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ABSTRACT

In this paper we propose a manifold embedding methodol-
ogy to integrate heterogeneous sources of genomic data for
the purpose of interpretation of transcriptional regulatory phe-
nomena and subsequent visualization. Using theGata3gene
as an example, we ask if it is possible to determine which
genes (or their products) might be potentially involved in its
tissue-specific regulation - based on evidence obtained from
various available data sources. Our approach is based on co-
embedding of genes onto a manifold wherein the proximity of
neighbors is influenced by the probability of their interaction
as reported from diverse data sources - i.e. the stronger the
evidence for that gene-gene interaction, the closer they are.

1. INTRODUCTION

Below we give a characterization of what we mean by tran-
scriptional regulatory networks [4]. As the name suggests,
gene A is connected by a link to gene B if a product of gene
A, say protein A, is involved in the transcriptional regulation
of gene B. This might mean that protein A is involved in the
formation of the complex which binds at the basal transcrip-
tional machinery of gene B to drive gene B regulation. This
is indicated below:

Fig. 1. Schematic of Transcriptional Regulation.

As can be seen, the components of the Transcription Fac-
tor (TF) Complex, shown in Fig. 1, are the products of several
genes. Therefore, the incorrect inference of a transcriptional

regulatory network can led to several false hypotheses about
the actual set of genes affecting a target gene. Since biolo-
gists are increasingly relying on computational tools to guide
experiment design, a principled approach to biologically rele-
vant network inference can lead to significant savings in time
and resources. To make the inference of these networks rel-
evant for a biologist to design useful experiments it would
seem imperative that we incorporate biological knowledge to
an extent suitable for making such network inference mean-
ingful. In this paper we try to combine some of the other
available data (protein-protein interaction data and phyloge-
netic conservation of binding sites across genomes) combined
with mRNA expression features to build ’proximity maps’
such that TF encoding genes lie close to the genes whose tran-
scription they are involved in. These proximity maps not only
aid visualization but also, by construction, integrate interac-
tions from diverse data sources. A straightforward interpreta-
tion of such a proximity map is that the stronger the evidence
for a true TF gene - target gene interaction, the closer they
would lie.

2. WHY BUILD PROXIMITY MAPS ?

As already mentioned above, the mechanism of regulation
of a target gene is via the binding site of the corresponding
Transcription factor (TF). It is believed that several TF motifs
might have appeared over the evolutionary time period due to
insertions, mutations, deletions etc in the vertebrate genomes.
However, if we are interested in the regulation of a process
which is known to be similar between several organisms (say
Human, Chimp, Mouse, Rat and Chicken), then we can look
for the conservation of functional binding sites over all these
genomes. This helps us isolate the functional binding sites,
as opposed to those which might have randomly occurred.
This however, does not suggest that those other binding sites
(TFBS) have no functional role. Since we are interested in the
mechanism of regulation of theGata2/Gata3genes (which
are known to be implicated in mammalian nephrogenesis),
we examine their promoter regions for phylogenetically con-
served TFBS (Fig. 2). Such information can be obtained from



most genome browsers [6]. We see that even for a fairly short
stretch of sequence (1 kilobase) upstream of the gene, there
are several conserved sequence elements which are potential
TFBS (light grey regions). In this work, we are focusing on
the TFBS at the promoter upstream of the gene. Since we
have data from phylogeny, protein-DNA interactions as re-
ported by ChIP (chromatin-immunoprecipitation) assays, as
well as microarray expression data, the presence of a TFBS
for a TF which is known to have a DNA binding motif at
the promoter as well as whose expression is correlated with
Gata2/Gata3’sexpression indicates very strong evidence for
that TF to be functional (involved in the target gene’s regula-
tion). Given the large number of TFs which are phylogeneti-
cally conserved at the promoter, we would need an approach
to reduce the number of candidates for experimental valida-
tion to a much more confident subset. From here onwards,
for the purpose of illustration, we continue with theGata3
example to demonstrate our methodology.

Fig. 2. TFBS conservation between Human and Rat, up-
stream ofGata3, the square dots represent TFs which are
known to be functional for regulation.

As can be seen above, there are atleast fifty Transcription
Factors (TFs) which could possibly bind in the region 1kb up-
stream of theGata3gene [6].It would be very useful to find
which TFs would bind in the given context of the biologi-
cal process. In the normal course, every TF is a candidate
since its binding site is phylogenetically conserved. Perform-
ing a ChIP assay to determine if the TFBS is true is a la-
borious exercise for this huge set of candidate TFs. But the
presence of other sources of data can help us guess which

TFs might be really functional to obtain a set of high con-
fidence TF candidates for the assay. This is seen to be ex-
tremely useful in understanding tissue specific regulation too,
since each tissue provides an environment in which a differ-
ent set of TFs can possibly bind at the promoter for triggering
tissue-specific spatio-temporal expression. Integrating tissue
microarray data along with known interactions obtained from
other sources can reduce the experimental overhead signifi-
cantly.

The proximity maps, would place the functional TFs in
close vicinity of the target gene (Gata3) here. The experi-
mentalist can then look at a small neighborhood around the
gene of interest and come up with a list of all the TFs that
are possibly functional for transcription, under the evidence
provided.

3. SETUP

Computational inference of transcriptional regulatory networks
from diverse data has proved to be a bigger challenge than
previously imagined. The gold standards for each data source
are highly variable, and considering the diversity of interac-
tions that each experimental or computational method aims to
recover, their meaningful integration for the purpose of un-
derstanding underlying phenomena is a non-trivial task. For
this study, we examine three kinds of data sources, two of
which are experimentally derived (protein-protein interaction
assays, phylogenetic conservation of Transcription Factor Bind-
ing sites (TFBS)) and the third is a computational measure
(Directed Information) [3] for inferring interactions. Our ob-
jective is to demonstrate that not only is this method scalable
to as many kinds of ’relevant’ data sources but also encom-
pass both experimental and computational measures of asso-
ciation. Our approach is to construct an interaction probabil-
ity matrix betweenK genes under consideration. This matrix
is aK × K matrix with P (i, j) = P (Zi,j = 1), the proba-
bility that there is a ’true’ functional interaction between the
genesi andj, denoted by the eventZi,j = 1. This true in-
teraction depends on the probability that thelth data source
confirms this interaction (i.e.Zl

i,j = 1 ). If we haveL (=3,
here) different data sources, we can write this as:

pi,j = P (Zi,j = 1|Z1
i,j = 1, Z2

i,j = 1, . . . , ZL
i,j = 1)

=
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By the conditional independence of the various data sources
1, 2, . . . , L, the joint distribution (in the denominator) factors
into the product of the marginal distributionsP (Zl

i,j), thus,

pi,j =
P (Zi,j = 1)

∏L
l=1 P (Zl
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i,j = 1)



Fig. 3. A schematic for how data integration over diverse data
sources may be done - each data source is an expert suggest-
ing the probability of functional interaction in its realm, and
the bottom node combines the votes confirming or denying
that interaction.
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withZ = [P (Zi,j = 1)](L−1). Also, if the expected num-
ber of interactions per protein/gene pair isI, with N entities
in the protein/gene universe, then the probability of true inter-
action,P (Zi,j = 1) = I

N . Note, we have assumed that the
the nature of protein-protein or gene-gene interactions is sim-
ilar, and that there is no notion of a favorable occurrence of
some interactions over the others. A more rigorous analysis
would require a knowledge of the interaction network struc-
ture of the proteome/genome.
Thus, the existence of a ’true’ functional relation between two
genesi andj, depends onpl = P (Zi,j = 1|Zl

i,j = 1) which
is computed from a joint histogram of the training data for a
particular (lth) data source. This reflects the degree of con-
fidence that biologists have come to associate with the inter-
actions predicted from thelth data source. The multiplica-
tion of posterior probabilities is equivalent to the addition of
log-likelihoods of generation from each of the various data
sources. This is a specific instance of a graphical model for-
malism [1,5] within such a framework. The expression above
decomposes the overall structure of the relationship into a
product of marginal conditionals due to the assumed indepen-
dence of the various data sources.

For the purpose of both visualization and integration of
these diverse data sources with a goal to recover biologically
relevant relationships, we now explore manifold embedding

[2,4] as a method to incorporate the probability weights ob-
tained from the interaction probability matrices to bring those
genes closer which have a higher probability of interaction.
Manifold embedding helps to understand the local structure
of the data points, instead of imposing a global structure on
them. This is particularly useful in our scenario since we only
have evidence for the immediate upstream affectors of a gene,
and not of its global network structure. What we can hope to
recover is a fairly accurate picture of the global transcriptional
network by piecing together the evidence of the local inter-
actions. For understanding transcriptional regulatory mecha-
nisms, it can be hypothesized that the genes in close vicinity
to a gene of interest are either co-regulated or potentially in-
volved in the regulation of the target gene (through its prod-
uct). A good embedding would use these diverse data sources
to reflect such relationships.

4. MODIFIED LAPLACIAN EIGENMAP
EMBEDDING

Suppose we are investigating the role of(K − 1) genes in
relation to our target gene (Gata3) - we proceed as follows:

• Standardize theseK gene expression profiles to 0 mean
and unit variance. Notice that the Euclidean distances
become the Pearson correlation measure.

• Build theK × K dimensional weight matrixW from
the Hadamard product of theL interaction probability
(P (Zl

i,j = 1)L
l=1 ) matrices, from each of theL differ-

ent sources of data.

• Findn Nearest Neighbors using the Euclidean distance
(or within someε-neighborhood). Assign weightWi,j =
pi,j , from (1) for the pair(i, j), for each of the

(
K
2

)
gene

pairs.

• Form the Graph Laplacian [2]:

Li,j =

 di =
∑

k Wi,k if i = j;
−Wi,j if i is connected toj;
0 otherwise.

• Solve:minyyT Ly = 1
2

∑
i,j(yi − yj)2Wi,j (2),

subject to:

– yT Dy = 1 and

– yT D1 = 0

, whereDi,i =
∑

j Wj,i, a diagonal weight matrix.

• Embed the co-ordinates to a lower dimensional mani-
fold, using the solution (the Laplacian Eigenmap) ob-
tained from the minimization above.



– The solution to (2) is given by thed generalized
eigenvectors associated with thed smallest gener-
alized eigenvalues solvingLy = λDy.

– If y = [y1, . . . , yd] is the collection of these eigen-
vectors, then the embedding is given by :
yi = (yi1, . . . , yid)T , i.e., thed dimensional rep-
resentation of theith data point (gene).

• In our representation, we take dimensionality,d = 2 and
number of neighbors,n = 5.

5. INTEGRATING DIVERSE DATA SOURCES

We demonstrate the utility of the presented approach to un-
derstand the mechanisms underlying transcriptional regula-
tion of theGata2/Gata3genes in the developing kidney [3].
The primary source of data used to obtain distances is the
microarray expression profiles of 47 genes known to be co-
expressed withGata3 in the embryonic kidney. These are
obtained from http://genet.chmcc.org. A large amount of data
encompassing literature mining, microarrays, protein-protein
interactions have been available from the STRING database
(http://string.embl.de/) - for most of theK = 48 genes se-
lected above, a lot of functional information from several ex-
periments is available. For our purpose, we find the strength
of association between any two genesi andj using signifi-
cance scores from three different sources:

• Phylogenetic conservation of proteini’s binding site in
the upstream region of genej.

• Interaction of Proteini with Proteinj OR ChIP evi-
dence for proteini’s interaction with a DNA-domain in
genej’s promoter.

• Directed Information [3], measuring causality in ex-
pression of genej due to genei - based on microarray
expression.

Most of the data sources report significance scores as log-
likelihood scores or p-values. These scores are then standard-
ized for true positives, for example, a p-value from ChIP of
0.15 can be seen to be significant and predictive of a true inter-
action, whereas in a computational measure a more stringent
p-value like 0.05 might be necessary to infer true interaction.
From here, a joint histogram of true vs. predicted, under each
data source (l) can be obtained and used for the evaluation of
the probabilitypl as pointed to above. We note that the scores
derived from the three sources are not symmetric - hence for
our purpose we take the events(Zi,j = 1) and (Zj,i = 1)
to be equivalent - however, inference needs to be done with
regard to the biological process to avoid misinterpretation.

6. RESULTS AND DISCUSSION

A common approach used for studying transcriptional regu-
latory mechanisms is by association. The hypothesis under-
lying this is that if genes are co-clustered/correlated, they are
co-regulated, i.e. have a common set of controls. Since we
are interested in the transcriptional regulatory mechanisms
of Gata3, we look for genes which are in aε-neighborhood
of Gata3. From the embedded manifold in two-dimensions
as shown in Fig.3, we observe that thePPAR, Lamc2, Pax2
genes are among several which are ’in close proximity’ (and
possibly functionally relevant in transcriptional regulation) to
the Gata3gene. This is interesting since each of these have
phylogenetically conserved TF binding sites (the three black
squares in Fig.2) in theGata3 promoter. It is to be noted
thatGata3’s family memberGata2is in the cluster on the top
left, indicating that though it is expressed, the influence of the
TF genes is more pronounced and hence, they are closer in
the network. We note that this embedding has integrated in-
formation from three very different data sources to build this
’proximity map’ of genes. These findings are currently being
verified in the laboratory. It can be seen that not only can this
approach combine known interactions graphically, but we can
look for interactions not previously identified from an arbi-
trary neighborhood surrounding any gene of interest. Thus we
can move up or down the transcriptional regulatory network
amongst these genes. We note again that these interactions are
not truly symmetric, and so experiments have to be designed
to confirm these interactions. However, the search space (to
look for potential regulators) is reduced significantly.

7. CONCLUSIONS

We have presented a methodology to understand the mecha-
nisms underlying transcriptional regulation of a gene by com-
bining various available data sources via amodified Lapla-
cian Eigenmaptechnique. This framework provides a com-
mon ground both for the integration and visualization of di-
verse data sources for understanding physiological processes.
graphical model formalism can be extended to include con-
ditional interactions among various experiments relating to a
particular data source.

Some of the extensions to this work that we are currently
pursuing is the integration of data sources that ’build’ on each
other - for example, integrating two different kinds of exper-
iments reporting the same functional interaction. One such
pair is the prediction of protein-protein interactions via ChIP
or through Yeast-2-Hybrid (Y2H) screen assays. In this case,
the protein-protein interaction expert of Fig.2 will have two
parents - one reporting the presence of interaction under the
ChIP assay and the other parent for the Y2H assay.



Fig. 4. Laplacian Eigenmap Embedding

Using a graphical model formalism here yields,

P (D,A1, A2, A, B, C) = P (D|(A,A1, A2), B, C).P (A,A1, A2)
.P (B).P (C)

= P (D|(A,A1, A2), B, C).P (A|A1, A2).P (A1).P (A2)
.P (B).P (C)

Here, A = {ZPPI
i,j = 1}, A1 = {ZY 2H

i,j = 1}, A2 =
{ZChIP

i,j = 1}, B = {ZPhylogenetic TFBS
i,j = 1}, C =

{ZDTI
i,j = 1}, D = {Zoverall data

i,j = 1}. These probabili-
ties can be obtained from a joint histogram of the correspond-
ing data sets as suggested in Section 3.

We are also examining techniques to ’visualize’ the non-
symmetric Laplacians which arise due to the non-symmetric
nature of the probabilitiespi,j andpj,i. One way would be
to symmetrize this non-symmetric proximity matrix by taking
the (geometric) mean of the interaction probability matrix and
its transpose.

Finally, to reduce the number of candidate TFs or affec-
tors even further , knowledge of the biophysics of transcrip-
tional regulation needs to be incorporated. This is primarily
because steric hindrance factors, kinetics of binding etc. have
a very important role for the regulation of transcription.

Fig. 5. A schematic for diverse data integration under a more
sophisticated framework , wherein we see the protein inter-
action derived from Y2H and ChIP experiments - this can be
extended to an arbitrarily complex graphical topology.
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