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Abstract— An Autonomous Mobile Robot is an artificially 

intelligent vehicle that is capable of traveling in unknown, 

unstructured environments independently. Among the proposed 

approaches in the literature to handle the navigation problem of a 

mobile robot is the simple fuzzy reactive approach. This approach, 

however, occasionally suffers from two problems the 

combinatorial explosion of the if-then rules in the inference 

engine, and finally the lack of a unified fuzzy rule-based system 

procedure. This paper offers an approach to handle the first two 

problems. In this paper a new approach to the design of simple 

fuzzy navigation systems is presented. The proposed approach is 

based on decomposing MIMO fuzzy logic controller into a 

number of SISO controllers. This approach has the advantage of 

greatly reducing the number of if-then rules by introducing 

weighting factors for the sensor inputs, thus inferring the reflexive 

conclusions from each input to the system rather than putting all 

the possible states of all the inputs to infer a single conclusion. 

Simulation and experimental results are presented to prove the 

efficiency of the proposed approach for mobile robot navigation in 

unstructured unknown environment. 
 

Index Terms— Decomposed fuzzy controller, Mobile robot, 

Autonomous navigation.  

I. INTRODUCTION 

An Autonomous Mobile Robot (AMR) is an artificially 

intelligent vehicle that is capable of traveling in unknown, 

unstructured environments independently. AMR uses a 

sensory system to take readings from its surroundings and 

make the necessary decisions such as perception and 

reasoning to control its actuators to perform motions based on 

the perceived information in order to achieve its prescribed 

goal(s). With such objectives required to be achieved by 

AMR’s, their utilization in different settings such as, homes, 

factories, or hazardous environments is increasing steadily. 

From the wide spectrum of AMR’s objectives, the 

navigation process is regarded as the key issue in an enormous 

number of research publications during the past 15 years, e.g., 

[1-11]. Sensor-based data acquired by the mobile robot 

provides the necessary information to determine the 

appropriate control actions to the actuators so that the mobile 

robot can travel safely in cluttered environments with static 

and/or moving obstacles. In order to achieve its goal, the 

AMR is normally required to determine in real-time a safe, 

smooth, and preferably optimal path from a starting location 

to an end location (target). Hence, the main issues that need to 

be addressed in mobile robot navigation are obstacle 

avoidance, target acquisition, and escaping possible traps 

[12]. 

An AMR path planning problem is usually classified into 

global path planning and local path planning [6,11]. In global 

path planning, the environment is assumed to be previously 

known for the navigation system, thus a collision-free path is 

then generated to pilot the robot to a given target. Several 
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methods that are categorized as global path planning methods 

have been reported in the literature, e.g., [1, 12-16, 20]. All 

these methods are search algorithms that have common 

features such as, the need for complete or partial information 

concerning the environment, the planning is done off-line, 

they are time and computationally demanding, and they are 

prone to a number of problems [6,11]. On the other hand, 

local path planning methods are basically sense-act (reactive) 

mapping functions, and are more or less closer to human 

thinking when driving for the first time in an unknown place. 

Intelligent decisions are permitted in real-time without any 

interruption in the mobile robot’s motion. Accordingly, these 

methods are designed such that they require less 

computational space and time.  These methods are classified 

into model-based methods [17], and artificial intelligence 

methods that employ fuzzy logic, neural networks, genetic 

algorithms, or a hybrid of these methods [18-21]. 

   Among all the suggested methods for reactive navigation, 

fuzzy logic based decision-making has been found to be the 

most attractive. It is tolerant to noise and error in the 

information coming from the sensory system, and most 

importantly it is a factual reflection of the behavior of human 

expertise. In general, there are two approaches to the 

application of fuzzy logic in AMR navigation, namely, 

behavior-based approach and simple fuzzy reactive approach. 

The first approach involves decomposing the path-planning 

problem into a set of situation-specific fuzzy behaviors that 

achieve simple distinct tasks each designed for a particular 

incentive. The final decision for dealing with complex 

situations then can be obtained by the combination or 

coordination of the simple behaviors [8,22-25]. Although, the 

principles of this approach seem to be simple, the 

coordination between several decisions obtained from 

different behaviors is not an easy task. Moreover, this 

approach suffers from computational complexities when the 

number of sensors and fuzzy values for the input linguistic 

variables are increased. This is due to the exponential increase 

in the number of rules that are required in the fuzzy algorithm 

for each behavior. In addition, the choice of the weighting 

factor for each behavior needs extensive training to cover a 

huge number of situations.  

   On the other hand, the simple fuzzy reactive approach, 

which is basically a classical implementation of a fuzzy 

rule-based system, is less sensitive to the problems associated 

with the behavior-based approach. Depending on the number 

and the nature of the input variables a rule base, or fuzzy 

algorithm, can be designed to suite a semi-general situation 

[5-8,26-27]. The design of the fuzzy algorithm is basically 

creating rules that reflect the basic reflexive behaviors of 

human beings in driving a car in unfamiliar environments. 

These rules are stimulated by locally available information 

about the environment in order to avoid obstacles and reach a 

desired goal without any usage of memory for the previously 

encountered situations. Although, the design and 

implementation of such systems seems to be a simple task, 
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they suffer from three major shortcomings. The first problem 

is the suffering from local minima or trap situation. However, 

a number of trap escape algorithms have been suggested in the 

literature [11,28-30]. The other two problems, which are not 

mentioned in the literature, are the lack of a unified fuzzy 

rule-based system similar to that adopted in the solution of 

classical control problems, and the huge expansion in the 

fuzzy rule-based system when better precision is needed. The 

first of these two problems is due to differences in strategies 

adopted by different researchers in the field. The second 

problem arises when the number of input variables and their 

fuzzy values are increased, e.g., when using four input 

variables each mapped by seven fuzzy values then 2401 

if–then rules are required to completely define the rule-base 

of the inference system. 

In this paper a new approach to the design of a simple fuzzy 

navigation system is described. The suggested system has the 

advantage of greatly reducing the number of if-then rules by 

inferring the reflexive conclusions from each input to the 

system, rather than putting all the possible states of all the 

inputs to infer a single conclusion. 

II. NAVIGATION SYSTEM STRUCTURE AND 

METHODOLOGY 

The navigation methodology proposed in this paper utilizes 

human experience to generate the reaction of the mobile robot 

towards the surrounding through fuzzy reasoning. The main 

objective of the proposed method is to reduce the size of the 

fuzzy inference system without affecting the efficiency and 

performance of the navigation system when compared to 

other classical implementations of reactive fuzzy navigators 

[5-8, 26-27]. 

Before introducing the structure of the proposed fuzzy 

system, a brief clarification to the understanding of the 

authors to the navigation problem is given. Autonomous 

mobile robots at least need to achieve a simple goal of 

traveling safely and purposefully from one location to another 

in an environment that is unstructured and subjected to 

unpredictable changes. Like human beings, AMR should be 

self-reactive in the real world through decisions produced by 

a real-time navigation system. The reactions to the perceived 

surrounding can be inferred from either reflexive behavior or 

logical behavior. Reflexive behavior is activated only when a 

sudden and unpredictable change in the surrounding occurs, 

such as an unpredictable movement of a non-static object or 

the unexpected appearance of a static obstacle. It is hard to 

state that decisions taken under reflexive behavior are to be 

taken without any conscious analysis of the environmental 

situation [11], but it can be argued that decisions under severe 

conditions could result in unwise reactions because of the lack 

of capability in producing adequate solution. 

The other type of behavior associated with intelligent 

systems is the logical behavior. When fully conscious 

attention is paid to the environment, this behavior is 

responsible for generating decisions that result in robust 

real-time reactions towards the foreseen surrounding. It 

should be noted that although the decisions and their 

associated actions are near optimal, at the time scale of the 

environment, but they are in the general case obtained from 

partial and rough awareness of the environment. Therefore, it 

is more reliable to incorporate fuzzy logic to model or 

describe the foreseen surrounding in order to obtain 

instinctive decisions. 

Various algorithms have been proposed to attack the 

problem of generating collision free trajectories for a mobile 

robot by utilizing the theory of fuzzy sets. Researchers in the 

field agree that the robot navigation problem is decomposed 

mainly into goal reaching and/or obstacle avoidance problems. 

For each problem there are a number of possible situations 

that can be faced and must be solved to obtain a non-strict 

optimal trajectory for the robot. 

In the proposed approach, the robot is required to behave in 

a similar manner to that of an expert human driving his/her car. 

In general, humans don’t construct in their minds a full fuzzy 

model that contains all the possibilities of the If-Then rules, 

but instead, they give weighting factors to separate decisions 

made based on information from the different senses. With 

this point of view in mind, it is believed that a simpler fuzzy 

system can be made by considering the navigation system to 

be made up from simple fuzzy systems, each responsible for 

an independent decision corresponding to a single sensor. 

These decisions are then combined, with the same level of 

simplicity, to obtain a final conclusion. Accordingly, the 

structure of the proposed system is shown in Figure 1. As it 

can be seen in figure 1, the multi-input system is decomposed 

into four input variables, which are required to provide the 

necessary information for the navigation system to safely 

drive the mobile robot through an unknown and unstructured 

environment to reach the desired target. These inputs are: 

distances df, dr, and dl, measured by three ultrasonic sensors. 

These distances are the distances between the robot and any 

possible obstacle with respect to the local front, right, and left 

directions of the robot, respectively. The forth input is the 

distance directed towards a virtual direction between the 

robot and the target, dt. The idea of using a virtual target 

orientation instead of the real orientation comes from a 

realistic representation to the behavior of expert driver, where 

it is impossible for a driver to abandon his attention to the 

frontal sight when leaving a one-sided blocked target behind 

him and concentrates on the real target orientation. Under this 

situation the driver put some concentration towards a virtual 

orientation at the same side of the target, which should not 

exceed a certain limit in the range of the frontal sight. The 

outputs of the system are the steering angle () and the speed 

of the robot (f). The structure of the five fuzzy system blocks 

that are connected to the inputs are SISO systems. The main 

function of these subsystems is to generate weighting factors 

(i) that represent the degree of obstacle avoidance at the 

corresponding side of the robot. Only five if-then rules are 

needed to define the fuzzy algorithm of the inference engine 

for each subsystem (see Table 1). The Center of Area method 

is then used to obtain the crisp value for each weighting factor. 

The four input variables are represented by five fuzzy values 

with the corresponding membership functions shown in 

Figure 3. 
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Fig- 1: Structure of the Proposed Controller 

 
Fig-2: Simple SISO Fuzzy System 

 

Table 1: Distance-Weighting Factors Inference Rule-Base 

If di is VL Then i is 1.0 

If di is L Then i is 0.75 

If di is M Then i is 0.50 

If di is S Then i is 0.25 

If di is VS Then i is 0.00 
 

The second stage of the fuzzy steering angle controller is a 

simple defuzzifier, which receives the four weighting factors 

coming from the previous fuzzy subsystems, and treats these 

factors as the degree of fulfillment for the corresponding 

fuzzy values of the steering angle of the robot. The Center of 

Area method is also used in this block to obtain the final crisp 

value for the steering angle of the robot. The membership 

functions for the fuzzy values of the output variable  are 

shown in Figure 5. Only three of the fuzzy values are shown in 

Figure 5 that represent the turning angle to the left, center, and 

right respectively. The fuzzy set that represent steering angle 

towards virtual target orientation is similar to the fixed sets, 

and it is not shown here because it is designed to be floating 

one and its center moves in the range [-30, 30].  

 
Fig-3: Fuzzy Set Definition for the Input Distance Variables. 

 
Fig. 4: Output Fuzzy Singletons for the Weighting Factors 

 
Fig. 5: Fuzzy Set Definition for the Output Variable 

 

Once the final value for the steering angle  is obtained, the 

calculation of the speed can be computed by the second stage 

of the system, the right block in Figure 1. This fuzzy 

controller is also decomposed into simple SISO fuzzy 

controller of a similar structure as shown in Figure 2. The 

input to the first fuzzy subsystem of this stage is the absolute 

value of the steering angle |where the membership 

functions that represent this input variable are shown in 

Figure 6. It should be clarified that variable  is at the same 

time an output variable obtained from the previous stage and 

it is an input to the final stage. The fuzzy sets for the output 

variable the translation velocity  are shown in Figure 7, 

where its represented in normalized values between [0, 1], so 

that any scaling value to this value may be used to suit any 

prototype, without changing the definition of the fuzzy sets. 

The if-then rules used to define fuzzy algorithm of the 

inference engine of this stage are listed in Table 2. 

 
Fig-6: Fuzzy Set Definition for the Second Stage Input     

Variable | 

 
Fig-7: Fuzzy Sets Definition for the Second Stage Output 

Variable 



 

Decomposed Fuzzy Controller for Reactive Mobile Robot Navigation 

143 

 

Table 2: |- Inference Rule-Base 

If | is VB Then  is VS 

If | is B Then  is S 

If | is M Then  is M 

If | is S Then  is H 

If | is VS Then  is VH 
 

The second element of the speed controller receives the 

actual distance between the robot and the target, which is 

represented by a single fuzzy set as shown in Figure 8. The 

function of this subsystem is to generate a weighting factor 

that controls the translation speed of the robot when reaching 

the target, where the behavior of this element is also based on 

the fuzzy set theory and it can be stated that is similar to 

Larson product implication operator. 

 
Fig. 8: Fuzzy Set Definition for the Target Distance 

Variable 

III. SIMULATION RESULTS 

In order to confirm the efficiency of the proposed method, a 

simulation program with a graphical user interface has been 

developed. The robot is depicted in the simulation as a circle 

to resemble a prototype mobile robot that the authors have 

designed and constructed for experimental purposes. It is 

noted here, that errors due to wheel slippage and other motion 

errors were not considered in the simulation. For distance 

measurements four ultrasonic sensors were used with the real 

robot, each modeled by a number of rays within a sector 

region of a wide beam-angle. The distance measured by each 

sensor is considered to be equal to the minimum distance 

obtained within the sector of each sensor while taking into 

consideration the minimum reliable distance that can be 

measured by actual ultrasonic sensors. A total of ten different 

simulation cases are presented in this section to analyze the 

reaction behaviors of a mobile robot in avoiding a variety of 

unknown static obstacles placed randomly in a portion of an 

unknown environment. In all these cases the robot is assumed 

to be initially moving with full speed and its relative steering 

angle is assumed to be zero. The analysis of the reaction 

behaviors of the robot is based on observing the instantaneous 

variation of the four weighting factors and their influence on 

both the steering angle and speed. 

 

 

 

 
Fig-9: a): Robot Trajectory; b) Variation of weighting 

factors; c) Variation of steering angle; d) Variation of speed  

with time for case 1. 
 

In the first case, Figure 9, the robot is initially oriented in an 

opposite direction to the target. In this case no obstacle is 

sensed by any of the four sensors, hence, the values of the four 

weighting factors are all equal to 1 (see Figures 11b. 

Consequently, the robot will be in the free-heading mode. The 

immediate reaction of the robot will be biased to turn towards 

the side at which the target sensor is located at that instant; 

since the Turn to Left and Turn to Right sets are equally 

scaled. The variation of the steering angle and its influence on 

speed are Figure 11c and 11d. The value of the steering angle 

depends on the location of the center of the Turn to Target set, 

which is allowed to move in the range [-30, 30] depending on 

which side the target is at that instant. 
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Fig-10: a): Robot Trajectory; b) Variation of weighting 

factors; c) Variation of steering angle; d) Variation of speed  

with time for case 2. 
 

In the second case, Figure 10, the robot can be assumed as 

passing through an empty tunnel where the only present 

obstacles are the parallel bounding walls of the tunnel. The 

response of the robot towards these two lines will be 

influenced by the instantaneous variation of all the weighting 

factors as shown in Figures 12b.  At the first instant the level 

of cautions towards the obstacles at both sides are equal, 

while both the weighting factor resulted from the front and 

target sensors indicate that there are no obstacles in either 

direction, thus the robot will turn towards the target.  As the 

robot proceeds in moving towards the target the steering angle 

will be gradually reduced because of the continuing increase 

in the difference between the right and left weighting factors 

and the fall of both front and target weighting factors. Once 

the robot becomes close to the left obstacle, the right 

weighting factor will rebalance the left and target weighting 

factors. Thus, the robot will slightly turn to the right until it 

aligns itself to move later in parallel with the left obstacle. 

When reaching the end of the tunnel, the target-weighting 

factor will rapidly increase to 1. Hence, the robot will 

noticeably reduce its speed for a short while until it is 

completely turned in the direction of the target.  

 

 

 

 
Fig-11:  a): Robot Trajectory; b) Variation of weighting 

factors; c) Variation of steering angle; d) Variation of speed  

with time for case 3. 
 

In the third case, Figure 11, the robot is assumed to be 

initially heading towards the target with full speed. A simple 

obstacle appears not far from the initial location of the robot. 

The obstacle totally blocks the robot from the right direction 

and it is slightly extended over the line that connects the 

locations of the robot and the target. As can be seen in Figures 

13b the first apprehension is from both the front and target 

sensors through the decreasing values of their corresponding 

weighting factors. However, the robot does not respond 

immediately since both the right and left weighting factors 

have the same values. This is due to the lag in detecting the 

total obstruction by the right sensor. The reason for this lag is 

due to the location of side sensors and their orientation. This 

issue is outside the scope of this paper and is part of ongoing 
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research by the authors. After moving a few steps ahead, the 

right sensor detects the presence of the obstacle, and the robot 

immediately reacts by turning gradually to the left while 

reducing its speed due to the dominance of the left weighting 

factor. Once the robot passes the obstacle both the front and 

the target weighting factors increase sharply.  The right 

weighting factor follows and rises sharply to indicate the 

absence of any obstacle in all directions. Reacting 

immediately to this situation, the robot reduces its speed and 

turns to the right side to align itself again with the target 

direction. 

 
(a) 

 

 

 

 
Fig-12 : a): Robot Trajectory; b) Variation of weighting 

factors; c) Variation of steering angle; d) Variation of speed  

with time for case 4. 

Figure 12 shows the behavior of the robot when moving 

towards a target that is located to the right side of the robot. 

The present environment consists of two obstacles one at the 

right side of the robot obscures it from turning immediately 

towards the target, while the second one prevents the robot 

from going in straight line direction. At the first stage the 

robot will be slightly attracted towards right direction, in spite 

of the obscuration at that side, due to the overwhelming 

balance of both the right and target weighting factors against 

the left one. As the robot get closer to the second obstacle the 

front, the right and the target weighting factors will be 

dropped to a low level thus engulfing the domination of the 

turn to left behavior. Therefore, the robot will turn quickly 

away from the target to the left side to escape from this trap 

until it passes over the vertical obstacle, at which it will 

appreciably reorient itself towards the target again because of 

the target attraction. As the robot is totally aligned with the 

target, a small sharp falling in the right weighting factor is 

resulted due to the short distance between the robot and the 

vertical obstacle, but it want greatly affects the turning to 

target behavior of the robot. 

Figures 13 and 14 present two similar obstacle 

arrangements. In Figure 13 the vertical obstacle is made 

wider, while in Figure 14 the obstacle is replaced by a circular 

one.  The attitude of the robot towards the obstacle in Figure 

13 is almost similar to that of Figure 12 except that the robot 

keeps on turning away from the target while it is passing 

around the obstacle. This is due to the repulsion effects of the 

obstacle. Also, the sharp falling of the left weighting factor 

noticeably reduces the steering angle and hence the turning to 

target behavior. 

 
(a) 
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Fig-13 : a): Robot Trajectory; b) Variation of weighting 

factors; c) Variation of steering angle; d) Variation of speed  

with time for case 5. 
 

The case presented in Figure 14 may seem for the first 

instance as if the robot will behave in a similar manner as in 

the previous two cases. In fact it is a real challenging problem 

for any fuzzy navigation system. The behavior of the robot at 

the first stage when it is approaching the circular obstacle 

almost follows the same trend as that of the previous case. 

 

 

 

 

 
Fig-14 : a): Robot Trajectory; b) Variation of weighting 

factors; c) Variation of steering angle; d) Variation of speed  

with time for case 6. 
 

The next two cases show the reaction of the robot due to the 

presence awkward obstacles that can lead to total 

malfunctioning of the fuzzy navigator because of their total 

obstruction to the robot. In fact such types of obstacles are 

classified as traps. It is noted that trap situations in having 

normal reactive fuzzy navigators to fail to provide a solution 

under. This is due to the limited information perceived by the 

robot and the disability in memorizing previous states. 

Normally, a reactive fuzzy navigator requires assistance to 

provide the robot with the capability to escape from trap 

situations. This could be achieved by adding some additional 

rules based on certain heuristics or a special system dedicated 

to detect traps and supervise the reactive fuzzy navigator 

system. In this study a single heuristic rule have been added to 

the second stage of the fuzzy steering angle controller, which 

is only activated when all the weighting factors get to be VL, 

and its inferred decision is to turn the robot 90 to the left (or 

right) direction. This additional rule helps only in escaping 

from simple traps, and the problem of escaping from any trap 

situation needs a special treatment that will be presented in a 

future study. 

   Accordingly, the eighth case presented here, Figure 15, 

tests the reaction of the robot when trapped by a wide obstacle 

while the target lies along the robot heading direction. In this 

situation the effects of both the right and the left weighting 

factors will cancel each other, and the robot will continue 

moving along its initial heading direction. As the robot gets 

very close to the obstacle all the weighting factors fall to zero. 

Hence, the assisting rule will be activated and the robot will 

turn to the left by 90. Immediately after activating the rule, 

the left weighting factor rises to 1, while the other factors 

remain zero for a short while. This results in getting the robot 

to turn to the left until it is away from the obstacle by a safe 

distance. The effect of the target weighting factor rebalances 

the turn to the left behavior. Once the critical situation is 

overcome, the robot behaves in a similar manner to the case of 

Figure 12. 

 
(a) 
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Fig-15 : a): Robot Trajectory; b) Variation of weighting 

factors; c) Variation of steering angle; d) Variation of speed  

with time for case 7. 

 
(a) 

 

 

 
Fig-16 : a): Robot Trajectory; b) Variation of weighting 

factors; c) Variation of steering angle; d) Variation of speed  

with time for case 8. 
 

The behavior of the robot in Figure 16 will be almost the 

same as that of the previous case during the period when the 

robot is heading towards the target. Similar action by turning 

to the left side will be taken when the robot faces the vertical 

part of the concave obstacle and this will overwhelm the effect 

of the left weighting factor over the others. Because of the 

concavity of the obstacle the domination of the left weighting 

factor will last until the robot is totally heading away from the 

target. Furthermore, due to the narrowness of this obstacle the 

robot will keep on moving away from the target until it gets 

close to the wide opening, at which time the target attraction 

behavior will be the dominant factor in spite of the 

fluctuations in the right weighting factor. 

Finally, Figures 17 and 180 present two more complicated 

simulation cases to show the performance of the proposed 

reactive fuzzy navigator system towards more realistic 

situations.  

 
Fig-17: Simulated Trajectory of a MR in a maze 1. 

 
Fig-17: Simulated Trajectory of a MR in a maze 2. 
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IV. EXPERIMENTAL PROTOTYPE 

SALIM, Simple Autonomous LIght weight Mobile robot, 

which was constructed at the authors’ universities, has been 

used to conduct practical experiments. SALIM has a 

cylindrical shape with a radius of 30 cm, and travels at a 

maximum speed of 8m/min. The robot has two independent 

wheels, driven by geared PM DC motors, located at the ends 

of an axis near to one of the ends of the circular base, and one 

free caster at the at the other end of the base. Such 

arrangement provides a simple and effective 

differential-velocity steering control by varying the applied 

voltage to the motors.  The motion control of the two PM DC 

motors is accomplished by a simple motion control board 

designed by the authors, which consists a full bridge chopper 

circuit, and PIC16f877A micro-controller. The advantage of 

using this micro-controller is that it accepts velocity 

commands from the onboard computer and to control two DC 

motors independently. 

Three groups of ultrasonic sensors are mounted at the front, 

and at the two ends of the central axis of the robot, where the 

right and the left sensors are directed at 45 from the central 

axis as shown in Figure 19. Target's orientation with respect 

to the center of the robot is obtained by an electronic compass. 

The actual angle between the robot frontal axis and the target 

can be found by simple manipulation to the robot's heading 

angle, which is updated instantaneously by the 

microcontroller, and that measured by the electronic compass. 

According to instantaneous value of this angle another 

ultrasonic sensor is utilized to detect the existence of any 

obstacle in the virtual target direction. This sensor is allowed 

to rotate, using a small stepper motor, in the range (-5 to 5

) with respect to the frontal axis of the robot. The reason in 

mounting the ultrasonic sensors in such arrangement has been 

mentioned previously. The error eliminating rapid ultrasonic 

firing (EERUF) method [32] is used to minimize the error in 

distance measurements due to the noise that affect the 

ultrasonic sensors, and the crosstalk problem was eliminated 

by using alternating delays method. A number of simple 

experimental tests were performed on the mobile robot to test 

the validity of the proposed strategy. Figure 20 provides a 

snapshot of the robot during its navigation in one of the simple 

environments that were investigated. 

 
Fig-19: Schematic of SALIM with sensor locations. 

 
Fig-20: Snapshot of SALIM 

V. CONCLUDING REMARKS 

A simple real-time fuzzy control scheme for mobile robot 

navigation has been presented in this work. The approach is 

based on decomposing multidimensional fuzzy system into a 

set of simple one dimensional fuzzy systems by the inference 

break-up method. This method relies upon finding 

quantifiable means to represents the expert’s experience, and 

determines a mapping from current state of a system to the 

fuzzy measures with which the expert’s knowledge is 

quantified. Therefore, it has the advantage of greatly reducing 

the number of “If-Then” rules when compared with classical 

fuzzy controllers. With slight modification to the decomposed 

multivariable fuzzy controller concept, two interconnected 

fuzzy controllers are designed, in which the concept of using 

weighting factors for the sensor inputs inferring the reflexive 

conclusions from each input rather than having to go through 

a huge list of rules to infer a single conclusion is introduced 

here for the first time. The approach was tested in a number of 

simulated case problems to demonstrate its effectiveness, and 

it was found that the results compromise with reasonable 

satisfaction the obstacle avoidance and target reaching 

requirements. In addition to that the proposed controller 

showed the capability of a mobile robot to escape from simple 

traps. 
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