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SUMMARY

In the introduction and Chapter 2 we introduce various conditions which could poten-

tially define “superstability” for abstract elementary classes. In particular, we examine vari-

ous notions of “superlimit model” and “superlimit class” which we will apply toward proving

gap-transfer theorems for AECs. In Chapter 3 we examine Lessmann’s analogue of Vaught’s

Theorem for abstract elementary classes. We provide a sufficient condition for the construction

of an (LS(K)+,LS(K))-model. In Chapter 4 we discuss progress that has been made in proving

uniqueness of limit models from various superstability assumptions. In Chapter 5 we give a

sufficient condition, or perhaps more accurately, various sufficient conditions for the existence of

an (ℵ2,ℵ0)-model to exist, using the existence of a simplified morass. Our work here is guided

by the presentation of Jensen’s work in proving the classical gap-2 transfer result for first order

logic in (Devlin, 1984).
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CHAPTER 1

INTRODUCTION

Abstract elementary classes (AECs) were introduced by Shelah in (Shelah, 1985) to axiom-

atize certain combinatorial properties of elementary substructure. One of the goals in doing

so was to provide a uniform framework for addressing model theoretic questions about non-

first-order logics. In the study of abstract elementary classes (AEC) semantic notions tend

to be more useful then syntactic notions. The goal is, after all, to offer a uniform framework

which applies regardless of the particular logic one works with. This does not always mean that

syntactic notions are not useful in the study of AECs, but it does restrict the settings in which

we are able to work with syntactic tools.

While some of the venerable model theoretic tools of classical model theory, such as the

downward Löwenheim-Skolem theorem are available to us in the abstract context, others (such

as the upward Löwenheim-Skolem theorem and compactness) are not available in this more

general context. In a certain sense, abstract elementary classes strip away almost all syntactic

objects of study, leaving only semantic objects. As such, it is seldom useful to consider first

order formulas or syntactic types as objects of study in an abstract elementary class. On the

other hand, automorphisms and embeddings remain well-defined and useful notions.

In Chapter 5, we notice in particular that when working in generic AECs, we cannot shift

vocabularies with the same ease one can in first order logic. In particular, when working in a

non-empty elementary class, one is free to expand the language, expand a particular structure

1
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in the class to this larger language, and then consider structures elementarily equivalent to the

expanded structure. As long as the size of the structure in the original elementary class is not

smaller than the cardinality of the expanded language, this produces a non-trivial elementary

class whose members reduct to members of the original elementary class. Shifting vocabularies

in arbitrary AECs, by contrast, is non-trivial.

To replace syntactic types, one often considers “galois types”; in general this is a rather

complicated notion defined in terms of an equivalence relations on a triple consisting of two

models and a distinguished element. However, in the context where one has the joint embedding

property (JEP) and the amalgamation property (AP), there is a simpler characterization of

galois type. In this context, one can think of a galois type over some parameter model N as the

orbit of some element in a large homogeneous structure (a monster model) under automorphisms

which fix N . In this dissertation, we work only with classes which have such a monster mode.

In this setting galois types should feel vaguely familiar to anyone used to working in first order

syntactic types.

In this dissertation we study sufficient conditions for the existence and or transfer of two

cardinal models in abstract elementary classes. In classical first order model theory, a two

cardinal model is some L -structure M with |M | = κ for which there was some L -formula φ

such that |φ(M )| = λ. We say such a model is a (κ, λ)-model. A related notion is “Vaughtian

pair”, that is, a pair of models M ≺ N , M ( N with some formula φ such that φ(M ) =

φ(N ). By downward Löwenheim-Skolem, it’s easy to see that the existence of a two cardinal

model implies the existence of a Vaughtian pair (witnessed by the same φ). Under various
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conditions, one can reverse the implication and build a two cardinal model starting with a

Vaughtian pair.

In the AEC context, we like to avoid syntactic notions in general. As such we redefine

“Vaughtian pair”, “two cardinal model”, and “(κ, λ)”-model in terms of semantic notions, e.g

galois types or invariant sets. In particular, we define a p-Vaughtian pair, for p a galois type,

as a pair of models M ≺K N such that p(M ) = p(N ). That is, the orbit p of the monster C

has the same intersection with N as it does with M . We define (κ, λ)-model as a structure M

where |M | = κ such that for some invariant set X ⊆ C, |X ∩M | = λ. We ask then, under what

conditions may Vaughtian pairs and two cardinal models exist in a non-elementary AEC?

This is a question that has been well-studied in the context of elementary classes by Vaught,

Chang, Jensen, and others. While we avoid in-depth discussion of categoricity transfer, the

relationship of non-existence of Vaughtian pairs and two cardinal models with categoricity in

elementary classes is one of the motivating factors in exploring this question in the context

of abstract elementary classes. In particular, Baldwin and Lachlan show that for countable

languages an elementary class is uncountably categorical if and only if the class is ω-stable

and has no Vaughtian-pairs. The Baldwin-Lachlan Theorem shows that three areas of model

theoretic research, namely the study of two cardinal models, categoricity, and stability theory

are all intertwined in the first order case. Lachlan and Shelah showed another tie between

stability theory and two-cardinal models, essentially a stronger version of Chang’s two cardinal

theorem restricted to stable elementary classes:
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Theorem 1.0.1 (GCH)(Chang) 1 Suppose there exists a (κ, λ)-model for the first order the-

ory T then:

1. For λ′ where κ > λ′ > λ there exists a (κ, λ′)-model of T .

2. If cf(κ) < cf(λ) then there exists a (2κ, λ)-model of T .

3. If cf(κ) = cf(λ) then there exists a (2κ, 2λ)-model of T .

Theorem 1.0.2 (Lachlan, Shelah) 1 If for a stable theory T there exists a (κ, λ)-model with

κ > λ then there exists a (κ′, λ′)-model for any κ ≥ λ ≥ |T |

The assumption of stability removes the need to assume GCH and also provides an even

stronger transfer theorem. We investigate some stability-related questions in abstract elemen-

tary classes, in hopes that this will be applicable to our study of two-cardinal models and/or

upwards categoricity transfer. In particular we investigate conditions that could define an

analogue of “superstability” for Abstract Elementary Classes.

For elementary classes, the definition of “superstability” has long been settled. There are a

number of equivalent conditions that characterize when a first order theory T is “superstable”.

We list just three below:

1. T is λ-stable for all λ ≥ 2|T |.

2. There are no infinite forking chains within models of T , that is κ(K, µ) = ω for all µ.

1reproduced from (Chang and Keisler, 1977)

1See (Baldwin, 1988) Chapter IX section 5 for a more detailed discussion.
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3. The union of an increasing chain of saturated models of T is saturated.

Since these three conditions are known to be equivalent, it matters little which condition

is actually defined to be “superstability”. For a non-elementary AEC K it remains an open

question whether the following conditions are equivalent:

1. K is λ-stable for all λ ≥ µ for some µ ≥ LS(K).

2. There is no chain (Mi)i<ω where Mi+1 is universal over Mi and a galois type p ∈

S(
⋃
i<ω Mi) that splits over Mi for all i < ω.

3. The union of a < λ+-increasing chain of galois-saturated models in K of size λ is saturated

for λ > LS(K).

One of the first difficulties in comparing the situations in the AEC case to the first order

case is that in the first order case the various conditions are true for all large enough cardinals,

where as in the AEC case, one may have a “superstability condition” only in a particular

cardinal, or in a range of cardinals (such as the cardinals between LS(K) and some cardinal

λ where the class is λ-categorical). In particular, while there is a stability spectrum theorem

for elementary classes, there are only a few specialized, partial stability spectrum results for

abstract elementary classes.1

It seems likely that condition 1. is too strong a condition to capture “AECs with a very

nice stability theory”. That is, we want to allow for “superstable” classes to be well behaved

only in either one distinguished cardinal or some range of cardinals.

1Published in (Grossberg and VanDieren, 2006b) and (Baldwin et al., 2006)
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At least under the assumption of JEP, AP and the existence of arbitrarily large models,

Condition 1. and 2. are known to hold in a cardinal λ if K is κ-categorical and LS(K) ≤ λ < κ,

while Condition 3. is known to hold in λ where LS(K) < λ < κ.1 However, for a non-categorical

AEC, it is not known whether these three conditions are or are not equivalent. Indeed, at least

two more possible definitions of “superstability for an abstract elementary class” have been

suggested. This expands our list of “superstability conditions” to:

i. K is λ-stable for all λ ≥ µ.

ii. There are is no chain (Mi)i<ω where Mi+1 is universal over Mi and a galois type p ∈

S(
⋃
i<ω Mi) that splits over Mi for all i < ω.

iii. The union of a < λ+-increasing chain of galois-saturated models in K of size λ is saturated

for λ > LS(K).

iv. Uniqueness of limit models in λ ≥ LS(K).2

v. Existence of a globally superlimit model in λ ≥ LS(K).3

1See (Shelah, 1999) and (Grossberg and VanDieren, 2006b), proofs are available in (Baldwin, 2009)
as well.

2See Definition 2.2.2 for the definition of “limit model”. For the precise meaning of the phrase
“uniqueness of limit models” see Definition 2.2.9. The idea that “uniqueness of limit models” is an
appropriate criterion for superstability is implicit in (VanDieren, 2006).

3See Definition 2.3.1. Shelah argues on pages 41 and again on page 61 of the introduction to (Shelah,
2009) that the existence of a superlimit model is the proper generalization of superstability from first
order model theory to abstract elementary classes.
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In general, at least under the assumption of stability, AP, and JEP we know that condition

v. and condition iii. are equivalent if λ > LS(K) and λ is regular (see Corollary 2.3.12).1

Condition iii. implies condition v. for any λ > LS(K) (See Corollary 2.3.10). Condition v. or

Condition iii. both imply condition iv., but we do not know if condition iv. implies any other

condition above. In particular, even if limit models are unique in LS(K) we do not know that

the union of less than LS(K)+ limit models in LS(K) is itself a limit model. We do know that

λ+-categoricity implies iv.2

The question of whether a union of limit models is itself a limit model, or more generally,

whether a “superlimit-like” model exists is intimately tied to upward categoricity transfer.

Building on work of Shelah in (Shelah, 1999) and Grossberg and VanDieren in (Grossberg and

VanDieren, 2006c) (Grossberg and VanDieren, 2006a), Lessmann proved the following Theorem

in (Lessmann, 2005):

Theorem 1.0.3 (Lessmann) Let K be a tame AEC with arbitrarily large models satisfying

AP, JEP, and LS(K) = ω. If K is ℵ1-categorical K is categorical in every uncountable cardinal.

The proof is an induction that depends, in the base case, on having the ability to build a pair

of models with “superlimit-like” properties in the sense of Shelah. Categoricity in ℵ1 = ℵ0
+

(at least, under the assumption of JEP and AP in ℵ0) implies that the unique model in ℵ1 is

1Indeed, the definition of “galois-saturation” is seldom a useful tool for an analysis of models of size
LS(K).

2See Theorem 4.0.2, reproduced from (VanDieren, 2012), more details are available in Section 9 of
(VanDieren, 2006).



8

saturated; the existence of a Vaughtian-pair of superlimit-like models in LS(K) is used to build

a non-saturated model in ℵ1. This theorem is essentially an analogue of this classical theorem

of Vaught for elementary classes (see section 4.3 of (Marker, 2002)):

Theorem 1.0.4 (Vaught) If T has a Vaughtian pair of models there is an (ℵ1,ℵ0)-model.

In particular Lessmann proves:

Theorem 1.0.5 (Lessmann) If K satisfies AP and JEP in ℵ0 and has Vaughtian pair of

galois-saturated models of size at least ℵ1 then K has an (ℵ1,ℵ0)-model.

In Lessmann’s proof, countable limit models play the role of countable homogeneous models

realizing the same types in the proof of Vaught’s theorem. A sufficient condition for building

an (ℵ1,ℵ0)-model is being able to extend some countable Vaughtian pair without ever adding

realizations of the type which has no new realizations in the larger of the two models in the

countable Vaughtian pair. We make this condition explicit in Definition 2.3.15. In a way, when

distilled to its core, Vaught’s theorem is an application of the fact that a countable homogeneous

model is a locally superlimit model.

More specifically, to prove Vaught’s Theorem, one first passes from an arbitrary Vaughtian

pair to a Vaughtian pair of (M0,M1) of countable homogeneous models which realize the same

types over the empty set, witnessed by some formula φ. It is then quite easy to construct a

two cardinal model. Since countable homogeneous models are isomorphic if they realize the

same types over the empty set there is an isomorphism f : M0 →M1. One finds an extension

f∗ of f to M1 and lets M2 := f(M1), which will then be countable, homogeneous, realize the
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same types over the empty set as M0, and have φ(M2) = φ(M1) = φ(M0). One continues

inductively in this manner. Since the countable union of homogeneous models is homogeneous,

and no new type can be realized in the union, the countable union of models defined in this

manner is still isomorphic to the model we started with.

This property, that the countable union of “≺”-sequence of countable homogeneous models

realizing the same types over the empty set is isomorphic to the first model of the sequence that

defines “local superlimit”. Studying notions ’around superlimit models’ and their relationship

to the existence of two-cardinal models of various types is the core focus of this dissertation.

We explore one application of “superlimit-like” models in Chapter 3 and another in Chapter 5.

We would like to be able to extend Lessmann’s categoricity transfer result to other cardinals.

That is, we would like to show λ+-categoricity in a tame AEC K with LS(K) = λ implies

categoricity above λ+. It is understood that the missing step for uncountable λ is constructing

the (LS(K)+,LS(K))-model from a Vaughtian pair of saturated models above LS(K). If one

could complete such a construction, the methods of (Grossberg and VanDieren, 2006c) could

be applied to achieve upwards categoricity transfer in this context.

In Chapter 3 we show that Definition 2.3.15 is a sufficient condition to extend Theorem

1.0.5 to uncountable cardinals, however we have not yet been able to deduce the existence of

models satisfying Definition 2.3.15 from λ+ categoricity.

Because of its potential usefulness toward proving upwards categoricity transfer, we feel that

the existence of “superlimit-like” models, such as models satisfying Definition 2.3.15, might also

provide a reasonable definition of superstability for AECs. In Chapter 2 we define relevant no-
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tions, e.g “µ-splitting”, “limit model”, etc., precisely and present some basic results concerning

their behavior. In particular, we discuss how both Shelah and Lessmann define “superlimit”

and offer our own definition as well.

Shelah of course, has his own program for developing stability theory for AECs, via “good

frames in λ”; much of his work on this topic is collected in (Shelah, 2009). A λ-good frame is

an AEC that satisfies various axioms including admitting some sort of independence relation.

On particular conditions included in the λ-good frame axioms1 is the existence of a globally

superlimit model in λ and the non-existence of long forking chains. From these assumptions

one is able to deduce additional nice properties, in particularly, working under strong enough

assumptions, one is able to construct a λ+-good frame by modifying the original AEC. However,

since one works with an abstract independence relation, it’s unclear when concrete independence

relations derived from natural notions like splitting or splintering of types actually satisfy the

good frames axioms.

In Chapter 4, we discuss somewhat briefly uniqueness of limit models, which (as we have

noted) is another condition that could potentially be taken as a definition of “superstability”.

We prove a small useful result, namely that a continuous relatively full tower is a limit model,

without needing to assume disjoint amalgamation. We also offer some discussion of how this

fits into a larger effort to prove that from κ(K, µ) = ω uniqueness of limit models holds.

1At least, this is true of the version of the axioms given on page 138 of (Shelah, 2009).
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Initially we had hoped that uniqueness of limit models (Conjecture 4.2.5), should it hold

for a class K, could be applied to generalize Lessmann’s categoricity transfer theorem to AECs

with uncountable Löwenheim number, however we were ultimately unable to do so. We discuss

the difficulties we encountered in Section 4.3 of Chapter 4.

In Chapter 5 we again apply a “superlimit like” notion, this time to build an (ℵ2,ℵ0)-gap

in an AEC by using a simplified morass. We discuss some progress we have made in trying to

prove an analogue of Jensen’s Gap-2 Transfer Theorem for elementary classes in the context

of AECs. We discover, that while the argument employs set theoretic machinery, that the

classical proof of the theorem is in fact dependent on model theoretic properties of first order

logic that do not hold in arbitrary AECs. The proof that, under the assumption that V = L,

the existence of a (κ++, κ)-gap in a model of a first order theory T implies the existence of an

(ℵ2,ℵ0)-gap proceeds via four main steps:

1. Build an isomorphic pair of structures in κ.

2. Obtain a Vaughtian pair (in κ) and an elementary embedding that codes some combi-

natorial information; expand the language to code the Vaughtian pair and combinatorial

information into an expanded first order theory.

3. Find a “nice” pair of countable homogeneous models of the expanded theory.

4. Construct an (ℵ2,ℵ0)-gap using properties of a simplified morass.

The main theorem of Chapter 5, Theorem 5.4.2, is an analogue of step 4. in the context

of an AEC whose members are ordered structures. Another way to look at the main body of
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our work in Chapter 5 is that we prove the existence of an (ℵ2,ℵ0)-model given nice enough

combinatorial conditions in a pair of countable models and the existence of a simplified Morass.

In the context of an ordered AEC (or arbitrary elementary class) we are able complete step

1 (this proof, like the proof in the first order case, utilizes GCH, see Proposition 5.7.11). From

3., we can prove 4. And from a pair of “extra nice” structures in κ (a sort of “2+”) we can

derive 3. Unfortunately, in the non-elementary case, we have not been able to go from the

conclusion of step 1. to an “extra nice” pair of structures in κ. Dealing with unordered AEC

is problematic in itself, though we prove some small partial results using Shelah’s presentation

theorem.

The classical gap-two transfer theorem of Jensen utilized countable homogeneous models

as a tool in the construction. The definition of “countable homogeneous model” is, classically,

given in terms of partial elementary maps, which are implicitly tied to the syntax of first-order

logic. Since AECs in general will not interact in a nice way with first order syntactic notions we

define a purely semantic notion of homogeneity instead, which we term “galois homogeneity”.

This notion generalizes the classical model theoretic notion of “homogeneity” after one fixes a

distinguished monster model. Perhaps undesirably, however, this notion is intimately tied to

the choice of monster model, C. As such, to develop a useful theory, one must first fix a C

model and give up the flexibility to change monster models at a later time.



CHAPTER 2

SUPERSTABILITY FOR ABSTRACT ELEMENTARY CLASSES

For the definition of Abstract Elementary Class (AEC) we suggest that one read (Baldwin,

2009), though many basic results are also available in a particularly readable form in (Lessmann,

2005) as well. Most of the original definitions and many basic results are due to Shelah, who has

conveniently published a number of the key papers together in (Shelah, 2009). Other notions one

should consult existing literature for include Löwenheim Number, galois type, galois stability,

the amalgamation property (AP), tameness, and joint embedding property (JEP).1

I will define certain results where the terminology is either uncommon or inconsistent in

existing literature or otherwise potentially confusing.

Definition 2.0.1 A model M is µ-universal over M0 if the following hold:

1. M0 ≺K M

2. Given any M1 where |M1| ≤ µ and M0 ≺K M1 there is some strong embedding f : M1 →

M fixing M0.

If M is |M | universal over M0 we say M is universal over M0.

We will apply the following basic result quite often.

1JEP and AP are defined to be natural generalizations the corresponding notions in first order model
theory.

13
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Proposition 2.0.2 Let M1 ≺K M2 ≺K M3. If M3 is universal over M2 and M2 is universal

over M1, then M3 is universal over M1.

proof. Suppose that M1 ≺K N . By AP we can find an amalgam N ′ of M2 and N over

M1 such that M2 is embedded into N ′ by the inclusion map. Thus M2 ≺K N ′, but then by

universality of M3 over M2 there exists some strong embedding g : N ′ → M3 fixing M2. In

particular g fixes M1, so M3 is universal over M1. �

2.1 Splitting

In AECs there is a notion of “splitting” which generalizes splitting over models in elementary

classes, namely:

Definition 2.1.1 A galois type p ∈ S(M ) µ-splits over N if the following conditions hold:

1. N ≺K M

2. There exists some M0 ∈ Kµ and strong embedding f : M0 →M such that:

(a) N ≺K M0 ≺K M

(b) N ≺K f(M0) ≺K M

(c) p � f(M0) 6= f(p � M0)

For general AECs, splitting seems to provide the most “forking-like” notion available in

absence of some syntactic notion of forking. Chapter 12 of (Baldwin, 2009) is one source amongst

others which provides a good exposition of splitting and basic results about the existence and

uniqueness of non-splitting extensions, such as:
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Lemma 2.1.2 Let M ≺K M ′ ≺K M ′′ all be of size µ and suppose M ′ is µ-universal over

M . If p ∈ S(M ′) does not µ-split over M then p has at least one extension to S(M ′′) that

does not µ-split over M .

Though syntactic types over models of a stable first order theory are always stationary,

the same may not hold for galois types in a stable, non-elementary AEC. The following result

provides a sufficient condition for a type in S(M ) to be “stationary” in the sense of having a

unique non-splitting extension to any model of size |M |.

Lemma 2.1.3 Let M ≺K M ′ ≺K M ′′ all be of size µ and suppose M ′ is µ-universal over

M . If p ∈ S(M ′) does not µ-split over M , p has at most one extension to S(M ′′) that does

not µ-split over M .

Putting Lemmas 2.1.3 and 2.1.2 together we get:

Corollary 2.1.4 Let M ≺K M ′ ≺K M ′′ all be of size µ and suppose M ′ is µ-universal over

M . If p ∈ S(M ′) does not µ-split over M , p has a unique extension to S(M ′′) that does not

µ-split over M .

There is a natural transitivity property one would want to have for splitting, namely:

Conjecture 2.1.5 Let M ≺K M ′ ≺K M ′′ all be of size µ and suppose M ′ is µ-universal over

M . If p ∈ S(M ′′) does not µ-split over M ′ and p � M ′ does not split over M then p does not

split over M .
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This is left as an exercise (Exercise 12.9) in (Baldwin, 2009); it seems to be quite a difficult

exercise. Neither a valid proof nor counterexample is known. One is tempted to offer the

following as proof, having just read a similar proof of (Baldwin, 2009)’s Theorem 12.7:

“proof”. Note that p � M ′ has a unique extension q to M ′′ that does not split over M . In

particular, q does not split over M ′ since M ≺K M ′, but then both p and q are non-splitting

extensions of p � M ′′ that do not split over M ′, so p = q. “�”

The gap in the proof above is that while p and q both are non-splitting extensions of p � M ′′

over M ′, in order to apply Lemma 2.1.3 one must have the non-splitting occur over some N

which M ′ is universal over, e.g. M . A number of other simple, but false proofs have been

formulated of Conjecture 2.1.5.

2.2 Saturated Models and Limit Models

We follow Shelah’s convention in defining “saturated models” that is:

Definition 2.2.1 A model M is µ-saturated if for every N ≺K M with |N | < µ any galois

type p over N is realized in M . We call M saturated if M is |M |-saturated. When the

cardinal parameter µ is clear from context, we will omit it.

Choosing this definition, however, has the downside of allowing certain models in the

Löwenheim number of an AEC to be saturated if they simply have no strong submodels over

which they are required to realize types.1 Such models may be interesting, but do not “real-

ize many types”, as one normally expects when discussing saturation. Furthermore, saturated

1Indeed, in an AEC with no models of cardinality strictly less than the Löwenheim-number, all models
in the Löwenheim number are saturated.
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models can only be shown to be unique up to isomorphism above the Löwenheim-number.1

Below we define an alternate notion of “a model rich in sub-structures”, a “limit model”. This

notion is, in general, more useful in the Löwenheim-number than saturation is.

Definition 2.2.2 For µ a cardinal and θ < µ+ limit ordinal, a (µ, θ)-limit model M is a

continuous union M =
⋃
i∈θ Mi where Mi+1 is universal over Mi and each Mi is of size µ.

We say M is a limit model over N if there is such a sequence of Mi where M0 = N .

Also for brevity’s sake we define “limit sequences”. Sometime after defining this notion

we realized that in the existing literature, a limit sequence is a (µ, α)-sequences for some limit

ordinal α and µ is the cardinality of the models in the sequence. While it is undesirable to

unnecessarily proliferate technical terminology, it is also convenient to have a brief term that

describes exactly as much information about a sequence of models as we care to exhibit.

Definition 2.2.3 A (µ, β)-chain or (µ, β)-sequence is a a ≺K-increasing sequence of models

(Mi)i<β where for all i < β, |Mi| = µ and Mi+1 is universal over Mi.

Definition 2.2.4 f (Mi)i<α is a (µ, α) sequence and α < µ+ is a limit ordinal then Mα :=⋃
i+1 Mi is clearly a limit model. We say that (Mi)i<α is a limit sequence for Mα. If we wish

to distinguish the base model of the sequence, we will say (Mi)i<α is a limit sequence for Mα

over M0.

1For this reason some existing literature, such as (Lessmann, 2005) take the convention that “M is
saturated” implicitly implies that |M | > LS(K).
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The following proposition is proved by a standard back and forth argument.

Proposition 2.2.5 Suppose N is a (µ, cf(α))-limit model over N0 and M is a (µ, α)-limit

model over M0. If M0
∼= N0, then M ∼= N . Furthermore, given an isomorphism f0 : N0 →

M0 one can find an isomorphism f : N →M which extends f0.

The following appears as Definition 15.1 of (Baldwin, 2009). It more or less corresponds

to “κ1
µ(K)” in terms Definition 4.3 of (Grossberg and VanDieren, 2006b). The definition given

in (Baldwin, 2009) differs slightly from (Grossberg and VanDieren, 2006b) in only demanding

universality of Mi+1 over Mi, not that Mi+1 is a limit model over Mi.

Definition 2.2.6 We define κ(K, µ) as the least ordinal α, should it exist, such that there does

not exist a limit sequence (Mi)i<α of models Mi ∈ Kµ such that there is some p ∈ S(
⋃
i<α Mi)

where p splits over Mi for all i < α.

This is one possible analogue of the first order notion of κ(T ) for AECs.1 Another possible

analogue2 of κ(T ) is:

Definition 2.2.7 We define κ(K, µ) as the least cardinal κ, should it exist, such that for any

M ∈ Kµ and p ∈ S(M ) there is some N where |N | < κ such that p does not |N |-split over

N .

1A definition of κ(T ) can be found in (Baldwin, 1988), or any other reasonably complete book on
first order model theoretic stability theory.

2Similarly to Definition 2.2.6, κ(K, µ) is more or less κ1µ(K) as defined in Definition 4.4 of (Grossberg
and VanDieren, 2006b). Again the definition given in (Baldwin, 2009) differs slightly from (Grossberg
and VanDieren, 2006b) in only demanding universality of Mi+1 over Mi, not that Mi+1 is a limit model
over Mi.
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It is pointed out in (Grossberg and VanDieren, 2006b) that while κ(K, µ) and κ(K, µ) agree

if K is an elementary class (this is true as long as |T | ≤ ℵ0), that in the non-elementary case

it is only known that κ(K, µ) < κ(K, µ) (see Proposition 4.5 of (Grossberg and VanDieren,

2006b)). In (Shelah, 1999), Shelah derives a bound on κ(K, µ) from categoricity in a larger

cardinal and the existence of arbitrarily large models in an Abstract Elementary class which

satisfies AP and JEP. A proof is also available as Theorem 15.3 of (Baldwin, 2009). In general,

for non-elementary AECs, no bound on κ(K, µ) has yet been derived from categoricity.

In general, a (µ, α) and (µ, β)-limit model may fail to be isomorphic even if they are based

over the same model. One can construct an example of non-isomorphic limit models in the

archetypal example of the “stable, not superstable” first order theory, namely:

Example 2.2.8 Let L = {Ei : i < ω} and let T be the L -theory of infinitely many refining

equivalence relations. For a cardinal λ where λ = λω there exists a (λ, ω)-limit model and

(λ, ω1)-limit model which are not isomorphic.

One must work in a cardinal λ where λω = λ, so that T will be stable in λ. This is necessary

so that given N |= T of cardinality λ one may construct a universal extension of N of size λ.

Definition 2.2.9 By the phrase uniqueness of limit models we mean that given any limit or-

dinals α, β < µ+ and two (µ, α) and (µ, β)-limit model are isomorphic, even if cf(α) 6= cf(β).

Grossberg, VanDieren, and Villaveces make a case that satisfying uniqueness of limit models

is a suitable definition for “superstability” in AECs. Indeed in (Grossberg et al., 2012) the

following theorem is proved about elementary classes:
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Theorem 2.2.10 (Grossberg,VanDieren, Villaveces) Suppose that T is a stable complete

first order theory. Let µ > 2|T |. If T is not superstable, then no (µ, ω)-limit model is isomorphic

to any (µ, κ)-limit model where cf(κ) ≥ κ(T ).

This means that the classic theorem of first order model theory from (Shelah, 1990) which

describes conditions equivalent to superstability can be extended by one new equivalent condi-

tion:

Theorem 2.2.11 The following are equivalent for any stable first order theory T :

1. T is superstable, that is, T is λ-stable for all λ ≥ 2ℵ0

2. There are no infinite forking chains within models of T , that is κ(K, µ) = ω for all µ.

3. The union of an increasing chain of saturated models of T is saturated.

4. If M1 and M2 are respectively (µ, α) and (µ, β)-limit models of T for µ ≥ 2|T | then

M1
∼= M2.

We note that this equivalence only holds true for stable first order theories, indeed, limit

models will not exist if the theory T is complete and unstable. We hope it now seems clear

that uniqueness of limits (proved from categoricity in a successor cardinal in (VanDieren, 2012)

and examined in depth in Chapter 4) should be a candidate for a generalization of first order

superstability, in addition to demanding κ(K, µ) = ω, the union of saturated models is satu-

rated, or that a globally superlimit model exists. As of yet there is no known equivalence such

as Theorem 2.2.11 for AECs.
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2.3 Superlimits

An important related question to “what should define superstability in the context of

AECs?” is whether the union of an ≺K-increasing sequence of limit models is a limit model.1

More generally, an important questions is whether a given AEC admits the existence of a “su-

perlimit model”. We reproduce the following definition from Definition 3.3 in (Shelah, 2009),

found on page 138.

Definition 2.3.1 (Shelah’s superlimit) A model M ∈ Kλ is λ-locally superlimit if:

1. For any N ≺K M there is M ′ ∼= M such that N ≺K M ′ and M ′ 6= M .

2. Given any ordinal α and ≺K-increasing sequence of models (Mi)i<α where |α| = λ such

that for all i < α Mi
∼= M then

⋃
i∈I Mi

∼= M

M is λ-globally superlimit, or simply λ-superlimit if the above hold and in addition:

3. M is universal in Kλ, that is, any N ∈ Kλ can be embedded into M .

We will occassionally use the noun local superlimit to mean a locally superlimit model and

global superlimit or simply superlimit to mean a globally superlimit model.2

The existence of a superlimit model in K of cardinality λ is a useful technical condition for

proving categoricity transfer results and for building two-cardinal models. An example of an

1This condition appears in (VanDieren, 2006) as “hypothesis 3”.

2In interest of strict technical accuracy we point out that this final sentence is not reproduced from
(Shelah, 2009).
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ω-locally superlimit model is a countable homogeneous model (which may omit some types) of

a first-order theory in a countable language. Indeed in, say Lessmann’s analogue of Vaught’s

Theorem for AECs1 or our own construction of an (ℵ2,ℵ0)-model in Theorem 5.4.2, a superlimit

model serves as something of a substitute for a countable homogeneous model in the first order

proof.

Lessmann, however, defines a slightly different version of “superlimit” than Shelah. The

following first appears in (Lessmann, 2005):

Definition 2.3.2 (Lessmann’s superlimit) A model M ∈ Kω is a superlimit if M is an

(ω, α)-limit model for some limit ordinal α.

Since for any countable α an (ω, α)-limit model over M is isomorphic to an (ω, ω)-limit

model M , Definition 2.3.2 can be restated as:

Proposition 2.3.3 A model M ∈ Kω is a superlimit in the sense of Lessmann if and only if

it is an (ω, ω × ω)-limit model.

For this reason, we will refer to such models as (ω, ω × ω)-limit models to avoid confusion

with either Shelah’s notion of superlimit or our own definition of superlimit, given in Chapter

3.

A countable globally superlimit model is clearly a superlimit model in the sense of Lessmann,

however Lessmann and Shelah’s definitions of, respectively superlimit and locally superlimit

1See Theorem 2.3.14.
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are, to the best of our knowledge, orthogonal in strength. Lessmann’s definition is weaker

than Shelah’s in the sense that the isomorphism type of an (ω, ω × ω)-limit model may not be

closed under arbitrary countable unions, merely those countable unions where the models “fit

nicely enough together”. Shelah, by contrast, demands the isomorphism type of a countable

locally superlimit model be closed under arbitrary countable unions. However, Shelah does not

demand that a locally superlimit model is a limit model (indeed,a countable atomic model of a

first order theory with non-atomic models is an example of a locally superlimit model which is

not a limit model).

We can define a notion of “Vaughtian pair” and “two cardinal model” for AECs in a fairly

natural way. We use the same definition available (amongst many sources) in (Baldwin, 2009)

as Definition 13.2 for Vaughtian pair. For the classical definitions of Vaughtian Pair and two

cardinal model see (Chang and Keisler, 1977) or (Marker, 2002).

Definition 2.3.4 Let p ∈ S(M ) be a type over a model of size λ. A (p, µ) Vaughtian Pair is

a pair of models, N1,N2 of size µ such that M ≺K N1 ≺K N2 and N1 ( N2 where p has a

non-algebraic extension to N1 not realized in N2.

Definition 2.3.5 A two cardinal model in λ is a model M ∈ Kλ where there exists a type p

over N ≺K M where |N | < |M | and p is not realized in M .

In certain cases we are interested in being more definite about how much the model M

differs in size from the model N over which M omits a type. First we define “invariant set”;
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this only makes sense when considered with respect to some fixed monster model C. Invariant

sets will be discussed in much greater detail in Chapter 5.

Definition 2.3.6 A subset X ⊆ C is invariant if for any γ ∈ aut(C) γ(X) ⊆ X.

Definition 2.3.7 A (κ, λ)-model over µ is a model M such that there is a set X invariant

over some model N ≺K M with |N | = µ such that X ∩M = λ. A (κ, λ)-model (with no µ

mentioned) is a (κ, λ)-model over ∅. If κ is the n-fold cardinal successor to λ we refer to this

as an n-gap.

In (Lessmann, 2005), Lessmann shows that, at least in the context of a theory with countable

Löwenheim number, AP, and JEP, (ω, ω × ω)-limit models satisfy a slightly weakened version

of the first item of Definition 2.3.1. This allows him to prove a nice categoricity transfer

theorem, thus extending work of VanDieren in (VanDieren, 2006) and Grossberg and VanDieren

in (Grossberg and VanDieren, 2006a). As a step towards this result Lessmann proves a version

of Vaught’s Two Cardinal Theorem for AECs which is interesting to us in its own right. More

specifically, Lessmann constructs an (ℵ1,ℵ0)-model in ℵ1 given a Vaughtian pair of saturated

models in ℵ1.

Lessmann’s innovation in his definition of superlimit is not to demand that all unions of

superlimits yield another superlimit, only those unions in which the models fit together in a nice

enough way. It is fairly easy to show, if one has full uniqueness of limit models in µ > LS(K)
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that limit models of size µ are saturated1. In the elementary class case, superstability then

implies that the union of limit models is a limit model since a union of saturated models

is saturated. We know of no proof that, in the general AEC case,2 ≺K-increasing sequence

(Mi)i<ω of (ω, ω×ω)-limit models, or more generally (µ, θ)-limit models, is itself a limit model.

As such, there is no existing proof that Lessmann’s notion of superlimit is either a local or

global superlimit in the sense of Shelah.3

On the other hand, Shelah’s definition does not imply that if M is locally superlimit that

M will be a limit model. In particular, the Example 2.3.16 (presented later in this chapter) is

an example of a locally superlimit model that is not a superlimit. However, if M is a globally

superlimit model then we can demonstrate that M is a limit model.

Lemma 2.3.8 Assume K is a λ galois stable AEC which satisfies JEP and AP in λ. If M0

is a λ-globally superlimit model there exists M1
∼= M0 and there exists N1 universal over M0

where M0 ≺K N1 ≺K M1.

proof. By λ-stability, AP, and JEP we may assume the existence of a λ+ saturated structure

C. We suppose M0 is a λ-globally superlimit model. By λ-stability we can find a N1 which is λ-

1This is also true in an elementary class when “saturation” means a model is saturated with respect
to syntactic types.

2However, for a discussion of a case where the union of saturated models is saturated, (and thus, in
certain cases, the union of limit models is a limit model) see Chapter 15 of (Baldwin, 2009), and Theorem
15.8 in particular. Here Baldwin clarifies the presentation of ideas originating in (Shelah, 1999).

3In an elementary class, limit models are saturated, and the countable union of countably many
saturated models is saturated. So in an elementary class, Lessmann and Shelah’s notion of “superlimit”
do agree. However, outside of the elementary case, the question remains open.
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universal over M0 of size λ. By the universality of M0 there exists an embedding f : N1 →M0,

we extend f to F ∈ aut(C). Let M1 := F−1(M1). �

Proposition 2.3.9 Assume K is a λ galois stable AEC which satisfies JEP and AP in λ. Let

α < λ+ be a limit ordinal. If M0 is a λ-globally superlimit model then M0 is a (λ, α)-limit

model.

proof. Let M0 be a λ-globally superlimit model. We construct sequences (Mi)i<α and

(Ni)i<α of models inductively that satisfy the following properties:

1. Mi
∼= M0

2. Ni+1 is universal over Mi of size λ.

3. Mi ≺K Ni+1 ≺K Mi+1

For the base case M0 is given and we can find M1,N1 by applying Lemma 2.3.8. Given

Mi,Ni again apply Lemma 2.3.8 to find some Ni+1 universal over Mi and Mi+1
∼= Mi

∼= M0

such that Ni+1 ≺K Mi+1.

At limit stages γ ≤ α let Mγ :=
⋃
i<γ Mi =

⋃
i<γ Ni. Because M0 is a λ-globally superlimit

model M0
∼=
⋃
i<γ Mi.

Mα :=
⋃
i<α Mi =

⋃
i<α Ni is obviously a (λ, α)-limit model. Since M0 is a λ-globally

superlimit model, M0
∼= Mα. �

It is worth noting also that if a λ-globally superlimit model exists then uniqueness of limit

models in λ is actually quite easy to show. We do so below in Corollary 2.3.10. In general,

proving that a (λ, α)-limit model and (λ, β)-limit model where cf(α) 6= cf(β) are isomorphic is
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a highly non-trivial result. The harder, general case is discussed in Chapter 4 building upon

the work done in (Grossberg et al., 2012).

Corollary 2.3.10 Assume K is a λ galois stable AEC which satisfies JEP and AP in λ. Let

α < λ+ be a limit ordinal. If there exists a λ-globally superlimit model M0 then for any α < λ+

any (λ, α)-limit model is isomorphic to M0. In particular given α, β < λ+ any two (λ, α),(λ, β)-

limit models are isomorphic.

proof. Fix α < λ+. By Proposition 2.3.9 M0 is a (λ, α)-limit model. Let N be a (λ, α)-

limit model over N0. Since M0 is λ-universal we may assume without loss of generality that

N ≺K M0. Since we can always, if necessary, repeat the construction used to prove Proposition

2.3.9 and get a model Mα
∼= M0, we may as well assume that M0 is in fact a (λ, α)-limit model

over N0. By Proposition 2.2.5 M0
∼= N . �

In fact this proof technique is applicable to a number of superstability questions, in particular

the following:

Proposition 2.3.11 Suppose that K is a λ-galois stable AEC which satisfies JEP and AP in

λ, where λ is regular. If there exists a λ-globally superlimit model M0 then M0 is saturated.

proof. Note that since λ is regular the union
⋃
i<λ Ni of ≺K-increasing sequence of saturated

models Ni ∈ Kλ is saturated. Since λ is regular and K is λ-stable, a saturated model exists.

Build interleaved sequences of models (Mi)i<λ and (Ni)i<λ such that:

1. Mi is a λ-superlimit.
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2. Ni is saturated and Mi ≺K Ni.

Note that by the definition of λ-superlimit M0
∼=
⋃
i<λ Mi =

⋃
i<λ Ni. Since

⋃
i<λ Ni is

saturated, M0 is saturated. �

The regularity of λ is important, without this, we cannot be certain that any union of

saturated models will be saturated. The following Corollary is easily deducible:

Corollary 2.3.12 Suppose that K is a λ-galois stable AEC which satisfies JEP and AP in

λ > LS(K), where λ is regular. Then the following are equivalent:1

iii. The union of a < λ+-increasing chain of galois-saturated models in K of size λ is saturated

for λ > LS(K).

v. Existence of a globally superlimit model in λ ≥ LS(K).2

proof. The implication iii. =⇒ v. is always trivial. By Proposition 2.3.11 if there exists a

λ-superlimit model M0 then M0 is saturated. So by the definition of λ-superlimit, the union of

a < λ+-increasing chain of galois-saturated models in K of size λ is saturated for λ > LS(K).

�

The following theorems of Lessmann build on work of Grossberg and VanDieren in (Gross-

berg and VanDieren, 2006a) (see Chapter 3 for more details).

1This numbering was chosen to match the list of “superstability conditions” given in the introduction.

2See Definition 2.3.1.
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Theorem 2.3.13 (Lessmann) Let K be a tame AEC with arbitrarily large models satisfying

AP, JEP, and LS(K) = ω. If K is ℵ1-categorical, then K is categorical in every uncountable

cardinal.

Theorem 2.3.14 (Lessmann) Let K be an AEC satisfying AP in λ, JEP in λ, LS(K) = ω,

and that there are only countably many galois types over any countable model. If there exists a

Vaughtian pair of saturated models in ℵ1 then there exists a two cardinal model in ℵ1.

An obstacle to easily extending this theorem to AECs with uncountable Löwenheim number

is one cannot generalize the proof that countable limit models are closed under “nice enough”

countable unions. Indeed, this problem seems hard even when even assuming that limit models

of a given cardinality are unique up to isomorphism.

We offer a framework below which abstracts the transfer from a Vaughtian pair of limit

models in ℵ0 to a two cardinal model in ℵ1 in Lessmann’s proof of Theorem 1.0.5 to the

transfer from a Vaughtian pair in a sufficiently nice pair of models in λ to a two cardinal model

in λ+ in any “superstable” AEC.1

Definition 2.3.15 We define a (p0, λ)-superlimit class as a class of ≺K-increasing sequences

of models in Kλ (of length at least 2 and less than λ+) with distinguished models N0,N1 ∈ KL
λ

the following properties:

1This is most interesting when λ = LS(K) > ℵ0 so that the neither the ambient assumptions of
Grossberg-VanDieren in (Grossberg and VanDieren, 2006a) nor Lessmann in (Lessmann, 2005) are not
satisfied. In this case, the additional hypothesis of λ+ categoricity and tameness would allow us to prove
a new upwards categoricity transfer theorem.
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1. (N0,N1) are a p0-Vaughtian Pair in λ, such that:

(a) p0 is a quasiminimal extension of some p ∈ S(M )1.

(b) N0
∼= N1 over M .

(c) There is a unique quasiminimal extension of p to any model Ni where for some θ,

i < θ < λ+, (Ni)i<θ ∈ KL
λ .

(d) Any non-algebraic extension of p0 to a model Ni where for some θ, i < θ < λ+,

(Ni)i<θ ∈ KL
λ is big.

2. (N0,N1) ∈ KL
λ and for every sequence (N ′

i )i<θ ∈ KL
λ , N ′

0 = N0,N ′
1 = N1.2

3. If (Ni)i<θ ∈ KL
λ then Ni

∼= N0 over M .

4. If θ < λ+ and (Ni)i<θ ∈ KL
λ and Nθ =

⋃
i<θ Ni. then (Ni)i≤θ ∈ KL

λ .

5. If θ < λ+ and (Ni)i<θ ∈ KL
λ where θ = α + 1, then there is an Nα+1 such that there

exists an isomorphism f : N1 → Nα+1 where f(N0) = N0 and f fixes M .

We call (Ni)i<θ ∈ KL
λ an adequate sequence.

We offer some examples of superlimit classes below:

Example 2.3.16

1We allow M = ∅ to be a possibility.

2We make this restriction since the sequences useful for proving Theorem 3.3.1 are the sequences
which contain (N0,N1) as an initial segment. It would do no harm to omit our demand that every
sequence KL

λ begin with N0 followed by N1 as long (M0,N1) ∈ KL
λ .
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1. Let L := {Ui : i < ω}, where each Ui is a unary predicate. Let T be the first order theory

containing the following sentences/axiom schema:

• ∀x (Ui+1(x)→ Ui(x))

• ∃∞x (¬Ui+1(x) ∧ Ui(x)) for all i < ω.

• ∀xU0(x).

Let K := mod(T ), let ≺K:=≺, let p(x) = {Ui(x) : i < ω}. p(x) has only one non-algebraic

extension to any model M . If N0 ≺K N1 are two models of size λ which both omit p such

that for all i < ω |Ui(N0)| = |Ui(N1)| = λ, then the class of all ≺-extensions of N1 of

cardinality λ which are isomorphic to N1 is a p-superlimit class in λ. Note that the class

of models isomorphic to N0 is a class of locally superlimit models in the sense of Shelah

which are not universal. Hence N0 is not a globally superlimit model. It also is not a

limit model.

In Chapter 3 we discuss extensively ω-limit models (which we recall are what Lessmann

called “superlimit” models) in an AEC K with LS(K) = ω and κ(K, µ) = ω, which are another

example of a superlimit class. In general, ω-limit models are not a superlimit in the sense of

Shelah. Despite this, ω-limit models are “close enough” to being a superlimit that Lessmann

was able to prove his theorem with them. Our Definition 2.3.15 is to abstracts Lessmann’s

method in an effort to provide a more general proof.
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Another place where superlimit models show up is in proving the gap-2 transfer theorem, in

the guise of countable homogeneous models of a first order theory. We discuss this in Chapter

5.

Theorem 2.3.17 (Jensen) If V=L, then a first order theory T has a (κ++, κ) model it has

an (ℵ2,ℵ0) model.

In trying to generalize this theorem to AEC it is tempting to use countable limit models as

a substitute for countable homogeneous models of a first order theory, however one runs into

difficulty in defining orders “compatible enough” with the structure of the existing AEC to

prove a real generalization of the first order theorem. Unfortunately, the presence of an order

also suggests the class of structures will likely be unstable, so in Chapter 5 we work without

the assumption of stability. In particular, this means that limit models may not exist. As a

substitute we introduce a notion of “galois homogeneous” model which generalizes the classical

definition of “homogeneous” model. “Galois homogeneous” models are local superlimits in the

sense of Definition 2.3.1, but in fact it turns out that slightly stronger homogeneity properties

are needed than just being a local superlimit. “Galois homogeneity” is sufficient but may not

be necessary. Weaker, but more complicated conditions for building an (ℵ2,ℵ0)-model are given

in Assumptions 5.3.3 and 5.3.7.

A related notion to “limit model” is that of a “special model”.

Definition 2.3.18 We say a model M ∈ Kλ is α-special over N if there exists a sequence of

models (Mi)i∈λ×α with M0 = N where Mi+1 realizes every galois type over Mi.
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Being α-special is a useful sufficient condition for being a limit model. The following appears

as Theorem 10.9 of (Baldwin, 2009).

Theorem 2.3.19 Let K be µ-galois stable with the amalgamation property. Suppose |M | = µ

and θ < κ+, then a θ-special model over M is a (µ, θ) limit model.

An easy corollary of this theorem is that if K is stable in µ we can construct (µ, θ)-limit

models over any model of size µ.

Corollary 2.3.20 Let K be µ-galois stable with the amalgamation property and joint embedding

property. Suppose M0 ∈ K is of cardinality µ and |A| ≤ µ, A ⊂ C then for some θ < µ+ there

is a (µ, θ)-limit model M in K over M0 with A ⊂M .

proof. Let M ′
0 be any model such that M0 ≺K M ′

0 and A ⊂M ′
0. By µ-stability there are

only µ-types over M ′
0, so we can find M1 of cardinality µ realizing every galois type over M ′

0.

So by induction we can instruct a θ-special model M over M1, since M1 is universal over M0,

M is a limit model over M0 as well. By Theorem 2.3.19 M is a (θ, µ)-limit. �



CHAPTER 3

ANALYSIS OF LESSMANN FOR ℵ1

Lessmann’s result in (Lessmann, 2005) is primarily focused on extending the main result of

(Grossberg and VanDieren, 2006a), namely:

Theorem 3.0.1 (Grossberg, VanDieren) Suppose K is categorical in λ+ and ξ-tame for

LS(K) < ξ < λ, K has arbitrarily large models, AP, and JEP. Then K is categorical in all

κ ≥ λ+. If λ = LS(K) then if K is λ and λ+ categorical then K is categorical in all κ > λ+.

The additional strength of the result in Lessmann is that he is able to remove the need

for categoricity in the Löwenheim number if LS(K) = ω. However, along the way, Lessmann’s

proof of this fact yields the following theorem, which is interesting in its own right (which we

recall from the previous chapter).

Theorem 3.0.2 (Lessmann) Let K be an AEC satisfying AP in ω, JEP in ω, LS(K) = ω,

and that there are only countably many galois types over any countable model. If there exists

a Vaughtian pair of saturated models in LS(K)+ then there exists a two cardinal model in

LS(K)+.

It was our hope that this theorem would generalize to the context of “superstable AEC”.

That is, we had hoped that we could prove the following conjecture:

34
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Conjecture 3.0.3 Let K be an AEC satisfying AP in LS(K), JEP in LS(K), and K is “su-

perstable”. If there exists a Vaughtian pair of saturated models in LS(K)+ then there exists a

two cardinal model in LS(K)+.

Our initial hope was to use uniqueness of limit models, discussed in further in Chapter 4, to

extend Lessmann’s result to AEC with arbitrary Löwenheim number. Unfortunately we were

unable to utilize either the theorem or the construction used to prove it to accomplish this goal.

We discuss the difficulties we encountered in this endeavor in Chapter 4, Section 4.3. Upon

further investigation, we were able to directly generalize many of Lessmann’s results to the case

where LS(K) > ω. However, the key combinatorial argument that shows (ω, ω)-limits models

are super-limit models is dependent on combinatorial properties unique to countable ordinals.

While we were unable to extend Lessmann’s result as desired, we have been able to isolate, as

Definition 2.3.15 key sufficient conditions for proving Conjecture 3.0.3. In Section 3.3 we offer a

proof of Conjecture 3.0.3 from the existence of a p0 superlimit Class. In Section 3.4 we deduce

the result Lessmann already proved from our abstract framework.

3.1 Big types and Quasiminimality

We examine further the properties of big and quasiminimal types in this section, with an

eye toward using these properties to prove results in the vein of Theorem 2.3.14.

Assumption 3.1.1 Throughout this chapter we fix an AEC K where LS(K) = λ, K satisfies

AP and JEP in λ, K has models in λ+, and K is λ-stable. We fix also a “λ-monster model”

C. Note that we are not assuming λ+-categoricity.
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We move on now to “quasiminimality”. While non-splitting types have some degree of

stationarity, we introduce the notion of “quasiminimal type” which has a greater degree of

stationarity. First we introduce big types and what it means for a type to be “non-algebraic”

in an AEC since these notions are referred to in the definition of “quasiminimal type”.

Definition 3.1.2 A galois type p ∈ S(M ) is non-algebraic1

Definition 3.1.3 Let p ∈ S(M ), where |M | = LS(K), we say p is big if p has a non-algebraic

extension to any M ′ where |M ′| = LS(K).

Definition 3.1.4 A type p ∈ S(M ), where |M | = λ, is quasiminimal if p has a unique big

extension in S(M ′) for every M ′ of cardinality λ with M ≺K M ′.

It follows clearly from the definition that if p ∈ S(M ) is big then so is any restriction p � N

where N ≺K M . It’s also fairly clear that if p has a non-algebraic extension to a model of

universal over M , p is big, in fact this condition is necessary as well as sufficient. This next

proposition also justifies the terminology “big”, as we show that a type being big is equivalent

to being realized many times in the monster model. The following appears as Proposition 2.3

of (Lessmann, 2005).

Proposition 3.1.5 Let p ∈ S(M ) where |M | = λ, the following are equivalent:

1There is some potential for confusion as the notion of “non-algebraic” does not generalize the classical
notion of “algebraic” for first-order syntactic types. For example, if T is the (incomplete) first order
theory of fields, then tpsyntactic(i/Q) will be “algebraic” in the classical sense, while tpga(i/Q) is still
unrealized in Q. Of course, if a galois type is algebraic then so is the first order type of the necessarily
unique realization, since a galois type over a model always has a unique realization.
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1. p is big

2. p has a non-algebraic extension to some M ′ universal over M .

3. p is realized λ+ many times in C.

proof. (1) =⇒ (2) is clearly implied by the definition and stability. That is, if p ∈ S(M )

we can build a model N that is universal over p by utilizing λ-stability. By definition of big,

p has a non-algebraic extension to N .

(2) =⇒ (3) is also fairly easy to prove using stability. If we assume that p ∈ S(M )

is realized λ-times only in C we can show p cannot have a non-algebraic extension to any

M ′ universal over M . Suppose for contradiction that this is not the case; that is, that the

realizations of p in C are a set A where |A| = λ but p still has a non-algebraic extension to

M ′ where M ′ is universal over M . Fix N where M ∪ A ⊆ N . By universality of M ′ over

M , there is an embedding f : N → M ′ fixing M . Since p has a non-algebraic extension to

some q ∈ S(M ′) there is a ∈ C \M ′) such that a realizes q. In particular, a realizes p. Clearly

a /∈ f(N ), thus a /∈ A. This contradicts that A contained all realizations of p in C.

(3) =⇒ (1) follows since any model M ′ of cardinality λ cannot contain all of the λ+

realizations of p. �

Lemma 3.1.6 Suppose that M ′ is universal over M , if p ∈ S(M ′) does not split over M then

p is big.
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proof. Let M ′′ be universal over M ′, by Lemma 2.1.2 there exists an extension q of p to

M ′′ that does not split over M . In particular, q is non-algebraic, so by Proposition 3.1.5, p is

big. �

Recall that κ(K, µ) was defined in Definition 2.2.6.

Lemma 3.1.7 If κ(K, λ) ≤ µ, p ∈ S(N ) is non-algebraic and N is a (λ, θ)-limit model where

θ ≤ µ, then p ∈ S(N ) is big.

proof. Let (Ni)i<θ be a limit-sequence for N . Since κ(K, µ) ≤ µ we can find i < θ such

that p does split over Ni, note that N is universal over Ni so by Lemma 3.1.6, p is big. �

Below we show that λ-stability implies that existence of big types and quasiminimal exten-

sions. This is remarked on in (Grossberg and VanDieren, 2006a) (remark 2.8) and appears in

(Lessmann, 2005) with a proof as Proposition 2.4.

Proposition 3.1.8 There exists a big type p ∈ S(M ) for every M ∈ Kλ, furthermore if

p ∈ S(M ) is already big and M ≺K M ′ where M ,M ′ ∈ Kλ then there is a big type p′ ∈ S(M ′)

that extends p.

proof. By λ-stability if M ∈ Kλ we can find a model N ∈ Kλ that is universal over M , then

Proposition 3.1.5 implies that for any non-algebraic q type over N , q � N is big. In particular,

if p ∈ S(M ) is big, then by Proposition 3.1.5 we could take q to be a non-algebraic extension

of p. If M ′ ∈ Kλ is any other extension of M , then there is an embedding f : M ′ → N fixing

M . f−1(q) is a big extension of p to M ′. �
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In (Shelah, 1999) Shelah proved that a quasiminimal type exists over any saturated model

above LS(K) (this result is also available in (Baldwin, 2009) as Theorem 12.23). We prove

an analog of this theorem for limit models; first we introduce a notion of “sufficient coher-

ence” amongst types so that we can carry the necessary construction through limit stages. It

was observed by Laskowski and/or Lessmann and/or Baldwin that this “sufficient coherence”

could be extracted from the inductive conditions given in Shelah’s argument for Claim 3.3 of

(Shelah, 1999). Namely:

Definition 3.1.9 Let (Mi)i<γ be an increasing ≺K-chain of models. A coherent chain of

Galois types is an increasing chain of types pi ∈ S(Mi) with distinguished realizations ai ∈ C

where ai |= pi such that there exists a family of automorphisms (fi,j)i<j<γ with the following

properties:

1. fi,j ∈ aut(C/Mi).

2. fi,j(aj) = ai

3. For i < j < k < γ fi,k = fi,jfj,k

A proof of the following appears in (Baldwin, 2009) Theorem 11.3.1, amongst other sources.

The result is originally claimed without proof in (Shelah, 2001). The same result appears and

is proved in (Grossberg and VanDieren, 2006a) as Lemma 2.12, and in (Lessmann, 2005) as

Proposition 0.13 as well. A similar result that shows increasing chains of non-splitting types

(instead of coherent sequences) admit an upper bound appears as Corollary I.4.14 of Theorem

I.4.10 in (VanDieren, 2006).
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Theorem 3.1.10 If (pi)i<δ, pi ∈ S(Mi), is a coherent chain of Galois types, there exists a

pδ ∈ S(Mδ) that extends pi for all i < δ such that (pi)i≤δ is a coherent-chain.

It should be noted, however, that there may not be a unique choice for pδ. In general, given

a sequence of galois types (pi)i<δ there may be many types q ∈ S(Mδ) such that q |= pi, for

i < δ. Because of this fact, coherence is a stronger condition on a sequence of types than merely

being an increasing sequence; given an arbitrary increasing sequence of types (qi)i<δ there may

be no q ∈Mδ such that qδ |= qi for i < δ. In (Baldwin and Shelah, 2008) Baldwin and Shelah

show that it is consistent with ZFC that there is an increasing chain of types (pi)i<ω2 but no

q |= pi for all i < ω2. Koerwien has provided us with an example axiomatizable in Lω1,ω where

AP does not hold and under CH there is an increasing sequence of types (pi)i<ω1 but no q |= pi

for all for all i < ω1. We briefly sketch this example now.

Example 3.1.11 (Koerwien) Let L = {P,Q,R}∪{En}n<ω where P and Q are unary pred-

icates interpreted as disjoint sets which partition the universe of an element of K. Each En is

a binary relation interpreted as equivalence relations on P such that for each En is divided into

two infinite En+1 classes. We demand that if for all n < ω, En(x, y) holds, then x = y. There is

a natural identification then between an element a in some structure in K and an element of 2ω.

Let R be an extensional binary relation which is a subset of P ×Q. Let Aq := {p ∈ P : R(q, p)}.

We demand that the sets “Aq” are dense in the sense that Aq intersects every En-class for each

n < ω. That is, for some q ∈ Q, p ∈ P , and n < ω there must be some p′ ∈ P such that

En(p, p′) and R(q, p′). such that R(q, p) holds.
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The class described above can be axiomatized in Lω1.ω. The maximal size of any model in

K is 2ℵ0 . Consider the type pM (x), over some model M ∈ K, of an element x such that “x is

in Q, x /∈ M , and for any p ∈ P (M ), ¬R(x, p)”. Since the Aq are dense, for any q, q′ Aq and

Aq′ in a countable structure of Koerwien’s class are isomorphic as trees. Even more strongly

given any two realizations q, q′ |= pM where |Aq| = |Aq′ | = ω, Aq is isomorphic to Aq′ over M .

Fix some maximal model Mω1 (of size continuum) in Koerwien’s class. Under CH, Mω1

admits a filtration of length ω1 by countable models. Fix some filtration (Mi)i<ω1 of Mω1 such

that pi := pMi
is realized in pMi+1

. While each pi is consistent (and pi+1 extends pi), since Mω1

is maximal there cannot be an element a which realizes every pi simultaneously.

We prove now that quasiminimal types exist. The following theorem appears as Proposition

3.2 in (Grossberg and VanDieren, 2006a) and as Propositions 1.5 (the countable case) and 2.6

(the uncountable case) in (Lessmann, 2005), the basic method is present in Theorem 9.5 part 5

of (Shelah, 1999). The proof offered below deals with details omitted in the uncountable case

of (Lessmann, 2005). The proof uses the same underlying ideas as the proof in (Grossberg and

VanDieren, 2006a).

Proposition 3.1.12 Suppose K is λ-galois stable. There exists M ∈ Kλ and p ∈ S(M ) such

that p is quasiminimal. Furthermore if p ∈ S(M ) is big then there is M ′ ∈ Kλ such that there

exists p′ ∈ S(M ′) extending p which is quasiminimal.

proof. Once again the proposition follows from λ-stability. This result is proved in the

same way that one proves λ-stability implies the non-existence of long splitting chains (see for

example Lemma 12.2 of (Baldwin, 2009)). Since we have shown big types exist, its sufficient
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to prove the existence of quasiminimal extension. For the purpose of contradiction suppose

p ∈ S(M) is a big type (so |M | = λ) and there is no quasiminimal extension of p to any

M ′ ∈ Kλ which is a strong extension of M .

Fix κ to be minimal such that λκ > λ+. We will construct a family of models (Mi)i<κ in

Kλ and a collection of types (tpga(aν/M|ν|))σ∈2<κ , with automorphisms (fσ,τ )σ,τ∈2<κ with the

following properties:

1. M∅ = M , p∅ = p.

2. Mi+1 ∈ Kλ is universal over Mi.

3. pσ := tpga(aσ/M|σ|) is a big type.

4. pσ̂0 6= pσ̂1.

5. For each σ < 2<κ, (fη,ν)η⊆τ⊆σ and (tpga(aη/M|η|))η⊆σ form a coherent system. That is:

(a) fη,ν ∈ aut(C/Mη).

(b) fη,ν(aν) = aη

(c) For η ⊆ ν ⊆ σ, fη,σ = fη,νfν,σ

The base case is determined by condition 1.

Suppose we have defined (Mj)j≤i, (tpga(aσ/M|σ|))|σ|≤i and (fσ,τ )σ⊆τ,|τ |≤i. Note that |2i| <

λ; we will define approximations M σ
i+1 of Mi+1 for σ ∈ 2i. We also define approximations

p′σ̂0, p
′
σ̂1 ∈ S(M σ

i+1) of the types pσ̂0, pσ̂1 we want to define in our inductive construction.

In order to do so, we fix some well-ordering αi of 2i and proceed to define the approximations

M σk
i+1 and types p′σk̂0, p

′
σk̂1 by induction on k < αi.
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First we note that pσ0 is a big extension of p. By hypothesis, p has no quasiminimal

extensions, so there is some M σ0
i+1 where Mi+1 ≺K M σ0

i+1 such that pσ0 has two big extensions

p′σ0̂0 6= p′σ1̂1 over M σ0
i+1. Suppose we have defined M

σj
i+1, pσĵ0, and pσĵ1 for j ≤ k. By

Proposition 3.1.8 pσk+1
has a big extension qk+1 to M σk

i+1. Since p has no quasiminimal extension

there must be a M
σk+1

i+1 extending M σk
i+1 and big types p′σk+1̂0 6= p′σk+1̂1 over M

σk+1

i+1 which

both extend qk+1. In particular, both p′σk+1̂0 and p′σk+1̂0 extend pσ. At limit stages γ let

Mγ =
⋃
j<γ M

σj
i+1. Again there is a big extension qγ of pσγ to Mγ . qγ is not quasiminimal so

there is some model M
σγ
i+1 extending Mγ and distinct big types p′σγ̂0, p

′
σγ̂1 ∈ S(Mγ) extending

pσγ .

Let Mi+1 be a universal extension of Mi with
⋃
j<αi

M
σj
i+1 ≺K Mi+1. For n = 0, 1 let pσ̂n

be a big extension of p′σ̂n to Mi+1. Fix realizations aσ̂0, aσ̂1 ∈ C of, respectively, pσ̂0, pσ̂1.

Since pσ̂n extends pσ (for n = 0, 1) there are automorphisms fσ,σ̂n ∈ aut(C/Mi) such that

fσ̂n(aσ̂n) = aσ for n = 0, 1. For τ ⊆ σ and n = 0, 1 define fτ,σ̂n := fτ,σfσ,σ̂n.

At limit stages γ, let Mγ =
⋃
i<γ Mi, note that Mγ is a limit model. Let σ ∈ 2γ , by

induction that (pη, fη,ν)η⊆ν(σ form a coherent-chain. So by Theorem 3.1.10 there is a aσ and

maps fη,σ so that (pη, fη,ν)η⊆ν⊆σ form a coherent-chain. Since Mγ is a limit model, Lemma

3.1.7 implies that for each σ ∈ 2γ , pσ is big.

This completes the desired construction. By applying Theorem 3.1.10 to (pσ, fσ,τ )σ⊆τ⊆ν for

each ν ∈ 2κ, we construct 2κ ≥ λ+ galois types over a model
⋃
i<κ Mi ∈ Kλ, contradicting

λ-stability. �
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Proposition 3.1.13 Suppose that p ∈ S(M ) is quasiminimal and that f : M → N is an

isomorphism, then f(p) is also quasiminimal.

proof. Suppose not, then q := f(p) has two big extensions q1 6= q2 over some N ′ where

N ≺K N ′. Extend f−1 to g to an automorphism of C and let p1 = g(q1), p2 = g(q2). If

p1 = p2 then there is some h ∈ aut(C/g(N ′)) such that for some a1 |= p1, a2 |= p2, h(a1) = a2.

But notice that g−1(ai) |= qi and g−1hg : a1 7→ a2 while fixing N ′, so q1 = q2, resulting in a

contradiction. �

3.2 Vaughtian Pairs

We note that the analogue of Vaught’s theorem that Lessmann proved in (Lessmann, 2005),

has as it’s hypothesis not just the existence of a Vaughtian pair in a larger cardinal, but a

Vaughtian pair of saturated models. This assumption is made because in Proposition 3.2.2 we

show that if a p-Vaughtian pair of saturated models exists then p is a big type. If p is not big,

then it is quite easy to produce p-Vaughtian pairs.

In the first order case, merely demanding a syntactic type p is non-algebraic sufficient to

show that p has arbitrarily many realizations. In the AEC case, however, this is not the case.

In the following example due to David Kueker, we describe a p-Vaughtian pair of non-saturated

models where p is non-algebraic (in the AEC sense) but p has exactly one realization in the

monster model. In certain sources, such as (Baldwin, 2009), a Vaughtian pair of saturated

models is referred to as a “true Vaughtian pair”.
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Example 3.2.1 Let K be an AEC in vocabulary L = {U} where U is a unary predicate. The

models of K are those L structures M such that ¬U(M ) is an infinite set and |U | ≤ 1, where

≺K is L -substructure

In the above example any two models M ≺K M ′ that have |U | = 0 form a p-Vaughtian

pair, where p is the type of the unique element a ∈ C such that C |= U(a). However, if p

clearly is not big. In particular, though p is not algebraic in the sense that p is not realized

in either model of the Vaughtian pair, p has only one realization in any L -structure in K. If,

however, we assume that both models M ,M ′ are saturated, then we are able to rule out such

pathological examples.

We now show that if there is a p-Vaughtian pair (p,M ,M ′) where M ,M ′ are |dom(p)|+-

saturated then p is in fact a big type.1

Proposition 3.2.2 Let (p,M ,M ′) be a p-Vaughtian pair where |M | = |M ′| ≥ λ are

max(|dom(p)|, λ)+-saturated. Then p is a big type.

proof. Let (p,M ,M ′) be as in the hypothesis to the proposition. Let N := dom(p) and

let κ := max(|N |, λ)+. By the definition of Vaughtian pair, p has a non-algebraic extension to

M , say q = tpga(a/M ) for some a ∈ C.

Suppose for contradiction that p has less than λ realizations in C, then let A ⊆M be the

set of realizations of p in M , note |A| ≤ κ. By downward Löwenheim-Skolem we can find N ′

1Our result is quite close to Proposition 1.16 of (Lessmann, 2005) but we are careful to keep track of
exactly how much saturation is required.
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such that N ∪A ⊆ N ′ ≺K M and |N ′| ≤ κ. Now consider p′ = tpga(a/N ′); by κ+-saturation

of M , p′ is realized by some a′ ∈M . Since p′ extends p, a′ |= p as well, but a /∈ A, contradicting

that A contained all realizations of p in M .

Thus p must be a big type. �

We will show in the next corollary that the previous proposition allows us to assume without

loss of generality that, given a p-Vaughtian pair of sufficiently saturated models, p is quasimin-

imal.

Corollary 3.2.3 Let (p,M ,M ′) be a p-Vaughtian pair where |M | = |M ′| ≥ λ are

max(|dom(p)|, λ)+-saturated. Then there is a quasiminimal type q extending p such that (q,M ,M ′)

is a Vaughtian Pair.

proof. By Proposition 3.2.2, p is big. Thus, by Proposition 3.1.12 p extends to a quasimini-

mal type q. By max(|dom(p)|, λ)+-saturation of M we may assume that dom(q) ≺K M . Now,

since q extends p any realization of q also realizes p, hence q(M ′) ⊆ p(M ′) ⊆M , as required

for (q,M ,M ′) to be a q-Vaughtian pair. �

3.3 An Abstract Version of Lessmann’s Two Cardinal Theorem

In this section we show that the existence of p0-superlimit class in λ implies the existence

of a two cardinal model in λ+.

Theorem 3.3.1 Let K be an AEC with LS(K) ≤ λ, let KL
λ be a (p, λ)-superlimit class1, then

there is a two-cardinal model N in Kλ+. In particular, N will omit p.

1(see Definition 2.3.15)



47

proof.

Suppose that N0,N1 ∈ KL
λ are the distinguished models in the superlimit class, let p ∈

S(M ) be as in Definition 2.3.15. We construct adequate sequences1, along with a sequence of

types (pi)i<λ+ and isomorphisms (fi)0<i<λ+ inductively as follows:

• Begin with (N0,N1). Note that (N0,N1) ∈ KL
λ by axiom 2 of the superlimit class

definition. Let f1 : N0 → N1 be an isomorphism that fixes M .

• Suppose that we have defined (Ni)i<θ ∈ KL
λ for a limit θ. Then by axiom 4 of the

superlimit class definition if Nθ =
⋃
i<θ Ni then (Ni)i≤θ ∈ KL

λ . Let fθ : N0 → Nθ be an

isomorphism that fixes M .

• Suppose that we have defined (Ni)i≤θ ∈ KL
λ , for θ ≥ 1. Note that by superlimit class

axiom 5 we can find Nθ+1 and an isomorphism fθ+1 : N1 → Nθ+1 such that fθ+1(N0) =

Nθ and fθ+1 fixes M .

Define pi to be the quasiminimal extension of p to Ni.

Claim 3.3.2 pi cannot be realized in Ni+1.

Note that by construction we have an isomorphism fi+1 : N1 → Ni+1 such that f(N0) = Ni

and f fixes M . Since p0 is not realized in N1, f(p0) cannot be realized in Ni+1. Both pi and

f(p0) are quasiminimal extensions of p to Ni, since f fixes M . But, since p has a unique

quasiminimal extension to Ni by axiom 1, pi = f(p0). Hence pi cannot be realized in Ni+1.

1Also defined in Definition 2.3.15
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Let N =
⋃
i<ω1

Nj ; We now argue that N omits p0. Suppose for contradiction a ∈ N

realizes p0. Clearly a /∈ N0, since p0 is a non-algebraic type over N0. So for some j < ω1,

a ∈ Nj+1 \Nj . By axiom 1d of the superlimit class, q := tpga(a/Nj+1) is big and q extends p0,

so by quasiminimality of p0, q = pj , but pj is not realized in Nj+1 by Claim 3.3.2. So we arrive

at a contradiction. Hence N omits p0. �

3.4 A Superlimit in ℵ0

Having developed an abstract framework and proved an analogue of Vaught’s Two Cardinal

Theorem in this framework, we now offer an alternate proof of Lessmann’s Two Cardinal

Theorem by showing that if there is a Vaughtian pair of ℵ1 saturated models then there is a p0

such that the subclass of (ω, ω)-limit models is a p0-Superlimit class for ℵ0. For sake of brevity,

will often refer to (ω, ω)-limit models as ω-limit models for the remainder of this section.

It’s easy to see, by Proposition 2.2.5, that any two ω-limit models over isomorphic base

models are isomorphic, indeed all countable limit models over isomorphic base models are

isomorphic. The difficulty is finding a condition which will guarantee the union of a countable

≺K-increasing sequence of ω-limit models is a limit model; providing a method for doing so is

a key insight of (Lessmann, 2005).

It’s perhaps worth noting that in (Lessmann, 2005) the analysis is done using ω × ω-limit

models. The advantage of using ω×ω-limit models, instead of ω-limit models or any randomly

chosen countable limit ordinal is that given two limit sequences (Mi)i<ω×ω and (Ni)i<ω×ω over

isomorphic bases, one can not only construct an isomorphism f :
⋃
i<ω×ω Mi →

⋃
i<ω×ω Ni,

but also have f �
⋃
i<n×ω Mi be an isomorphism onto

⋃
i<n×ω Ni for any n < ω. However,
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we proceed with the weaker uniqueness properties held by ω-limit models, though it has the

unfortunate consequence of making some arguments more cumbersome.

We now define a partial order on countable limit sequences. While not exactly the same

as Lessmann’s partial order in (Lessmann, 2005), which he writes as“<∗”, we draw inspiration

from his definition. Shortly after his Proposition 1.12 in (Lessmann, 2005), Lessmann defined:

Definition 3.4.1 Let (Mi)i<α and (Ni)i<β be ω-limit sequences. (Mi)i<α <∗ (Ni)i<β when

for any i < α there exists some j < β such that Nj is universal over Mi.

We demand more uniformity in our definition:

Definition 3.4.2 • Given two limit sequences, (Mi)i<α, (Ni)i<β we say that (Ni)i<β k-

dominates (Mi)i<α if for all i < α there exists k < ω such that Ni+k is a proper universal

extension of Mi and
⋃
i<ω Ni is a proper extension of

⋃
i<ω Mi. We write (Mi)i<α <

k
L

(Ni)i<β.

• Given two limit sequences, (Mi)i<α, (Ni)i<β we say that (Ni)i<β eventually -dominates

(Mi)i<α if for some k (Mi)i<α <
k
L (Ni)i<β. We write (Mi)i<α <L (Ni)i<β.

It is perhaps worth noting that the ordering above is obviously transitive, hence is a partial

order on limit-sequences. The only natural way apparent to define k-domination on limit

models, M and M ′ seems to be “M ′ k-dominates M if there exist limit sequences (Mi)i<α <
k
L

(M ′
i )i<β such that M =

⋃
i<α Mi,M ′ =

⋃
i<β M ′

i ”. While this provides a well-defined relation

of limit models, we were unable to demonstrate this notion is transitive. Given limit models

M ,M ′,M ′′ with M ′′ k-dominating M ′ and M ′ k-dominating M , we are not aware of a proof
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that M ′′ k-dominates M . The key obstacle is being able to answer the following question

positively:

Question 3.4.3 If you are given two limit models M and N and respective limit sequences

(Mi)i<α, (Ni)i<β such that (Mi)i<α <
k
L (Ni)i<β as well as an additional limit sequence (M ′

i )i<α′

for M , can you find a limit sequence (N ′
i )i<β′ for N such that for some k′, (M ′

i )i<α′ <
k′
L

(N ′
i )i<β′?

The fact <L may not be a partial order on limit models is what motivates us to define a

superlimit class in terms of adequate sequences, instead of axiomatizing the properties of “<′′L

as a partial order. We define a notion of “adequate sequence” below that we will eventually

prove is an adequate sequence in the sense of Definition 2.3.15.

Definition 3.4.4 Let α be an ordinal such that 1 < α < ω1. We say a sequence of limit

models, indexed by their superscripts1 (N i)i<α is an N 0-adequate sequence if there exist limit

sequences (N i
n )n<ω for every i < α such that for all i < j < α (N i

n )n<ω <L (N j
n )n<ω where

N i
0 = N 0

0 for all i < α.

Below we reprove a special case of Proposition 2.2.5 because we want to notice a slightly

stronger condition holds of the isomorphism constructed than is typically relevant. The proof

is a standard back-and-forth argument.

1We choose to index an adequate sequence (N i)i<α of limit models by superscripts so that when we
fix limit sequences witnessing each N i is a limit model we may write them as an array (N i

n )i<αn<ω.
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Lemma 3.4.5 Given limit-sequences (Mi)i<ω and (Ni)i<ω there exists an isomorphism f :⋃
i<ω Mi →

⋃
i<ω Ni and f(Mn) ≺K Nn+1. Furthermore, given an isomorphism h : M0 → N0

then f may be taken to extend h. Finally, if M0 = N0 then f can be chosen to fix M0 = N0

pointwise.

proof. Let (Mi)i<ω, (Ni)i<ω be as in the hypothesis to the lemma. We will construct f as

the limit of a sequence of maps (fi)i<ω constructed inductively, where each fi : Mi → Ni+1.

We also construct a sequence of maps (gi)i<ω where gi : Ni+1 →Mi+1 and gi+1fi = IdMi
.

In the case M0 = N0 we simply choose f0 := IdM0 = IdN0 , in the case h : M0 → N0 is an

isomorphism we take f0 := h. Otherwise, we notice that by joint embedding we can find an M

where |M | = ω such that M0 and N0 can both be embedded in M . Without loss of generality

N0 ≺K M .

Since N1 is universal over N0 we can embed M into N1 over N0, so without loss of generality

M ≺K N1. Since N1 is universal over N0 it follows that N1 is universal over M . We let

f0 : M0 →M be a strong embedding of M0 into M . Note that f(M0) ≺K M ≺K N0. Extend

f0 to f∗0 ∈ aut(C). M0 ≺K f∗0
−1(N1), so since M1 is universal over M0 there is an embedding

h of f∗0
−1(N1) into M1 that fixes M0. Let g0 = hf∗0

−1 � N1. Since f0 was defined only on M0,

which is fixed by the embedding h, g0 extends f−1
0 .

Suppose that we have defined (fi)i≤n, (gi)i≤n. We now must define fn+1 and gn+1:

Inductively, gn : Nn+1 → Mn+1. Extend gn to an automorphism g∗n ∈ aut(C), since Nn+2

is universal over Nn+1 we can find some embedding h of g∗−1
n (Mn+1) into Nn+2 over Nn+1, let
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fn+1 = hg∗−1
n . Note that since h fixed Nn+1 which contains the image of fn, fn+1 extends fn.

Note that fn+1 also extends g−1
n , since dom(gn) = Nn+1 which, we have noted, was fixed by h.

Similarly, let f∗n+1 be an extension of f to an automorphism of C, let h be an embedding

of f∗−1
n+1(Nn+1) into Mn+2 over Mn+1, and let gn+1 := hf∗−1

n+1 � Mn+1. Again, since h fixes

Mn+1, which contains the image of gn, gn+1 extends gn. Also, since dom(fn+1) = Mn+1, which

is fixed by h, gn+1 extends f−1
n . �

We now prove closure under <L-chains. Unfortunately, we have not been able to generalize

this result to (λ, θ)-limit models for θ < λ+ where λ = LS(K) > ω. One can demonstrate an

analogue of this result holds for λ > ω when θ = cf(λ); however, the argument below is not

valid if θ 6= cf(λ). We only prove the proposition for ω-limit models, since this is the class

where we are desire to apply the result.

Proposition 3.4.6 Given a <L-sequence of ω-limit sequences1 (M j
i )j<αi<ω for α a countable

ordinal,
⋃
j<α M j

ω is an ω-limit model. Furthermore, there is a limit sequence (M α
i )i<ω for

M α such that (M j
i )j≤αi<ω is a <L-sequence and M α

0 = M 0
0 .

proof. If α is not a limit ordinal then the result is trivial. If α = β + 1 then (M β
i )i<ω

satisfies the desired conditions.

So suppose α is a countable limit ordinal. We must find a limit sequence (M α
i )i∈ω to witness

that M α
ω :=

⋃
i<α M i

ω is an ω-limit model.

1For a fixed j, (M j
i )i<ω is a limit sequence.



53

Since α is a countable ordinal we may fix a cofinal sequence (αi)i<ω. Without loss of

generality we assume α0 = 0. We define (M α
n )n<ω and a sequence of integers (`n)n<ω inductively

with the following properties:

1. M α
0 = M 0

0 , `0 = 0.

2. M α
n = M αn

`n

3. M α
n+1 is universal over M α

n

4. For all j where 0 ≤ j < n, there exists k ≤ `n, (M
αj
i )i<ω <

k
L (M αn

i )i<ω

The base case is determined by the first condition above. Suppose that we have already

chosen `m and M αm
`m

for 0 ≤ m ≤ n; we must define `n+1 and M
αn+1

`n+1
. Since the (M j

i )j<αi∈ω is a

<L sequence, for each i, j < n + 1 there is some ki,j < ω such that (M αi)i<ω <
ki,j
L (M αj )i<ω.

Choose `n+1 = max ({ki,j : 0 < i < j < n+ 1} ∪ {n}).

Since `n+1 is at least kn,n+1, M
αn+1

`n+1
will be universal over M αn

`n
, thus (M α

n )n<ω is a limit

sequence as desired. All that remains is to show that if j < α then (M j
n)n<ω <L (M α

n )n<ω.

That is, if we fix j < α and we must find k < ω such that for any n < ω M α
n+k is universal over

M j
n .

Fix m so that αm < j < αm+1, let k := kj,αm+1 . Note that (`n)n<ω is increasing, so we can

find some N such N > m + 1 and `N > k. We know then that for any n < ω that M
αm+1

n+k

is universal over M j
n and we know for n where N ≤ n < ω that M α

n+1 = M α
`n+1

is universal

over M
αm+1

n+k . Since `N > k, it follows that for all n < ω, M αm+1
n+`N

is universal over M j
n , thus

(M j)n <
`N
L (M α

n )n<ω. �
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Corollary 3.4.7 Suppose (N j)i<α is an N0-adequate sequence for some countable limit ordi-

nal α. If N α :=
⋃
j<α N j then (N α)i≤α is an N0-adequate sequence and N 0 ∼= N α over

N 0
0 .

proof. Since (N j)i<α is N 0-adequate there exist limit sequences (N j
n )j<αn<ω where N j

n = N 0
0

and if i < j < α then (N i
n )n<ω <L (N j

n )n<ω. So by Proposition 3.4.6 we can find a limit

sequence (N α
n )n<ω such that N α

0 = N 0
0 = N0, for all i < α, (N i

n )n<ω <L (N α
n )n<ω, and

N α :=
⋃
n<ω N α

n =
⋃
n<ω,j<α N j

n . By Proposition 3.4.5 N α ∼= N 0 over N 0
0 . �

Proposition 3.4.8 Suppose that (N j)j≤α is a (N 0)-adequate sequence for α ≥ 1, then there

exists N α+1 such that (N j)j≤α+1 is a N 0-adequate sequence and there is an isomorphism

f : N 1 → N α+1 such that f(N 0) = N α and f fixes N 0
0 -pointwise.

proof. Suppose (N j)j≤α is an N 0-adequate sequence and fix limit sequences (N j
n)j≤αn<ω

which witness this. By Proposition 3.4.6 we know that there is an isomorphism f : N α → N 0

which fixes N 0
0 pointwise and satisfies f(N α

n ) ≺K N 0
n+1. Extend f to F ∈ aut(C/N 0

0 ) and let

N α+1 := F−1(N 1),N α+1
n := F−1(N 1

n ). Since F fixes N 0
0 , N α+1

0 = N 0
0 . Clearly the N α+1

n

witness that N α+1 is a limit model over N 0
0 , since N 1 is a limit model over N 0

0 .

We must argue that for any i < α + 1, (N i
n )n<ω <L (N α+1

n )n<ω. Fix k < ω such that

(N 0
n )n<ω <

k
L (N 1

n )n<ω. So for n < ω, N 1
n+k is universal over N 0

n . We know that F (N α
n ) ≺K

N 0
n+1, we know N 1

n+1+k is universal over N 0
n+1, hence also F (N α

n ). Thus, it follows that

F−1(N 1
n+1+k) = N α+1

n+1+k is universal over F−1(F (N α
n )) = N α

n . So (N α
n )n<ω <

k+1
L (N α

n )n<ω.
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Fix i < α+ 1, we know that for some ` < ω, (N i
n )n<ω <

`
L (N i

n )n<ω. It should be clear that

(N i
n )n<ω <

`+1
L (N i

n )n<ω. �

Below we provide a reformulation of Lessmann’s theorem in our terminology. In it’s original

form it appears in the body of the proof of Proposition 1.18. We have isolated it and stated it

separately below.

Lemma 3.4.9 (Lessmann) If there is a p-Vaughtian pair of ℵ1-saturated models M0,M1 ∈

Kµ then there is a p0-Vaughtian pair of ω-models (N 0,N 1) in ℵ0 such that:

1. p0 is a big extension of some quasiminimal pM where N 0,N 1 are limit models over M .

2. There are limit sequence (N 0
n )n<ω <

0
L (N 1

n )n<ω where N 0
0 = N 1

0 = M .

proof. Suppose that (p,M0,M1) is a Vaughtian pair of ℵ1-saturated models in µ. By

Corollary 3.2.3, we may replace p by pM ∈ S(M ) where pM is quasiminimal and M ≺K M0,

|M | = ω. Let A = pM (M1). Since (pM ,M0,M1) is a Vaughtian Pair, A = pM (M0).

We will inductively construct limit sequences N 0
n ,N

1
n to satisfy the following properties:

1. N 0
0 = N 1

1 = M

2. N 0
n ≺K M0,N 1

n ≺K M1.

3. A ∩N 1
n ⊆ N0

n+1.

4. N 1
n is universal over N 0

n .

�



56

Let N 0
0 = N 1

1 = M . Given (N i
j )j≤n we define N 0

n+1 and N 1
n+1 as follows. By downward

Löwenheim-Skolem we can find N ≺K M0 such that A∩N1
n ⊆ N0

n+1 and |N | = ω. By stability

and ℵ1-saturation of M0 we can find N 0
n+1 that is universal over N 0

n and contains N . By

stability and ℵ1-saturation of M 1 we can choose N 1
n+1 ≺K M1 to be universal over both N 0

n

and N 1
n .

Set N i :=
⋃
n<ω N i

n for i = 0, 1. By Proposition 3.1.8 pM has a big extension p0 ∈ S(N 0).

By quasiminimality of pM , p0 is quasiminimal. We argue that p0 is not realized in N1 \N0. If

a ∈ N1 \N0, for some n < ω, a ∈ N1
n, but then a ∈ N0

n+1, contradicting that a /∈ N0.

We note that by condition 4, (N 0
n )n<ω <

0
L (N 1

n )n<ω.

Corollary 3.4.10 If there is a p-Vaughtian pair of ℵ1-saturated models (M0,M1) in K then

there is a p0-Vaughtian pair of ω-limit models (N 0,N 1) in ℵ0 such that:

1. p0 is a quasiminimal extension of some pM ∈ S(M )

2. N 0 ∼= N 1 over M .

3. The is a unique quasiminimal extension of pM to any model N i where for some θ,

i < θ < λ+ (N i) is an N 0-adequate sequence.

4. Any non-algebraic extension of p0 to a model N i, where for some θ, i < θ < λ+ (N i) is

an N 0-adequate sequence, is big.

proof. By Lemma 3.4.9 we can find a p0-Vaughtian pair (N 0,N 1) where p0 extends a

quasiminimal type pM . It follows that p0 is itself quasiminimal. Furthermore, since pM is

already quasiminimal, there is a unique quasiminimal extension of pM to any model M ∈ Kω
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such that N 0 ≺K M . In particular this holds if M = N i where for some θ, i < θ < λ+

(N i)i<θ is an N 0-adequate sequence.

By 3.1.7 any non-algebraic type over a limit model is big, so in particular this holds for

any non-algebraic extension of p0 to a model N i, where for some θ, i < θ < λ+ (N i)i<θ is an

N 0-adequate sequence.

Since (N 0
n )n<ω <

0
L (N 1

n )n<ω are N 0-adequate, by Proposition 3.4.5 they are isomorphic

over N 0
0 = N 1

0 = M . �

Theorem 3.4.11 If there exists a p-Vaughtian pair of ℵ1-saturated models then

KL
ω := {(M i)i<α : 0 < α < ω1, (M i)i<α is an N 0 − adequate sequence and M 1 = N 1}

is an ω-superlimit class, where p0, N 0, and N 1 are as in Lemma 3.4.9 and Corollary 3.4.10 .

proof. By Corollary 3.4.10, all the conditions of superlimit axiom 1 are satisfied. By defini-

tion of KL
ω , axiom 2 holds. By Lemma 3.4.5 axiom 3 holds. By Corollary 3.4.7 axiom 4 holds.

By Proposition 3.4.8 axiom 5 holds as well. �

We finish by deducing the result Lessmann originally proved in (Lessmann, 2005) as Propo-

sition 1.18:

Corollary 3.4.12 (Lessmann) If there exists a p-Vaughtian pair of saturated models in ℵ1

then there exists a two cardinal model in ℵ1.
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proof. By the Theorem 3.4.11, if there exists a p-Vaughtian pair of saturated models there

is a p0 such that KL
ω is a superlimit class in ℵ0. By Theorem 3.3.1 there is a two cardinal model

in ℵ1. �



CHAPTER 4

UNIQUENESS OF LIMIT MODELS

As noted in Chapter 2 there is a nice equivalence between superstability and uniqueness of

limits in elementary classes. There is, then, a natural desire to have an analogous result for

abstract elementary classes. Various published (and a few unpublished) works have addressed

this question, namely (Villaveces and Shelah, 1999), (VanDieren, 2006), (Grossberg et al., 2012).

and (Zambrano and Villaveces, 2010). (Shelah, 2008) investigates uniqueness of limit models in

the more abstract framework of good frames; while good results are obtained by this method,

it’s less clear when a concrete AEC with µ-splitting satisfies Shelah’s “good frame” axioms.

Outside of good frames, as of yet, there has not yet been a satisfactory proof that for any

σ1, σ2 < µ+ any (µ, σ1)-limit is isomorphic to a (µ, σ2) limit model except under the relatively

strong hypothesis of µ+ categoricity (plus other conditions). At the same time, there is no

known counterexample of two non-isomorphic limit models in an Abstract Elementary Class

that should qualify as “superstable”. (Example 2.2.8 takes place in a strictly stable elementary

class). The following question, which is settled by Theorem 2.2.11 in the elementary case,

remains open in the abstract case:

Question 4.0.1 Let K be an Abstract Elementary Class and µ > LS(K) > ℵ0, suppose that

K satisfies the µ-amalgamation property and the µ-joint embedding property. If K is µ-Galois

59



60

stable and κ(K, µ) = ω, are any two (µ, σ1), (µ, σ2)-limit models over M are isomorphic over

M ?

The strongest published result is VanDieren’s work in the erratum to (VanDieren, 2006).

The following theorem appears in (VanDieren, 2012):

Theorem 4.0.2 (GCH,φµ+(Sµ
+

cf(µ)))(VanDieren) 1 Assume that K is a µ+-categorical ab-

stract elementary class with no maximal models, for some µ ≥ LS(K). Further assume that

GCH and φµ+(Sµ
+

cf(µ)) hold. Let θ1 and θ2 be limit ordinals < µ+ . Under Hypothesis 1,2

if M1 and M2 are (µ, θ1)- and (µ, θ2)-limit models over M , respectively, then there exists an

isomorphism f : M1
∼= M2 such that f � M is the identity mapping.

We offer a small result that is potentially useful in the program of deriving uniqueness of

limit models from some superstability-like assumption in µ, namely Proposition 4.1.5, which

eliminates the need to assume disjoint amalgamation to prove one of the necessary steps of

the proof. Since disjoint amalgamation is provable from µ+ categoricity and the existence of

arbitrarily large models, there is no immediate strengthening of the result in (VanDieren, 2006),

however there is potential application toward answering Question 4.0.1 positively.

In this chapter we sketch the new result in Section 4.1 , then explain how the result fits into

the general program of research toward answering Question 4.0.1 in Section 4.2. Finally, we

end with a brief discussion regarding the applicability of uniqueness of limits towards upward

1Details on the set-theoretic principle “φµ+(Sµ
+

cf(µ))” can be found in (VanDieren, 2006) or Appendix

C of (Baldwin, 2009).



61

categoricity transfer1. There is no new research present in Section 4.2 merely a discussion of

existing work and how Proposition 4.0.1 fits into the broader program of work on uniqueness

of limit models. Existing work done towards the goal of proving uniqueness of limit models has

proceeded through a careful analysis of the situation in a fixed cardinal µ.2 For this reason it

is convenient to fix some default values for certain parameters and omit them from discussion

for the rest of this chapter, unless they deviate from these default values.

Notation 4.0.3 Unless otherwise stated, for the remainder of this section all models are as-

sumed to be of size µ, limit models are (µ, θ)-limit models for some θ < µ+, and all splitting

discussed is µ-splitting.

4.1 Towers

We define a “tower”, which is an increasing sequence of limit models, along with a fixed se-

quence of non-splitting extensions of fixed sequence of types. Towers were introduced by Shelah

and Villaveces in (Villaveces and Shelah, 1999), though similar objects were previously defined

by Shelah in (Shelah, 2001). In (Zambrano and Villaveces, 2010) Zambrano and Villaveces

generalize towers to the context of metric AECs.

Definition 4.1.1 1. Let I be an infinite well order. A tower is a triple (M̄ , a, N̄ ) where

M̄ = 〈Mi : i ∈ I〉 is a ≺K increasing sequence of limit models of cardinality µ, a =

1in particular, the kind of results we explore in Chapter 3) in Section 4.3

2Ideally, such an analysis would be then be applicable to any µ ≥ LS(K), currently the existing
theorems are only valid for a µ ≥ LS(K) such that K is µ+ categorical.
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〈ai : i ∈ I〉 and N̄ = 〈Ni : i ∈ I〉 where ai ∈ Mi+1 \Mi, Mi is a limit over Ni and

tpga(ai/Mi) does not µ-split over Ni. Let K∗µ,I denote the class of such towers.

2. We say a tower (M̄ , a, N̄ ) ∈ K∗µ,I is continuous if for a limit i ∈ I Mi =
⋃
j<i Mj.

Note that while each model Mi in a tower (M̄ , a, N̄ ) is a limit model, the union
⋃
i∈I Mi

of models in the tower need not be a limit model, that is, there is no requirement that for i < j,

Mj is universal over Mi. We also do not demand that (M̄ , a, N̄ ) be continuous, that is, we do

not demand that for a limit ordinal i ∈ I Mi =
⋃
j<i Mj . However, by adding the additional

assumptions that a tower is “relatively full” (which we define later) and continuous we can show

that the union of the models comprising such a tower is a limit model. We index towers by

generic well orders instead of ordinals because at various points we will want to take extensions

of a well-order I that are not end extensions, which is often assumed to be the natural notion

of extension for ordinals.

Continuity is a significant property of a tower. Unfortunately it does not seem to be possible

to work only with continuous towers, since certain extension results proved in (Grossberg et

al., 2012) or (VanDieren, 2006) are proved in a manner that destroys continuity of a tower. On

the other hand certain results, in particular our Proposition 4.1.5 or the analogous Proposition

II.6.7 in (VanDieren, 2006) require continuity of the tower.

We note that stability implies the existence of a tower in K∗I for any well ordered I.
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Proposition 4.1.2 If I is well-ordered and κ(K, µ) ≤ µ1 then there exists some (M̄ , a, N̄ ) ∈

K∗I .

proof. We will construct (M̄ , a, N̄ ) by induction on i ∈ I. Let θ = κ(K, µ); by hypothesis

θ ≤ µ.

By Corollary 2.3.20 there exists a limit model M 0 =
⋃
i<θM

0
i . If p ∈ S(M 0) is any non-

algebraic type, then κ(K, µ) = θ implies that p does not split over M 0
i for some n < θ. Let

N0 = M 0
i , let a0 be any realization of p.

Suppose that for j ≤ k we have defined models M j ,Nj , aj with a corresponding limit

sequences (M j
i )i<θ for each M j . By Corollary 2.3.20 there is an M j+1 containing aj which is

a (µ, θ)-limit model over M j , as in the base case. Fix a limit sequence (M j+1
i )i<θ for M j+1

where M j+1
0 = M j . Since κ(K, µ) = θ there is some M j

i over which tpga(ai/M i) does not

split such that M i is universal over N i. Fix ai+1 as a realization of any non-algebraic type in

M i+1.

Suppose that we have defined M j ,Nj , aj for j < i, where k is a limit ordinal, along with limit

sequences (M j
i )i<θ for each j < k such that M j+1

0 = M j . Let Mi :=
⋃
j<i Mj =

⋃
j<k,i<θ M j

i ,

if we define Mα = M j
i where α < k× θ satisfies α = i× j, then we see that Mα is a (µ, k× θ)-

limit model. Choose ak to realize any non-algebraic type over Mk, by κ(K, µ) = θ, for some

α < θ, tpga(ak/Mk) does not split over Mα, let Nk = Mα. �

1We note this explicitly here because we commonly assume κ(K, µ) = ω through this chapter.
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In the following definition the “St” stands for “stationary”, since such a type has a unique

non-splitting extension (see Lemma 2.1.3).

Definition 4.1.3

St(M ) :=


(p,N ) :

M is universal overN

p ∈ S(M ) is non− algebraic

p does not split over N


In (Villaveces and Shelah, 1999) and (Grossberg et al., 2012), the following notion was

defined in terms of “parallel types”, we have reformulated the notion in terms of non-splitting

extensions.

Definition 4.1.4 Suppose that I is a well-ordered set with a cofinal sequence 〈ai : i ∈ θ〉 ⊂ I

and for each α ∈ θ there are µ·ω elements between iα and iα+1, then we say a tower (M̄ , a, N̄ ) ∈

K∗µ,I is σ-relatively full with respect to 〈M γ
i : γ ∈ σ〉, if each (M γ

i )i∈I witnesses that Mi is a

(µ, σ)-limit model and for every γ ∈ σ and every (p,M γ
i ) ∈ St(Mi) for iα < i < iα+1 there is

some j ∈ I such that i ≤ j < iα+1 such that (tpga(aj/Mj),Nj) is the non-splitting extension

of (p,M γ
i ).

Our proof of the following Proposition differs from the similar result Theorem 4 in (Gross-

berg et al., 2012). Our proof requires no use of disjoint amalgamation.
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Proposition 4.1.5 If κ(K, µ) = ω1, a relatively full, continuous tower (M̄ , a, N̄ ) ∈ K∗µ,I ,

where I is as in definition 4.1.4 and θ < µ+ is a limit ordinal such that θ = µ · θ, then
⋃
i∈I Mi

is a θ-limit model.

proof.

We will show that M ∗ =
⋃
i∈I Mi is θ-special, hence, by 2.3.19 a (µ, θ)-limit.

Note that between each iα and iα+1 there are µ · ω elements, as in definition 4.1.4. Note

that θ = µ · θ, thus M ∗ =
⋃
i∈I Mi =

⋃
iα:α∈θ Miα =

⋃
iα:α∈µ·θ Miα . So it enough to show:

Claim 4.1.6 Miα+1 realizes every Galois type over Miα.

Fix p ∈ S(Miα) since Miα ≺K Miα+1 , we may as well assume p is non-algebraic, by the

assumption that κ(K, µ) = ω we can find some M γ
iα

for γ < σ such that p does not split over

M γ
iα

. Now we note:

• M γ
iα
≺K Miα

• Miα is universal over M γ
iα

• p ∈ S(Miα) is non-algebraic.

• p does not split over M γ
iα

.

It follows that (p,M γ
iα

) ∈ St(Miα), so by relative fullness we can find j such that iα ≤ j <

iα+1 and tpga(aj/Mj) is a non-splitting extension of p, so aj ∈Mj+1 ≺K Miα+1 realizes p.

So M ∗ is θ-special, hence a (µ, θ)-limit, by Theorem 2.3.19. �

1We implicitly also assume AP and JEP.
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4.2 A discussion of existing work on uniqueness of limit models

We turn now to a discussion of existing work and how Proposition 4.1.5 fits into this existing

work. The first work on this topic was done by Shelah and Villaveces in (Villaveces and

Shelah, 1999). Unfortunately there were gaps in the proof of some results in this paper, so the

main theorem cannot be considered “proved”. In (Villaveces and Shelah, 1999) additional set

theoretic assumptions beyond ZFC were made in order to deal with lack of amalgamation. In

(VanDieren, 2006), working under the same set theoretic assumptions, VanDieren endeavored

to resolve the issues encountered by Shelah and Villaveces in (Villaveces and Shelah, 1999). A

proof of the following conjecture was published in (VanDieren, 2006), though another gap was

subsequently found in a key proposition in this article was eventually found as well.

Conjecture 4.2.1 (GCH, φµ+(Sµ
+

cf(µ))) Assume that K is a λ-categorical abstract elementary

class for some LS(K) ≤ µ < λ with no maximal models, for some µ ≥ LS(K). Let θ1 and θ2

be limit ordinals < µ+ . Under Hypothesis 1 or 2 if M1 and M2 are (µ, θ1)- and (µ, θ2)-limit

models over M , respectively, then there exists an isomorphism f : M1
∼= M2 such that f � M

is the identity mapping.

Where Hypothesis 1 and 2 are: (these are truncated literal quotes from (VanDieren, 2012)):

• Hypothesis 1: Every continuous tower inside C1 has an amalgamable extension inside

C.

1It should be noted that the model C in (VanDieren, 2006) is not a monster in the same sense as we
assume since failure of amalgamation may prevent model homogeneous structures from existing.
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• Hypothesis 2: For µ < λ, the class of amalgamation bases in K is closed under unions

of ≺K-increasing chains of length < µ+.

Unfortunately there is a gap in a key step of the proof of this conjecture, namely the proof

that so called “reduced towers” are continuous.

Definition 4.2.2 A tower (M̄ , a, N̄ ) ∈ K∗µ,I is reduced if for every (M̄ ′, a′, N̄ ′) ∈ K∗µ,I where

(M̄ , a, N̄ ) < (M̄ ′, a′, N̄ ′) and for all i ∈ I:

M ′
i ∩

⋃
j∈I

Mj = Mi

Definition 4.2.3 We say that a sequence of towers, ((M̄ γ , aγ , N̄ γ))γ<δ is continuous if for

all α < δ (M̄ α, aα, N̄ α) is the limit of the sequence ((M̄ γ , aγ , N̄ γ))γ<α.

The original idea of the proof offered in (VanDieren, 2006) is to take a number of discontin-

uous extensions of towers in order to build a tower that is relatively full. The extension process

produces discontinuous towers, but then continuity is recovered by taking reduced extensions

of each discontinuous tower. Thus, if reduced towers are continuous, the final tower is both rel-

atively full and continuous, hence Proposition 4.1.5 applies. Unfortunately, the only hypothesis

known, as of yet, to imply reduced towers are continuous is µ+-categoricity.

An erratum was published to (VanDieren, 2006) in which the strongest, verified result known

at this date is stated, namely this theorem reproduced from (VanDieren, 2012):

Theorem 4.2.4 (GCH,φµ+(Sµ
+

cf(µ)))(VanDieren) Assume that K is a µ+-categorical abstract

elementary class with no maximal models, for some µ ≥ LS(K). Further assume that GCH
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and φµ+(Sµ
+

cf(µ)) hold. Let θ1 and θ2 be limit ordinals < µ+ . Under Hypothesis 1,2 if M1 and

M2 are (µ, θ1)- and (µ, θ2)-limit models over M , respectively, then there exists an isomorphism

f : M1
∼= M2 such that f � M is the identity mapping.

Since the function of the set theory in Theorem 4.2.4 is to enable one to work in a context

where the amalgamation property fails to hold in µ, one would hope that the assumption of

either µ-AP or full AP can eliminate the need for set theoretic assumptions and indeed it does.

However, one also hopes to prove a uniqueness theorem from weaker “stability-type” hypotheses

than µ+-categoricity. The following result is claimed in the preprint (Grossberg et al., 2012):

Conjecture 4.2.5 If K satisfies AP and JEP as well as the conditions specified in 4.2.6 then

for µ > LS(K) and limit ordinals θ1, θ2 < µ+ any (µ, θ1) and (µ, θ2)-limit models over M are

isomorphic over M .

Condition 4.2.6 For any sequence (Mi)i<α of limit models of cardinality µ and p ∈ S(Mα)

where Mα =
⋃
i<α Mi:

1. If for all i < α, p � Mi does not split over M0 then p does not split over M0.

2. There exists i < α such that p does not split over Mi.
1

These conditions are stronger than necessary. VanDieren has observed that κ(K, µ) = ω

suffices for the arguments presented in (Grossberg et al., 2012), however the Conditions in 4.2.6

1This is similar to κ(K, µ) = ω, but omits the requirement that Mi+1 be universal over Mi and adds
the condition that every Mi must be a limit model.
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are the ones stated in the preprint as of January 12, 2012 and prior versions. Note that by the

following theorem of Shelah (15.3 of (Baldwin, 2009)) we know that categoricity above µ (and

the existence of arbitrarily large models) implies κ(K, µ) = ω.

Theorem 4.2.7 Assume K is λ-categorical for regular cardinal λ where LS(K) < µ < λ and

that arbitrarily large models in K exist, then κ(K, µ) = ω.

From κ(K, µ) one may easily deduce a weaker form of 4.2.6.1. That is:

Proposition 4.2.8 If κ(K, µ) = ω and (Mi)i∈α witness Mα =
⋃
i<α Mi is a (µ, α)-limit model

then if p ∈ S(Mα) satisfies that p � Mi does not split over M0 for all i < α, p does not split

over M0.

proof. Suppose that Mα, (Mi)i<α, p ∈ S(Mα) are as above. Since κ(K, µ) = ω, p does not

split over Mi for some i < α. We know by hypothesis that p � Mi and p � Mi+1 do not split

over M0. There exists some extension q of p � Mi to S(
⋃
i<α Mi) which does not split over

M0. Note by the monotonicity of splitting q � Mi+1 does not split over Mi. But then both p

and q are non-splitting extensions of p � Mi+1 to S(
⋃
i<α Mi) which do not split over Mi. So

by 2.1.3, p = q, in particular p does not split over M0. �

The assumption of AP, JEP and κ(K, µ) = ω seem in many ways to be the proper assump-

tions to prove Conjecture 4.2.5. Work was done in (Grossberg et al., 2012) which is valid under

these assumptions, though there is a gap in one of the key propositions which prevents the

stated main theorem of (Grossberg et al., 2012) from being proved. That is to say, Conjecture

4.2.5 remains unproved.
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The next theorem follows from the valid parts of (Grossberg et al., 2012) by applying some

of the work in (VanDieren, 2012). As of yet, this remains unpublished in the currently available

version of (Grossberg et al., 2012).

Theorem 4.2.9 (Grossberg, VanDieren, Villaveces) Let K be an Abstract Elementary

Class and µ > LS(K), suppose that K satisfies amalgamation property, joint-embedding prop-

erty, and has arbitrarily large models. If K is µ+-categorical then any two (µ, σ1), (µ, σ2)-limit

models over M are isomorphic over M .

It should be noted, that disjoint amalgamation over limit models is assumed in (Gross-

berg et al., 2012), but this follows from categoricity in µ+. Weak disjoint amalgamation is

proved from categoricity in Fact I.3.15 of (VanDieren, 2006). This result originally appeared in

(Villaveces and Shelah, 1999), but the proof in (VanDieren, 2006) is simplified from the version

in (Villaveces and Shelah, 1999).

The gap in the current version of (Grossberg et al., 2012) is in the proof that so called

“reduced towers” are continuous. One may substitute the assumption that reduced towers

are continuous for µ+-categoricity. In this case one cannot apply the existing proof used in

(VanDieren, 2006) or (Grossberg et al., 2012) that a relatively full tower is a limit model, without

also assuming (weak) disjoint amalgamation over limit models. However, in Proposition 4.1.5

we proved that a relatively full tower is a limit model assuming only JEP, AP, and κ(K, µ) = ω.

Thus we can also deduce the following result easily from (Grossberg et al., 2012):

Corollary 4.2.10 If the following hold:
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1. K satisfies AP and JEP in µ ≥ LS(K)

2. K is µ stable

3. κ(K, µ) = ω

4. For any limit sequence (Mi)i<α of models of cardinality µ where |α| ≤ µ and p ∈

S(
⋃
i<α Mi), if p � Mi does not split over M0 for all i < α then p does not split over M0.

5. Reduced towers in K∗µ are continuous.

then for any ordinals σ1, σ2 < µ+, any two (µ, σ1), (µ, σ2)-limit models over M are isomorphic

over M .

Two final questions we raise briefly is:

Question 4.2.11 Suppose that for any θ1, θ2 < µ+ any two (µ, θ1) and (µ, θ2)-limit models are

isomorphic. Does this imply κ(K,µ) = ω?

And the same question, relativised to stable classes:

Question 4.2.12 Suppose K is stable in µ and for any θ1, θ2 < µ+ any two (µ, θ1) and (µ, θ2)-

limit models are isomorphic. Does this imply κ(K,µ) = ω?

By Theorem 2.2.11 we know that in the case of elementary classes the answer to Question

4.2.12 is “yes”, however in arbitrary AEC, this question is, as far as we know, still open.
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4.3 Applying Uniqueness of Limit Models to Gap Transfer Theorems

Our original motivation in looking at uniqueness of limit models was that we wanted to

be able to extend Lessmann’s argument for building a two cardinal in ℵ1 (Theorem 3.4.11) to

larger uncountable cardinals. Unfortunately, this is something we’ve been unable to do. It is

perhaps worthwhile discussing the difficulties we encountered in attempting to do so.

The proof of Proposition 3.4.6 is essentially a diagonalization argument; we are picking a

diagonal of sorts out of an ω×α array where α is countable. However, when encountering a β×α

array (as when one is considering a sequence of α (µ, β)-limit models) if cf(β) 6= cf(α) there’s

obviously no way to simply pick out a diagonal of the resulting array. For simplicity’s sake,

assume β and α are regular. If β > α then one may preserve eventual domination (see Definition

3.4.2 ), however, one builds only a (µ, α)-limit model. On the other hand, if α > β, one builds

a (µ, β)-limit model before getting through the array, thus, one loses eventual domination.

Of course, if Conjecture 4.2.5 held, this would allow us to rewrite (µ, β)-limit models as

(µ, α)-limit models, but this still seems insufficient to carry the argument through. For the sake

of being more concrete, assume we are trying to transfer a Vaughtian pair of limit models in ℵ1

to a two cardinal model in ℵ2. Given a pair of (ω1, ω)-limit models (N 0
n )n<ω <

k
L (N 1

n )n<ω one

can proceed inductively through any countable stage of the construction detailed in Proposition

3.4.6. One can then apply Conjecture 4.2.5 to rewrite each (N α
n )n<ω as an (ω1, ω1)-limit model,

however these isomorphisms may be non-uniform, hence, they need not preserve “eventual

domination”.
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Thus, the essential tool required to prove a theorem like Theorem 3.4.11 in a larger uncount-

able cardinal seems to be not uniqueness of limits but rather that the union of some sequence

of (µ, β)-limit models is itself a (µ, β)-limit model. In other words, uniqueness of limit models

in µ does not imply (as far as we know) that some (subclass) of limit models in µ will be a

superlimit class in µ, and it is the latter condition which we know implies the existence of a

two cardinal model in µ+, not the former.



CHAPTER 5

TOWARDS GAP-2 TRANSFER VIA A SIMPLIFIED MORASS

In this chapter we explore generalizations of the first order gap-2 transfer theorem to non-

elementary classes. For first order logic, Jensen was able to prove a gap-2 transfer theorem.

That is, consistently with ZFC, if you have a model of size κ++ where the realizations of

some formula φ are of size κ then there’s an elementarily equivalent structure of size ℵ2 which

has countably many realizations of φ (assuming the language is countable). We believe it is

a natural question whether any sort of similar transfer theorem can be proved for abstract

elementary classes. We are able to extend part of the construction to all sets invariant over the

empty set (which motivates our definition of (κ, λ)-model) and we are able to show that our

work can be used to derive Jensen’s gap-2 Theorem in the case of an elementary class where

the invariant set in question is defined by a first-order formula.

We recall now the definitions of invariant set (Definition 2.3.6) and (κ, λ)-model (Definition

2.3.7) from Chapter 2 for the reader’s convenience.

Definition 5.0.1 (2.3.6) A subset X ⊆ C is invariant over N if for any γ ∈ aut(C/N )

γ(X) ⊆ X. If for any γ ∈ aut(C) γ(X) ⊆ X we say X is invariant.

The following notation may be redundant, but it is motivated by the analogy to the real-

izations of a formula, galois type, or syntactic type.

Notation 5.0.2 For M ≺K C we write “X(M )” for the set X ∩M .

74
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Definition 5.0.3 (2.3.7) A (κ, λ)-model over µ is a model M of size κ such that there is a

set X invariant over some model N ≺K M with |N | = µ such that X(M ) = λ. A (κ, λ)-model

(with no µ mentioned) is a (κ, λ)-model over ∅. If κ is the n-fold cardinal successor to λ we

refer to this as an n-gap.

Of course, as mentioned in Chapter 2, this only makes sense when considered with respect

to some fixed monster model C. So:

Assumption 5.0.4 We work in a fixed monster model C.

In (Devlin, 1984) the first order gap-2 transfer theorem (using a simplified morass) is ac-

complished through the following steps:1

1. Build an isomorphic pair of structures in κ.

2. Obtain a Vaughtian pair (in κ) and an elementary embedding that codes some combi-

natorial information; expand the language to code the Vaughtian pair and combinatorial

information into an expanded first order theory.

3. Find a “nice” pair of countable homogeneous models of the expanded theory.

4. Construct an (ℵ2,ℵ0)-gap using properties of a simplified morass.

We attempt to follow the general outline of the first order proof, but encounter difficulty

with step 2. First we carry out step, 4., in the context of an ordered AEC in Section 5.3.

1The original proof of the gap-2 transfer theorem is due to Jensen and the argument via a simplified
Morass is likely due to Vellemann, though it is also possible the proof is due to either Devlin or Jensen.
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We then turn toward the earlier steps of the construction. We can complete step 1. in the

AEC context and do so in section 5.7. We can obtain a Vaughtian pair of structures in κ in

Proposition 5.7.11, however the trick of coding combinatorial information using an expanded

theory in an expanded language seems quite difficult in the non-elementary case. We discuss

step 2 in depth in subsection 5.7.2.

Using a stronger condition than conclusion of 2 we are able to derive condition 3., however

we have not been able to derive this condition from the existence of a (κ++, κ)-model. From

this stronger version of condition 2., however, we are able to derive condition 3. in subsection

5.7.3.

Terminology is a minor obstacle to providing an easy to follow and at the same time tech-

nically accurate description of our result in the abstract elementary case. Our problem is that,

following the conventions of existing literature, we have defined “Vaughtian pair” for AECs in

terms of galois types. Our construction, however, is strong enough not just to keep the set

of realizations of a galois type small, but to keep the realizations of any invariant set small.1

At same time, we work with pairs of models (M1,M2) where for some invariant set X ⊆ M ,

M1∩X = M2∩X and M1 is a proper strong substructure of M2. There is a natural desire to call

such a model a “Vaughtian pair” but we have already defined this notion to mean p-Vaughtian

pair for some galois type p. However, we believe that by introducing the notion of X-Vaughtian

1Indeed, it is because the realizations of a first-order formula (without parameters) and and the
realizations of some galois type (again with no parameters) are both invariant that we are able to subsume
the construction of an (ℵ2,ℵ0)-model in the elementary class case in our main theorem, Theorem 5.4.2.
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pair we can avoid confusion with p-Vaughtian pairs and still maintain a reasonable analogy to

the first order object.

Definition 5.0.5 We say a pair of models (M1,M2) in K are an X-Vaughtian pair if the

following hold:

1. M1 is a proper strong substructure of M2.

2. X ⊆ C is invariant1, that is for any γ ∈ aut(C), γ(X) = X.

3. X ∩M1 = X ∩M2.

Our work in this chapter is a generalization of the first order gap two theorem only in the

sense that from the original arguments given by Jensen and written up in (Devlin, 1984) one

can produce the necessary combinatorial conditions to do our argument in Section 5.3. As

such, this work may be better understood as providing a sufficient condition for the existence

of (ℵ2,ℵ0)-model as opposed to a true “gap-2 transfer” theorem for AECs.

More specifically, we are able to show that the construction of an (ℵ2,ℵ0)-model can be

carried out from the assumption of the existence of a sufficiently nice countable X-Vaughtian

pair. Furthermore, we are able to derive the existence of a “sufficiently nice” countable X-

Vaughtian pair from the existence of a “sufficiently nice” X-Vaughtian pair in κ, as well as

derive the existence of a Vaughtian pair in κ from the existence of (κ++, κ)-model. We are

not, however, able to derive the existence of “sufficiently nice” X-Vaughtian pair in κ from an

arbitrary (κ++, κ) model.

1See Definition 2.3.6
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Our notion of “sufficiently nice” X-Vaughtian pair includes a weak homogeneity condition

on the models in the X-Vaughtian pair. Deriving the existence of nice enough structures

is possible from the assumption of stronger homogeneity assumptions, namely the notion of

“galois homogeneity” which we introduce in this chapter. Before we can proceed through any

of these arguments, we must first develop some basic properties of invariant sets and introduce

the simplified morass. We outline the sections of this chapter below:

Chapter Outline:

§5.1 - We introduce the set theoretic object used in the main construction, the simplified

morass.

§5.2 - We introduce a notion of “invariant set” for AEC and observe some basic properties.

§5.3 - We introduce a sufficient condition for the construction of an (ℵ2,ℵ0)-model and prove

some basic results useful in the construction of the (ℵ2,ℵ0)-model.

§5.4 - We construct the (ℵ2,ℵ0)-model.

§5.5 - We introduce notions of “1-transitive” and “galois homogeneous” and describe and show

that a sufficiently nice X-Vaughtian pair of galois homogeneous structures is a sufficient

condition for the the construction of an (ℵ2,ℵ0)-model.

§5.6 - We give an example of a PC-Γ class where there does not exist a galois homogeneous

extension of a particular model.

§5.7 - We discuss steps 2., 3., and 4. in the outline of the proof of the first order gap-2 transfer

theorem. In §5.7.1 we discuss using the presentation theorem to add an ordering to the
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language if we start with an AEC that does not already contain a suitable ordering in

it’s signature. In §5.7.2 we discuss the difficulties inherent in translating step 2. to the

AEC case. In §5.7.3 we give a sufficient condition on models of size κ from which we can

construct an (ℵ2,ℵ0)-model.

§5.8 - We make some closing remarks.

5.1 Simplified morass

In order to prove the gap-2 transfer Theorem for first order logic, a combinatorial object

called a “morass” is used. The original definition and application of a morass to cardinality

transfer questions is due to Jensen, who showed that such an object exists if V=L. Later

work by Vellemann showed that the existence of a morass is equivalent to the existence of a

“simplified morass”, which has a simpler axiomatic definition. Thus, if we wish to show that

V=L implies the gap-2 transfer Theorem, there’s no loss of generality in working with the

simplified morass instead of Jensen’s original notion. It is perhaps worth noting, that the main

theorem of this chapter, 5.4.2, as well as the classical result it generalizes, requires only the

existence of a simplified morass. GCH is, however, required for certain other steps of the

construction, in particular Proposition 5.7.11 and its first order analogue.

For our purposes, the simplified morass is a “black box” we will use to prove a two-cardinal

theorem for AEC. For a more in-depth discussion of the simplified morass, Jensen’s morass,

and the construction of the simplified morass from a morass see (Devlin, 1984). We present a

definition below. Since we never deal directly with Jensen’s original morass, any subsequent

reference to a morass refers to a simplified morass.
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The simplified morass is an ω1-long sequence of countable ordinals θα which terminates with

θω1 = ω2. For any of the θα, θβ there is a countable collection of order-embeddings Fα,β that

take θα into θβ, which satisfy coherence properties similar to the properties of directed system;

the Fα,β differ from the maps in a directed system in that there are always at least 2 distinct

maps in Fα,β. We reproduce the definition of the simplified morass from (Devlin, 1984) below:

Definition 5.1.1 A simplified morass consists of an increasing sequence of ordinals (θα)α≤ω1, a

collection of maps Fα,β for each α < β ≤ ω1 from θα to θβ, and for each α < ω1 a distinguished

element δα ∈ θα satisfying the following properties:

(M1) θ0 = 1, θω1 = ω2, if α < ω1 then θα < ω1.

(M2) If α < β < ω1 then |Fα,β| ≤ ω.

(M3) If α < β < γ then Fα,γ = {fg : g ∈ Fα,β, f ∈ Fβ,γ}

(M4) If α < ω1 then Fα,α+1 = {Idθα , f} where f is an order-preserving map and f � δα = Idδα

and f(δα) ≥ θα

(M5) For all limit ordinals α ≤ ω1 and βi < α for i = 1, 2: if fi ∈ Fβi,α there is a γ and βi

where βi < γ < α and functions hi ∈ Fβi,γ and g ∈ Fγ,α such that fi = ghi.

(M6) For all β > 0, θβ =
⋃
{f(θα) : α < β, f ∈ Fα,β}

5.2 Invariant sets

Definition 5.2.1 A subset X ⊆ C is invariant if for any γ ∈ aut(C) γ(X) = X.

Note that by definition above, if M0 ⊂ M1 ≺K C then X(M0) ⊆ X(M1). Observe the

following trivial observation:
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Fact 5.2.2 Let M0 ≺K M1. If X(M1) ⊆ X(M0) then X(M1) = X(M0).

The following is easy to deduce but informative:

Proposition 5.2.3 If X ⊂ C and for all φ ∈ aut(C), φ(X) ⊆ X, then X is invariant.

proof. Suppose X ⊂ C and for all φ ∈ aut(C), φ(X) ⊆ X. Fix φ ∈ aut(C). Suppose

x ∈ X \ φ(X). Note φ−1(x) /∈ (X). But this contradicts that φ−1(X) ⊆ X. �

Since it is obvious that invariance of X implies for all φ ∈ aut(C), φ(X) ⊆ X it follows that:

Corollary 5.2.4 If X ⊂ C then X is invariant if and only if for all φ ∈ aut(C), φ(X) ⊆ X,

In this section we will work extensively with a notion not commonly explored in the study

of AECs, namely galois types over ∅. In common practice, one demands that a galois type be

defined over a model as parameter set. But if one considers a galois type p to be an orbit of

aut(C/dom(p)) then there is no reason one cannot consider the case that dom(p) = ∅.

Notation 5.2.5 tpga(a) is simply the class of elements {b ∈ C : ∃γ ∈ aut(C), γ(b) = a}.

The reason why we are interested in galois types over the empty set is that they are invariant.

See the (trivial) proposition below.

Proposition 5.2.6 Suppose that f : M → N is a strong embedding and that p is a galois type

over the empty set, then p = f(p).

proof. Suppose that a |= p and that b |= f(p). Since we assume a monster model C exists,

we may extend f to F ∈ aut(C), consider F (a). Clearly F (a) |= f(p), so there exists γ ∈ aut(C)
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such that γ(F (a)) = b. But then note that F−1γ−1(b) = a, so b |= p. Thus we see that p = f(p).

�

Corollary 5.2.7 If dom(p) = ∅ then p is invariant.

We give some examples of invariant sets below:

Example 5.2.8 1. The set of realizations of a formula of first order logic (in C) is invariant

over its parameters.

2. The set of realizations of a syntactic type (again in C) is invariant over its parameter set.

3. The set of realizations of a galois type is invariant over its domain. In particular this

holds for a galois type p with dom(p) = ∅ (See 5.2.7),

4. If dom(p) is countable, there is an AEC Kdom(p) which consists of the elements of K for

which dom(p) is a strong substructure; it should be clear that this is also an AEC in which

dom(p) is invariant.

It is a classical result of model theory that any boolean combination of invariant sets remains

invariant.

Proposition 5.2.9 Let (Xi) be a collection of invariant sets, then
⋃
i∈I Xi,

⋂
i∈I Xi, and (for

any i ∈ I) C \Xi is invariant.

The proof is a simple exercise in elementary set theory. Another fairly obvious observation

is that any invariant set is a union of galois types.
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Fact 5.2.10 Let X be a set invariant over M , where either M ≺K C or M = ∅. X =⋃
a∈X tpga(a/M ).

The following lemma is key to performing the successor step in the inductive construction

of an (ℵ2,ℵ0)-model.

Lemma 5.2.11 Let M0 ≺K M1 ≺K C and let X be an invariant set such that X(M0) ⊇

X(M1). Let φ : M1 →M0 be an isomorphism. Let φ∗ ∈ aut(C) extend φ. If M2 := φ∗−1(M1)

then X(M2) = X(M1) = X(M0).

proof. Let φ, φ∗, M0, M1, M2, and X be as above. Since φ : M0 →M1, it follows that:

φ∗(X(M1)) = φ∗(X ∩M1) = φ∗(X) ∩ φ∗(M1) = X ∩M0 = X(M0)

We consider two cases:

• Case x ∈M1. If x ∈ X(M1) ⊆ X(M0) then, clearly x ∈ X(M0).

• Case x ∈ M2 \M1. We argue that x /∈ X(M2). If x ∈ X(M2), since φ(M1) = M0 it

follows that φ∗(x) ∈M1 \M0. In particular φ∗(x) /∈M0. By invariance of X, φ∗(x) ∈ X.

So φ∗(x) ∈ X ∩M1 = X(M1) ⊆ X(M0) ⊆M0. But this contradicts that φ∗(x) /∈M0.

Thus it follows that X(M2) ⊆ X(M1) ⊆ X(M0).

Note that since M0 ≺K M1, it follows φ−1(M0) = M1 ≺K φ∗−1(M1) = M2. So X(M0) ⊆

X(M1) ⊆ X(M2). Putting this together with Fact 5.2.2 it follows that X(M0) = X(M1) =

X(M2). �
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Proposition 5.2.12 Let X be invariant and let (Mi)i∈I be a ≺K-increasing sequence of models

in C then X(
⋃
i∈I Mi) =

⋃
i∈I(Mi).

proof.

X

(⋃
i∈I

Mi

)
= X ∩

⋃
i∈I

Mi =
⋃
i∈I

X ∩Mi =
⋃
i∈I

X(Mi)

�

Corollary 5.2.13 Let X be invariant and let (Mi)i∈I be a ≺K-increasing sequence of models

in C such that for i, j ∈ I, X(Mi) = X(Mj). Then for any j ∈ I, X(
⋃
i∈I Mi) = X(Mj).

The following lemma allows us to assume certain direct limits can be chosen within an

already fixed monster model. In general one cannot always assume that a directed system

of models each of which is a strong substructure of C, that the direct limit of this directed

system is also a strong substructure of the C. This observation was made earlier by VanDieren

in (VanDieren, 2006) in the inductive proof of Theorem III.10.1, in particular in Subclaim

III.10.4. The claim below differs slightly from the claim in (VanDieren, 2006) and omits many

extraneous details (relevant to (VanDieren, 2006) but not to our construction) of the argument

in (VanDieren, 2006).

Notation 5.2.14 Let
∐
i∈I Si denote the disjoint union of the set of sets {Si}i∈I .

Lemma 5.2.15 Let I be a non-empty countable directed set. Let (Mi, fi,j)i≤j,i,j∈I be a directed

system of models in K and strong embeddings where |I|, |Mi| ≤ κ < |C| for some cardinal κ.

Suppose there is a set X ⊆ Mi for all i ∈ I, such that for any i < j fi,j � X = IdX . Then
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there exists a direct limit (M∞, fi,∞)i∈I of the directed system where Mi0 ≺K M∞ ≺K C and

fi,∞ � X = IdX .

proof. Recall that abstractly, the direct limit of the directed system (Mi, fi,j)i,j)i≤j,i,j∈I is:

∐
i∈I

Mi/ ∼

where ∼ identifies elements a ∼ b where a ∈ Mi, b ∈ Mj if there exists k ∈ I such that

fi,k(a) = fj,k(b). Fix some i0 ∈ I. Since every map in our directed system, by virtue of being

a strong embedding, is injective, there is no loss of generality in identifying Mi0 with its image

under fi0,∞, so that Mi0 ≺K M∞. Since C is κ+-model homogeneous, we can find a strong

embedding g of M∞ into C fixing Mi0 .

Let M ′
∞ := g(M∞). Let f ′i,∞ = gfi,∞ for i ∈ I. It should be clear that (M ′

∞, f
′
i,∞)i∈I is a

direct limit of the directed system (Mi, fi,j)i≤j,i,j∈I . Furthermore, since g fixes Mi0 ⊇ X, each

fi,∞ � X = IdX . �

We now extend our previous observations to apply to direct limits.

Lemma 5.2.16 Let X be invariant and let (Mi, σi,j)i<j,i,j∈I be a directed system such that for

any i < j, where i, j ∈ I, σi,j � X(Mi)) = IdX(Mi). Then there exists a direct limit M∞ of the

directed system (Mi, σi,j)i<j,i,j∈I such that for any i ∈ I, X(M∞) = X(Mi).

proof. By Lemma 5.2.15, without loss of generality, we can choose a direct limit M∞ such

that the canonical embeddings σi,∞ : Mi →M∞ each fix X(Mi). Since M∞ =
⋃
i∈I σi,∞(Mi).

So by Corollary 5.2.13 X(M∞) = X(Mi) for any i ∈ I. �
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5.3 A sufficient condition for constructing an (ℵ2,ℵ0)-Model

In this section we prove a number of results useful in our construction of an (ℵ2,ℵ0)-Model.

At this point, many of the results we desire to prove require us to work in an AEC which

contains ordered structures.

In the proof of Jensen’s original gap-2 Transfer Theorem, one is able to assume that, without

loss of generality, the language contains an ordering which behaves in a particular fashion

by ordering a particular structure and expanding the language to include a symbol for that

ordering. In the abstract case, one cannot simply do this, though we discuss some approaches

to this difficulty in Section 5.7. For this reason, we must now assume we work in language

which contains a binary relation interpreted as a linear order in elements of our AEC, K. In

this chapter, we take the convention that “order” means linear order unless we specifically

specify that we are talking about a partial order.

Assumption 5.3.1 Though we exhibit this as an explicit hypothesis, we emphasize to the reader

that throughout Section 5.3 we work in an AEC K satisfying AP and JEP in a language con-

taining (amongst other symbols) a binary symbol < which linearly orders elements of K.1 In

particular, we assume that our fixed monster model C is an ordered structure.

The following assumption is fixed as a hypothesis for the remainder of this section. It is a

strong version of a X-Vaughtian pair; ideally, we would like to be able to deduce Assumption

1For example, K might be an AEC which consists of expansions of some unordered structures in
another AEC consisting of structures in a language not containing “<”.
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5.3.3 from the existence of a (κ++, κ) model, though we are able to make only partial progress

in this vein. It includes assumptions that the models involved behave in a certain manner with

respect to the ordering and are at least to some degree galois homogeneous.

Notation 5.3.2

PrM (a) := {b ∈M : M |= b < a}

Assumption 5.3.3 Let B0,B1 be models in K where K is an AEC in a language containing

a binary symbol < which linearly orders elements of K such that:

(I) B0 ≺K B1

(II) There exists a strong embedding σ : B0 → B1 and constants ei ∈ Bi for i = 0, 1 where

σ(e0) = e1 such that:

(a) σ � PrB0
(e0) = Id

PrB0
(e0)

(b) B0 ⊆ PrB1
(e1)

(c) Suppose that a, b ∈ B0 where tpga(a) = tpga(b) = tpga(e0) and there exists γ ∈

aut(B0) such that γ(a) = b then there exists δ ∈ aut(B1) such that δ(σ(a)) = b.

(III) B0 is a local superlimit.

(IV) (B0, e0) ∼= (B1, e0).

(V) There is an invariant set1 X such that X(B0) = X(B1) ⊆ PrB0
(e0).

1It should be noted that X is necessarily disjoint from tpga(e0).
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A priori, there is some loss of generality in demanding that X be invariant over the empty

set, however if X were invariant over a countable M , one might add constants for M to the

language and consider the class of structures for which M is a submodel instead. If we can find

an (ℵ2,ℵ0)-model in this AEC, there will exist one in the original class as well.

Below is an easy consequence of Assumption 5.3.3:

Lemma 5.3.4

(B1, e1) ∼= (B0, e0)

proof. Note that IdB0 ∈ aut(B0) so by IIc there exists δ ∈ aut(B1) such that δ(e1) =

δ(σ(e0)) = e0. It follows that: (B1, e1) ∼= (B1, e0) by IIc. By IV, (B1, e0) ∼= (B0, e0). So

(B1, e1) ∼= (B0, e0) as desired. �

Because it fits as well here as anywhere, we show now, in Proposition 5.3.5, that the iso-

morphism type of a countable locally superlimit model is also closed under direct unions with

respect to a countable directed set. This is almost a sufficient condition for us to be able to

complete the limit stage of our construction of a (ℵ2,ℵ0)-model in Theorem 5.4.2. In the special

case where B0 is galois-homogeneous this suffices; in general, it is still a useful exercise to prove

this Proposition as a warm-up to proving Lemma 5.3.8.

Proposition 5.3.5 Let I be a non-empty countable directed set, let (Mi, fi,j)i≤j,i,j∈I where for

all i, j ∈ I, Mi
∼= Mj and for some i ∈ I we suppose Mi is a local superlimit (in the sense of

Definition 2.3.1), if M∞ := lim
−→i,j∈I

(Mi, fi,j) then M∞ ∼= Mi.
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proof. If I has a maximal element M then M∞ ∼= BM so we may as well assume I has

no maximal elements. In this case we can choose an infinite ≤-increasing and unbounded

sequence (in)n<ω consisting of elements of I. Since I is countable, there is no loss of generality

in assuming this sequence has order type ω.

Let a ∼ b where a ∈Mi, b ∈Mj if and only if there exists k ∈ I such that fi,k(a) = fj,k(b).

By definition:

M∞ =
∐
i∈I

Mi/ ∼

Claim 5.3.6

M∞ =
∐
n<ω

Min/ ∼

Suppose that a ∈
∐
i∈I Mi, then for some i, a ∈Mi. Since the sequence (in)n<ω is unbounded

in I, we may choose n < ω large enough so that i ≤ in. We note that a ∼ fi,in(a). So for every

a ∈Mi there exists an n < ω and an a′ ∈Min such that a ∼ a′.

Suppose a ∼ b, then for some i, j, k, fi,k(a) = fj,k(b). Choose n < ω such that k ≤ in.

Let a′ := fi,in(a), let b′ := fj,in(b). Clearly a ∼ a′ ∼ b′ ∼ b. But in particular note that

fin,in+1(a′) = fin,in+1(b′). It follows that:

M∞ =
∐
n<ω

Min/ ∼
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Let fi,∞ : Mi →M∞ be the canonical embeddings. Since M∞ =
∐
n<ω Min/ ∼ it follows that

M∞ =
⋃
n<ω fin,∞(Min). Note thatfin,∞(Min) ∼= Min

∼= M0. Since M0 is a local superlimit

M0
∼= fi0,∞(M0) ∼=

⋃
n<ω fin,∞(Min) = M∞. �

We must add an additional assumption to deal with the limit stage of the construction, which

essentially amounts to “the limit step works”. While this may seem a strong assumption at this

juncture, we will be able to demonstrate that this is satisfied by certain classes of structures

which satisfy properties quite stronger than Assumption 5.3.3. In particular, countable galois

homogeneous models of a first order theory satisfy Assumption 5.3.7. We explore such examples

in section 5.5 and show that at least the original case of an elementary class where our invariant

set defined by a first order formula is deducible from the work presented here in Corollary 5.7.17.

That is, while we must apply work specific to the first-order case to complete steps 2 and 3 of

proof outline, we can apply our proof of step 4, the actual construction of an (ℵ2,ℵ0)-model

in the first order context. In other words, Assumptions 5.3.3 and 5.3.7 are deducible from the

existence of a classical (κ++, κ)-model.1

Assumption 5.3.7 Suppose that B0,B1 are as in Assumption 5.3.3. Suppose further that

(Bi)i<γ is a countable ≺K-increasing chain of extensions of B1 with some distinguished set of

constants (ei)i<γ satisfying the following conditions:

1. for i < j < γ, ei ∈ Bj and

2. for i < j < γ, (Bi, ej) ∼= (B0, e0).

1See Definition 5.7.13, for the classical definition of a (κ++, κ)-model in first order model theory.
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Then for all j < γ, (
⋃
i<γ Bγ , ej) ∼= (B0, e0).

We separate assumption 5.3.7 from assumption 5.3.3 for two main reasons. The first is that

the assumptions made in Assumption 5.3.3 suffice for the successor steps of the construction of

an (ℵ2,ℵ0)-model, while Assumption 5.3.7 is necessary only for limit steps. Additionally, 5.3.7

is not a “two-cardinal-type” assumption, it assumes properties hold of the models B0,B1 that

do not directly relate to the invariant set which does not gain new realizations.

We now prove that if the above assumption holds, then an analogue holds for direct limits

as well.

Lemma 5.3.8 Suppose that B0 is as in Assumption 5.3.7 and assume that (Bi, fi,j)i<j,i,j∈I

is a directed system with respect to a countable, well-founded, directed partial order (I,<).

Let B∞ be the direct limit of this directed system with canonical embeddings fi,∞. Suppose

further that there are distinguished constants (eiα)α∈θi where eiα ∈ Bj for some set of countable

(possibly finite) ordinals (θi)i∈I that satisfy if i ≤ j then θi < θj. Suppose yet further that

for all j ≥ i and any α ∈ θi, (Bj , fi,j(e
i
α)) ∼= (B0, e0

0). Then for any i ∈ I and α < θi,

(B∞, fi,∞(eiα)) ∼= (B0, e0
0).

proof. The argument presented here is quite similar to the proof of Proposition 5.3.5.

Suppose first that I has a maximal element M . Then without loss of generality B∞ = BM ,

so the desired result holds by assumption. So we assume I has no maximal element. As in the

proof of Proposition 5.3.5 we can fix a ≤-chain (in)n<ω such that B∞ =
⋃
n<ω fin,∞(Bi,in).

There is no loss of generality in assuming that i0 = 0. In fact, given any j ∈ I, we can find
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such a sequence with j = in for some n < ω. Define for each choice function g : ω →
⋃
n<ω θin

egn := fi,∞(eing(n)). Observe that by assumption 5.3.7 that:

(B∞, egn) ∼= (f0,∞(B0), f0,∞(e0
0)) ∼= (B0, e0

0)

Since we may choose (in)n<ω to contain any j ∈ I and our argument holds for any choice

function g : ω →
⋃
n<ω θin this shows (B∞, fi,∞(eiα)) ∼= (B0, e0

0) for any i ∈ I where α < θj . �

5.4 Constructing an (ℵ2,ℵ0)-model

Assumption 5.4.1 Throughout this section members of K are linearly ordered by an ordering

< which is contained in the vocabulary L of K. In particular, C is an ordered structure. We

note that an ℵ3-saturated monster should suffice for this construction.

The main theorem of this section isolates the set-theoretic combinitorics from the first order

model theory necessary to perform the gap 2-transfer. The AEC axioms plus AP and JEP are

all that are necessary to proceed through the construction. It is the other aspects of the gap

2-transfer theorem that utilize properties of first order logic that do not generalize painlessly

to the AEC case.

We now prove the main theorem of the chapter, that is, we construct an (ℵ2,ℵ0)-model. It

is worth noting that the only set theoretic hypothesis necessary for this result is the existence

of a simplified morass.

Theorem 5.4.2 Assume there exists a simplified morass (see Definition 5.1.1) (θα, δα,Fα,β),

that Assumption 5.3.3 (which is assumed throughout this section) and Assumption 5.3.7 hold,
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then there exists an (ℵ2,ℵ0) model. In particular, if X and B0 are as in Assumption 5.3.3,

then there exists a model Bω2 ∈ Kℵ2 such that X(Bω2) = X(B0).

proof. We construct inductively a sequence of models Bi for i ≤ ω1, strong embedding f∗

for f ∈ Fα,β, and order embeddings hα : θα → Bα which satisfy the following properties for

α < β ≤ ω1:

(c1) For α < ω1, Bα ∼= B0 is a local superlimit.

(c2) hα : θα → θβ is an order embedding (not a strong embedding).

(c3) f∗ : Bα → Bβ for f ∈ Fα,β is a strong embedding.

(c4) For η ∈ θα, α < ω1, (Bα, hα(η)) ∼= (B0, e0).

(c5) Suppose α < β < γ ≤ ω2, then (fg)∗ = f∗g∗ for f ∈ Fβ,.γ , g ∈ Fα,β.

(c6) hβf = f∗hα for f ∈ Fα,β.

(c7) If f ∈ Fα,β and ran(f) ⊆ η < θβ then ran(f∗) ⊆ PrBβ
(hβ(η)).

(c8) PrB0
(e0) = PrBα

(e0) and for f ∈ Fα,β f
∗ � PrBα

(e0) = IdPrBα
(e0).

(c9) X(Bα) = X(B0), in particular X(Bα) = X(B0) ⊆ PrBα
(e0).

We begin with the B0,B1 given by II of Assumption 5.3.3. We let σ and e0, e1 be as in IIc

as well. We let h0 : 0 7→ e0. We verify the construction for the base case now:

• c1 follows from III and IV.

• c2 follows since |dom(h0)| = 1.
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• c3, c4, c5, c6, and c7 require no verification for the base case.

• c8 and c9 follow from V.

We move on now to the successor case. Suppose we have defined for β0 < β1 ≤ α and β ≤ α

the objects Bβ, f∗ for f ∈ Fβ0,β1 , and hβ : θβ → Bβ. For convenience of notation we define

eα := hα(δα).

Since (Bα, eα) ∼= (B0, e0) by c4 we may fix φ ∈ aut(C) such that φ(Bα, eα) = (B0, e0). We

define Bα+1 := φ−1(B1). If Fα,α+1 = {Idθα , fα} we set Id∗θα := IdBα and let f∗α := φ−1σ φ.

Define (again for notational convenience) eα+1 := f∗α(eα).

The following properties of Bα, Bα+1, and f∗α are easily deduced from Assumption 5.3.3:

(o1) f∗α : (Bα, eα)→ (Bα+1, eα+1)

(o2) f∗α � PrBα
(eα) = IdPrBα

(eα)

(o3) Bα ⊆ PrBα+1
(eα+1)

(o4) If tpga(b) = tpga(a) = tpga(eα) = tpga(e0) and there exists γ ∈ aut(Bα) such that γ(a) = b

then there exists δ ∈ aut(Bα+1) such that δ(f∗α(a)) = b.

(o5) X(Bα+1) = X(Bα) (see Lemma 5.2.11)

(o6) PrBα+1
(eα) = PrBα

(eα)
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M6 states that ran(Idθα)∪ ran(fα) = θα+1 and ran(Idθα) is disjoint from θα+1 \ θα so every

ν ∈ θα+1 \ θα is equal to fα(η) for some η < θα. Since fα is order-preserving this η is unique.

Thus we may define hα+1 : θα+1 → Bα+1 by:

hα+1(ν) :=


hα(ν) ν < θα

f∗α(hα(η)) η = fα(ν), ν ≥ θα

We have defined maps f∗ for f ∈ Fα,α+1 and we now define maps f∗ for any f ∈ Fβ,α+1.

Note that by M2 we can write f = gh for g ∈ Fα,α+1 and h ∈ Fβ,α. Let f∗ := g∗h∗. We need

to argue that there is no ambiguity in defining f∗ in this manner.

First we argue that h is uniquely determined by the equation f = gh. Suppose we had maps

g′ ∈ Fα,α+1 and h′ ∈ Fβ,α such that f = g′h′. There are two cases to consider:

1. First suppose g = g′. Note that all maps in any Fβ,γ are order-preserving and in particular

are injective. So if g(h(x)) = g′(h′(x)) for all x ∈ θβ then it must be the case that

h(x) = h′(x) for all x ∈ θβ.

2. Now suppose g 6= g′, we consider various sub-cases below:

(a) Suppose that ran(h), ran(h′) ⊆ δα, then since fα � δα = Idθα � δα, by the same

argument as for the case g = g′, we see that h = h′.

(b) Suppose that one of ran(h), ran(h′) 6⊆ δα, without loss of generality we may assume

ran(h) 6⊆ δα. So we can find x ∈ θα such that h(x) ≥ δα.
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We will argue that h′(x) ≥ δα. If h′(x) < δα, then since fα � δα = Idθα � δα, no

matter which of fα, Idθα is equal to g′, we see that g′h′(x) = h′(x) < δα. Meanwhile,

since both possible choices for g (that is, fα and Idθα) are non-decreasing, gh(x) ≥

h(x) ≥ δα. But then f(x) = gh(x) ≥ δα and f(x) = g′h′(x) < δα, which is a

contradiction.

So we have both h(x), h′(x) ≥ δα. Without loss of generality (since we now assume

the same conditions on both h and h′) we may assume that g = Idθα and g′ = fα.

Thus we see that g(h(x)) = Idθα(h(x)) ∈ θα. On the other hand, since h′(x) ≥ δα,

g′(h′(x)) = fα(h′(x)) ∈ θα+1\θα. But then gh(x) 6= g′h′(x), which is a contradiction.

Thus we see there is only one choice possible for h, though there may still be more than one

choice for g. We must argue that this does not effect the definition of f∗. There are two cases

to consider:

• If ran(h) 6⊆ δα then g must be fα, thus there is no ambiguity in the definition of f∗.

• If ran(h) ⊆ δα then note that by o2 that f∗α � PrBα
(eα) = IdPrBα

(eα). By c7 ran(h∗) ⊆

PrBβ
(eα). So again there is no ambiguity in the definition of f∗.

We now proceed with the verification of the inductive properties of the construction:

• c1 clearly holds.

• c2 follows since f∗α(eα) ≥ x for all x ∈ Bα (see o3) and Bα ⊆ PrBα+1
(eα+1), hα+1 is order

preserving. To elaborate on this point:
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It is completely obvious from its definition that hα+1 � θα and hα+1 � θα+1 \ θα are order

preserving, since both f∗α and hα are order preserving maps. Since hα+1 sends elements

of θα+1 \ θα to elements greater than any element in Bα (which follows from that fact

that f∗α takes ran(hα � θ \ δα) to elements greater than any element of Bα) it is clear that

hα+1 is order-preserving on its entire domain.

• c3 has been verified in o1.

• It is fairly obvious that:

(Bα+1, eα+1) ∼= (B1, e1) ∼= (B0, e0) (5.1)

since φ(Bα+1, eα+1) = (B1, e1) and Lemma 5.3.4 states that (B1, e1) ∼= (B0, e0).

Verifying c4 in full requires some additional work. We consider two cases:

– Suppose η < θα. So hα+1(η) = hα(η). By applying the inductive assumption of c4

twice we see (Bα, hα(η)) ∼= (B0, e0) ∼= (Bα, hα(δα)) = (Bα, eα). By the definition

of galois type, tpga(hα(η)) = tpga(e0) = tpga(eα) and there exists γ ∈ aut(Bα) such

that γ(hα(η)) = eα. Thus, by o4 there exists δ ∈ aut(Bα+1) such that δ(hα(η)) =

f∗α(eα) := eα+1. It follows that:

(Bα+1, hα+1(η)) = (Bα+1, hα(η)) since η < θα)

∼= (Bα+1, eα+1) since δ(hα(η)) = eα+1

∼= (B0, e0) by Equation 5.1
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– Suppose η ≥ θα. So hα+1(η) = f∗α(hα(ν)) for some ν < θα. By the inductive

assumption of c4 we have:

(Bα, hα(ν)) ∼= (B0, e0) ∼= (Bα, eα) (5.2)

So tpga(hα(ν)) = tpga(e0) = tpga(eα) and there exists γ ∈ aut(Bα) such that

γ(hα(ν)) = eα. By o4 there exists δ ∈ aut(Bα+1) such that δ(hα(ν)) = eα so:

(Bα+1, f∗α(hα(ν))) ∼= (Bα+1, eα) (5.3)

Claim 5.4.3 (Bα+1, eα) ∼= (Bα+1, eα+1)

By Lemma 5.3.4 there exists Γ ∈ aut(B1) such that Γ : e1 7→ e0, set ∆ := φ−1Γφ.

Note ∆ ∈ aut(Bα+1). Observe:

∆ : eα+1 e1 e0 eα-φ -Γ -φ−1

thus verifying the claim.
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So:

(Bα+1, hα+1(η)) = (Bα+1, f∗α(hα(ν))) by Equation 5.2

∼= (Bα+1, eα) by Equation 5.3

∼= (Bα+1, eα+1) by Claim 5.4.3

∼= (B0, e1) by Equation 5.1

∼= (B0, e0)

as desired.

• c5 is clear from the induction and our choice for f ∈ Fβ,α+1 to have f∗ = g∗h∗ for

g ∈ Fα,α+1 and h ∈ Fβ,α.

• First we verify c6 for maps in Fα,α+1. It is completely trivial to verify c6 for Idθα since

Id∗θα was also chosen to be an identity map. So we verify the property for fα. There are

two cases to consider:

– If η < δα then fα(η) = η and by o2 f∗α � PrBα
(eα) is the identity map. Since hα is

order-preserving, h(η) ≤ h(δα) = eα; it follows that f∗α(hα+1(η)) = hα+1(η). Thus

we have:

hα+1fα(η) = hα+1(η) = IdPrBα
(eα)(hα+1(η)) = f∗α(hα+1(η))

– If η > δα then fα(η) > δα so by the definition of hα+1, hα+1(f(η)) = f∗α(hα(η)).
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For g ∈ Fβ,α+1 where β < α we can write g = f0f1 where f0 ∈ Fα,α+1 and f1 ∈ Fβ,α.

We know by c5 that g∗ = f∗0 f
∗
1 , so using induction and our observations above:

hα+1g = hα+1f0f1 = f∗0hαf1 = f∗0 f
∗
1hβ = g∗hβ

• We wish to verify c7. Let f ∈ Fα,α+1 and suppose ran(f) ⊆ η < θα+1. It follows that

f = Idθα since ran(fα) is unbounded in θα+1 by M5. For any g ∈ Fβ,α+1 one may write

g = f0f1 for f0 ∈ Fα,α+1 and f1 ∈ Fβ,α. Suppose ran(g) ⊆ η < θα+1. We consider two

cases:

– First suppose f0 = Idθα . Then ran(g) = ran(f1) ⊆ θα. So η < θα and it follows from

the definition of hα+1 that hα+1(η) = hα(η). By induction ran(g) ⊆ PrBα
(hα(η)) ⊆

PrBα+1
(hα(η)) = PrBα+1

(hα+1(η)).

– Now suppose that f0 = fα. If η < δα, we could have assumed without loss of

generality that f0 = Idθα , so we may as well assume η > δα. By the definition of

hα+1, we know that hα+1(η) = f∗α(hα+1(ν)) for ν such that fα(ν) = η. For ran(g) ⊆ η

to hold, it must be the case that ran(f1) ⊆ ν < θα. So by induction ran(f1) ⊆

PrBα
(hα(ν)). So ran(g∗) = f∗α(ran(f∗1 )) ⊆ f∗α(PrBα

(hα(ν))) ⊆ PrBα+1
(f∗α(hα(ν))) =

PrBα+1
(hα+1(η)).
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• We now verify c8. Recall that eα := hα(δα) = hα+1(δα)1. By o6 PrBα
(eα) = PrBα+1

(eα).

By c8, c5 and the fact that hα+1 and hα are order-preserving we can see that hα+1(0) =

hα(0) = e0. Furthermore, for the same reason, e0 ≤ eα = hα(δα) = hα+1(δα). It fol-

lows that PrBα+1
(e0) = PrBα

(e0), since both sets are initial segments of, respectively,

PrBα+1
(eα) = PrBα

(eα).2 Inductively, we know PrBα
(e0) = PrB0

(e0), so we know

PrBα+1
(e0) = PrB0

(e0). So we have verified the first clause of c8.

Now suppose f ∈ Fβ,α+1. Since both IdBα+1 and f∗α fix PrBα
(eα) ⊇ PrBα

(e0), it follows

trivially from c5, M3, and induction that f∗ � PrBα
(e0) = IdPrBα

(e0). Thus the second

clause of c8 holds as well.

• Finally, we verify the last condition, c9. We know that X(Bα+1) = X(Bα) by o5 and

by induction X(Bα) = X(B0). We have shown that c8 holds already, so since X(B0) ⊆

PrB0
(e0) = PrBα+1

(e0), X(Bα+1) ⊆ PrBα+1
(e0). This completes our verification of c9.

We have now finished the successor step and move on to the limit step. Let γ be a limit

ordinal and suppose the desired properties already hold of hα, f∗ for f ∈ Fα,β, and Bα when

α < β < γ. We can proceed much as in Devlin. Set:

Fγ :=
⋃
α<γ

Fα<γ

1The second equality follows from the definition of hα+1 given earlier.

2Recall Bα ≺K Bα+1, in particular this means that Bα and Bα+1 interpret “<” identically on their

common initial segment PrBα

(e0) = PrBα+1

(e0).
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Define d(f) = α where f ∈ Fα,γ . We now define an ordering on Fγ ; let f <∗ f ′ if and only if

the following two conditions hold:

1. d(f) < d(f ′)

2. There exists g ∈ Fd(f),d(f ′) such that f = f ′g.

Note that if there exists a g ∈ Fd(f),d(f ′) such that f = f ′g, there in fact exists a

unique g ∈ Fd(f),d(f ′) such that f = f ′g (since all maps in Fγ are injective). It’s clear

that (Fγ , <
∗) is a partial order. By properties M3 and M5 of Definition 5.1.1 (Fγ , <

∗) is di-

rected. For f <∗ f ′, define g(f, f ′) = g such that f = f ′g. Note g(f, f ′) : Bd(f) → Bd(f ′), so

(Bd(f), g(f, f ′))f<∗f ′ , f,f ′∈Fγ is a directed system. Let Bγ be the direct limit of the previously

mentioned directed system and for f ∈ Fγ let f∗ be the canonical embedding with domain

Bd(f).

By property c8 and Lemma 5.2.15, we may assume without loss of generality that PrB0
(e0) =

PrBγ
(e0) and that for f ∈ Fα,γ that f∗ � PrBα

(e0) = IdPrBα
(e0). It follows that c8 holds at

a limit stage. We choose hγ : θγ → Bγ by demanding that for all α < γ, all f ∈ Fα,γ that

hγf = f∗hα.

As in Devlin, properties c2-c7 follow trivially except c4. c4 and c1 follow from Lemma 5.3.8

when γ < ω2. c8 was noted to be true in the previous paragraph. From Lemma 5.2.16 we see

that c9 holds.

At the ω1-step of our construction, we can maintain all properties except c1 and c4. In

particular we have an order embedding of ω2 into Bω1 (thus a structure of size ℵ2), but

X(Bω2) = X(B0) (so in particular |X(Bω2)| = ℵ0). �
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5.5 1-transitive and galois homogeneous structures

In this section we explore sufficient conditions that imply Assumptions 5.3.3 and 5.3.7 (and

thus allow us to construct an (ℵ2,ℵ0)-model, or in other words “complete step 4”.). The first

of these conditions, being globally 1-transitive with respect to a galois type over the empty set,

is weaker than the second condition, which is a much stronger homogeneity condition. On the

other hand, we must also assume that the 1-transitive structure is a local superlimit to satisfy

Assumption 5.3.7, while the stronger homogeneity condition implies the structure is a local

superlimit. We introduce the weaker notion first.

Again, we work with ordered structures, unless otherwise noted.

Assumption 5.5.1 Throughout this section, unless otherwise noted, members of K are linearly

ordered by an ordering < which is contained in the vocabulary L of K. In particular, C is an

ordered structure.

Definition 5.5.2 We say that a structure M ∈ K is 1-transitive with respect to p where p is

a Galois type over some (possibly empty) submodel of M if given an a, b ∈ M where a, b |= p

then there exists γ ∈ aut(M ) such that γ(a) = b.

Lemma 5.5.3 Suppose that M0
∼= M1 and that M0 is 1-transitive with respect to p := tpga(a),

where a ∈M0, then M1 is also 1-transitive with respect to p.

proof. Let φ : M1 →M0 be an isomorphism. Suppose that b, c |= p where b, c ∈M1. Since p

is a type over the empty set, φ(b), φ(c) |= p, hence there exists γ ∈ aut(M0) such that γ(b) = c.

Let δ = φ−1γφ. Note δ ∈ aut(M1) and δ(b) = c. �
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The following Proposition shows that you can reduce the sufficient conditions for existence

of an (ℵ2,ℵ0)-model, that is, Assumptions 5.3.3 and 5.3.7 to a single, slightly shorter list of

assumptions in the case that B0 is 1-transitive with respect to tpga(e0).

Proposition 5.5.4 Suppose that B0,B1 ∈ K where K is an AEC in a language including a

binary relation “<” which is interpreted as an ordering in an element of K. Suppose that B0

and B1 satisfy the following conditions:

(I) B0 ≺K B1

(II) There exists a strong embedding σ : B0 → B1 and constants ei ∈ Bi for i = 0, 1 where

σ(e0) = e1 such that:

(a) σ � PrB0
(e0) = Id

PrB0
(e1)

(b) B0 ⊆ PrB1
(e1)

(III) B0 is a local superlimit.

(IV) B0 is 1-transitive with respect to tpga(e0).

(V) There is an invariant set X over the empty set such that X(B0) = X(B1) ⊆ PrB0
(e0).

then B0 and B1 satisfy both Assumption 5.3.3 and Assumption 5.3.7.

proof. Clearly, the necessary conditions to verify from Assumption 5.3.3 are (IIc) and

(IV). Note Lemma 5.5.3 shows that B1 as well as B0 is 1-transitive with respect to tpga(e0).

Note that since σ is a strong embedding for any a ∈ M0, tpga(a) = tpga(σ(a)) (Since strong-

embeddings preserve galois types over ∅). Thus, 5.3.3 (IIc) follows trivially from 1-transitivity
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with respect to tpga(e0). That is, if tpga(a) = tpga(b) = tpga(e0), then tpga(σ(a)) = tpga(b)

so there exists δ ∈ aut(B1) such that δ(σ(a)) = b. Likewise, (IVc) also follows trivially from

1-transitivity. That is, by definition there exists an isomorphism φ : B1 → B0, and clearly (see

Proposition 5.2.6) tpga(φ(e0)) = tpga(e0) so there exists γ ∈ aut(B0) such that γ(φ(e0)) = e0,

thus (B0, e0) ∼= (B1, e0). Thus Assumption 5.3.3 holds.

Now suppose that, as in Assumption 5.3.7 we have a countable sequence of models (Bi)i<γ

and constants (ei)i<γ such that:

1. for i < j < γ, ei ∈ Bj and

2. for i < j < γ, (Bi, ej) ∼= (B0, e0).

Since B0 is a local superlimit, Bγ :=
⋃
i<γ Bi ∼= B0 . By Lemma 5.5.3, Bγ is 1-transitive

with respect to tpga(e0) = tpga(ψ(e0)) where ψ : Bγ → B0 is any isomorphism. Note that

condition (2) above implies that tpga(ej) = tpga(e0) for any j < γ. So by 1-transitivity of Bγ

with respect to tpga(e0), for any j < γ, (Bγ , ej) ∼= (B0, e0). Thus Assumption 5.3.7 holds as

well. �

Notation 5.5.5 For tuples a, b ∈ C we write a ∼C/M b if tpga(a/M ) = tpga(b/M ), that is

if there exists an automorphism γ ∈ aut(C/M ) such that γ(a) = b. If M = ∅ then we write

a ∼C b.

Definition 5.5.6 We say that N ∈ Kµ is µ-galois homogeneous over M if given a, b ∈ N

where |a| = |b| < µ and a ∼C/M b then there exists γ ∈ aut(N /M ) such that γ(a) = b. If
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M = ∅ then we say N is µ-galois homogeneous. In the case that µ = |N | we say N is galois

homogeneous.

Once one fixes a monster model C for an elementary class, it should be clear that galois

homogeneity is equivalent to sequence homogeneity1 as it is classically defined. We provide an

example where galois homogeneity differs from homogeneity.

Example 5.5.7 Let L = {E, s}, a single binary relation E and single unary function s. Let K

consist of L -structures that interpret E as an equivalence relation where each E class contains

a model of Th(Z, s) (s is interpreted as the successor function in each E-class). We demand

further that, in any structure in K, there be infinitely many E-classes containing one copy of

(Z, s) and infinitely many E-classes contain two copies of (Z, s). Define N ≺K M ⇐⇒

N ⊆M and for any x ∈M if ∃y ∈ N such that E(x, y) then x ∈ N . (We are only permitted

to add new equivalence classes in a strong extension, not add any elements to existing classes).

K is an AEC with LS(K) = ℵ0. Note that K satisfies AP and JEP. Any countable model is

galois homogeneous, however if one fixes some a in an E-class containing two copies of (Z, s) and

b in an E-class with a single copy of (Z, s) then the map (a, b) is partial elementary. However,

if c is in the same E-class as a but not in the same copy of (Z, s) then there is no way to extend

the map (a, b) to include c in its domain. Thus one cannot have a homogeneous (in the classical

sense) model in K.

1That is M is µ-homogeneous if given an two tuples a, b, where |a| = |b| < µ if tpsyntactic(a) =
tpsyntactic(b) for any a ∈M there exists b ∈M such that tpsyntactic(aa) = tpsyntactic(bb).
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There is a useful equivalent formulation of homogeneity for countable models given below.

The proof is a typical back-and-forth argument.

Proposition 5.5.8 M ∈ Kℵ0 is galois homogeneous if and only if given any a, b ∈ M such

that a ∼C b and |a| = |b| < ω then for all a ∈M there exists b ∈M such that aa ∼C bb.

proof. If M ∈ Kℵ0 is galois homogeneous then if we are given a, b ∈ M with |a| = |b| < ω

there is γ ∈ aut(M ) such that γ(a) = b. Given any a ∈M , aa ∼C bγ(a).

On the other hand, suppose that given any a, b ∈ M such that a ∼C b and |a| = |b| < ω

then for all a ∈ M there exists b ∈ M such that aa ∼C bb. Now suppose that a, b ∈ M satisfy

|a| = |b| < ω and a ∼C b. Fix enumerations (ai)i<ω and (bi)i<ω of, respectively M \a,M \b. We

will construct a sequence of automorphisms of C, (γi)i<C and tuples ai, bi such that for i < ω:

1. ai v ai+1

2. bi v bi+1

3. ai ⊂ ai+1

4. bi ⊂ bi+1

5. γi+1 � ai+1 ⊇ γi � ai

6. bi = ran(γi � ai)

7. |ai| = |bi| < ω

8. ai ∼C bi.
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We proceed by induction on i < ω. For the base case, note that since a ∼C b there exists

γ0 ∈ aut(C) such that γ0(a) = b. Let a0 = a and b0b.

Suppose that we have defined γi,ai, and bi, we proceed to define γi+1, ai+1, and bi+1. We

note that, by induction, ai ∼C bi, so, if ai 6⊂ ai then there exists b ∈M such that aai ∼C bb (and

if ai ⊂ ai let b = ∅). If bi /∈ bb then there exists a ∈M such that aaia ∼C bbib (and if bi ⊂ aiai

let a = ∅). Let ai+1 = aaia and bi+1 = bibbi. Let γi+1 ∈ aut(C) witness that ai+1 ∼C bi+1.

It is clear that
⋃
i<ω γi � ai ∈ aut(M ) which takes a to b by construction. �

If a structure is of cardinality greater λ > ℵ0, then it becomes combinatorially difficult to

prove an analogous result for λ-galois homogeneous structures of size λ. (one must deal with

infinite tuples); it is however certainly true that if M ∈ Kλ is ℵ0-galois homogeneous then the

“if” clause of the above proposition still holds, by the same proof as above.

Proposition 5.5.9 If M ∈ Kλ is ℵ0-galois homogeneous then given any a, b ∈ M such that

a ∼C b and |a| = |b| < ω then for all a ∈M there exists b ∈M such that aa ∼C bb.

The following obvious fact holds:

Fact 5.5.10 Suppose that M is galois homogeneous, then M is 1-transitive with respect to

tpga(a) for any a ∈M .

We can show a countable galois homogeneous model is a local superlimit by using a back-

and-forth argument, the proof is identical to the proof that shows countable homogeneous

models (in the classic sense of the definition) that realize the same syntactic types over the

empty set are isomorphic.
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Proposition 5.5.11 1 If M is countable and galois homogeneous then M is a local superlimit.

proof. Suppose that (Mi)i<ω is a countable increasing sequence of models, M0 := M and

Mi
∼= M0. Let Mω :=

⋃
i<ω Mi. We claim Mω

∼= M0.

We show Mω
∼= M0 by a typical back-and-forth argument. Let (ai)i<ω enumerate Mω

and let (bi)i<ω enumerate M0. Similarly to the proof of Proposition 5.5.8 we will construct a

sequence of automorphisms of C, (γi)i<C and tuples ai, bi such that for i < ω:

1. ai v ai+1

2. bi v bi+1

3. ai ⊂ ai+1

4. bi ⊂ bi+1

5. γi+1 � ai+1 ⊇ γi � ai

6. bi = ran(γi � ai)

7. |ai| = |bi| < ω

8. ai ∼C bi.

We proceed by induction. Note for some j < ω, a0 ∈ Mj
∼= M0. Let φ : Mj → M0 be an

isomorphism. a0 ∼C φ(a0). By Proposition 5.5.8 there’s some a ∈ A0 such that a0a ∼C bb0.

Let a0 = a0a and b0bb0. Let γ0 ∈ aut(C) take a0 to b0.

1It is not required K be ordered for this result.
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Suppose we have defined a0, b0, and γi. We note that for some j < ω, aiai ⊆ Mj
∼= M0.

Let φ : Mj → M0 be an isomorphism (possibly different then φ fixed in the base case).

Note that φ(aiai) ∼C aiai, by homogeneity of M0 we know that there is an automorphism

γ ∈ aut(M0) where γ(φ(aai)) = aiai so without loss of generality φ(aiai) = aiai. Since ai ∼C bi

by induction, we can find some b ∈ M0 such that aiai ∼C bib, similarly there is some a ∈ M0

such that aiaia ∼C bbbi. Let ai+1 = aiaia, bi+1 = bbbi, and let γi+1 ∈ aut(C) take ai+1 to bi+1.

Let γ :=
⋃
i<ω γi � ai ∈ aut(M ), it should be clear that γ is an isomorphism from Mω to

M0. �

As with the assumption that we work with 1-transitive structures, the assumption that we

work with countable galois homogeneous structures reduces the number of additional assump-

tions necessary to complete the inductive construction of an (ℵ2,ℵ0)-model.

Proposition 5.5.12 Suppose that B0,B1 ∈ Kℵ0 where K is an AEC in a language including

a binary relation “<” which is interpreted as a linear ordering in any element of K. Suppose

that B0, B1 satisfy the following conditions:

(I) B0 ≺K B1

(II) There exists a strong embedding σ : B0 → B1 and constants ei ∈ Bi for i = 0, 1 where

σ(e0) = e1 such that:

(a) σ � PrB0
(e0) = Id

PrB0
(e1)

(b) B0 ⊆ PrB1
(e1)

(III) B0 ∼= B1 is galois homogeneous
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(IV) There is an invariant set X over the empty set such that X(B0) = X(B1) ⊆ PrB0
(e0).

Then B0 and B1 satisfy both Assumption 5.3.3 and Assumption 5.3.7. In particular, an

(ℵ2,ℵ0)-model Bω2 exists where X(Bω2) = X(B0).

proof. By Proposition 5.5.11 B0 is a local superlimit. Note also that galois homogeneous

structures are 1-transitive with respect to any galois type over the empty set (see Fact 5.5.10).

So we may apply Proposition 5.5.4 to see that Assumption 5.3.3 and 5.3.7 hold.

Since Assumption 5.3.3 and 5.3.7 hold, we may apply Theorem 5.4.2 to build an (ℵ2,ℵ0)-

model Bω2 such that X(Bω2) = X(B0). �

Finally we provide a construction of a countable homogeneous structure extending account-

able structure in an AEC K; it’s worth noting that our ambient assumptions of joint embedding

and amalgamation (we give an example that shows amalgamation at least is necessary) are nec-

essary, while it seems unnecessary to assume that we have amalgamation over sets.

Theorem 5.5.13 [AP, JEP]1 Suppose that M ∈ Kℵ0, there exists N ∈ Kℵ0 such that M ≺K

N and N is galois homogeneous.

proof. Fix M ∈ Kℵ0 . We will construct a countable ≺K-increasing sequence of countable

models M0 with the following properties:

1. M0 = M .

1It is not required K be ordered for this result.
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2. For any finite tuples a, b ∈ Mi where a ∼C b, Mi+1 and singleton a ∈ Mi there exists

b ∈Mi+1 such that aa ∼C bb.

Condition 1. is trivial, to see Condition 2. can be satisfied consider the following:

Since Mi is countable, there are only countably many pairs of finite tuples (a, b) of elements

of Mi such that a ∼ b; clearly there are only countably many choices for a ∈Mi. If a ∼ b there

is γa,b ∈ aut(C) such that γa,b(a) = b; note aa ∼C bγa,b(a). The set {γa,b(a) : a ∼C b, a, b ∈

Mi, a ∈Mi} is countable, hence contained in some countable model Mi+1.

Let N =
⋃
i<ω Mi. Given any a, a ∈M , there exists i < ω such that a, a ∈ Mi. So there

exists, by construction, b ∈ Mi+1 such that aa ∼C bb. So by Proposition 5.5.8 N is galois

homogeneous. �

5.6 Non-existence of galois homogeneous extensions in PCΓ classes

Assumption 5.6.1 In this section K is not ordered and doesn’t satisfy AP.

In the previous section, Theorem 5.5.13 shows that in an AEC K which has the amalgama-

tion property and joint embedding property, any countable model can be extended to a galois

homogeneous structure, much as any structure has an elementary extension which is countably

homogeneous in the classical model theoretic sense. However, this is not true for AECs which

do not satisfy the the amalgamation property. We give an example below of an AEC which is

a PCΓ class in which certain models have no galois homogeneous extension; indeed, the notion

of “galois homogeneous” is not even well-defined in the absence of either the joint embedding

or amalgamation properties since there is no suitable “monster model” to define the ∼C-notion
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with respect to. Below we give an example where a countable structure cannot be extended to

a model which is homogeneous in the traditional model theoretic sense.

The example is produced in the language {Pn : n ∈ ω} ∪ {E} where the Pn are unary and

E is binary. The Pn are interpreted as and infinite family of refining predicates and E will be

interpreted as an equivalence relation dividing each Pn into two infinite classes. However, we

will force there to be a different finite number of elements in the two equivalence classes in the

intersection
⋃
n∈ω Pn(M ) for certain models M .

Example 5.6.2 1. Let T be the first order theory in L := (Pn)n<ω∪{E} of infinitely many

unary predicates and one binary relation E, such that

(a) ∀xP0(x).

(b) ∀x(Pn+1(x) =⇒ Pn(x))

(c) ∃∞x(Pn(x) ∧ ¬Pn+1(x))

(d) E partitions the realizations of Pn in a model into two infinite equivalence classes.

2. p(x1, x2, y1, y2, y3) is a partial type including the following (collections) of formulas:

• For n < ω
∧
i=1,2 j=1,2,3 Pn(xi) ∧ Pn(yi)

• x1 6= x2 ∧
∧
i 6=j,j=1,2,3 yi 6= yj

• x1Ex2 ∧
∧
i,j∈{1,2,3} yiEyj

• For n < ω
∧
i=1,2 j=1,2,3 ¬xiEyj

3. q(x1, x2, x3, x4) is a partial type including the following (collections) of formulas:
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• For n < ω
∧4
i=1 Pn(xi)

•
∧
i 6=j xi 6= xj

Note that in Example 5.6.2.2 if p is realized in a M |= T then E divides
⋂
n∈ω Pn(M )

into one equivalence class of cardinality at least two and another class of cardinality at least

three. If M |= T realizes q then
∣∣⋂

n∈ω Pn(M )
∣∣ ≥ 4. On the other hand if M omits q then∣∣⋂

n∈ω Pn(M )
∣∣ ≤ 3. If M also omits p there may be an element in one E class in

⋂
n∈ω Pn(M )

while the other equivalence class is allowed to contain at most two elements.

In particular if
∣∣⋂

n∈ω Pn(M )
∣∣ = 3 (which is the maximal possible size) then there are two

non-empty E-classes of
⋂
n∈ω Pn(M ). One E-class has a unique element a0 while the other

E-class has two elements b0, b1. Since a0 and b0 have the same type over ∅ the map b0 7→ a0 is

elementary, however there is no way to extend this map to have domain {b0, b1}. Furthermore,

there is no way to extend this map to have domain {b0, b1} in any elementary extension of M

which also omits p. So in the PC(T, {p, q}) class there is no elementary extension of M that is

ω-galois homogeneous in the traditional, model-theoretic sense of the notion.

It should be clear to see that we may modify this example to allow one of the E-classes of⋂
n∈ω Pn to be infinite while the other has some fixed finite maximal size or to fix both classes

to be of at most some different maximal size.

We emphasize that the above example occurs in a context where the amalgamation property

fails. In our argument, dependence on the existence of C is omnipresent, but beyond this we

are also assuming the existence of a simplified morass, which follows from V=L. In particular,
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there is little reason not to assume weak GCH. We note the following theorem of Shelah (from

(Shelah, 1987)):

Theorem 5.6.3 (WGCH) Suppose that K is λ-categorical for some λ ≥ LS(K). If Kλ+ has

less than 2λ isomorphism types then Kλ satisfies the amalgamation property in λ.

Corollary 5.6.4 If K is categorical in all λ > κ for some κ, then κ satisfies the amalgamation

property in µ for all µ ≥ κ.

So “few models”, in the appropriate sense implies amalgamation. Of course, we do not

necessarily work with classes where we know there are few models in ℵ0, or for that matter, in

any cardinal.

5.7 Steps 2, 3, and 4

Assumption 5.7.1 Throughout this section K is assumed to satisfy AP, JEP and have a

monster C, but we do not assume the vocabulary L of K contains a binary symbol interpreted

as an ordering in members of K. We will, however, also work with various expanded languages

including, in particular, a language L ′′ that does contain a symbol for the ordering.

Up until now, we have talked about conditions on countable structures which allow us to

construct and (ℵ2,ℵ0)-model, in this section we explore the progress we have made toward

finding conditions on uncountable models which will allow us to construct an (ℵ)2,ℵ0)-model.

More precisely, we look for conditions on uncountable models which allows us to derive some

conditions on countable models which we already have shown we can use to build an (ℵ2,ℵ0)-

model. In particular, we attempt to avoid the initial assumption that elements of K are linearly
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ordered. As noted in the introduction to the chapter, we make only partial progress in this

direction.

First, §5.7.1, we will discuss issues relating to adding an ordering to a non-ordered AEC.

In order to do so, we make use of Shelah’s Presentation Theorem for AECs. A key sufficient

condition, upon which all the progress we have been able to make in working with an AEC that

does not already have a suitable ordering is the assumption that the monster model admits an

expansion to an ordered structure that is at least ℵ1-saturated.

We recall that in the first order case gap-2 transfer is accomplished through the following

steps:

1. Build an isomorphic pair of structures in κ.

2. Obtain a Vaughtian pair (in κ) and an elementary embedding that codes some combi-

natorial information; expand the language to code the Vaughtian pair and combinatorial

information into an expanded first order theory.

3. Find a “nice” pair of countable homogeneous models of the expanded theory.

4. Construct an (ℵ2,ℵ0)-gap using properties of a simplified morass.

We will first prove an analogue of step 1. for AECs. Then, in §5.7.2, we will discuss the proof

of step 2. in the first order context and the difficulties we encounter in attempting to prove a

similar result for AECs. We have, ultimately, not been able to prove any sort of analogue of

step 2. for AECs. However, in §5.7.3, we introduce a condition stronger than the conclusion of

2., a sort of “2+.” condition on models of size κ from which we can complete step 3 and then
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step 4, thus yielding the existence of an (ℵ2,ℵ0)-model. After achieving this, we discuss how,

by slightly modifying the proof of Theorem 5.4.2, we can also weaken the strength of the “2+”

assumption.

5.7.1 the presentation theorem and step 1.

One of the tools we will use in working toward this goal is representing an AEC as a collection

of models of a first order theory omitting some collection of types.

Definition 5.7.2 Let Γ be a collection of partial first order syntactic types in finitely many

variables over ∅ in some language L ′. A PCL (Γ, T ′)-class is the class of reducts to some

L ⊆ L ′ of models of the L ′-theory T ′ that omit the collection of types Γ.

Notation 5.7.3 We write PCΓ to denote that a class is PCL (Γ, T ′) for some T ′, L ′, L , and

Γ.

Definition 5.7.4 We say that K is PC(λ, µ) if K is a PCL (Γ, T ′) for |Γ| ≤ λ, and |T ′| < µ.

Notation 5.7.5 If N ′ is an L ′ structure, we write N to denote N ′ � L when we believe

this is unlikely to cause confusion.

If any result in the study of AECs can be considered “classical” we believe Shelah’s Pre-

sentation Theorem qualifies as such. A proof of the theorem is available in (Baldwin, 2009) as

Theorem 4.15, amongst other sources.
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Theorem 5.7.6 (Shelah’s Presentation Theorem) If K is an AEC in a language L with

|L | ≤ LS(K) there is a language L ′ ⊇ L , an L ′ first order theory T ′, and a collection Γ of

L ′-types over ∅ such that

K = {M : M ′ |= T ′,M ′ omits Γ}

In particular, the following hold:

1. |Γ| ≤ 2LS(K), |T ′| ≤ LS(K).

2. If M ′,N ′ |= T ′, M ′,N ′ omit Γ, and M ′ ≺ N ′ then M ≺K N .

3. If M ≺K N then there are expansions M ′,N ′ of respectively M ,N , such that M ′,N ′ |=

T ′, M ′,N ′ omit Γ, and M ′ ≺ N ′.

In other words, Shelah’s presentation theorem says that an AEC K can be represented as

a PC(LS(K), 2LS(K)) class.

As we discussed at the beginning of this chapter we can use the presentation theorem to

make partial progress toward an analogue of Jensen’s gap-2 transfer theorem.

Assumption 5.7.7 For the remainder of the section we fix K to be an AEC satisfying AP

and JEP in cardinals up to and including κ++ with LS(K) = ω. Fix a (κ++, κ)-model C ;

that is |C| = κ++, B ≺K C , |B| = κ, and an invariant set X (see section 5.2) such that

X(C ) = X(B).

Observation 5.7.8 Note that if X is invariant instead over a countable M , we may add con-

stants to the language for M and consider only structures for which M is a strong substructure.
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Now it’s worth pointing out that, as long as the monster model C admits an expansion to

a sufficiently saturated structure C′′ then any set X ⊂ C which is invariant remains invariant

when considered as a subset of the expanded structure; this should be trivial to see since any

automorphism of a structure in some language will remain an automorphism of any reduct of

that structure. What is not the case in general is that an invariant set X is invariant for a

reduct (indeed, consider the reduct to the language of pure equality, if any bijection b : C→ C

is not an automorphism of C then C � ∅ will not have the same invariant sets as C). On the

other hand, if we start with an invariant set X with respect to L , then move to the expanded

language L ′′ to apply Theorem 5.4.2, since X was invariant with respect to L , if one takes a

reduct to L after applying Theorem 5.4.2 then X remains invariant.

Now, a priori, one might be able to move from our PCΓ class-K′ to a class of AECs in an

expanded language K′′, satisfying any of the sufficient conditions we have explored (that is,

5.3.3 plus 5.3.7, the hypotheses of Proposition 5.5.4, and the hypotheses of Proposition 5.5.12)

for the existence of an (ℵ2,ℵ0)-model except for being able to expand the monster model C′ to

a monster model for K′′. This, however, cannot be the case, observe:

Observation 5.7.9 If K′′ is an AEC whose members reduct to models in the PCΓ class K′

(or equivalently members of the original AEC K) then if there exists any monster model C′′ (in

the sense that C′′ is a large-enough model-homogeneous and every N ∈ K′′ where |N | < |C|

can be strongly embedded in C′′ ) for K′′, C′ admits an expansion isomorphic to C′′.

The proof of the above observation is essentially a proof-by-definition. Since we’ve defined a

monster model is a large model-homogeneous structure, a monster models in some vocabulary
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τ must be unique up to isomorphism. Thus, if any monster model C′′ exists, it’s reduct to L ′

is isomorphic to C ′. Assuming GCH, since given that a Morass exists if V=L, it is somewhat

natural to do so, the only obstacle to the existence of a monster model is failure of JEP and/or

AP. In fact the key problem we face in expanding the language, if we wish to apply the results

of this chapter, is making the class K′′ satisfy AP and JEP.

Notation 5.7.10 By the Theorem 5.7.6 we can find some L ′, T ′,Γ such that K is represented

as a PCL (T ′,Γ) class. As in the first order proof of Jensen’s Gap-2 transfer theorem, we can

expand L ′ to L ′′ = L ′ ∪ {<} and the pair of models (B,C ) can be expanded to a pair of

L ′′-structures (B′′,C ′′) which are ordered by “<” so that B′′ has order type κ and C ′′ is an

end extension of B′′ with order type κ++. (Note that we do not assume that B′′ ≡L ′′ C ′′,

merely that B′′ is an L ′′-substructure of C ′′).

Note that, by our previous remarks, there is no serious loss of generality in Theorem 5.4.2

in assuming the language contains an ordering with regard to the behaviour of the invariant

set manipulated in the construction. However, the assumption (Assumption 5.7.18) that our

class of structures satisfies AP and JEP does potentially limit the generality of the scope of our

results in this section.

In (Devlin, 1984) step 1. is essentially Lemma 3.2. The proof of Lemma 3.2 in (Devlin,

1984) can be applied with minimal modification in the context of AEC to yield a version of step

1. for AEC. The key to adapting the first order proof to the PCΓ case is the ability to work

in C ′′ as an ambient structure which omits Γ. We provide a proof below, following closely the

outline of the proof in (Devlin, 1984), but being careful to check that the steps remain valid in
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the PCΓ context. Note that for this particular proof, we don’t actually need AP or JEP in the

expanded language because we can work entirely within the structure C ′′.

Proposition 5.7.11 (2κ = κ+) Let C ′′,L ′′, X be as in Notation 5.7.10. There is an X-

Vaughtian pair N ′′,M ′′ ≡L ′′ C ′′ , an elementary map σ : N ′′ → M ′′, and some e ∈ M ′′

such that:

1. N ′′,M ′′ omit Γ.

2. N ′′ ≺L ′′ M
′′

3. X(N ′′) = X(M ′′)1

4. σ � Pr(e) = IdN ′′

5. N ′′ ⊆ Pr(σ(e)) (In particular, σ is not onto)

6. |N ′′| = |M ′′| = κ

proof. For α < κ++ define Aα to be a ≺L ′′-minimal strong sub-structure of C ′′ containing

κ ∪ α (that is, Aα is minimal containing B′′ ∪ α, where B′′ is as in Notation 5.7.10). That is,

there is no proper strong substructure of Aα which contains α. Since a subset of an ordinal is

well-ordered, we can choose such an Aα. Fix S to be a cofinal subset of κ++ such that Aα 6= Aβ

for distinct α, β ∈ S. By downward Löwenheim-Skolem, for all α < κ++ |Aα| = κ. Since there

are at most κ+ distinct well orders of cardinality κ (and a subset of an ordinal is a well order)

1Note that X is invariant in L ’, hence also L ”.
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we may assume without loss of generality that there is some ordinal θ < κ+ such that for all

α ∈ S, Aα is of order type θ.

For α ∈ S we can write Aα = {aαν : ν < θ} where for fixed α and ν < η < θj =⇒ Aα |=

aαν < aαη . Since α ∈ Aα we find a least % < θ such that (aα% )α∈S is cofinal in κ++.

Claim 5.7.12 We may assume that (aαν )ν<% = (aβν )ν<% for ν < θ. In addition, we may assume

without loss of generality for α, β ∈ S that α < β =⇒ aαν < aβ% .

Let γ := sup{aαη : α ∈ S, η < %}. Since % is the least ordinal such that (aα% )α∈S is cofinal in

κ++, it follows that γ < κ++, i.e. |γ| = κ+. Since (κ+)
κ

= κ+, there are only κ+ maps from %

(|%| ≤ κ) into γ (|γ| ≤ κ+), while there are κ++ elements of S. So we can find a subset S′ ⊆ S

where for α, β ∈ S′, (aαν )ν<% = (aβν )ν<% for ν < θ and α < β =⇒ aαν < aβ% . We replace S with

S′ if necessary. This completes the proof of the claim.

Set:

Y = {aαν : ν < %}

Zα = {aαν : % ≤ ν < θ}
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So Y and Zα partition each Aα into “the part before %” and “the part after %”. In particular

for all α, β ∈ S where α < β:

Aα = Y ∪ Zα

Y ∩ Zα = ∅

Y < Zα < Zβ

By 2κ = κ+ there are at most κκ = κ+ non-isomorphic structures of size κ, so we can find

α, β ∈ S, α < β where Aα
∼= Aβ. Thus, we can find an isomorphism σ : Aα → Aβ., in particular

σ must respect the ordering on the sets Aα, so σ must be the unique order isomorphism from

Aα onto Aβ. Let e = aα% . σ will fix Pr(e) ∩Aα. Since α < β, for all ν < %, aαν < aβ% , it follows

that Aα ⊆ PrC ′′(σ(e)). Since for any γ ∈ S, X(C ′′) = X(B′′) ⊆ B′′ ⊆ Aγ , X(Aα) = X(Aβ).

Furthermore, since B′′ ⊆ Y , it follows that X(Aα) ⊆ PrAα(e).

By downward Löwenheim-Skolem we can choose M ′′ ≺K C ′′ to be of size κ such that

Aα ∪ σ(Aα) ⊆ M ′′. Note that σ : Aα → M ′′ cannot be surjective, because if b ∈ Aα \ Pr(e)

then b /∈ σ(Aα). We let N ′′ := Aα, with e and σ as defined above, we satisfy the conclusion of

the hypotheses. Notice in particular that all structures were chosen as submodels of C ′′, hence

they omit Γ. �

5.7.2 Step 2

In Section 5.7 we noted that the proof of the gap-2 transfer theorem for first order logic

can be broken down into 4 steps. We proved an analogue of the first step in Section 5.7 and
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we proved an analogue of the fourth step in Section 5.3.1 In this section we discuss one of the

difficulties inherent in providing a substitute for Step 2 in the context of AECs.

In Proposition 5.7.15 we state the result which allows one to complete step 2 in the first

order context. In Corollary 5.7.17, we complete the argument that Jensen’s result is a special

case of our analysis. It’s worth noting one must use certain first order results (namely Propo-

sition 5.7.15) to obtain the full gap-two transfer theorem and not just the sufficient condition

(Assumption 5.3.3 plus Assumption 5.3.7) on a pair countable models for the existence of an

(ℵ2,ℵ0)-model. In Proposition 5.7.19, we provide an analogue for step 3 in the AEC case, which

we remind the reader, is provable from a slightly stronger condition than the conclusion of step

2 in the outline of the first order proof.

We begin with a discussion of the proof in the first order case. So we define:

Definition 5.7.13 A classical (κ, λ)-model is a model M where |M | = κ and there is some

definable predicate φ such that |φ(M )| = λ.

One may prove an analogue, Proposition 5.7.14, of Proposition 5.7.11 for first order (κ, λ)-

models in the essentially the same way as we proved 5.7.11. We omit the proof (which can be

be found in (Devlin, 1984), as 3.2), but give a statement of the proposition:

1Of course, in Section 5.3, it was necessary to assume Assumption 5.3.3 and 5.3.7 as a substitute for
the conclusion of Step 3.
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Proposition 5.7.14 (2κ = κ+) Suppose C ′′ is a classical (κ++, κ)-model, witnessed by the

definable predicate φ. There are N ′′,M ′′ ≡L ′′ C ′′, an elementary map σ : N ′′ → M ′′, and

some e ∈ N ′′ such that:

1. N ′′ ≺L ” M
′′

2. φ(N ′′) = φ(M ′′)

3. N ′′ ⊆ Pr(σ(e)) (in particular σ is not onto)

4. σ � Pr(e) = IdN ′′

5. N ′′ ⊆ Pr(σ(e))

6. |N ′′| = |M ′′| = κ

We reproduce the statement and sketch the proof of Lemma 3.3 from (Devlin, 1984) as

Proposition 5.7.15 (This Lemma achieves step 2 and step 3 of the proof outline of the first

order gap two transfer theorem.) below to illustrate its dependencies on properties of first

order logic. We diverge somewhat from the proof in (Devlin, 1984) to emphasize a subtle point

of the argument is omitted from the proof which appears in (Devlin, 1984).1

1It seems likely that Devlin was under the impression that a reduct of a homogeneous structures is also
homogeneous, which is one of the very few false assertions made in (Chang and Keisler, 1977). The proof
of Lemma 3.3 in (Devlin, 1984) references the earlier result Lemma 1.5’s proof. In this proof, he states
it’s clear that the reduct of certain countable homogeneous structure is also a countable homogeneous
structure, which is not true in general. Thus, this argument requires just a little bit of extra care be
taken to verify the proposition, which remains true.
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Proposition 5.7.15 (2κ = κ+) We assume that C ′′ is a classical (κ++, κ)-model, witnessed by

the definable predicate φ. There are countable homogeneous models B0,B1 ≡L ′′ C ′′, e0 ∈ B0,

and an elementary embedding σ0 : B0 → B1 such that:

1. B0 ≺L ” B1

2. φ(B0) = φ(B1)

3. (B0, e0) ∼= (B1, σ(e0))

4. σ0 � PrB0(e0) = IdPrB0 (e0)

5. B0 ⊆ PrB1(σ0(e0)) (in particular, σ0 is not surjective)

proof. Because we work in a large number of different languages, we take some time to list

them all here:

• L is some vocabulary for an AEC K. (In this case, an elementary class)

• L ′ is the language given by the Presentation Theorem. (In this case, there is no need to

apply the Presentation Theorem and we may assume L ′ = L ′′)

• L ′′ is L ′ expanded by adding a linear order “<”

• L ′′′ will be an expansion of L ′′ defined below to contain a predicate σ for an L ′′-

elementary embedding and a constant symbol as well as a predicate for an L ′′-elementary

submodel.

• L ′′′′ will be an expansion of L ′′′′ defined below to include a function symbol for an

L ′′-isomorphism.
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Let M ′′,N ′′, σ, e be as in Proposition 5.7.14, expand L ′′ to L ′′′ by adding a function

symbol for σ, constant symbol for e, and predicate for N ′′. Let T ′′′ be the L ′′′ theory of

(M ′′, N ′′, σ, e, ...).

If κ is singular, then GCH allows us to find a special model (M ′′′, N ′′′, σ′′′, e′′′) of T ′′′ in the

classical model theoretic sense, that is, a model with a filtration (Mi)i<κ such that Mi+1 is |Mi|-

saturated with respect to syntactic types. (If κ is regular this is simply a model saturated with

respect to syntactic types). Reducts of special models are special, so there is an isomorphism

h : N ′′′ � L ′′ → M ′′′ � L ′′. Let T ′′′′ be the L ′′′′ theory of (M ′′′′, N ′′′′, σ′′′′, e′′′′, h, ...) (where

L ′′′′ is an expansion of L ′′′ that contains a function symbol for the map h).

By compactness, we can find a countable homogeneous model (B1, B0, σ0, e0, h0...) |= T ′′′′.

However, reducts of homogeneous models are not necessarily homogeneous and we desire to

have B1 and B0 be homogeneous as L ′′ structures (as well as realize the same L ′′ types),

so some additional work is necessary. Of course, since the theory T ′′′′ knows that h0 is an

L ′′ isomorphism, then we already know that B1 and B0 realize the same L ′′ types and,

furthermore, if one Bi is homogeneous with respect to L ′′ then so is the other structure; thus

it is enough to show:

Claim 5.7.16 (B1, B0, σ0, e0, h0...) can be extended to a structure (BH
1 ,B

H
0 , σ

H
0 , e

H
0 , h

H
0 , ...)

such that BH
1 � L ′′ is homogeneous.

We proceed by an inductive construction, constructing models Bn := (Bn
1 , B

n
0 , σ

n
0 , e

n
0 , h

n
0 ...)

where given any finite tuples of the same length a, b ∈ Bn and a singleton a ∈ Bn such that

a ≡L ′′ b there is b ∈ Bn+1 such that aa ≡L ′′ bb. We start with B0 := (B1, B0, σ0, e0, h0...).
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Consider, for each singleton a ∈ Bn and tuples a, b ∈ Bn where a ≡L ′ b the type pa,a,b(x, y)

which contains for every L ′′ formula φ(x, x) the formula φ(x, a) ↔ φ(y, b). If pa,a,b(x, y) is

inconsistent then there is an L ′′-formula φ such that φ(x, a) ↔ φ(x, b) is inconsistent with

T ′′′′. So T ′′′′ |= ∃xφ(x, a) ∧ ¬∃yφ(y, b), but this contradicts that a ≡L ′′ b, because φ(x, x) is an

L ′′-formula.

Since L ′′ is countable and there are only countably many finite tuples in Bn we can extend

Bn to a model Bn+1 which is countable and realizes pa,a,b for each a, a, b ∈ Bn thus satisfying

the desired property. That is, given any finite tuples of the same length a, b ∈ Bn and a

singleton a ∈ Bn such that a ≡L ′′ b there is b ∈ Bn+1 such that aa ≡L ′′ bb. If BH :=
⋃
n<ω Bn

then BH
1 � L ′′ is countable homogeneous.

So, without loss of generality B1 and B0 are countably homogeneous as L ′′-structures,

hence (B0, e0) ∼=L ′′ (B1, σ(e0)). �

While the result is, of course, already known, we can also now deduce the first order Gap-2

Transfer Theorem from Proposition 5.7.15 and Theorem 5.4.2.

Corollary 5.7.17 (V=L)(Jensen) Suppose T is a first order theory with a classical (κ++, κ)-

model C , witnessed by the definable predicate φ. Then there is an (ℵ2,ℵ0)-model (witnessed by

φ).

proof. We apply Lemma 5.7.15 above, There are countable homogeneous models B0,B1 ≡L ′′

C ′′, e0 ∈ B0, and an elementary embedding σ0 : B0 → B1 such that:

A. B0 ≺L ” B1
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B. φ(B0) = φ(B1)

C. (B0, e0) ∼= (B1, σ(e0))

D. φ(B0) ⊆ B0

E. σ0 � PrB0(e0) = IdPrB0 (e0)

F. B0 ⊆ PrB1(σ0(e0)) (in particular, σ0 is not surjective)

(I) We verify that the properties of Assumption 5.3.3 and 5.3.7 hold. (I) is, of course,

immediate from condition A.

(II) Property (IIa) of 5.3.3 holds by condition E, (IIb) holds by condition [C.]. Note that

since we assume the existence of a large homogeneous model, C, syntactic types of finite

tuples over the empty set are the same as the galois type over the empty set of the same

tuple. So homogeneity of B0,B1 implies that if tpsyntactic(a) = tpsyntactic(b) then there

exists δ ∈ aut(B1 such that δ(σ(a)) = b, since σ, being a strong (which in this case means

elementary) embedding must preserve types over the empty set. Indeed, this condition

is stronger than condition (IIc) of 5.3.3.

(III) Since any two countable homogeneous models realizing the same syntactic types are

isomorphic, it follows that B0
∼= B1 is a local superlimit, so condition (III) of 5.3.3 is

satisfied.

(IV) Property (IV) of 5.3.3 follows immediately from condition D.

(V) We note that the set X := φ(C) is invariant. So by condition B. condition (V) of 5.3.3 is

satisfied.
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Since homogeneity is preserved under countable limits 5.3.7 holds as well. To elaborate: if

we have a sequence (Bi)i<ω such that for each i < ω (Bi, ei) ∼= (B0, e0) then in particular

tpsyntactic(ei) = tpsyntactic(e0).
⋃
i<ω Bi ∼= B0, since B0 is a superlimit, but more strongly, it’s

clear that for any i and isomorphism f :
⋃
i<ω Bi → B0, tpsyntactic(f−1(ei)) = tpsyntactic(ei) =

tpsyntactic(e0). So by homogeneity of
⋃
i<ω Bi there is an automorphism g ∈ aut(

⋃
i<ω Bi) such

that g(ei) = f−1(e0). The map fg witnesses that (
⋃
j<ω Bj , ei) ∼= (B0, e0). �

Note that it’s very important, in this case, that the particular set we’re looking at in

Proposition 5.7.15 is not just invariant, but actually first order definable. The proof above uses

a kind-of “Löwenheim-Skolem for pairs” argument that uses the definability of the invariant set.

In the AEC case for a non-first-order-definable invariant set, one can replace this argument with

the same sort of ω-chain argument Lessmann used to prove Lemma 3.4.9, however, this only

produces a X-Vaughtian pair and the structures thus constructed might not satisfy Assumption

5.3.3. In Proposition 5.7.19, assuming stronger conditions on the behavior of the class and the

X-Vaughtian pair of models in κ we can deduce the existence of sufficiently nice X-Vaughtian

pair of countable structures, however we cannot deduce these conditions from the conclusion of

Proposition 5.7.11.

It should be clear, at this point, that the method of expanding the language used to prove

Proposition 5.7.15 to code properties of embeddings and pairs of structures is problematic to

apply in the AEC context. The only means of extending the first order proof to the AEC

context that seems at all promising is to apply the Presentation Theorem and then hope that
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we can choose all structures in the proof of Proposition 5.7.15 to also omit the collection of

types Γ given by the Presentation Theorem. This, however, seems likely to be quite difficult.

5.7.3 step 3

Since we have been unable to find an analogue for step 2 of the first order proof of the

gap-2 transfer theorem we turn now toward finding replacements for the first two steps of the

proof. Indeed, in our proof of Theorem 5.4.2 Assumptions 5.3.3 and 5.3.7 act as a substitute for

the conclusion of Proposition 5.7.15, in our own construction of an (ℵ2,ℵ0)-model. We would,

however, like to be able to find reasonable model theoretic assumptions on an AEC K from

which we could prove 5.3.3.

In 5.7.1 we noted that the Presentation Theorem seems helpful in dealing with AECs that

do not already have a suitable ordering in their signature. However, this alone is insufficient.

We must make the further assumption that C expands to a sufficiently saturated L ′′-structure.

Assumption 5.7.18 We assume that C expands to a C′′, an ℵ1-saturated model. Let K′′ be

the AEC defined by K′′ := {M : ∃N (M ∼= N ∧N ≺L ′′ C
′′)}.

Assuming the hypotheses of Proposition 5.7.19 (put imprecisely, that a nice X-Vaughtian

pair of models exist of size κ), we are able to satisfy the hypotheses of Proposition 5.5.12 (put

imprecisely, a nice X-Vaughtian pair of countable models exist). As such Proposition 5.7.19 is

something of a replacement for Proposition 5.7.15 in the AEC case. After proving 5.7.19 we

can, in Corollary 5.7.20, deduce the existence of an (ℵ2,ℵ0)-model.

Earlier, we described the hypotheses of Proposition 5.7.19 as a sort of “2+”; that is to say,

the hypotheses of Proposition 5.7.19 are stronger than the conclusion of step 2 in the first order
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gap-2 transfer theorem. So, what we achieve is to provide analogues of steps 3 and 4 in the

AEC case starting from the hypotheses of Proposition 5.7.19. Indeed, we can slightly weaken

these hypotheses and discuss this in more depth after proving Corollary 5.7.20.

Note there is some similarity in the ω-chain argument below which replaces the downward

Löwenheim-Skolem for pairs argument used in the first order case (Proposition 5.7.15) to the

ω-chain argument used by Lessmann to prove Lemma 3.4.9.

Proposition 5.7.19 (2κ = κ+) Assume for some Γ′′ ⊇ Γ and some expansion of C to a satu-

rated L ′′-structure C′′ there is a PCΓ′′-class K′′ which is an AEC (with ≺L ′′ as strong embed-

ding). Suppose that we have found B0
κ,B

1
κ ∈ K′′κ such that there is an e ∈ B0

κ satisfying:

(i) B0
κ ≺L ′′ B

1
κ ≺L ′′ C

′′.

(ii) B0
κ ≺K B1

κ

(iii) There exists an L ′′ elementary embedding σκ : B0
κ → B1

κ and constants ei ∈ Bi
κ for

i = 0, 1 where σ(e0) = e1 such that:

(a) σκ � PrB0
κ(e0) = Id

PrB0
κ
(e0)

(b) B0
κ ⊆ PrB1

κ(e1)

(iv) B0
κ
∼= B1

κ are ℵ0-galois homogeneous, with respect to L ′′ (which includes the ordering),

and realize the same galois types (of finite tuples of any arity) over the empty set.

(v) X(B0
κ) = X(B1

κ) ⊆ PrB0
κ(e0), where X is invariant with respect to L ′-automorphisms.

Then there are countable models B0,B1 ≺L ′′ C
′′, where e0 ∈ B0,as in Proposition 5.5.12, that

is:
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(I) B0 ≺L ′′ B
1 ≺L ′′ C

′′.

(II) B0 ≺K B1

(III) There exists an L ′′ elementary embedding σ : B0 → B1 such that:

(a) σ � PrB0
(e0) = Id

PrB0 (e0)

(b) B0 ⊆ PrB1
(e1)

(IV) B0 ∼= B1 is galois homogeneous.

(V) X(B0) = X(B1) ⊆ PrB0
(e0).

proof. We construct a sequence of pairs of countable L ′′-structures (B0
n,B

1
n)n<ω which

satisfy the following properties:

1. For i = 0, 1 and any finite tuples a, b ∈ Bi
n where a ∼C b and singleton a ∈ Bi

n there exists

b ∈ Bi
n+1 such that aa ∼C bb.

2. Bi
n ≺L ′′ B

i
κ, B0

n ≺L ′′ B
1
n+1, and B0

n ≺L ′′ B
1
n.

3. σκ(B0
n) ⊆ B0

n+1.

4. For any finite tuple a ∈ B0
n there is a b ∈ B1

n+1 such that b |= tpga(a), similarly if for any

finite tuple b ∈ B1
n there is an a ∈ B0

n+1 such that b |= tpga(b).

5. e0 ∈ B0.

We observe the above construction is possible. e ∈ B0
κ so by downward Löwenheim-Skolem

there exists a countable model B0
0 ≺L ′′ B0

κ where e ∈ B0
0 . Similarly, since σ0(e0) = e1 ∈ B1

κ,

there is a countable B1
0 ≺L ′′ B

1
κ.
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Note that there are only countably many galois types over the empty set realized in Bi
n.

Furthermore, these are all galois types realized by both B0
κ and B1

κ (since we have assumed

Bi
n ≺L ′′ Bi

κ and B0
κ and B1

κ realize the same galois types over the empty set). So there are

countable models B0
n
′
and B1

n
′
such that for any finite tuple a ∈ B0

n
′
there is a b ∈ B1

n
′
such that

b |= tpga(a), similarly if for any finite tuple b ∈ B1
n there is an a ∈ B0

n
′

such that b |= tpga(b).

We may further demand, by another application of downward Löwenheim-Skolem that B1
n
′

contains the set σ(B0
n).

Note that there are only countably many finite tuples in Bi
n. Since Bi

κ is countably ga-

lois homogeneous, by applying Proposition 5.5.9, we may extend Bi
n
′

to a countable model

Bi
n+1 ≺L ′′ B

i
κ that satisfies condition (1). Namely, for any finite tuples a, b ∈ Bi

n where a ∼C b

and a singleton a ∈ Bi
n there exists b ∈ Bi

n+1 such that aa ∼C bb. We may further demand, by

another application of downward Löwenheim-Skolem that B0
n ≺L ′′ B

1
n

Let Bi :=
⋃
i<ω Bi

n. By Proposition 5.5.8 Bi is galois homogeneous, by condition (4), B0

and B1 realize the same galois types over the empty set. We note e0 ∈ B0 and σκ(e0) ∈ B1.

Let σ := σκ � B0. It follows that σ � PrB0
(e0) is the identity map. We note that, by

construction, B0 ≺K B1 (applying the second clause of condition (3)). It follows then, from

the fact that B0
κ ⊆ PrB1

κ(e1) that B0 ⊆ PrB1
(e1). Note that X(B0

κ) ⊆ PrB0
κ(e), so it follows

that X(B1) ⊆ PrB0
(e). Since σ � PrB0

(e) = Id
PrB0

(e)
, it follows that X(B1) = X(B0), so

condition (V) holds as well. �

The next corollary follows trivially from the theorem above.
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Corollary 5.7.20 Assume for some Γ′′ ⊇ Γ and some expansion of C to a saturated1 L ′′-

structure C′′ there is a PCΓ′′-class K′′ which is an AEC (with ≺L ′′ as strong embedding).

Suppose that we have found B0
κ,B

1
κ ∈ Kκ such that there is an e ∈ B0

κ satisfying:

(i) B0
κ ≺L ′′ B

1
κ ≺L ′′ C

′′.

(ii) B0
κ ≺K B1

κ

(iii) There exists an L ′′ elementary embedding σκ : B0
κ → B1

κ and constants ei ∈ Bi
κ for

i = 0, 1 where σ(e0) = e1 such that:

(a) σκ � PrB0
κ(e0) = Id

PrB0
κ
(e0)

(b) B0
κ ⊆ PrB1

κ(e1)

(iv) B0
κ
∼= B1

κ are ℵ0-galois homogeneous, with respect to L ′′ (which includes the ordering),

and realize the same galois types (of finite tuples of any arity) over the empty set.

(v) X(B0
κ) = X(B1

κ) ⊆ PrB0
κ(e0), where X is invariant with respect to C′′ � L ′.

then there exists an (ℵ2,ℵ0)-model.

proof. By Proposition 5.7.19 the hypotheses of Proposition 5.5.12 hold, so the conclusion of

Proposition 5.5.12 holds. �

We can in fact do slightly better than the ℵ3-saturation required by Assumption 5.4.1, in

terms of the saturation required in the expanded language:

1In actuality, ℵ1-saturation should suffice. See 5.4.1.
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Observation 5.7.21 It suffices for C′′ to be ℵ1-saturated and for AP and JEP to hold only up

to ℵ1 in K′′. (Though C must be at least ℵ3 saturated and K must admit AP and JEP at least

up to ℵ3.

The key observation is that utilizing ℵ1-AP, JEP, and AP for K′′ we can complete every

step of the construction which proves Theorem 5.4.2 except that without ℵ3-saturation, it may

not be possible to embed Bω1 into C′′. Bω � L , however, can be be embedded into C over

B0 � L as long as our original monster model is ℵ3-saturated (and the original class satisfies

JEP and AP). Let F : Bω1 → C over B0 � L .

We must argue that X(Bω1) = X(B0). Suppose that x ∈ X(Bω1). Then there is some

i < ωi such that, in the proof of 5.4.2 y := f−1
i,ω2

(F−1(x)) ∈ Bi. By constructionX(Bi) = X(B0)

so y ∈ X(B0). By c9, fi,ω2 � X(B0) = IdX(B0). F was also chosen to fix B0, so it must be the

case that x = y ∈ X(B0).

5.8 Closing Remarks

Note, however, that there is still somewhat of gap here from having a true “gap-2 transfer”

result for AECs; what we have shown is that if we have a sufficiently nice pair of models in

some infinite cardinal then an (ℵ2,ℵ0)-model exists. Furthermore, we make the assumption

(Assumption 5.7.18) that C expands to an ℵ1-saturated L ′′ structure. This assumption is key,

otherwise, as previously discussed in the paragraphs following Observation 5.7.8, the set X may

not be invariant in the language L ′′. Of course, we have observed (Observation 5.7.9) that as

long as K′′ satisfies JEP and AP, there is no loss of generality in assuming that C expands to

an ℵ1-saturated L ′′ structure, so the real obstacle is that we need K′′ to satisfy at least some
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JEP and AP. As we note in Observation 5.7.21, we can, in fact, get by with an ℵ1-saturated

expansion C′′ of C and JEP and AP in K′′ only for structures of size up to ℵ1. We see no way

to guarantee, however, that K′′ will satisfy the necessary amount of JEP and AP K satisfies

full AP and JEP.

Another way to look at our work in this chapter, phrased in terms of the four step outline of

the first order gap-two theorem is that we’ve done step 1, and we can do steps 3 and 4 starting

with “2+” but there remains a gap between finishing step 1 and completing step 2 (or deriving

“2+”).

Since ℵ1-saturated structures are clearly ℵ0-galois homogeneous, it seems one might want

to move from having an arbitrary (κ++, κ)-model to having an ℵ1-saturated (κ++, κ)-model

(assuming there is no conflict between the saturation hypothesis and the existence of an invariant

set which is small). Since the existence of a Morass follows from V = L, it is not unreasonable

to assume GCH, under which there is a saturated model in every successor cardinal (at, least,

if the class K satisfies AP and JEP, which we must assume regardless). If we can construct such

an ℵ1-saturated (κ++, κ)-model, it seems plausible that we could also construct a pair of ℵ0-

galois homogeneous structures which satisfy the hypotheses of Proposition 5.7.19 by modifying

the proof Proposition 5.7.11 to consider only ℵ0-galois homogeneous strong structures of C .

One cannot, however, easily prove the existence of an ℵ1-saturated X-Vaughtian pair merely

from the existence of some arbitrary (κ++, κ)-gap, C .1 If attempting to construct an ℵ1-

1This is the case even if the class K is stable.
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saturated model Csat from C one must realize a type over every countable subset of C; this is

κ++ many types, so we may also add κ++ realizations to Csat of the p for which |p(C )| = κ.

This still raises the question over whether it is even possible for the larger structure in the

(κ++, κ)-model to be ℵ1-galois saturated, in particular:

Question 5.8.1 Does ℵ1-galois saturation of a (κ++, κ)-model M in a language L ′′ containing

a symbol “<” interpreted as linear ordering of M force (M,<) to be non-well-founded?



CHAPTER 6

CONCLUSION

We review the general outline of the work done in this dissertation:

(I) In the introduction and Chapter 2 we introduce various conditions which could potentially

define “superstability” for abstract elementary classes. In Chapter 2 we also give other

basic definitions and results that we make use of the in the later chapters.

(II) In Chapter 3 we examine Lessmann’s analogue of Vaught’s Theorem for abstract elemen-

tary classes. We provide a sufficient condition for the construction of an (LS(K)+,LS(K))-

model.1 (a (p0, λ)-superlimit class). In Section 3.4 we deduce Lessmann’s Theorem as a

special case of our “abstract” theorem.

(III) In Chapter 4 we discuss progress that has been made in proving uniqueness of limit models

from various “superstability” assumptions. We contribute one small result in Proposition

4.1.5, eliminating the hypothesis of “disjoint amalgamation over limit models” appearing

in previous proofs.2

(IV) In Chapter 5 we give a sufficient condition, or perhaps more accurately, various sufficient

conditions for the existence of an (ℵ2,ℵ0)-model to exist, using the existence of a sim-

1In Theorem 3.3.1 we perform this construction.

2This theorem is proved assuming weak disjoint amalgamation in (VanDieren, 2006).
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plified morass. Our work here is guided by the presentation of Jensen’s work in proving

the classical gap-2 transfer result for first order logic in (Devlin, 1984).

We feel our work in IV. offers the most significant new insight into how abstract elementary

classes behave. One point which has become apparent in the course of researching Chapter 5

is where key differences lie between the elementary and non-elementary cases. In particular

we have isolated at least two parts of the theorem which are problematic to transfer to the

non-elementary context, namely:

(1) Beginning with an unordered class and adding an ordering

(2) Moving from a Vaughtian pair in κ to a sufficiently nice pair of countable models.

While we have made very small progress in dealing with the first of these issues, we feel

we’ve made some significant progress in dealing with the second. In particular, in Proposition

5.7.19 we are able to give a sufficient condition on models in κ that allows us to deduce that a

pair of countable models suitable for building an (ℵ2,ℵ0)-model exist.

Both Vaught’s Theorem, going from Vaughtian pair to (ℵ1,ℵ0)-model, and Jensen’s theorem

there is a common high-level sketch of the argument:

(i) Start with an arbitrary two cardinal model or pair.

(ii) Push down to a countable pair of models.

(iii) Push back up to a two cardinal model.

What have been able to do here is offer two results which complete the step iii. of this

outline. In both cases, it seems much harder to complete step ii., at the very least; we’ve made
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only partial progress in doing so in Chapter 5, namely in Proposition 5.7.19 and Proposition

5.7.11. In Chapter 3 the only time we are able to go from “Vaughtian pair” to “countable pair

of models” is in the context where Lessmann already directly proved the result without the use

of our framework of (p0, λ)-superlimit classes.

It is a natural question to ask, under what conditions could we complete steps i.-iii. and

construct either an (LS(K+),LS(K)) or (ℵ2,ℵ0)-model starting above the Löwenheim Num-

ber for a class. It is also a fair question to ask what non-elementary ordered AECs satisfy

Assumptions 5.3.3 and 5.3.7, since we have not yet provided interesting examples.

In Chapter 5, as a tool for our construction, we introduced the notions of “‘1-transitive” and

“galois homogeneous” structures. We think it might be an interesting question to investigate

some further properties of these structures and whether or not they might be useful for general-

izing other theorems of first order logic whose proofs involve the use of countably homogeneous

models.
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