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Abstract— Integrating information coming from different
sensors is a fundamental capability for autonomous robots. For
complex tasks like topological localization, it would be desirable
to use multiple cues, possibly from different modalities, so to
achieve robust performance. This paper proposes a new method
for integrating multiple cues. For each cue we train a large
margin classifier which outputs a set of scores indicating the
confidence of the decision. These scores are then used as input to
a Support Vector Machine, that learns how to weight each cue,
for each class, optimally during training. We call this algorithm
SVM-based Discriminative Accumulation Scheme (SVM-DAS).
We applied our method to the topological localization task,
using vision and laser-based cues. Experimental results clearly
show the value of our approach.

I. INTRODUCTION

The capability to integrate effectively multiple cues is

fundamental for autonomous systems. Robots are usually

equipped with several sensors used to acquire as much

information about the external world as possible. In general,

each sensor captures a different aspect of the environment;

however, alternative interpretations of the information ob-

tained by the same sensor can also be valuable. Consider, for

instance, a mobile robot equipped with a laser range sensor

and a camera, which performs topological localization in an

indoor environment. The two dimensional range information

extracted from the laser scans is robust to visual variations

introduced e.g. by illumination, but suffers from perceptual

aliasing (different places might look the same [1]). At the

same time, the visual sensor provides much more descriptive,

but also noisy data. Integrating these two sensory modalities

allows to take the best of both worlds.

In this paper we propose a new high-level accumulation

scheme for multiple cues. Our method builds on previous

work [2], [3]: for each cue we train a large margin classifier

which outputs a set of scores indicating the confidence of

the decision. Integration is achieved by feeding the scores

to a Support Vector Machine [4]. Compared to previous

accumulation methods [5], [6], [3], [2] our algorithm offers

several advantages: (a) as shown in [3], discriminative accu-

mulation schemes achieve consistently better performances

than probabilistic ones [5], [6]; (b) compared to previous dis-

criminative accumulation schemes [3], [2] our new approach
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gives the possibility to accumulate cues with a much more

complex, possibly non-linear function, by using the SVM

framework and kernels [4]. Such approach makes it possible

to integrate together outputs of different classifiers such as

SVM and AdaBoost. We call the new algorithm SVM-based

Discriminative Accumulation Scheme (SVM-DAS).

We applied SVM-DAS to the domain of mobile robot

topological localization in indoor environment under dy-

namic changes. This is a particularly challenging task: rec-

ognizing rooms under varying illumination conditions, and

with variations in the configuration of furniture and small

objects, is a hard recognition problem. We tested SVM-DAS

using multiple visual cues, and using cues derived from two

different modalities, vision and laser. We used SIFT [7] and

Composed Receptive Fields Histograms (CRFH, [8]) for the

vision channel, and the features proposed in [9] for the laser

channel.

We conducted several sets of experiments of increasing

difficulty on the IDOL2 database [10], and we benchmarked

against Generalized-DAS (G-DAS) framework presented in

[2]. Results show that integrating different visual cues, or

better, different modalities allows to greatly increase the

robustness of a recognition system, achieving accuracy of

more than 94% under severe dynamic variations. Moreover,

the new integration framework consistently outperforms G-

DAS on both types of integration problems, with increase in

recognition rate of up to 8%.

The rest of the paper is organized as follows: after a review

of the relevant literature (Section II), Section III gives a brief

description of G-DAS and presents our new cue integration

scheme. Section IV describes the experimental setup, and

Section V reports the experimental results showing the

effectiveness of the proposed approach. The paper concludes

with a summary and possible avenues for future research.

II. RELATED WORK

Several cue integration methods have been proposed in the

robotics and machine learning community [11], [3], [2], [5],

[12], [13]. These approaches can be described according to

various criteria. For instance, Clark and Yuille [14] suggest

to classify them into two main groups, weak coupling and

strong coupling. Assuming that each cue is used as input of

a different classifier, weak coupling is when the output of

two or more independent classifiers are combined. Strong

coupling is instead when the output of one classifier is
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affected by the output of another classifier, so that their

outputs are not anymore independent.

Another possible classification is into low level and high

level integration methods, where the emphasis is on the level

at which integration happens. We call low level integration

methods those algorithms where cues are combined together

at the feature level, and then used as input to a single

classifier. This approach has been used successfully for

object recognition using multiple visual cues [13], and for

topological mapping and place recognition using multiple

sensor modalities [11], [15]. In spite of remarkable per-

formances for specic tasks, there are two main drawbacks

of the low level methods. First, if one of the cues gives

misleading information, it is quite probable that the new

feature vector will be adversely affected influencing the

whole performance. Second, we can expect the dimension of

such a feature vector to increase as the number of cues grows,

and each of the cues needs to be used even if one would allow

for correct classification. This implies longer learning and

recognition times, greater memory requirements and possibly

curse of dimensionality effects. Another strategy is to keep

the cues separated and to integrate the outputs of individual

classifiers, each trained on a different cue [5], [3], [2].

We call such algorithms high level integration methods, of

which voting is the most popular [16]. These techniques are

more robust with respect to noisy cues or sensory channels

and allow to decide on the number of cues that should be

extracted and used for each particular classification task [2].

In this paper we focus on a weak coupling, high level

integration method called accumulation. The underlying idea

is that information from different cues can be summed

together, thus accumulated. The idea was first proposed in

probabilistic framework by Poggio et al. [5] and further

explored by Aloimonos and Shulman [17]. The method was

then extended to discriminative methods in [3], [2].

III. CUE INTEGRATION VIA ACCUMULATION

This section describes our cue integration scheme. We first

briefly review the theory behind the Support Vector Machines

(Section III-A), that constitute a key building block of our

approach. Then, we describe the Generalized Discriminative

Accumulation Scheme (G-DAS, [2]) on which to large extent

we build (Section III-B). Finally, we introduce our new

algorithm and discuss its advantages in Section III-C.

A. Support Vector Machines

Consider the problem of separating the set of training

data (x1, y1), (x2, y2), . . . , (xn, yn) into two classes, where

xi ∈ ℜN is a feature vector and yi ∈ {−1,+1} its class

label. If we assume that the two classes can be separated

by a hyperplane in some Hilbert space H, then the optimal

separating hyperplane is the one which has maximum dis-

tance to the closest points in the training set resulting in a

discriminant function

f(x) =
n

∑

i=1

αiyiK(xi,x) + b.

The classification result is then given by the sign of f(x).
The values of αi and b are found by solving a constrained

minimization problem, which can be done efficiently using

the SMO algorithm [4]. Most of the αi’s take the value of

zero; those xi with nonzero αi are the “support vectors”.

In case where the two classes are non-separable, the opti-

mization is formulated in such way that the classification

error is minimized and the final solution remains identical.

The mapping between the input space and the usually high

dimensional feature space H is done using kernels K(xi,x).
The extension of SVM to multi class problems can be done

in several ways. Here we will mention three approaches used

throughout the paper:

1) Standard one-against-all (OaA) strategy. If M is the no.

of classes, M SVMs are trained, each separating a single

class from all other classes. The decision is then based on

the distance of the classified sample to each hyperplane,

and the sample is assigned to the class corresponding to

the hyperplane for which the distance is largest.

2) Modified one-against-all strategy. In [2], a modified

version of the OaA principle was proposed. The authors

suggested to use distances to precomputed average dis-

tances of training samples to the hyperplanes (separately

for each of the classes), instead of the distances to the

hyperplanes directly. Experiments presented in this paper

and in [2] show that in many applications this approach

outperforms the standard OaA technique.

3) One-against-one (OaO) strategy. In this case, M(M −
1)/2 two-class machines are trained for each pair of

classes. The final decision can then be taken in different

ways, based on the M(M − 1)/2 outputs. A popular

choice is to consider as output of each classifier the class

label and count votes for each class; the test image is

then assigned to the class that received more votes.

B. Generalized Discriminative Accumulation Scheme

The G-DAS algorithm was proposed in [2], and in a pre-

liminary version in [3], as a way to integrate multiple visual

cues using the principle of accumulation. The basic idea is to

consider real-valued outputs of a multi-class discriminative

classifier (e.g. SVM) as an indication of confidence of the

decision for each class, and accumulate all the outputs

obtained for various cues with a linear function. Specifically,

suppose we are given M classes and, for each class, a set of

nj training samples {Ij
i }

nj

i=1, j = 1, . . . ,M . Suppose also

that, from each sample, we extract a set of P different cues

{Tp(I
j
i )}P

p=1. Note that the samples here could be images,

and then the cues would be different visual features; but

they could also be outputs from different sensory modalities,

like vision and laser scans, in which case the cues would be

features extracted from these different sensors. In both cases,

the goal is to perform recognition using all the cues. The G-

DAS algorithm consists of two steps:

1) Single-cue Models. From the original training set

{{Ij
i }

nj

i=1}
M
j=1, containing images belonging to all M

classes, define P new training sets {{Tp(I
j
i )}

nj

i=1}
M
j=1,

p = 1, . . . , P , each relative to a single cue. For each new
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training set train a multi-class classifier. Model parame-

ters can be estimated during the training step via cross

validation. Then, given a test sample I , for each single-

cue classifier estimate a set of outputs {Op
h(Tp(I))}h∈H

reflecting the relation of the sample to the model. In

case of the SVMs with standard OaO and OaA multi-

class extensions, the outputs would be values of the

M(M − 1)/2 or M discriminant functions fp
h(Tp(I))

learned by the SVM algorithm during training.

2) Discriminative Accumulation. After all the outputs are

computed for all the cues, they are being combined with

different weights by a linear function:

OΣP
h (I) =

P
∑

p=1

apO
p
h(Tp(I)), ap ∈ ℜ+.

As a result, any method of estimating the final decision

can be used within the G-DAS framework, the same way

it would be used for a single-cue classifier.

It is important to note that only one weight is used for

all outputs of each cue, which simplifies the parameter

estimation process (usually, an extensive search is performed

in order to find the coefficients {ap}
P
p=1), but also constraints

the ability of the algorithm to adopt to the properties of each

single cue. For a more comprehensive discussion on the G-

DAS algorithm we refer the reader to [2].

C. SVM-based Discriminative Accumulation Scheme

There are several drawbacks of the G-DAS algorithm. First

of all, the accumulation function is simple and linear, thus the

algorithm is only able to weight the whole cues and not adopt

to the characteristics of the models. This might be a limiting

factor for complex tasks like robot localization. Moreover,

there is no straightforward way to infer the weights from the

training data. This is a problem in case of large number of

cues, when exhaustive search becomes intractable.

What we propose here is to accumulate the outputs gener-

ated by single-cue classifiers using a more complex, possibly

non-linear function, namely to use them as input to an SVM.

As a result, the new accumulation function will be given as:

OΣP
k (I) =

m
∑

i=1

αk
i yiK(Oi,O) + bk, k = 1, . . . ,K,

where O is a vector containing all the outputs for all cues:

O =
[

{O1
h(T1(I))}h∈H1

, . . . , {OP
h (TP (I))}h∈HP

]

.

The parameters αk
i , yi, and the support vectors Oi are

inferred from the training data either directly or efficiently

during the optimization process (e.g. by means of SMO

[4]). The number of the final outputs K and the way

of obtaining the final decision depends on the multi-class

extension used with SVM-DAS. We use the one-against-one

extension throughout the paper for which K = M(M−1)/2.

We call this new accumulation scheme SVM-DAS. The

nonlinearity is given by the choice of the kernel function,

thus in the case of the linear kernel the method is still linear.

In this sense, SVM-DAS is more general that G-DAS. Also,

Fig. 1. Map of the environment used during data acquisition and an
example laser scan simulated in the corridor. The rooms used during the
experiments are annotated.

for SVM-DAS each of the final outputs depends on all the

outputs from single-cue classifiers, and the coefficients are

learned optimally. Note that the outputs Op
h can be derived

from any large margin classifier, and not only from SVM.

When SVM-DAS is used on outputs derived all from the

same type of classifier, such as SVM or AdaBoost [18],

then it can be seen as a variation of the stacking learning

methods. In the case when the outputs are derived by

different classifiers, for instance visual data outputs from

SVM and laser range data outputs from AdaBoost, then

SVM-DAS is a variation of the ensemble learning methods.

IV. EXPERIMENTAL SETUP

This section describes the setup used for the experiments

reported in this paper. First, we describe the common sce-

nario in which the evaluation took place (Section IV-A).

Then, we present the overall architecture of our single-cue

place recognition system as well as the methodology we

followed during experiments (Sections IV-B). Finally, we

briefly review the main building blocks of the system: the

feature extractors and classifiers that were used to generate

the cues benchmarked in the paper (Section IV-C).

A. Experimental Scenario

The algorithms presented in this paper have been tested

in the domain of mobile robot topological localization on

the IDOL2 (Image Database for rObot Localization 2 [10])

database. The database was introduced in [19] in order to test

the robustness of an adaptive visual place recognition system

in a real-world dynamic environment observed over a long

period of time and under varying illumination conditions.

The database comprises 24 image sequences accompanied

by laser scans and odometry data acquired using two mobile

robot platforms (PeopleBot and PowerBot). The images were

captured with a perspective camera of resolution 320x240

pixels. In this paper we will use only the 12 data sequences

acquired with the PowerBot.

The acquisition was performed in a five room subsection

of a larger office environment, selected in such way that

each of the five rooms represented a different functional

area: a one-person office (1pO), a two-persons office (2pO),

a kitchen (KT), a corridor (CR), and a printer area (PR).

The map of the environment and an example laser scan

are shown in Fig. 1. Example pictures showing interiors
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Fig. 2. Examples of pictures taken from the IDOL2 database showing the
interiors of the rooms, variations observed over time and caused by natural
activity in the environment as well as introduced by changing illumination.

of the rooms are presented in Fig. 2. The appearance of

the rooms was captured under three different illumination

conditions: in cloudy weather, in sunny weather, and at night.

The robots were manually driven through each of the five

rooms while continuously acquiring images and laser range

scans. Each image was then labelled as belonging to one

of the rooms according to the position of the robot during

acquisition. Since the database was originally designed to test

the robustness of place recognition algorithms to variations

that occur over a long period of time, the acquisition process

was conducted in two phases. Two sequences were acquired

for each type of illumination conditions over the time span

of more than two weeks, and another two sequences for

each setting were recorded 6 months later (12 sequences in

total). Thus, the sequences captured variability introduced

not only by illumination but also natural activities in the

environment (presence/absence of people, furniture/objects

relocated etc.). It is important to note that, even for sequences

acquired within a short time span under similar illumination

conditions, variations still exist from everyday activities and

viewpoint differences during acquisition. Example images

illustrating the captured variability are shown in Fig. 2.

B. Single-cue Place Recognition

As a basis for the cue integration experiments, we used

the place recognition systems presented in [20], [2] for

visual cues and in [9] for laser range cues. The main

principle behind both approaches is the same, as we can

always find two main building blocks: a feature extractor

and a classifier. For the work presented in this paper, we

employed two discriminative classifiers to build models for

the separate cues. The Support Vector Machines [4] were

used both with visual and laser-based geometrical features,

and the AdaBoost classifier [18] was used together with the

geometrical features as described in [9]. Since we considered

two different modalities, we also used different feature

representations. In order to encode the visual information, we

applied a rich global descriptor, Composed Receptive Field

Histograms (CRFH) [8], and distinctive local features based

on the SIFT descriptor [7]. Both has already been proved

successful in the domain of vision-based localization [20],

[2], [21]. To represent the information extracted from the

laser, simple geometrical features were computed for each

scan [9]. In the end, we constructed 4 different single-cue

models: CRFH with SVM, SIFT with SVM, and laser range

features with both SVM (L-SVM) and AdaBoost (L-AB).

We took a fully supervised approach and assumed that,

during training of each of the models, the rooms are rep-

resented by collections of data capturing their visual and

geometrical properties under various viewpoints, at fixed

time and illumination setting. During testing, the algorithms

were presented with data acquired in the same rooms,

under roughly similar viewpoints but possibly under different

illumination conditions and after some time. The goal was

to recognize each single data sample provided to the system.

In order to simplify the experiments with multiple cues, we

matched images with closest laser scans on the basis of the

acquisition timestamp. In case of each single experiment,

both training and testing were performed on one data se-

quence containing samples acquired at the rate of 5 fps. As

a measure of performance we used the percentage of properly

classified samples calculated separately for each of the rooms

and then averaged with equal weights independently of the

number of samples acquired in each room.

C. Feature Representation and Classification

In this work, we used two types of visual cues (global and

local) extracted from the same image frame as well as simple

geometrical features extracted from laser range scans.

As global image representation we used the Composed

Receptive Field Histograms (CRFH) [8], a sparse multi-

dimensional statistical representation of responses of several

image filters. Following [20], we used histograms of 6

dimensions, with 28 bins per dimension, computed from

second order normalized Gaussian derivative filters applied

to the illumination channel at two scales. For the local feature

extraction, we used the SIFT descriptor [7] which represents

local image patches around interest points characterized by

coordinates in the scalespace in the form of histograms

of gradient directions. In order to find the coordinates of
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the interest points, we used a scale and affine invariant

region detector based on the difference-of-Gaussians (DoG)

operator [22].

In case of the laser sensor, we extracted a set of simple

geometrical features from each scan [9]. We call them simple

because they are represented by a single real value. The set

of features used in this work was originally designed for

laser scans covering 360o field of view around the robot [9].

In this work, however, the scan covers only 180o in front

of the robot, therefore we set the rear values of the scan to

zero.

As classifiers, we used AdaBoost [18] for the laser range

features and the Support Vector Machines [4] described in

Section III-A for all cues. The key idea behind AdaBoost

is to create an accurate strong classifier by combining a set

of weak classifiers. The requirement for each weak classifier

is that its accuracy is better than a random guessing. The

input to the algorithm is a set of labeled training examples

which have assigned a weight distribution. In a series of

rounds, the algorithm selects a new weak classifier based

on the weight distribution, which is then modified. The final

strong classifier is a weighted majority vote of the selected

weak classifiers. The original algorithm was designed for

binary classifications and outputs. However, in this work we

used a modified version which permits us to classify several

classes and to obtain a confidence value for each class as

shown in [9].

In case of SVMs, special care must be used in choosing

an appropriate kernel function. In this work, we used the χ2

kernel [23] for the global CRFH descriptors, and the match

kernel proposed in [24] for the local SIFT descriptors. Both

have been used in our previous work on SVM-based place

recognition, obtaining good performances [20], [2]. For the

laser range features, we used a Radial Basis Function (RBF)

kernel [4], which we selected through a set of reference

experiments.

V. EXPERIMENTAL EVALUATION

We conducted several series of experiments on the IDOL2

database in order to analyse the properties of each of the

four types of single-cue models (the SVM models trained on

CRFH and SIFT as well as the SVM and AdaBoost models

trained on the laser range cues) and evaluate the performance

of both cue integration schemes (G-DAS and SVM-DAS).

We present the results in successive subsections and give a

brief summary and discussion on the efficiency of different

solutions in Section V-C. First, we considered each of the

cues separately and we benchmarked them on experiments

of increasing difficulty (Section V-A). Then, we tested the

accumulation schemes on several scenarios (Section V-B).

A. Experiments with Separate Cues

We conducted four sets of experiments for each cue.

The first set consisted of 12 experiments, performed on

different combinations of training and test data acquired

closely in time and under similar illumination conditions. For

the second set of experiments, we used 24 pairs of sequences

captured still at relatively close times, but under different illu-

mination conditions. In this way we increased the complexity

of the problem [20], [2]. In the third set of experiments,

we tested the robustness of each of the cues to long-time

variations introduced by natural activity in the environment

(objects/furniture being moved and reorganized). Therefore,

we conducted 12 experiments, where we used for testing

data acquired 6 months later, or earlier, than the training data,

again under similar illumination conditions. Finally, we com-

bined both types of variations and performed experiments on

24 pairs of training and test sets, obtained 6 months from

each other and under different illumination settings. For all

experiments, model parameters were determined via cross

validation.

We evaluated the performance of all four types of models:

the two SVM models based on visual features (CRFH, SIFT),

the AdaBoost and the SVM models trained on the laser range

cues (referred to as L-AB and L-SVM). For SVM, we tried

the three multi-class extensions described in Section III-A.

The results of all four sets of experiments for these models

are presented in Fig. 3a-d (the first four bar groups). As

a first remark, we see that, according to expectations, the

recognition systems based on visual cues (CRFH and SIFT)

suffer from changes in illumination, while the geometrical

laser-based features don’t. Moreover, variations that occurred

over a long period of time pose a challenge for both modali-

ties. We can observe differences in performance also between

the two visual cues. The models based on global features

(CRFH) suffer more from the illumination variations, while

the SIFT features are less robust to variations introduced by

natural activities in the environment. It is also interesting to

note that under stable conditions, the vision-based methods

outperform the systems based on laser range cues (95.1% for

CRFH and 92.5% for L-SVM). This illustrates the potential

of visual cues, but also stresses the need for more robust

solutions.

One of the contributions of the paper is the place recogni-

tion algorithm based on simple-valued geometrical features

[9] and SVMs. Fig. 3a-d presents a comparison of perfor-

mance of our new method and the previous solution using

the AdaBoost classifier [9]. We can see that the difference

in performance is very significant in favour of the SVM-

based method (from 6.1% for Exp. 1 to 10.3% for Exp. 4

in average) which allows to conclude that the robustness of

the system was greatly improved by implementing a more

complex classifier.

As already mentioned, all the presented experiments with

SVMs were repeated for three different multi-class exten-

sions: standard OaO and OaA as well as modified OaA

algorithm. The obtained results are in agreement with [2] -

in case of single cue and G-DAS experiments, the modified

version gives the best performance independently of the

modality on which the classifier was trained.

A further analysis of the results can be performed, that

serves as a motivation for integrating different visual cues

and modalities. Fig. 4 shows the distribution of errors for

each actual class (room) made by the four models. It is
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Fig. 3. Results of a separate evaluation of each of the cues and performance of the SVM-DAS cue integration scheme on four types of problems.

apparent that each of the cues makes errors according to

a different pattern. At the same time, similarities occur

between the same modalities. We can see that visual models

are biased towards the corridor, while the geometrical models

tend to misclassify places as the printer area. A straight-

forward explanation can be offered for that phenomenon.

The vision-based models were trained on images acquired

with perspective camera with constrained viewing angle. As

a result, similar visual stimuli coming from the corridor is

present in the images captured by the robot leaving each

of the rooms. The same area close to doorway, from the

geometrical point of view, is similar to the narrow passage in

the printer area. Ideally, the cue integration scheme should

learn to trust more different cues with respect to different

classes.

B. Experiments with Cue Integration

The accumulation schemes presented in this paper perform

high level cue integration. As a result, separate models should

be trained for each of the combined cues. In our evaluation,

we used the models obtained during single-cue experiments.

In order to be used for real applications, an integration

scheme should perform and generalize well in presence of

any type of variability it might encounter. For that reason,

the parameters of the algorithms (weights in case of G-DAS

and SVM model in case of SVM-DAS) were always adjusted

on the basis of outputs generated during all experiments with

single-cue models trained on one particular data sequence.

Then, during testing, the previously obtained integration

scheme was applied to all experiments with models trained

on a different sequence, acquired under similar illumination

and closely in time. This way, the generalization abilities of

each of the methods were tested in a realistic scenario.
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Fig. 4. Distribution of errors made by the four models for each actual class (bright colors indicate errors). The diagonal elements were removed.
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Fig. 5. Comparison of performance of all integration methods for the most complex problem (Exp. 4).

For the final experiments, we selected three different

cue accumulation methods: Generalized DAS (G-DAS) and

SVM-DAS with two kernel types (linear and Radial Basis

Function). In all experiments, we found that the SVM-DAS

with RBF kernel outperforms the other methods (the differ-

ence in performance with respect to G-DAS was statistically

significant at the confidence level of 95%). As a result, for

space reasons, we report results of each of the experiments

only using that method (Fig. 3a-d, last 5 bar groups). Detailed

comparison of all integration methods for the most complex

problem (Exp. 4) is given in Fig. 5.

We tested the methods for several combinations of differ-

ent cues and modalities. First, we combined the two visual

cues, obtaining similar results as in [2]. We see that the

generalization of purely visual recognition system can be

greatly improved by integrating different types of cues, in

this case local and global. This can be observed especially for

Exp. 4, where the algorithms had to tackle largest variability.

Despite that, according to the error distributions in Fig. 4,

we should expect largest gain when different modalities are

combined. As we can see from Fig. 3 this is the case indeed.

By combining one visual cue and laser range cue (e.g. CRFH

+ L-SVM), we exploit the descriptive power of vision in

case of stable illumination conditions and the invariance of

geometrical features to the visual noise. Moreover, if the

computational cost is not an issue, the performance can be

further improved by using both visual cues instead of just

one. The gain in this case is statistically significant at the

confidence level 95%.

As it was mentioned in Section III-C, SVM-DAS can be

applied for problems where outputs of different classifiers

need to be integrated. To test this ability in practice, we

combined the SVM models trained on visual cues with

AdaBoost model based on geometrical features (L-AB). We

present the results in Fig. 3a-d (last bar group). It can be

observed that the method obtained large improvement in

comparison to each of the individual cues. For instance for

Exp. 4, the recognition rate increased by 12.2% in average.

This proves the versatility of our approach.

C. Discussion

The results of the extensive experimental evaluation pre-

sented in this section clearly show that SVM-DAS performs

significantly better than G-DAS and can be used to integrate

outputs of classifiers of different characteristics employing

different multi-class algorithms. We also showed that by

using more sophisticated kernel types, it is possible to
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Cues
(Primary cue)

Cue integration method

G-DAS
SVM-DAS
RBF Kernel

CRFH + SIFT 25.971±18.503 29.453±22.139

CRFH + L-SVM 21.230±20.199 32.736±20.256

SIFT + L-SVM 28.820±20.982 33.344±22.425

SIFT + CRFH + L-SVM 31.858±20.474 40.833±21.916

TABLE I

AVERAGE PERCENTAGES (WITH STANDARD DEVIATIONS) OF TEST

SAMPLES FOR WHICH ALL CUES HAD TO BE USED IN ORDER TO OBTAIN

THE MAXIMAL RECOGNITION RATE.

perform non-linear cue accumulation. The experiments (see

Fig. 5) show that although there is no drastic improvement,

we can expect better results with the RBF kernel (especially

for the OaO multi-class extension). As a result, we suggest

that the kernel was selected according to the constraints put

on the computational cost of the solution. Since there are

fast implementations of linear SVMs, it might be beneficial

to use a linear kernel in cases when the integration scheme

must be trained on a very large number of samples.

At this point, a comment should be made on the compu-

tational cost of using multiple cues in general. Although, it

is clear that generalization performance can be significantly

improved by using multiple cues or modalities, each of the

cues introduces additional cost. Therefore, there is always

a trade-off between the complexity of the solution and the

overall performance. For example, a solution based on global

visual features, laser range cues and SVM-DAS runs in real-

time at a rate of approximately 5fps, which would not be

possible if additional visual cue such as SIFT was used.

It should be noted, however, that due to the high level

integration architecture, not all of the cues have to be always

extracted and used, especially that, in most cases, decision

based on one cue only is correct. The computational cost can

be significantly reduced by taking the approach presented

in [2]. By combining confidence estimation methods with

cue integration, we can use additional sources of information

only when necessary - when the decision based on one cue

only is not confident enough. This scheme is referred to as

Confidence-based Cue Integration [2]. Table I presents the

results of applying the scheme to the experiments presented

in this section. We see that, in general, we can base our

decision on the fastest model (marked with bold font in

Table I) and we can retain the maximal performance by

using additional cues only in approximately 30% of cases.

Additional cues will be used more often when the variability

is large, and rarely for less difficult cases.

VI. SUMMARY AND CONCLUSION

This paper presented a new cue integration method, able

to combine multiple cues derived by a single modality, as

well as cues obtained by multiple sensors. For each cue,

it trains a large margin classifier and computes as a set

of outputs, related to the confidence of the decision. The

outputs are then used as input to a Support Vector Machine,

that combines optimally the different cue contributions. The

method was tested in the domain of robot localization. A

thorough experimental evaluation using multiple visual cues

alone, and combined with laser range features, clearly show

the value of our approach.

In the future, we plan to use this method for attacking

the scalability issue with geometrical localization methods.

Also, we plan to combine this approach with incremental

extensions of the SVM algorithm ([19], [25]), so to obtain a

system able to learn continuously from multiple sensors.
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