . .+ ξm1...mν−1,kν

)2

≤(ν + 1)

|Y0|
∑

1≤m1≤k1−1
............

1≤mν≤kν−1

(

(1 − ν)2ξ2m1...mν
+ ξ2k1,m2...mν

+ . . .+ ξ2m1...mν−1,kν

)

.

Therefore, the maximum eigenvalue ρ0 of ψ0 does not exceed

(ν + 1)(ν − 1)2 max
i=1,... ,ν

{
1

(k1 − 1) · · · (ki−1 − 1) (ki+1 − 1) · · · (kν − 1)

}

,
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and the same bound can be used for the value of ρ in Theorems 2.4 and 2.6.
Suppose now that ν is fixed and let us consider a sequence of polytopes Pn where

k1, . . . , kν grow roughly proportionately with n. Then in Theorems 2.4 and 2.6 we
have

ρ = O

(
1

nν−1

)

.

Let us apply Theorem 2.6 for counting multi-way binary contingency tables. We
assume, additionally, that for the point z = (ζj1...jν

) maximizing

f(x) =
∑

j1,... ,jν

ξj1...jν
ln

1

ξj1...jν

+ (1 − ξj1...jν
) ln

1

1 − ξj1...jν

on the transportation polytope Pn we have

1 − δ ≥ ζj1,... ,jν
≥ δ

for some constant 1/2 > δ > 0 and all j1, . . . , jν . Then we can bound the additive
term by

|∆| ≤ exp
{
−γδnν−1

}

for some constant γ > 0. On the other hand, by Hadamard’s inequality,

detBBT = nO(n).

Therefore, for ν ≥ 3, the additive term ∆ is negligible compared to the Gaussian
term. From Section 4, we conclude that for ν ≥ 5 the relative error for the number of
multi-way binary contingency tables in Pn for the Gaussian approximation formula
(2.5.1) approaches 0 as n grows.

Similarly, we apply Theorem 2.4 for counting multi-way contingency tables. Here
we assume, additionally, that for the point z = (ζj1...jν

) maximizing

f(x) =
∑

j1,... ,jν

(ξj1...jν
+ 1) ln (ξj1...jν

+ 1) − ξj1...jν
ln ξj1...jν

on the transportation polytope Pn the numbers ζj1...jν
lie between two positive

constants. As in the case of binary tables, we conclude that for ν ≥ 3, the additive
error term ∆ is negligible compared to the Gaussian approximation term as n −→
+∞. Therefore, for ν ≥ 5 the relative error for the number of multi-way contingency
tables in Pn for the Gaussian approximation formula (2.3.1) approaches 0 as n
grows.

Computations show that in the case of k1 = . . . = kν = k for the matrix A of
constraints in Theorems 2.4 and 2.6 we have

detAAT = k(ν2−ν)(k−1).
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Hence we obtain, for example, that the number of non-negative integer ν-way k ×
. . .× k contingency tables with all sectional sums equal to r = αkν−1 is

(

1 + o(1)
) (

(α+ 1)α+1α−α
)kν (

2πα2 + 2πα
)−(kν−ν+1)/2

k(ν−ν2)(k−1)/2

provided ν ≥ 5, k −→ +∞ and α stays between two positive constants.

For ν = 2, the integer points in polytope P are the two-way contingency tables.
There are several articles in the statistical literature estimating the number of such
tables. For example, Good [Go76] uses an approximation based on the negative
binomial distribution, when all the row sums are equal and all the column sums are
equal, Diaconis and Efron [DE85] examine the distribution of the χ2 statistic for
uniformly distributed tables with given margins, Chen, Diaconis, Holmes and Liu
[C+05] consider importance sampling methods for sampling from the tables that
lead to good estimates of the number of tables when the sample size is large enough.
Zipunnikov, Booth and Yoshida [Z+09] use independent geometric variables with
the same parameters that we use, although they do not give the maximum entropy
justification for the use. In addition, their estimate of the total number of tables
differs from ours by being based on a conditional Gaussian estimate of the number
of tables with the specified column sums, given the specified row sums, multiplied
by an estimate similar to that of [Go76] of the number of tables with the specified
row sums. In the case of ν = 2, both the estimate of [Z+09] and the maximum
entropy Gaussian estimate differ asymptotically from the number of tables by a
constant order factor, which we show in [BH09a] and [BH09b] may be corrected
by an Edgeworth term involving third and fourth moments; see also Canfield and
McKay [CM07a] for the correction in the case where all the row sums are equal and
all the column sums are equal.

Similarly, the number of binary ν-way k× . . .×k binary contingency tables with
all sectional sums equal to r = αkν−1 is

(

1 + o(1)
)(
αα(1 − α)1−α

)−kν (
2πα− 2πα2

)−(kν−ν+1)/2
k(ν−ν2)(k−1)/2

as long as ν ≥ 5, k −→ +∞ and α remains separated from 0 and 1. Again, for ν = 2
the formula is off by a constant factor from the asymptotic obtained in [C+08].

6. Proof of Theorem 2.2

We treat Theorem 2.2 as a Local Central Limit Theorem type result and prove
it using the method of characteristic functions, see, for example, Chapter VII of
[Pe75]. In contrast to the setting of [Pe75], we have to deal with sums of indepen-
dent random vectors where both the number of vectors and their dimension may
vary.

We start with some standard technical results.
25



(6.1) Lemma. Let x1, . . . , xn be independent exponential random variables such

that Exj = ζj for j = 1, . . . , n, let a1, . . . , an ∈ R
d be vectors which span R

d and

let Y = x1a1 + . . .+ xnan. Then the density of Y at b ∈ R
d
+ is equal to

1

(2π)d

∫

Rd

e−i〈b,t〉





n∏

j=1

1

1 − iζj〈aj, t〉



 dt.

Proof. The characteristic function of Y is

E ei〈Y,t〉 =
n∏

j=1

1

1 − iζj〈aj, t〉
.

The proof now follows by the inverse Fourier transform formula. �

We need some standard estimates.

(6.2) Lemma. Let q : R
d −→ R be a positive definite quadratic form and let ω > 0

be a number.

(1) Suppose that ω ≥ 3. Then

∫

t: q(t)≥ωd

e−q(t) dt ≤ e−ωd/2

∫

Rd

e−q(t) dt.

(2) Suppose that for some λ > 0 we have

q(t) ≥ λ‖t‖2 for all t ∈ R
d.

Let a ∈ R
d be a vector. Then
∫

t: |〈a,t〉|>ω‖a‖

e−q(t) dt ≤ e−λω2

∫

Rd

e−q(t) dt.

Proof. We use the Laplace transform method. For every 1 > α > 0 we have
∫

t: q(t)≥ωd

e−q(t) dt ≤
∫

t: q(t)≥ωd

exp
{
α
(
q(t) − ωd

)
− q(t)

}
dt

≤ e−αωd

∫

Rd

exp
{
−(1 − α)q(t)

}
dt

=
e−αωd

(1 − α)d/2

∫

Rd

e−q(t) dt.

Optimizing on α, we choose α = 1 − 1/2ω to conclude that

∫

t: q(t)≥ωd

e−q(t) dt ≤ exp

{

−ωd+
d

2
+
d

2
ln(2ω)

}∫

Rd

e−q(t) dt.
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Since

ln(2ω) ≤ ω − 1 for ω ≥ 3,

Part (1) follows.
Without loss of generality we assume that a 6= 0 in Part (2). Let us consider the

Gaussian probability distribution on R
d with the density proportional to e−q . Then

z = 〈a, t〉 is a Gaussian random variable such that E z = 0 and var z ≤ ‖a‖2/2λ.
Part (2) now follows from the inequality

Pr
{
|y| ≥ τ

}
≤ e−τ2/2

for the standard Gaussian random variable y. �

(6.3) Lemma. For ρ ≥ 0 and k > d we have

∫

t∈Rd: ‖t‖≥ρ

(
1 + ‖t‖2

)−k/2
dt ≤ 2πd/2

Γ(d/2)(k − d)

(
1 + ρ2

)(d−k)/2
.

Proof. Let S
d−1 ⊂ R

d be the unit sphere in R
d. We recall the formula for the

surface area of S
d−1:

∣
∣S

d−1
∣
∣ =

2πd/2

Γ(d/2)
.

We have

∫

t∈Rd: ‖t‖≥ρ

(
1 + ‖t‖2

)−k/2
dt =

∣
∣S

d−1
∣
∣

∫ +∞

ρ

(
1 + τ2

)−k/2
τd−1 dτ

≤
∣
∣S

d−1
∣
∣

∫ +∞

ρ

(
1 + τ2

)(d−k−2)/2
τ dτ,

where we used that

τd−1 = ττd−2 ≤ τ
(
1 + τ2

)(d−2)/2
.

The proof now follows. �

Now we are ready to prove Theorem 2.2.

(6.4) Proof of Theorem 2.2. Scaling vectors aj if necessary, without loss of
generality we may assume that θ = 1.

From Section 3.7 and Lemma 6.1, we have

volP = ef(z)
(
detAAT

)1/2 1

(2π)d

∫

Rd

e−i〈b,t〉





n∏

j=1

1

1 − iζj〈aj , t〉



 dt.
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Hence our goal is to estimate the integral and, in particular, to compare it with

∫

Rd

e−q(t) dt = (2π)d/2
(
detBBT

)−1/2
.

Let us denote

F (t) = e−i〈b,t〉





n∏

j=1

1

1 − iζj〈aj, t〉



 for t ∈ R
d.

Let

σ = 4d+ 10 ln
1

ǫ
.

We estimate the integral separately over the three regions:

the outer region ‖t‖ ≥ 1/2

the inner region q(t) ≤ σ

the middle region ‖t‖ < 1/2 and q(t) > σ.

We note that for a sufficiently large constant γ we have q(t) > σ in the outer
region, we have ‖t‖ < 1/2 in the inner region and the three regions form a partition
of R

d.

We start with the outer region ‖t‖ ≥ 1/2. Our goal is to show that the integral is
negligible there.

We have

|F (t)| =





n∏

j=1

1

1 + ζ2
j 〈aj, t〉2





1/2

.

Let us denote

ξj = ζ2
j 〈aj, t〉2 for j = 1, . . . , n.

The minimum value of the log-concave function

n∏

j=1

(1 + ξj)

on the polytope
n∑

j=1

ξj ≥ 2λ‖t‖2 and 0 ≤ ξj ≤ ‖t‖2
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is attained at an extreme point of the polytope, that is, at a point where all but
possibly one coordinate ξj is either 0 or ‖t‖2. Therefore,





n∏

j=1

1

1 + ζ2
j 〈aj, t〉2





1/2

≤
(
1 + ‖t‖2

)−λ+1/2
.

Applying Lemma 6.3, we conclude that

∫

t∈Rd: ‖t‖≥1/2

|F (t)| dt ≤ 2πd/2

Γ(d/2)(2λ− d− 1)

(
5

4

)(d−2λ+1)/2

.

By the Binet-Cauchy formula and the Hadamard bound,

detBBT ≤
(
n

d

)

≤ nd.

It follows then that for a sufficiently large absolute constant γ and the value of the
integral over the outer region does not exceed (ǫ/10)(2π)d/2 det(BBT )−1/2.

Next, we estimate the integral over the middle region with ‖t‖ < 1/2 and q(t) >
σ. Again, our goal is to show that the integral is negligible.

From the estimate
∣
∣
∣
∣
ln(1 + ξ) − ξ +

ξ2

2
− ξ3

3

∣
∣
∣
∣
≤ |ξ|4

2
for all complex |ξ| ≤ 1

2
,

we can write

ln (1 − iζj〈aj, t〉) = −iζj〈aj, t〉 +
1

2
ζ2
j 〈aj , t〉2 +

i

3
ζ3
j 〈aj, t〉3 + gj(t)ζ

4
j 〈aj, t〉4,

where

|gj(t)| ≤ 1

2
for j = 1, . . . , n.

Since
n∑

j=1

ζjaj = b,

we have

(6.4.1)

F (t) = exp {−q(t) − if(t) + g(t)}

where f(t) =
1

3

n∑

j=1

ζ3
j 〈aj, t〉3 and

|g(t)| ≤ 1

2

n∑

j=1

ζ4
j 〈aj, t〉4.
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In particular,
|F (t)| ≤ e−3q(t)/4 provided ‖t‖ ≤ 1/2.

Therefore, by Part (1) of Lemma 6.2 we have
∣
∣
∣
∣
∣
∣
∣
∣
∣

∫

‖t‖≤1/2
q(t)>σ

F (t) dt

∣
∣
∣
∣
∣
∣
∣
∣
∣

≤
∫

t: q(t)>σ

e−3q(t)/4 dt

≤e−3d/2ǫ3
∫

Rd

e−3q(t)/4 dt

≤ǫ3
∫

Rd

e−q(t) dt.

Finally, we estimate the integral over the inner region where q(t) < σ and,
necessarily, ‖t‖ < 1/2. Here our goal is to show that the integral is very close to
∫

Rd

e−q(t) dt.

From (6.4.1), we obtain

(6.4.2)

∣
∣
∣
∣
∣

∫

t: q(t)<σ

F (t) dt−
∫

t: q(t)<σ

e−q(t) dt

∣
∣
∣
∣
∣

≤
∫

t: q(t)<σ

e−q(t)
∣
∣
∣e−if(t)+g(t) − 1

∣
∣
∣ dt.

If q(t) < σ then ‖t‖2 ≤ σ/λ and hence

|g(t)| ≤ 1

2

n∑

j=1

ζ4
j 〈aj , t〉4 ≤ σ

2λ

n∑

j=1

ζ2
j 〈aj , t〉2 =

σ2

λ
.

Thus for all sufficiently large γ, we have |g(t)| ≤ ǫ/10.
Let

X =
{

t : q(t) < σ and ζj|〈aj, t〉| ≤ ǫ

10σ
for j = 1, . . . , n

}

.

By Part (2) of Lemma 6.2, for all sufficiently large γ, we have
∫

Rd\X

e−q(t) dt ≤ ǫ

10

∫

Rd

e−q(t) dt

whereas for t ∈ X we have

|f(t)| ≤ 1

3

n∑

j=1

ζ3
j |〈aj, t〉|3 ≤ ǫ

30σ

n∑

j=1

ζ2
j 〈aj, t〉2 ≤ ǫ

15
.
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Estimating

∣
∣
∣e−if(t)+g(t) − 1

∣
∣
∣ ≤ ǫ

3
for t ∈ X and

∣
∣
∣e−if(t)+g(t) − 1

∣
∣
∣ ≤ 3 for t /∈ X

we deduce from (6.4.2) that

∣
∣
∣
∣
∣

∫

t: q(t)<σ

F (t) dt−
∫

t: q(t)<σ

e−q(t) dt

∣
∣
∣
∣
∣
≤ 3

∫

Rd\X

e−q(t) dt+
ǫ

3

∫

X

e−q(t) dt

≤2ǫ

3

∫

Rd

e−q(t) dt.

Since by Part (1) of Lemma 6.2, we have

∫

t: q(t)>σ

e−q(t) dt ≤ e−2dǫ5
∫

Rd

e−q(t) dt,

the proof follows. �

7. Proof of Theorem 2.6

First, we represent the number of 0-1 points as an integral.

(7.1) Lemma. Let pj , qj be positive numbers such that pj +qj = 1 for j = 1, . . . , n
and let µ be the Bernoulli measure on the set {0, 1}n of 0-1 vectors:

µ{x} =

n∏

j=1

p
1−ξj

j q
ξj

j for x = (ξ1, . . . , ξn) .

Let P ⊂ R
n be a polyhedron defined by a vector equation

ξ1a1 + . . .+ ξnan = b

for some integer vectors a1, . . . , an; b ∈ Z
d and inequalities

0 ≤ ξ1, . . . , ξn ≤ 1.

Let Π ⊂ R
d be the parallelepiped consisting of the points t = (τ1, . . . , τd) such that

−π ≤ τk ≤ π for k = 1, . . . , d.

Then, for

µ(P ) =
∑

x∈P∩{0,1}n

µ{x}
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we have

µ(P ) =
1

(2π)d

∫

Π

e−i〈t,b〉
n∏

j=1

(

pj + qje
i〈aj ,t〉

)

dt.

Here 〈·, ·〉 is the standard scalar product in R
d and dt is the Lebesgue measure on

R
d.

Proof. The result follows from the expansion

n∏

j=1

(

pj + qje
i〈aj ,t〉

)

=
∑

x∈{0,1}n

x=(ξ1,... ,ξn)

exp {i〈ξ1a1 + . . .+ ξnan, t〉}
n∏

j=1

p
1−ξj

j q
ξj

j

and the identity

1

(2π)d

∫

Π

ei〈u,t〉 dt =

{
1 if u = 0

0 if u ∈ Z
d \ {0}.

�

The integrand
n∏

j=1

(

pj + qje
i〈aj ,t〉

)

is the characteristic function of Y = AX where X is the multivariate Bernoulli
random variable and A is the matrix with the columns a1, . . . , an.

The following result is crucial for bounding the additive error ∆.

(7.2) Lemma. Let A be a d×n integer matrix with the columns a1, . . . , an ∈ Z
d.

For k = 1, . . . , d, let Yk ⊂ Z
n be a non-empty finite set such that Ay = ek for all

y ∈ Yk, where ek is the k-th standard basis vector. Let ψk : R
n −→ R be a quadratic

form,

ψk(x) =
1

|Yk|
∑

y∈Yk

〈y, x〉2 for x ∈ R
n,

and let ρk be the maximum eigenvalue of of ψk.

Suppose further that 0 < ζ1, . . . , ζn < 1 are numbers such that

ζj(1 − ζj) ≥ α for some 0 < α ≤ 1/4 and j = 1, . . . , n.

Then for t = (τ1, . . . , τd) where −π ≤ τk ≤ π for k = 1, . . . , d we have

∣
∣
∣
∣
∣
∣

n∏

j=1

(

1 − ζj + ζje
i〈aj ,t〉

)

∣
∣
∣
∣
∣
∣

≤ exp

{

−ατ
2
k

5ρk

}

.
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Proof. Let us denote

F (t) =
n∏

j=1

(

1 − ζj + ζje
i〈aj ,t〉

)

.

Then

|F (t)|2 =

n∏

j=1

(
(1 − ζj)

2 + 2ζj(1 − ζj) cos〈aj , t〉 + ζ2
j

)
.

For real numbers ξ, η, we write

ξ ≡ η mod 2π

if ξ − η is an integer multiple of 2π. Let

−π ≤ γj ≤ π for j = 1, . . . , n

be numbers such that

〈aj , t〉 ≡ γj mod 2π for j = 1, . . . , n.

Hence we can write

|F (t)|2 =

n∏

j=1

(
(1 − ζj)

2 + 2ζj(1 − ζj) cos γj + ζ2
j

)
.

Since

cos γ ≤ 1 − γ2

5
for − π ≤ γ ≤ π,

we have

(7.2.1) |F (t)|2 ≤
n∏

j=1

(

1 − 2ζj(1 − ζj)

5
γ2

j

)

≤ exp






−2α

5

n∑

j=1

γ2
j






.

Let
c = (γ1, . . . , γn) , c ∈ R

n.

Then for all y ∈ Yk we have

τk = 〈ek, t〉 = 〈Ay, t〉 = 〈y, A∗t〉 ≡ 〈y, c〉 mod 2π,

where A∗ is the transpose matrix of A. Since |τk| ≤ π, we have

|〈y, c〉| ≥ |τk| for all y ∈ Yk.

Therefore,

‖c‖2 ≥ 1

ρk
ψk(c) =

1

ρk|Yk|
∑

y∈Yk

〈y, c〉2 ≥ τ2
k

ρk
.

The proof follows by (7.2.1). �
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(7.3) Proof of Theorem 2.6. By Theorem 3.3 and Lemma 7.1, we write

(7.3.1) |P ∩ {0, 1}n| =
eh(z)

(2π)d

∫

Π

e−i〈b,t〉
n∏

j=1

(

1 − ζj + ζje
i〈aj ,t〉

)

dt,

where Π is the parallelepiped consisting of the points t = (τ1, . . . , τd) with −π ≤
τk ≤ π for k = 1, . . . , d.

Let us denote

F (t) = e−i〈b,t〉
n∏

j=1

(

1 − ζj + ζje
i〈aj ,t〉

)

.

If

‖t‖∞ ≤ 1

4θ
,

we have

|〈aj , t〉| ≤
1

4
for j = 1, . . . , n.

Using the estimate

∣
∣
∣
∣
eiξ − 1 − iξ +

ξ2

2
+ i

ξ3

6

∣
∣
∣
∣
≤ ξ4

24
for all real ξ,

we can write

ei〈aj ,t〉 = 1 + i〈aj, t〉 −
〈aj, t〉2

2
− i

〈aj, t〉3
6

+gj(t)〈aj, t〉4,

where |gj(t)| ≤
1

24
for j = 1, . . . , n.

Therefore,

F (t) = e−i〈b,t〉
n∏

j=1

(

1 + iζj〈aj, t〉 − ζj
〈aj , t〉2

2
− iζj

〈aj, t〉3
6

+ ζjgj(t)〈aj, t〉4
)

.

Furthermore, using the estimates

∣
∣
∣
∣
ln(1 + ξ) − ξ +

ξ2

2
− ξ3

3

∣
∣
∣
∣
≤ |ξ|4

2
for all complex |ξ| ≤ 1/2

and that
n∑

j=1

ζjaj = bj ,
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we can write

F (t) = e−q(t)+if(t)+g(t),

where f(t) =
1

6

n∑

j=1

(2ζj − 1)
(
ζj − ζ2

j

)
〈aj, t〉3 and

|g(t)| ≤ 2

n∑

j=1

〈aj, t〉4.

(7.3.2)

In particular,

|g(t)| ≤ 1

4
q(t) provided ‖t‖∞ ≤ 1

4θ
.

Let

σ = 4d+ 10 ln
1

ǫ
.

We split the integral (7.3.1) over three regions.
The outer region:

‖t‖∞ ≥ 1

4θ
.

We let

∆ =
1

(2π)d

∫

t∈Π
‖t‖∞≥1/4θ

F (t) dt,

and use Lemma 7.2 to bound |∆|.
The middle region:

q(t) ≥ σ and ‖t‖∞ ≤ 1

4θ
.

From (7.3.2) we obtain

|F (t)| ≤ e−3q(t)/4

and as in the proof of Theorem 2.2 (see Section 6.4), we show that the integral over
the region is asymptotically negligible for all sufficiently large γ.

The inner region:
q(t) < σ.

Here we have

‖t‖∞ ≤ ‖t‖ ≤ σ√
λ
≤ 1

4θ

provided γ is sufficiently large.
If q(t) < σ then ‖t‖∞ ≤ ‖t‖ ≤

√

σ/λ and

|g(t)| ≤ 2

n∑

j=1

〈aj, t〉4 ≤ 2θ2σ

λ

n∑

j=1

(
ζj − ζ2

j

)
〈aj, t〉2 ≤ 4

θ2σ2

λ
.
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In particular, if constant γ is large enough, we have |g(t)| ≤ ǫ/10.
As in Section 6.4, we define

X =
{

t : q(t) < σ and |〈aj, t〉| ≤
ǫ

10σ
for j = 1, . . . , n

}

.

Hence for t ∈ X we have

|f(t)| ≤ 1

6

n∑

j=1

(
ζj − ζ2

j

)
|〈aj, t〉 |3 ≤ ǫ

60σ

n∑

j=1

(
ζj − ζ2

j

)
〈aj , t〉2 ≤ ǫ

30
.

By Part (2) of Lemma 6.2, for all sufficiently large γ, we have

∫

Rd\X

e−q(t) dt ≤ ǫ

10

∫

Rd

e−q(t) dt

and the proof is finished as in Section 6.4. �

8. Proof of Theorem 2.4

We begin with an integral representation for the number of integer points.

(8.1) Lemma. Let pj , qj be positive numbers such that pj +qj = 1 for j = 1, . . . , n
and let µ be the geometric measure on the set Z

n
+ of non-negative integer vectors:

µ{x} =
n∏

j=1

pjq
ξj

j for x = (ξ1, . . . , ξn) .

Let P ⊂ R
n be a polyhedron defined by a vector equation

ξ1a1 + . . .+ ξnan = b

for some integer vectors a1, . . . , an; b ∈ Z
d and inequalities

ξ1, . . . , ξn ≥ 0.

Let Π ⊂ R
d be the parallelepiped consisting of the points t = (τ1, . . . , τd) such that

−π ≤ τk ≤ π for k = 1, . . . , d.

Then, for

µ(P ) =
∑

x∈P∩Zn

µ{x}

we have

µ(P ) =
1

(2π)d

∫

Π

e−i〈t,b〉
n∏

j=1

pj

1 − qjei〈aj ,t〉
dt.
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Here 〈·, ·〉 is the standard scalar product in R
d and dt is the Lebesgue measure in

R
d.

Proof. As in the proof of Lemma 7.1, the result follows from the multiple geometric
expansion

n∏

j=1

pj

1 − qjei〈aj ,t〉
=

∑

x∈Z
n
+

x=(ξ1,... ,ξn)

exp
{
i〈ξ1a1 + . . .+ ξnan, t〉

}
n∏

j=1

pjq
ξj

j .

�

The integrand
n∏

j=1

pj

1 − qjei〈aj ,t〉

is, of course, the characteristic function of Y = AX , where X is the multivariate
geometric random variable and A is the matrix with the columns a1, . . . , an.

The following result is an analogue of Lemma 7.2.

(8.2) Lemma. Let A be a d×n integer matrix with the columns a1, . . . , an ∈ Z
d.

For k = 1, . . . , d let Yk ⊂ Z
d be a non-empty finite set such that Ay = ek for all

y ∈ Yk, where ek is the k-th standard basis vector in Z
d. Let ψk : R

n −→ R be a

quadratic form,

ψk(x) =
1

|Yk|
∑

y∈Yk

〈y, x〉2 for x ∈ R
n,

and let ρk be the maximum eigenvalue of ψk. Suppose further that ζ1, . . . , ζn > 0
are numbers such that

ζj(1 + ζj) ≥ α for some α > 0 and j = 1, . . . , n.

Then for t = (τ1, . . . , τd) where −π ≤ τk ≤ π for k = 1, . . . , d, we have

∣
∣
∣
∣
∣
∣

n∏

j=1

1

1 + ζj − ζjei〈aj ,t〉

∣
∣
∣
∣
∣
∣

≤
(

1 +
2

5
απ2

)−mk

where mk =

⌊
τ2
k

ρkπ2

⌋

.

Proof. Let us denote

F (t) =
n∏

j=1

1

1 + ζj − ζjei〈aj ,t〉
.

Then

|F (t)|2 =

n∏

j=1

1

1 + 2ζj (1 + ζj) (1 − cos〈aj , t〉)
.
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Let
−π ≤ γj ≤ π for j = 1, . . . , n

be numbers such that

γj ≡ 〈aj, t〉 mod 2π for j = 1, . . . , n.

Hence we can write

|F (t)|2 =
n∏

j=1

1

1 + 2ζj (1 + ζj) (1 − cos γj)

≤
n∏

j=1

1

1 + 2α(1 − cos γj)
.

Since

cos γ ≤ 1 − γ2

5
for − π ≤ γ ≤ π,

we estimate

(8.2.1) |F (t)|2 ≤
n∏

j=1

(

1 +
2

5
αγ2

j

)−1

.

Let
c = (γ1, . . . , γn) .

As in the proof of Lemma 7.2, we obtain

‖c‖2 ≥ τ2
k

ρk
.

Let us denote ξj = γ2
j for j = 1, . . . , n. The minimum of the log-concave function

n∑

j=1

ln

(

1 +
2

5
αξj

)

on the polytope defined by the inequalities 0 ≤ ξj ≤ π2 for j = 1, . . . , n and

n∑

j=1

ξj ≥ τ2
k

ρk

is attained at an extreme point of the polytope, where all but possibly one coordi-
nate ξj is either 0 or π2. The number of non-zero coordinates ξj is at least τ2

k/ρkπ
2

and the proof follows by (8.2.1). �
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(8.3) Proof of Theorem 2.4. By Theorem 3.1 and Lemma 8.1, we have

(8.3.1) |P ∩ Z
n| =

eg(z)

(2π)d

∫

Π

e−i〈t,b〉
n∏

j=1

1

1 + ζj − ζjei〈aj ,t〉
dt,

where Π is the parallelepiped consisting of the points t = (τ1, . . . , τd) with −π ≤
τk ≤ π for k = 1, . . . , d.

Let us denote

F (t) = e−i〈t,b〉
n∏

j=1

1

1 + ζj − ζjei〈aj ,t〉
.

Similarly to the proof of Theorem 2.6 (see Section 7.3), assuming that ‖t‖∞ ≤ 1/4θ,
we write

F (t) = e−q(t)−if(t)+g(t),

where f(t) =
1

6

n∑

j=1

(
ζj + ζ2

j

)
(2ζj + 1)〈aj, t〉3 and

|g(t)| ≤ 2

n∑

j=1

(1 + ζj)
4 〈aj, t〉4.

We let

σ = 4d+ 10 ln
1

ǫ

and as in the proof of Theorem 2.6 (see Section 7.3), we split the integral (8.3.1)
over the three regions:

the outer region: ‖t‖∞ ≥ 1/4θ,

the middle region: q(t) ≥ σ and ‖t‖∞ ≤ 1/4θ and

the inner region: q(t) < σ.

For the outer region, we let

∆ =
1

(2π)d

∫

t∈Π
‖t‖∞≥1/4θ

F (t) dt

and use Lemma 8.2 to bound ∆.
We have

|F (t)| ≤ e−3q(t)/4

in the middle region and we bound the integral there as in Section 7.3.
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In the inner region, we have ‖t‖∞ ≤ ‖t‖ ≤
√

σ/λ and

|g(t)| ≤ 2

n∑

j=1

(1 + ζj)
4 〈aj , t〉4 ≤ 2

θ2σ

λ

n∑

j=1

(
ζj + ζ2

j

)
〈aj, t〉2 ≤ 4

θ2σ2

λ
.

We define

X =
{

t : q(t) < σ and (2ζj + 1) |〈aj, t〉| ≤
ǫ

10σ
for j = 1, . . . , n

}

and note that for t ∈ X we have

|f(t)| ≤ 1

6

n∑

j=1

(2ζj + 1)
(
ζj + ζ2

j

)
|〈aj, t〉|3 ≤ ǫ

60σ

n∑

j=1

(
ζj + ζ2

j

)
〈aj, t〉 ≤ ǫ

30
.

The proof is finished as in Section 7.3. �
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