Timing is Everything — the Importance of
History Detection

Gunnar Kreitz

KTH — Royal Institute of Technology
gkreitz@kth.se

Abstract. In this work, we present a Flow Stealing attack, where a
victim’s browser is redirected during a legitimate flow. One scenario is
redirecting the victim’s browser as it moves from a store to a payment
provider. We discuss two attack vectors.

Firstly, browsers have long admitted an attack allowing a malicious web
page to detect whether the browser has visited a target web site by using
CSS to style visited links and read out the style applied to a link. For
a long time, this CSS history detection attack was perceived as having
small impact. Lately, highly efficient implementations of the attack have
enabled malicious web sites to extract large amounts of information.
Following this, browser developers have deployed measures to protect
against the attack. Flow stealing demonstrates that the impact of history
detection is greater than previously known.

Secondly, an attacker who can mount a man-in-the-middle attack against
the victim’s network traffic can also perform a flow stealing attack.
Noting that different browsers place different restrictions on cross-frame
navigation through JavaScript window handles, we suggest a stricter
policy based on pop-up blockers to prevent Flow Stealing attacks.

Keywords. Web Security, Flow Stealing, CSS History Detection

1 Introduction

In this paper we discuss an attack related to when a user’s session is transfered
between two different sites. One scenario in which such transfers occur is when
a user moves from a store, store.com, to a payment provider, pay.com. We use
this as a running example throughout the paper.

A typical integration mechanism is that the store sends information about
the purchase to the payment provider (at least the total amount to be paid) and
gets a transaction ID. The store then redirects the user to the payment provider
with the transaction ID, either by a GET or POST request®. In this paper, we
outline an attack where an attacker at this point redirects the user’s browser to

! Several payment providers also provide lightweight integration where the store di-
rectly redirects the customer with information about the purchase instead of a trans-
action ID. This does not materially affect the attack, so we consider this equivalent
to sending a transaction ID.



the same payment provider, but with a different transaction ID. The attacker
could also choose to redirect the user to a malicious site stealing the user’s
credit card details, at the risk of such a redirect being more easily detectable by
the victim. We refer to this class of hijacking the user’s session as it transfers
cross-domain as Flow Stealing.

The steps in a typical version of the attack are as follows:

. Victim visits evil.com, and follows link to store.com

. Victim interacts with store.com, eventually reaching checkout

store.com creates transaction on pay.com, which assigns transaction ID ¢,
store. com redirects victim to pay.com with transaction ID 4,.

. evil.com detects that victim hits pay.com

evil.com creates transaction on pay.com, which assigns transaction ID ¢,
evil.com redirects the victim’s tab to pay.com with transaction ID i,

N U W=

To the victim, the flow appears normal. She follows a link to store.com
which opens in a new tab. The site is legitimate, so all interaction and security
indicators such as certificates function as they would normally. When she goes
to pay, she is transfered to the legitimate pay.com site, also with intact security
indicators. The only indicator of the attack is in the payment information dis-
played by pay.com. What the difference is, how prominent it is, or if there even
is one, depends on the information associated with the transaction that pay.com
displays. This in turn often depends on the amount of detail about the purchase
communicated from store.com to pay.com when it initializes the transaction.

Two questions arise: firstly, how does the attacker redirect the browser, and
secondly, how does the attacker know when to redirect? We address these in
Section 2 and Section 3. In one version, our attacker makes use of an old and
well-known security hole, CSS history detection [1], in order to time her attack.
To be able to redirect the victim’s browser, the attacker needs JavaScript running
in the browser and a window handle to the window which is to be redirected.

1.1 Attacker and Victim Model

We consider two forms of attackers: an attacker running a web page, and an
attacker who can mount man-in-the-middle (MITM) attacks against the vic-
tim’s network traffic. Our primary focus is on an attacker operating a web site,
evil.com, visited by the victim. We assume that the attacker can convince vic-
tims to click on a link from evil.com to store.com and buy something. This
means that our attacker could make some money (legally) by hosting adver-
tisements or participating in an affiliate program. We remark that our attacker
is weaker compared to the traditional attacker model in many CSRF and XSS
attacks, as the attacker only needs the victim to follow a legitimate link to a
well-known site.

We also consider a network attacker who can intercept and modify the vic-
tim’s network traffic. There are several ways in which an attacker could get this
ability. For an attacker on the same local network as the victim, the attacker can



utilize standard tools such as ARP or DHCP spoofing to get access to the vic-
tim’s traffic. Alternatively, an attacker could set up a Tor exit node and thereby
mount MITM attacks against anonymous victims. Given MITM access to the
victim’s network communication, all information sent and received over http can
trivially be attacked, but our focus is on pages protected by https, a protocol
intended to protect against network attacks. We do not assume that the network
attacker can trick the victim into visiting her web site, so the network attacker
is not strictly stronger than our normal attacker.

We consider a potential victim of our attack who follows the guidelines taught
by the security community. She will only provide sensitive information over https,
but not before verifying that the certificate is authentic. In addition to a security-
conscious victim, we assume that the attacked flow is on domains served only
over https.

1.2 Owur Contribution

In this paper, we describe a new type of attack which we call flow stealing. Our
attack makes new use of a well-known security issue in the CSS specification to
time the execution of a redirection attack. By timing the redirection precisely,
the attacker can give the victim a false sense of security by having her browse
well-known sites before the attack is executed. This new use of an old attack
emphasizes the importance of closing also minor security holes where the im-
pact is not fully understood. Most major browsers have now closed the CSS
history detection hole in their latest stable versions. However, flow stealing at-
tacks can also be performed as a man-in-the-middle attack. Our flow stealing
attack highlights a part of typical web flows which is difficult to protect using
current mechanisms, namely legitimate cross-domain redirects.

We identify several scenarios in which the attack can be mounted, and we
suggest new protection mechanisms which can be used to prevent flow stealing,
as well as similar attacks. In particular, we point out the dangers of allowing
JavaScript to navigate and close windows to which it holds a window handle
and propose a new policy based on pop-up blocking.

1.3 Related Works

Flow stealing shares some similarities with cross-site request forgery (CSRF)
and session fixation attacks. A related form of CSRF is the login CSRF attack,
described by Barth et al. [2]. In a login CSRF attack, the attacker logs the
victim on to a legitimate site using an account controlled by the attacker. The
purpose of this is for the attacker to extract or use information stored by the
victim’s activity on the site. Examples of such abuse includes stealing the search
history of the victim, or using stored credit card details to transfer money or
make purchases.

As discussed in [2], the login CSRF attack is an example of vulnerabilities
in session initialization. Another type of vulnerability in the same class is that
of session fixation, where the attacker tricks the victim into logging in on a



legitimate site with a session ID known to the attacker. The attacker can then
visit the legitimate site using the same session ID and then be logged in as the
victim.

Also similar in spirit to flow stealing is the tabnabbing attack by Raskin [3].
In this attack, a malicious site detects when the victim is not looking at it and
then replaces its content with a phishing site looking like a login or error message
page at a legitimate site.

2 Redirecting the Victim’s Tab

How can the attacker redirect the victim’s browser? Firstly, this requires the
attacker to get the victim’s browser to run malicious JavaScript. This is easily
accomplished for an attacker who convinces the victim to visit evil.com, as
the page can contain the JavaScript required for the attack. A network attacker
using a man-in-the-middle attack can insert malicious JavaScript into any page
or script content served over unprotected http. For more details, see Section 2.2

Furthermore, the script needs to have a window handle to the tab in which the
victim is visiting store.com, and later pay.com. If the victim opened the tab by
clicking a link on evil.com, the attacker’s JavaScript can store a window handle
to the tab. We defer discussion of the man-in-the-middle case to Section 2.2.

Many browsers permit JavaScript to freely navigate any top-level window
handles it holds. One notable exception is Opera which does not allow a window
w1 to navigate a window ws to which it has a handle if ws is currently browsed
to a https page at a domain different from w;. There is a simple way for our
attack to get around this restriction in Opera, but it does make the attack easier
to detect for the victim. We discuss the circumvention in Section 2.1.

We remark that once an attacker’s JavaScript has a window handle to a
window, it retains its rights over that window regardless of what happens. In
particular, a user manually typing in a different address in the navigation bar
does not revoke any of the opener’s privileges.

2.1 Working Around Opera’s Navigation Restrictions

Opera prevents a window from navigating another window via a window handle
in some scenarios. In our flow stealing attack, we need to change the address of
the victim’s window when it goes to pay.com, which we assume is served over
https. Thus, we propose a slightly different variation when attacking the Opera
browser.

If a window w; wants to navigate the window ws to some address, it can
accomplish a similar effect which may not be noticed if it closes window w, and
navigates itself to the address it wanted window wsy to go to. We are not aware
of any browser placing restrictions on closing windows via a JavaScript handle.
Depending on the victim’s configuration and how many tabs she has open, this
“navigation” may be more or less noticeable.



If the attacker can close window ws, why not simply open another window
with the right address in its place? The answer is that such an attempt will likely
be prevented by a pop-up blocker. All mainstream browsers today prevent sites
from arbitrarily opening new tabs, unless the action is initiated by a user action
such as a mouse click.

2.2 Page Modification by a Network Attacker

In our attacker model, we consider a network attacker who is not assumed to
be able to entice victims to visit her web site. Thus, the network attacker needs
some other way to get JavaScript running in the victim’s browser, as well as a
window handle to a window where the victim then makes a purchase.

Most web browsing is still done over http, instead of https. However, we
assume that both store.com and pay.com have invested in security and are
served only over https. Thus, the network attacker cannot perform man-in-the-
middle attacks against these domains directly.

Our network attacker can, however, easily modify any other page the vic-
tim visits over http. Thus, an attacker can write a proxy inserting malicious
JavaScript into all pages the victim visits over http. To make this attack effi-
cient, we assume that the attacker wants to adapt the JavaScript as little as
possible to the page the attack is inserted into.

We begin with a discussion on what the JavaScript should do. We assume that
the network attacker wants to avoid detection, and thus not modify any user-
visible behavior of web sites. This means that she will want to insert JavaScript
on the page such that it captures a window reference to any window opened
by the page. A page can be opened for one of two reasons, either by the user
clicking on a link with the target attribute set to “_blank”, or by JavaScript
on the page calling window. open.

Thus, the attack flow for our network attacker is as follows:

1. Victim visits http://example.com

2. Attacker’s proxy inserts JavaScript into returned example.com page
3. Victim clicks on link to example2.com, opening in new window

4. Attacker’s JavaScript captures a reference to the opened window

in which situation the network attacker is almost in the same position as when
the victim visits evil.com and follows a link from there.

We start with links using the target attribute to open a new window. The
attacker can insert JavaScript which executes when the page is loaded, and which
loops through all anchor tags on the web page. When it reaches an anchor tag
with target set to _blank, it modifies the tag to call a JavaScript function
opening the window and storing the window handle when clicked. We remark
that as these tags are easily detectable if the attacker parses the page, it would
be easy to make this modification statically as part of a man-in-the middle attack
as well. We present a simplified JavaScript example in Figure 1.

Handling windows opened by JavaScript on the original web site at first
appears more difficult. To detect when windows may be opened could involve



dynamic analysis of JavaScript code. However, there is an easy way to capture
references opened by JavaScript on the original page.

window.real open = window.open;
window.open = function (URL, name, specs, replace) {
var openedWindow = real open.apply(this, arguments);

storeReferenceAndStartTiming (openedWindow );
return openedWindow;

}
function modifyLinks () {
var links = document.getElementsByTagName("a");
for (i=0; i<links.length; i++) {
if(links[i].getAttribute("target") = " blank") {
links [i].setAttribute ("onClick", "window.open(\"" +

links [i]. getAttribute ("href") + "\"); return false;");

}
}

window . onload = modifyLinks;

Fig. 1. Simplified JavaScript code to capture window references from non-malicious
pages

To do this, we use a technique which has been used by Phung et al. [4] to
construct a security mechanism for policy enforcement in JavaScript. The tech-
nique is based on the observation that even built-in functions can be aliased by
user-defined functions in JavaScript. Thus, the malicious JavaScript can replace
the window.open method with a JavaScript function which calls the original
window.open method and stores a copy of the returned window handle before
returning it to the caller. Slightly simplified JavaScript code illustrating the
principle is shown in Figure 1.

3 Timing the attack

We now turn to the question of how the attacker can learn when the victim is
redirected to pay.com. We present two mechanisms for accomplishing this. The
first, and easiest method builds on the well-known CSS history detection attack
to periodically poll whether the pay.com URL has become visited. The second
method is based on traffic analysis by a network attacker.

3.1 CSS History Detection

An early feature in web browsers is the distinction between a visited and an
unvisited link. With the advent of Cascading Style Sheets (CSS), the creator



of a web site gained the ability to decide how the two types of links would be
rendered. It was soon realized [5] that this feature could be abused by a web
site to determine of its visitor had also visited some other site. The CSS 2.1
specification [6, Section 5.11.2] notes the vulnerability and states that browsers
may treat all links as unvisited or implement other counter-measures.

We remark that while an attacker can test if a visitor has visited a specific
URL, she cannot extract the full browsing history of the visitor. In particular,
she does not learn anything about URLs she cannot guess. The rate at which
the attacker can test URLs is also an issue as it limits the privacy exposure
of the attack. Here, the increasing prevalence of Web 2.0 applications and the
accompanying optimization in general JavaScript performance has benefited an
attacker. Speeds of 30000 tested URLs/second have been reported by Janc and
Olejnik [1] with their optimized version of the attack.

Recall that the integration with a payment provider is typically done by
setting up a transaction and then redirecting the user to the payment provider
with a unique transaction ID assigned by the payment provider. The attacker is
not able to predict the transaction ID, so if it had been a part of the URL, the
attacker would not be able to use the CSS history detection attack to learn when
the user visited the payment provider. However, common practice is to send the
transaction ID to the payment provider as a POST parameter to a static URL,
which allows our attack to work.

History detection attacks have been studied in the academic literature, and
several demonstration web sites [7,8] have been created to raise awareness of the
issue. Wondracek et al. [9] showed that stolen history data can also be used for
a de-anonymization attack against users of social network sites. Jakobsson and
Stamm [10] discussed the potential of using history detection in phishing attacks.
Benevolent uses of the history detection attack have also been discussed. One
example is to guess at which OpenlD provider a user has to ease OpenlD-logins
[11], and another is to detect if a user has visited malicious sites and may have
had malware installed [12].

The threat to user privacy is the most well-known implication of history
detection. When coupled with fast testing, a non-trivial part of the user’s visiting
patterns can be extracted. This allows for testing of URLs containing location
information such as zip codes entered on e.g., weather sites. In their real-world
experiment Janc and Olejnik [1] noted that they could detect the US zip code
for 9.2% of tested users.

3.2 Using History Detection to Learn When the Victim Reaches a
Page

In our application of the history detection attack, we are not interested in the
victim’s browsing history but rather in what the victim is currently doing. In
particular, we want to know when the victim’s current browsing session reaches
a target page (e.g., the landing page of a payment provider). To accomplish this,
we can use the history detection attack to frequently poll the status of the target
page to detect when it changes from unvisited to visited.



This use of history detection requires that the target page is marked as unvis-
ited in the browser when the attack begins. Thus, the attack is easier to perform
the quicker the browser forgets about visited links, in total contrast to privacy
attacks which benefit from longer history retention. The CSS specification leaves
it up to the implementor to select for how long a link will be treated as visited,
and the major browsers have selected different periods. Internet Explorer and
Safari stores history for 20 days, and Firefox for 90 days. Opera does not limit
the time, but rather limits the number of stored entries to 1000. Chrome does
not remove visited status, except when explicitly requested by the user.

Thus, our flow stealing attack is best suited to attacking pages which users
trust, but which they visit rarely. We believe that payment providers fall in this
category for many users.

3.3 Limitations of CSS History Detection

There are several ways in which the victim can be protected from the way we use
CSS history detection in this attack. Firstly, Baron [13] has proposed a mecha-
nism to close the CSS history detection security hole. The most basic mechanism
involved is that the data returned by the JavaScript getComputedStyle method
always return data as if the link had been unvisited. Furthermore, it prevents
visited status of link from affecting which pictures are loaded, the layout of
the page, and the time it takes to render a page to prevent a number of side-
channel attacks. This proposal (or similar defenses) has been implemented in
Firefox 4, Internet Explorer 9, as well as in browsers based on the WebKit ren-
dering engine, such as Chrome and Safari. This means that in the latest versions
mainstream browsers, with the exception of Opera, have closed the CSS history
detection hole. Users may not always be able to upgrade to the latest version,
for various reasons. For instance, Internet Explorer 9 is not supported on Win-
dows XP, which will prevent many users from upgrading. Also, even if they
could, some users simply refuse to upgrade their browsers. There is also a risk of
regressions, or other history detection techniques being discovered. For instance,
Weinberg et al. [14] reports that beta versions of Firefox 4 were vulnerable to
CSS history detection through a debugging feature.

There are some techniques a user can deploy to protect herself, apart from
switching or upgrading their browser. A user may choose to configure their
browser not to store any browsing history. However, this comes at a usabil-
ity price. Firefox users may also choose to install the SafeHistory extension [15]
which essentially applies the same-origin policy to visited status on links, only
treating a link as visited if it has been visited by a link from the current domain.

CSS history detection is not the only history detection attack that has been
proposed against web browsers. In [16], Felten and Schneider discuss timing
attacks to determine if cacheable elements of pages are present in the victim’s
cache. However, such attacks are not suitable to our history detection usage
where we are not interested if the victim has historically visited a site, but rather
in detecting the moment in time when a specific page is visited. Cache timing
attacks cause the tested object to be cached, and thus the same object cannot



be tested twice, making the attack unsuitable for repeated polling. Similarly,
the history detection attacks building on user interaction of [14] cannot be used
in our scenario. We remark that there is a companion extension to SafeHistory
called SafeCache [15] to protect against cache timing attacks.

3.4 Network Based Timing

In the case of a network attacker who has access to the victim’s network traf-
fic, there are alternative timing mechanism for the cases when the CSS history
detection timing mechanism does not work. As we assume that all the victim’s
browsing of store.com and pay.com is via https, the attacker is unable to di-
rectly observe how the victim interacts with the target domains. However, https
does not protect against an attacker learning that the victim is visiting a certain
domain, or the sizes of requests and responses.

There are several ways for the network attacker to learn when the victim
visits pay.com. The first is by simply observing the victim’s DNS traffic. When
the attacker sees the victim’s computer performing a DNS lookup for the IP
address of pay.com, she can assume that the victim’s browser is going to request
something from that domain. However, if the victim frequently visits pay. com,
she may already have the IP address cached in her browser, and thus not issue a
DNS lookup when visiting the domain again. Another mechanism for the attacker
is to look up the IP addresses of servers for pay.com and then trigger the attack
when she sees the victim’s computer connecting to one of those IP addresses on
the https port.

Both these mechanisms may trigger the attack too early if other pages include
elements from the pay.com domain, for instance if store.com includes a pay.com
logo on their payment page. While this type of logo inclusion does occur, we
remark that it is common practice for stores to host payment logos on their own
servers, or for static content such as logos to be hosted on separate domains.

The attacker can learn if the store features pay.com logos served directly by
pay . com servers by simply visiting the store herself before beginning the attack.
If this is the case, she can perform a more thorough flow inspection and instead
of just looking for a connection establishment to the right IP and port, analyze
the number of bytes sent in each direction and the number of connections made
to distinguish between the victim fetching a logo and visiting the landing page
at the payment provider.

Communicating Back to Victim’s Browser When discussing the alternate
timing mechanism available to the network attacker, we stated that the attacker
“triggers the attack”. However, the attacker is located as a man-in-the-middle
to the victim’s network traffic, and to trigger the attack, she must activate
code running as JavaScript in a tab in the victim’s browser. How is the trigger
information communicated back to the victim’s browser?

We remark that in our network attacker scenario, the malicious JavaScript
has been inserted by the attacker on a web page not controlled by the attacker.



Thus, the malicious JavaScript is prevented by the same-origin policy from di-
rectly communicating with the attacker-controlled server at evil.com via con-
venient mechanisms such as XMLHttpRequest.

However, as the attacker is mounting a man-in-the-middle attack on the
victim’s network traffic, this problem can be circumvented by the attacker in-
tercepting and responding to requests to some specific path, regardless of what
host the path is supposed to be located at. This allows the JavaScript inserted
by the attacker to use XMLHttpRequest to periodically send a request to a path
which the attacker will intercept. The attacker will not forward such requests,
but instead respond with a boolean value indicating if the flow stealing redirect
should be activated. There are several other options available, such as periodi-
cally loading images from evil.com and using the size of the returned images
as a one-way communication channel to the JavaScript running in the victim’s
browser.

4 Impact and Feasibility of Flow Stealing

We have now described our proposed flow stealing attack, showing how it can
be performed both by an attacker operating a web site as well as by a network
attacker who can intercept the victim’s network traffic. Apart from the conditions
imposed by the type of attacker, the feasibility of the attack also depends on the
victim’s browser.

4.1 Browser Features

Our flow stealing attack combines two different vulnerabilities. Firstly, the at-
tacker must be able to monitor when the victim is directed to pay.com. The
primary mechanism for accomplishing this is by using a well-known history de-
tection hole. Secondly, the attacker must at that point in time redirect the victim
to pay.com with a new transaction ID.

While the redirection part is crucial for the flow stealing attack, the CSS
history detection vulnerability is not needed for network attackers, as discussed
in Section 3.4.

All mainstream browsers allow the redirection part of our attack. However,
on the Opera browser, the attacker cannot simply redirect the victim’s tab, but
must instead close the tab and redirect another tab as discussed Section 2.1.
This makes the attack more noticeable, as an alert victim may notice that a tab
closed and become suspicious and abort the transaction.

To explore the feasibility of our attack, we have tested recent versions of
browsers to see if the classic CSS-based history detection attack works, and
what restriction they place on cross-domain window navigation through window
handles. We present our results in Table 1. In the table, “CSS History Detection”
indicates if the CSS history detection attack works. Redirection indicates if a
window handle can always be redirected via JavaScript (“Permissive”) or not
(“Restricted”). The browsers were tested on Windows 7. We do not believe any
of the results depend on the operating system the browser is run on.

10



Table 1. Summary of browser’s susceptibility to flow stealing.

Browser CSS History Detection|Window Navigation
Firefox 3.6.15 Yes Permissive
Firefox 4.0.1 No Permissive
IE 8.0.7600.16385 Yes Permissive
IE 9.0.8112.16421 No Permissive
Chrome 10.0.648.151 No Permissive
Safari 5.0.4 No Permissive
Opera 11.11 Yes Restricted

4.2 Experiences with a Proof-of-Concept

In addition to testing the individual pieces of our flow stealing attack, we have
also developed a proof-of-concept implementation of the attack as performed by
a web-site hosting attacker. We consider the simplest version of attack which can
be performed with a static html containing JavaScript for the attack using the
CSS history detection timing mechanism. In our proof-of-concept, we replaced
store.com with the donation page of a charity, to simplify testing (the donation
page of the charity contains a link directly to the payment provider).

In our proof-of-concept, the transaction set up by the attacker has the at-
tacker as the recipient instead of the charity. The recipient information is dis-
played by the payment provider, so an alert victim could notice that their flow
had been hijacked by an attacker. To reduce the risk of this, an attacker could
register names with the payment provider which are similar, or look identical [17],
to the stores or charities that she will attack.

Another option for stealthy attacks is for the attacker to herself set up a
purchase on store.com. She then records the transaction ID used by store.com
when referring her to pay.com. By using this transaction ID in the attack, the
attacker tricks the victim into paying for the her goods. In this scenario, the only
indication to the victim that an attack is ongoing is if the information displayed
on pay.com on what the purchase concerns differs from what she expected.

Guessing the Price To make the attack convincing to the victim, the attacker
needs to set up a transaction with the exact same cost that the victim expected.
It seems likely that a large fraction of users would notice if the payment provider
listed a different price compared to the store. We have not implemented any tech-
niques for creating a transaction with the correct price in our proof-of-concept.

There are several ways for an attacker to guess the price. The easiest way
is to attack subscription services or stores which sell a specific item or service
for a fixed price, or a small number of different options so that the attacker can
simply guess at the most common price. One such example is online streaming
services such as Hulu, Napster, Netflix, and Spotify.

For stores with larger inventories, the attacker can use the CSS history de-
tection attack to determine what items the victim has browsed and/or put in
her shopping basket, depending on the URL scheme employed by the store. In

11



the network attack scenario, traffic analysis on the number of requests and size
of responses as the victim browses store.com may be used instead.

5 Proposed Counter-Measures

In this section, we discuss a simple server-side defense against CSS history de-
tection that can be applied by payment providers for their landing page. We
also discuss the information displayed to users of payment sites. We proceed to
discuss the problem of frame navigation as it applies to top-level frames and pro-
pose a new policy based on pop-up blocking. Finally, we discuss why traditional
CSRF defenses do not protect against flow stealing.

We note that our attack uses JavaScript to perform the redirection attack,
so users can protect themselves against flow stealing by disabling JavaScript.
However, this does remove functionality from a large number of web sites, so
most users are unlikely to do so.

5.1 Closing the CSS History Detection Hole

We are happy that almost all of the mainstream browsers now have closed the
CSS history detection hole. By closing this hole, attackers are denied the easiest
route for performing flow stealing attacks. However, for various reasons, users are
not always able to upgrade to the newest version of software in a timely manner.
To protect users which are not able to upgrade, we propose that high-profile sites
such as payment providers should consider implementing a server-side defense.

While landing pages of payment providers are external URLs in the nomen-
clature of [10], they could apply a protection technique by recommending sites
linking to them to insert a random number in the link, which is simply ignored
by the payment provider. As most payment providers want to help stores to very
easily integrate payments, standard practice seems to be to provide some static
HTML code to be included on the store’s web site. Such code could include
JavaScript code to generate a random number in the browser which is inserted
into the URL of the landing page in a way that is ignored by the payment
provider. This would prevent the link from being guessable, and thus detectable
via CSS history detection.

5.2 Payment Provider Pages

The key place where the victim could detect that a flow stealing attack was
ongoing is in the information shown by legitimate payment providers. It is im-
portant to provide as clear feedback as possible to end users of payment sites
on who the recipient of the payment is, and what the payment concerns. For
instance, the payment provider could indicate if the recipient is a company, a
charity, or an individual.

In a typical payment provider integration, the information on the purchase
depends on what information is sent from the store to the payment provider

12



when setting up the transaction. Thus, stores can assist in making flow stealing
attacks easier to detect by including more information. For instance, this may
include the purchaser’s username on the store, or the shipping address.

5.3 Limiting Window Manipulation via Window Handles

There is a difference in policy between browsers on what limits are applied to
how a page can change the URL of another window to which it has a JavaScript
window handle. Opera restricts such navigation based on the current location
of the frame, and protects frames navigated to https sites from being navigated
from another window. In Chrome, Firefox, Internet Explorer, and Safari, the
opener is allowed to freely navigate an opened window, and in some of them,
also other windows apart from the opener.

Frame navigation has previously been showed as being dangerously permis-
sive in the context of embedded frames and iframes by Barth et al. [18], which
influenced browser developers to implement a more restrictive policy. They note
that top-level frames are often exempt from the browser’s frame navigation pol-
icy, and that top-level frames are less vulnerable as their URL is shown in the
location bar.

While it is true that top-level frames are less vulnerable than embedded
frames, there is still a danger in permissive policies for navigation of top-level
frames. We cannot trust a user to, at every point in time in their browsing
session, validate that the location in the location bar is correct. For instance,
we cannot expect users to note if their location is changed to a similarly looking
URL, or identical looking URL via a homograph attack [17]. Neither can we
expect users to notice if opaque identifiers in sessions are replaced.

The fact that different policies have been implemented in different browsers
indicates that it is unlikely that a large number of pages rely on the most permis-
sive policies for their functionality. The only policy restricting our flow stealing
attack is Opera’s. However, as we discussed in Section 2.1, Opera’s policy is still
sufficiently permissive that it allows flow stealing attacks by closing the window
and redirecting the window running the attacking JavaScript. Thus, we argue
that a replacement policy should not only restrict navigation, but rather all ac-
tions affecting the window, including closing it and resizing it (an attacker could
emulate closing by resizing to a very small size).

We are not aware of any important applications where a window w; needs
to modify another window ws where the modification is not prompted by user
interaction with window wj. For what types of user interaction would a user
expect wy to modify the state of another window wy? We argue that in any user
interaction that would not allow w; to open a new window, w; should not be
allowed to modify the state of another window either. In mainstream browsers
today, the situations in which w; is allowed to open a window is restricted by a
pop-up blocker. We believe a user would not expect w; to modify any windows
unrelated to it, a policy already implemented in the Firefox browser which limits
navigation to the opener window.

13



As far as we know, each mainstream browser implements its own algorithm
for pop-up blocking, a feature enabled by default. Thus, most web sites have
been adapted to page manipulations allowed by the pop-up blocking policies
of browsers. We are not aware of any detailed descriptions of pop-up blocking
algorithms, but they appear to work satisfactorily in major browsers. Accord-
ing to Chen [19], browser developers are hesitant to specify the exact policies
used as that may prevent them from modifying the policy later, if a loophole is
discovered.

Thus, we propose the following policy for controlling a window via a window
handle:

Policy 1 (Window navigation, Proposed) A window wy can modify (e.g.,
navigate, close, or resize) another window wo only if it is the opener of wa, and
the pop-up blocker policy currently allows w1 to open a window.

Furthermore, we believe that rights to a window should be relinquished en-
tirely if the user manually navigates (e.g., by entering a new URL in the address
bar) the tab. Currently, this does not appear to affect the rights granted to the
JavaScript holding the handle to the window, but we believe it would match the
user’s expectation more closely that the opener retains no special privileges if
the user navigates the window.

5.4 Traditional CSRF Defenses do not Prevent Flow Stealing

Our flow stealing attack has some similarities to traditional CSRF attacks, so one
may wonder if traditional CSRF defenses protect against flow stealing as well.
Sadly, the answer is no, and new techniques are needed to protect against flow
stealing. We briefly mention the two major CSRF defenses from the literature
and discuss why they do not protect against flow stealing. At the core of the
problem is that in flow stealing the victim’s browser is redirected at a point in
time where the control is passed between sites operated by two different entities.
Thus, the hijacked request is legitimately a cross-site request.

The most common class of CSRF defense consists of a secret validation token
that must be sent along with all state-modifying requests, and that is matched to
the user’s session. There are several different implementations of this technique,
and there are some subtleties in implementing the protection correctly, cf. [2].
Such tokens are designed to protect flows internally on web-sites, and are not
immediately applicable to cross-site flows.

A second technique is based on inspecting either the Referer or the Origin
HTTP header. Typically, this is described as only allowing requests if the host in
the header matches the current host, but the policy could easily be extended to
allowing external requests from some specific set of domains. As an example, a
payment provider may require that users making payments to store.com come
to pay.com with an Origin header set to store.com. However, this does not
prevent flow stealing, as the attacker can register as a merchant with the payment
provider and redirect via the correct domain for that merchant. The attacker can

14



also redirect the victim to a fake payment site instead of the legitimate site, thus
bypassing any controls that could be implemented by a payment provider.

6 Conclusion and Future Work

In conclusion, we have demonstrated an attack on current web browser imple-
mentations. The attack uses the CSS history detection attack, which has been
publicly documented for about a decade, to time a redirection attack. By redi-
recting the tab the victim is using at a point where the victim legitimately
expects to perform some security critical action, the victim can be tricked into
doing something more sensitive than what can be achieved by e.g. phishing. We
hope that our attack further aids in demonstrating the importance of closing the
CSS history detection hole, and future holes with similar impact.

As future work, we propose developing a proof-of-concept version of the net-
work attack as well. The purpose of such a proof-of-concept prototype would be
to show that while closing the CSS history detection hole is an important step, it
is also important to further limit JavaScript cross-site frame navigation, as well
as deploying https as a default for a larger fraction of Internet sites. We note that
other proof-of-concept attacks such as Firesheep [20] have been able to quickly
raise public awareness of security issues and caused deployment improvements
at large sites.

Acknowledgments

I would like to thank Emil Hesslow for great discussions, development of a proof-
of-concept, and his JavaScript expertise.

References

1. Janc, A., Olejnik, L.: Web browser history detection as a real-world privacy threat.
In Gritzalis, D., Preneel, B., Theoharidou, M., eds.: ESORICS. Volume 6345 of
Lecture Notes in Computer Science., Springer (2010) 215-231

2. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for cross-site request forgery.
In Ning, P., Syverson, P.F., Jha, S., eds.: ACM Conference on Computer and
Communications Security, ACM (2008) 75-88

3. Raskin, A.: Tabnabbing: A new type of phishing attack http://www.azarask.in/
blog/post/a-new-type-of-phishing-attack/.

4. Phung, P.H., Sands, D., Chudnov, A.: Lightweight self-protecting javascript. In
Li, W., Susilo, W., Tupakula, U.K., Safavi-Naini, R., Varadharajan, V., eds.: ASI-
ACCS, ACM (2009) 47-60

5. Ruderman, J.: Bug 57351 - css on a:visited can load an image and/or reveal if
visitor been to a site https://bugzilla.mozilla.org/show_bug.cgi?id=57351.

6. W3C: Cascading style sheets level 2 revision 1 (CSS 2.1) specification http://
www.w3.org/TR/CSS2/.

7. Anonymous: Did you watch porn (2010) http://www.didyouwatchporn.com/.

15



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Janc, A., Olejnik, L.: What the internet knows about you (2010) http://www.
wtikay.com/.

Wondracek, G., Holz, T., Kirda, E., Kruegel, C.: A practical attack to de-
anonymize social network users. In: IEEE Symposium on Security and Privacy,
IEEE Computer Society (2010) 223-238

Jakobsson, M., Stamm, S.: Invasive browser sniffing and countermeasures. In Carr,
L., Roure, D.D., Iyengar, A., Goble, C.A., Dahlin, M., eds.: WWW, ACM (2006)
523-532

Kennedy, N.: Sniff browser history for improved user experience (2008) http:
//www.niallkennedy.com/blog/2008/02/browser-history-sniff.html.
Jakobsson, M., Juels, A., Ratkiewicz, J.: Remote harm-diagnostics http://wuw.
ravenwhite.com/files/rhd.pdf.

Baron, L.D.: Preventing attacks on a user’s history through CSS :visited selectors
http://dbaron.org/mozilla/visited-privacy.

Weinberg, Z., Chen, E.Y., Jayaraman, P.R., Jackson, C.: I still know what you
visited last summer. In: IEEE Symposium on Security and Privacy. (2011)
Jackson, C., Barth, A., Bortz, A., Shao, W., Boneh, D.: Protecting browsers from
DNS rebinding attacks. In Ning, P., di Vimercati, S.D.C., Syverson, P.F., eds.:
ACM Conference on Computer and Communications Security, ACM (2007) 421-
431

Felten, E.W., Schneider, M.A.: Timing attacks on web privacy. In: ACM Confer-
ence on Computer and Communications Security. (2000) 25-32

Holgers, T., Watson, D.E., Gribble, S.D.: Cutting through the confusion: A mea-
surement study of homograph attacks. In: USENIX Annual Technical Conference,
General Track, USENIX (2006) 261-266

Barth, A., Jackson, C., Mitchell, J.C.: Securing frame communication in browsers.
Commun. ACM 52(6) (2009) 83-91

Chen, R.: The internet explorer pop-up blocker follows guidelines, not rules http:
//blogs.msdn.com/b/oldnewthing/archive/2007/08/31/4656351.aspx.

Butler, E.: Firesheep http://codebutler.com/firesheep.

16



