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Abstract

This paper describes a method for localizing the members of a
mobile robot team, using only the robots themselves as land-
marks. We assume that robots are equipped with sensors that
allow them to measure the relative pose and identity of nearby
robots, as well as sensors that allow them to measure changes
in their own pose. Using a combination of maximum likeli-
hood estimation and numerical optimization, we can, for each
robot, estimate the relative range, bearing and orientation of
every other robot in the team. This paper describes the basic
formalism and presents experimental results to validate the
approach.

Introduction

This papers describes a method for localizing the members
of a mobile robot team, using only the robots themselves
as landmarks. That is, we describe a method whereby each
robot can determine the relative range, bearing and orienta-
tion of every other robot in the team, without the use of GPS,
landmarks, or instrumentation of the environment.

Our approach is motivated by the need to localize robots
in hostile and sometimes dynamic environments. Consider,
for example, a search-and-rescue scenario in which a team
of robots must deploy into a damaged structure, search for
survivors, and guide rescuers to those survivors. In this
scenario, localization information cannot be obtained using
GPS or landmark-based techniques; GPS is generally un-
available or unreliable in urban environments due to multi-
path effects, while landmark-based techniques require prior
models of the environment that are either unavailable, in-
complete or inaccurate. For these reasons, we have devel-
oped an approach to localization that relies on using the
robots themselves as landmarks. With this approach, one
can obtain good localization information in almost any envi-
ronment, including those that are undergoing dynamic struc-
tural changes. Our only requirement is that the robots are
able to maintain at least intermittent line-of-sight contact
with other robots in the team.

We make two basic assumptions. First, we assume that
each robot is equipped with a proprioceptive motion detec-
tor such that it can measure changes in its own pose (sub-
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ject to some degree of uncertainty). Suitable motion de-
tectors can be constructed using either odometry or iner-
tial measurement units. Second, we assume that each robot
is equipped with a robot detector such that it can measure
the relative pose of nearby robots and determine their iden-
tity. Suitable sensors can be readily constructed using either
vision (in combination with color-coded markers) or scan-
ning laser range-finders (in combination with retro-reflective
bar-codes). We further assume that the identity of robots is
always determined correctly (which eliminates what would
otherwise be a combinatoric labeling problem) but that there
is some uncertainty in the relative pose measurements.

Given these assumptions, the team localization problem
can be solved using maximum likelihood estimation. The
basic method is as follows. First, we construct a set of esti-
mates H = {h} in which each element h represents a pose
estimate for a particular robot at a particular time. These
pose estimates are defined with respect to some arbitrary
global coordinate system. Second, we construct a set of ob-
servations O = {o} in which each element o represents a
relative pose measurement made by either a motion or robot
detector. For motion detectors, each observation o represents
the measured change in pose of a single robot; for robot de-
tectors, each observation o represents the measured pose of
one robot relative to another. Finally, we use numerical op-
timization to determine the set of estimates H that is most
likely to give rise to the set of observations O.

In general, we do not expect robots to use the set of pose
estimates H directly; these estimates are defined with re-
spect to an arbitrary coordinate system whose relationship
with the external environment is undefined. Instead, each
robot uses these estimates to compute the pose of every other
robot relative to itself, and uses this ego-centric viewpoint to
coordinate activity. We note, however, that some subset of
the team may choose to remain stationary, thereby ‘anchor-
ing’ the global coordinate system in the real world. In this
case, the pose estimates in H may be used as global coordi-
nates in the standard fashion.

In this paper, we develop the mathematical machinery re-
quired to solve the team localization problem in any number
of dimensions, then treat the more specific problem of local-
ization in a plane. We also describe a series of experiments,
using both real and simulated robots, aimed at verifying both
the accuracy and practicality of this approach.
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Related Work

Localization is an extremely well studied area in mobile
robotics. The vast majority of this research has concentrated
on two problems: localizing a single robot using an a priori
map of the environment (Leonard & Durrant-Whyte 1991;
Simmons & Koenig 1995; Fox, Burgard, & Thrun 1999),
or localizing a single robot whilst simultaneously building
a map (Thrun, Fox, & Burgard 1998; Lu & Milios 1997;
Yamauchi, Shultz, & Adams 1998; Duckett, Marsland, &
Shapiro 2000; Golfarelli, Maio, & Rizzi 1998; Dissanayake
et al. 2001). Recently, some authors have also considered
the related problem of map building with multiple robots
(Thrun 2001). All of these authors make use of statisti-
cal or probabilistic techniques of one sort or another; the
common tools of choice are Kalman filters, maximum like-
lihood estimation, expectation maximization, and Marko-
vian techniques (using grid or sample-based representations
for probability distributions). The team localization prob-
lem described in this paper bears many similarities to the
simultaneous localization and map building problem, and is
amenable to similar mathematical treatments. In this con-
text, the work of Lu and Milios (Lu & Milios 1997) should
be noted. These authors describe a method for construct-
ing globally consistent maps by enforcing pairwise geomet-
ric relationships between individual range scans; relation-
ships are derived either from odometry, or from the com-
parison of range scan pairs. MLE is used to determine the
set of pose estimates that best accounts this set of relation-
ships. Our mathematical formalism is very similar to that
described by these authors, even thought it is directed to-
wards a somewhat different objective; i.e., the localization
of mobile robot teams, rather than the construction of glob-
ally consistent maps.

Among those who have considered the specific problem
of team localization are (Roumeliotis & Bekey 2000) and
(Fox et al. 2000). Roumeliotis and Bekey present an ap-
proach to multi-robot localization in which sensor data from
a heterogeneous collection of robots is combined through a
single Kalman filter to estimate the pose of each robot in the
team. They also show how this centralized Kalman filter can
be broken down into IV separate Kalman filters (one for each
robot) to allow for distributed processing. It should be noted,
however, that this method still relies entirely on external
landmarks; no attempt is made to sense other robots or to use
this information to constrain the pose estimates. In contrast,
Fox et a. describe an approach to multi-robot localization
in which each robot maintains a probability distribution de-
scribing its own pose (based on odometry and environment
sensing), but is able to refine this distribution through the
observation of other robots. This approach extends earlier
work on single-robot probabilistic localization techniques
(Fox, Burgard, & Thrun 1999). The authors avoid the curse
of dimensionality (for IV robots, one must maintain a 3N di-
mensional distribution) by factoring the distribution into NV
separate components (one for each robot). While this step
makes the algorithm tractable, it does result in some loss of
expressiveness; one cannot, for example, express relation-
ships of the form: “if I am at A then you must be at C, but
if | am at B you must be at D”. Our approach is able pre-
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Figure 1. Illustration of the basic formalism. The figure
shows two robots, r; and rq, traveling from left to right;
at time ¢o, robot ry observes robot r5. The nodes represent
pose estimates; the arcs represent observations. Two obser-
vations are highlighted: a motion observation for robot rq,
and robot observation at time ¢,.

serve such relationships by treating the localization problem
in its full 3N dimensional form. This is feasible only be-
cause MLE is a single estimate approach; i.e., there is no
attempt to maintain a complete probability distribution.

Finally, a number of authors (Kurazume & Hirose 2000;
Rekleitis, Dudek, & Milios 1997; Howard & Kitchen 1999)
have considered the problem of team localization from a
somewhat different perspective. These authors describe co-
operative approaches to localization, in which team mem-
bers actively coordinate their activities in order to reduce
cumulative odometric errors. The basic method is to keep
one subset of the robots stationary, while the other robots are
in motion; the stationary robots observe the robots in motion
(or vice-versa), thereby providing more accurate pose esti-
mates than can be obtained using odometry alone. While our
approach does not require such explicit cooperation on the
part of robots, the accuracy of localization can certainly be
improved by the adoption of such strategies; we will return
to this topic briefly in the final sections of this paper.

Formalism

We formulate the team localization problem as follows. Let
h denote the pose estimate for a particular robot at a partic-
ular time, and let H = {h} be the set of all such estimates.
Similarly, let o denote an observation made by some detec-
tor, and let O = {o} be the set of all such observations. Our
aim is to determine the set of estimates H that maximizes
the probability of obtaining the set of observations O; i.e.,
we seek to maximize the conditional probability P(O | H).
If we assume that observations are statistically independent,
we can write this probability as:

PO |H)= ][] P(o| H) @)
o€

where P(o | H) is the probability of obtaining the individual
measurement o, given the estimates H. Taking the log of



Institute for Robotics and Intelligent Systems Technical Report, |RIS-01-407, USC, 2001 3

both sides, we can rewrite this equation as:

U(O|H)=) Uo|H) @)

0€0

where U(O | H) = —logP(O | H)and U(o | H) =
—log P(o | H). This latter form is somewhat more efficient
for numerical optimization. Our aim is now to find the set of
estimates H that minimizes U (O | H). To do this, we must
determine the form of the individual observation probabili-
ties P(o | H), or their log-probability equivalents U (o | H).

We make the following definitions. Let each estimate A
be denote by a tuple of the form:

h = (g;r,1t) @)

where ¢ is the absolute pose estimate for robot r at time ¢.
Note that it is the value of ¢ that we are trying to estimate;
r and t are constants used for book-keeping purposes only.
Let each observation o be denoted by a tuple of the form:

o= (NaEQTa,taSTbatb) (4)

where 4 is the measured pose of robot r, at time ¢, rela-
tive to robot r, at time ¢, ; henceforth, we will refer to p as
a relative pose measurement. The X term is a covariance
matrix representing the uncertainty in this measurement. As
stated in the Introduction, each robot is equipped with two
different detectors: a proprioceptive motion detector, which
allows the robot to measure changes in its own pose, and
a robot detector, which allows it to measure the identity and
relative pose of other robots. Data from the motion detectors
are encoded using an observation of the form:

0= (Naz;raataa'raatb) )

where p is the measured change in pose for robot r, between
times ¢, and ¢,. Data from the robot detectors is encoded
using an observation of the form:

0= (N:EQTmta,"’bata) (6)

where g is the measured pose of robot 7, relative to robot
rq, fOr a measurement taken at time ¢,.

If we assume that the measurement uncertainty for all de-
tectors follows a normal distribution, the conditional log-
probability U (o | H) is given by the quadratic expression:

Ulo | H) = 3~ i)"S(u — ) @)

where p is the relative pose measurement defined above, and
i1 is the corresponding relative pose estimate; i.e. g is the
estimated pose of robot r;, at time ¢, relative to robot r, at
time t,. Let §, and §, describe the absolute pose estimates
for robot r, at time ¢,, and robot r; at time ¢;, respectively.
The relative pose estimate i is derived from these absolute
pose estimates via a simple coordinate transformation T":

ﬂ = F(da; (jb) (8)

The specific form of I" depends on the dimensionality of the
localization problem (e.g. 2D versus 3D) and on the par-
ticular representation chosen for both absolute and relative

poses (e.g. Cartesian versus polar coordinates, or cylindrical
versus spherical coordinates).

One can visualize this formalism in terms of a directed
graph, as shown in Figure 1. We associate each estimate A
with a node in the graph, and each observation o with an
arc. Each node may have both outgoing arcs, correspond-
ing to observations in which this node was the observer,
and incoming arcs, corresponding to observations in which
this node was the observee. Motion observations join nodes
representing the same robot at two different points in time,
while robot observations join nodes representing two differ-
ent robots at the same point in time, as indicated in the fig-
ure.

Numerical Optimization

Given Equations 2 and 7, together with an appropriate defi-
nition for T', one can determine the set of poses ¢ that mini-
mizes U (O | H) using a standard numerical optimization al-
gorithm. The selection of an appropriate algorithm is driven
largely by the form of T': in general, T" is non-linear but dif-
ferentiable, which rules out fast linear algorithms, but per-
mits non-linear gradient-based algorithms (such as steepest
descent). The gradient is computed by applying the chain-
rule to Equation 2:
0 of

0
%U(O|H)—O€O%a—ﬂU(0|H) )

where the second term (a gradient vector) is computed triv-
ially from Equation 7:

5rU(0] ) = =S~ i) (10)

and the first term (a Jacobian matrix) is computed by differ-
entiating through the T function (whatever it may be):

@_{ Op/dg, ifr=rqandt=t,

ah 6[2/6(}() ifr = Tp andt = ty (11)

0 otherwise

This latter equation requires some explanation. Consider
once again the directed-graph interpretation of the formal-
ism depicted in Figure 1. Each estimate A is represented by
a single node, and each observation o is represented by an
arc joining two nodes. The relative pose estimate ji mea-
sures the pose of one of these nodes relative to the other. In
computing the derivative 9/ 0h for some particular obser-
vation, there are three cases to consider: A is the robot mak-
ing the observation, in which case we compute the derivative
with respect to q,; h is the robot being observed, in which
case we compute the derivative with respect to gp; or else
h is neither the observer nor the observee in this particular
observation, in which case the derivative must be zero.

We use a conjugate gradient algorithm (Press et al. 1999)
for optimization. This algorithm is somewhat more complex
than a steepest descent algorithm, but has the advantage of
being much quicker. In addition, unlike some algorithms,
its memory requirements scale linearly, rather than quadrat-
ically, with the number of variables being optimized.
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Figure 3: Sample probability distributions for for the planar localization problem. The plots show the probability P(o | H) as a
function of the estimated absolute position (¢, g, ) for the robot being observed. Orientation is not shown. (a) The range is well
determined (u, = 1 & 0.1 m), but the bearing is unknown. (b) The bearing is moderately well determined (uy = 45 & 57°),
but the range in unknown. (c) Both range and bearing are well determined (u, = 14+ 0.1 m, pugy = 45 £ 57°).

1

Figure 2: Example of a relative pose measurement for the
planar localization problem. Robot r; measures the range
r, bearing ue and orientation p.; of robot ro.

Localization in a Plane

The formalism described above is quite general, and can be
applied to localization problems in two, three, or more di-
mensions. In order to make the formalism somewhat more
concrete, and to lay the theoretical foundations for the ex-
periments described in the next section, we now consider
the specific problem of localization in a plane.

We make the following definitions. Let the absolute pose
estimate ¢ be a 3-vector such that:

qA = [CIz;‘Iy:CIG]T (12)

where g, and g, describe the robot’s position and g, de-
scribes its orientation. Let the relative pose measurement
1 be a 3-vector such that:

1= [ g o] (13)

where ., g and u,, are the range, bearing and orientation
of one robot relative to another (or of one robot relative to its
earlier pose). Figure 2 illustrates this definition. We choose
to express measurements in this particular form, since, for
many sensors, the uncertainty in range, bearing and orien-
tation components is effectively uncorrelated. Thus, we can

ignore the off-diagonal terms in the uncertainty matrix X,
and write:
1/02 0 0
Y= 0 1 /Ui 0
2
0 0 1/oy

Figure 3 shows some of the probability distributions that can
be generated using this parameterization. The corresponding
coordinate transform function I'(§,, g») computes the range,
bearing and orientation of ¢, relative to ¢,. Using elemen-
tary geometry, we write down the following expression for
the relative pose estimate i

(14)

P

\/(qAbAz - chiw)z +A(‘jby - qAay)2 .
arctan[(Gey — qay)/(gbz = Gaz)] — Gas
qve — qab

for which the corresponding derivatives are:

6ﬂ 51:%/6!2% 6[}¢/8(2az 6/2/111/6‘20.:0
a6 = 8!}7‘/6‘{% 6/f¢/6qay 8lf¢/a‘{ay
Ga Ofir/OGas  Ofis/OGas  Ofiyy/Odas

_(q:bz - Q:az)/l:“ +(q:by - qay)/l}g 0

= —(Gby — Gay)/r  —(@bz — Gaz)/fiy O

0 -1 -1
and

op [ /O o/ Do
56 = | OBr/O%wy Ohg[0by Ofiy/Odsy
o 5#r/ Odve 5’H¢/ 0o 6H¢/ 0o

—(Gby = Gay) /01, O
+((jbz - (jaz)/ﬂ% 0
0 +1

Note that 01/9q, # —0[i/Ods as one might naively expect.
Note also that the derivatives contain a singularity at s = 0;
one must take care to avoid this singularity in the numerical
optimization process.

Inserting these definitions into the general formalism de-
scribed in the previous section, one can solve the planar lo-
calization problem in a fairly straight-forward manner.

+(db$ - daw)/ﬂr
+(qby _OCIay)/,U'r
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Figure 4: An experiment with simulated robots. (a) Experimental set-up: 20 robots are placed into a single room and allowed
to disperse. (b) Combined laser scans at ¢ = 0 sec, before any of the robots has moved. Note that this is not a stored map: this
is live laser data. Pose estimates and observations are also shown, denoted by rectangles and lines respectively. (c) Combined
laser scans at ¢ = 300 sec, after all of the robots have dispersed.

Experiments

We have conducted a series of experiments aimed at deter-
mining both the accuracy and practicality of the approach
described in this paper. Two such experiments are presented
here. The first experiment was conducted in simulation, us-
ing a team of 20 robots performing a deployment task. The
second experiment was conducted using a team of 7 real
robots performing a simple navigation task. The first of
these experiments was chosen to verify that the approach
will work for relatively large teams; the second was chosen
to verify that the approach will work with real sensor data.

For both experiments, we determine the accuracy of the
solution by comparing a subset of relative pose estimates
with their corresponding ‘true’ values. \We measure accu-
racy using relative rather than absolute pose estimates, since
the absolute pose estimates are defined with respect to an
arbitrary coordinate system, and hence cannot be meaning-
fully compared with a ‘true’ value. We define the average
range error e, as follows:

2 1 ~ = \2
&= NV =1) > (e — i) (15)
ho €H' hy€H'
where & is the true relative pose, i.e. the true pose of robot
T at time ¢, relative to robot r, at time ¢,. The summation
is over the subset of H' of H for which we have the true
values, and the result is normalized by the number of pose
estimates V in H' to generate an average result. One can
define similar measures for the bearing error €., and orienta-
tion error €.
For practical purposes, it is necessary to limit both the
number of pose estimates in H and the number of obser-

Range error e,

Error (m)

. . . . .
0 50 100 150 200 250 300
Time (sec)

Figure 6: Results for the experiment with simulated robots.
Plot of the average range error €, over the duration of the
experiment; the bars denote the standard deviation in €.

vations in O. For these experiments, this was done by
integrating motion observations over a 10 second period,
and discarding most of the robot observations. Thus, in
these experiments, H describes the pose of robots at t =
(0,10, 20, ...) sec, and O includes only those observations
that occurred at these times.

Experiment with Simulated Robots

The simulated experiment was conducted using the Stage
(Vaughan 2000) multi-agent simulator. Stage is a high-
fidelity simulation capable of accurately mimicking the be-
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Figure 5: An experiment with real robots. (a) Experimental set-up: six stationary robots (r; to rg) are placed at at strategic
locations; the seventh mobile robot (rg) executes a circuit. (b) Combined laser scans at ¢ = 200 sec, after the mobile robot has
been seen by all six stationary robots exactly once. Note that this is not a stored map: this is live laser data. Pose estimates and
observations are also shown, denoted by rectangles and lines respectively. (c) Combined laser scans at ¢ = 220 sec, after the
mobile robot has been seen by the first stationary robot r; for a second time, thus closing the loop.

havior of many real robot sensors and actuators. For this ex-
periment, we used a team of 20 robots, each equipped with
odometry, a scanning laser range-finder and a retro-reflective
bar-code. The simulated odometry provides motion observa-
tions and the laser range-finder/bar-code combination pro-
vides robot observations. For added realism, Gaussian noise
was added to all measurement (proportional noise of 5% for
the range component and a constant 2° noise for the bearing
and orientation components). All 20 robots were initially
positioned in single room in large environment, as shown
in Figure 4(a), and subsequently allowed to disperse using
the distributed deployment algorithm described in (Howard,
Matari€, & Sukhatme 2002).

The quantitative results for this experiment are summa-
rized in Figure 6, which plots both the average range error
€, and its variance as a function of time. Note that the initial
error is very low, at around 0.05 & 0.03 m, but steadily in-
creases over time to around 0.10 + 0.20 m. This behavior is
not surprising, given the way in which the robots disperse.
At ¢t = 0 sec, all of the robots are crowded into a single
room, and many robot observations are generated. One can
get a sense for the density of these observations by inspect-
ing Figure 4(b), which shows a plot of both pose estimates
and observations, with live laser scan data overlaid. The
density of observations is such that the pose of robots is very
heavily constrained, and the localization algorithm is able
to generate a very accurate set of estimates. As the robots

disperse, however, errors begin to accumulate, and the ac-
curacy of the estimates declines; the variance also increases
dramatically. Again, this is not surprising. Any given pair
of robots will always be connected by a series of motion and
robot observations, and the cumulative uncertainty in these
observations is such that the relative pose error for widely
separated robots is necessarily greater than that for nearby
robots (at least in absolute terms). We note that for most
practical applications, knowing the pose of distant robots is
much less important than knowing the pose of nearby robots
(with whom we are much more likely to interact).

This experiment clearly demonstrates our ability to handle
a relatively large robot team and to generate suitably accu-
rate results. At the termination of the experiment, the H and
O had 620 and 3058 elements respectively, yet these results
were generated in real-time using a standard workstation.

Experiment with Real Robots

The real experiment was conducted using a team of 7 Pi-
oneer 2DX mobile robots, each of which is equipped with
a SICK LMS 200 scanning laser range-finder and a retro-
reflective bar-code. Motion observations are provided by the
robot’s on-board odometry; robot observations are provided
by the laser range-finder/bar-code combination. For this ex-
periment, 6 of the 7 robots were positioned at fixed locations
in the corridors of a building, as shown in Figure 5(a); the
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Figure 7: Results for the experiment with real robots. Plot
of the average range error €, over the duration of the exper-
iment; the bars denote the standard deviation in ¢,..

remaining robot was then ‘joy-sticked’ around the circuit,
and was thus ‘seen’ by each of the stationary robots in turn.
Note that the stationary robots were positioned outside each
other’s sensor range, and hence there are no observations
that relate the stationary robots directly.

Since these experiments were performed in an un-
instrumented environment, ground truth information was
obtained by measuring the inter-robot distances between the
fixed robots (using a tape-measure). Bearings and orienta-
tions were not measured. Our error calculations therefore
include only these known values.

The quantitative results for this experiment are shown in
Figure 7, which shows a plot of the error ¢, as a function
of time for this experiment. Also marked on this plot are
the times at which each of the stationary robots r; to rg ob-
served the mobile robot ry. The most striking feature of this
plot is the way in which the error drops immediately after
each robot observation. This is to be expected, given that
the pose of the stationary robots can only be determined af-
ter they have seen the mobile robot at least once. Figure
5(b) shows a plot of the pose estimates, observations, and
laser scan data at time ¢ = 200 sec. At this point, the mobile
robot has been seen by each of the stationary robots exactly
once. However, due to the cumulative error in this robot’s
motion observations, the overall error of the pose estimates
remains relatively high. Figure 5(c) shows the same plot at
t = 230 sec, after the mobile robot has ‘closed the loop’ by
revisiting the first stationary robot. At this point, the error
drops dramatically, reaching a final value of 0.08 £+ 0.09 m.
This figure is quite remarkable when one considers that the
loop traversed by the mobile robot is about 80m in length.

While these results serve to verify the accuracy of our ap-
proach when applied to real data, they also suggest that, for
some applications, and in some environments, good local-
ization can only be achieved through deliberate action on
the part of team members (looking for other robots, closing
loops, and so on). This raises an interesting set of issues that
are, unfortunately, beyond the scope of this paper.

Conclusion and Future Work

The experiments described in the previous section suffice to
demonstrate the MLE approach to team localization, and to
verify its accuracy in both simulated and real experimen-
tal contexts. There are, however, some aspects of this ap-
proach that require further experimental investigation. Fore-
most among these is the impact of local minima, which nec-
essarily plague any non-trivial numerical optimization prob-
lem. While the solutions found in the previous section are
entirely satisfactory, more experiments need to be done to
characterize the overall sensitivity of the approach.

In this paper, we have intentionally omitted many details
regarding the practical implementation of the formalism. We
note that while it fairly easy to construct a batch-processing
algorithm for use off-line, the construction an any-time al-
gorithm suitable for use on-line or “in-the-loop’ is somewhat
more involved (and requires some extensions to the formal-
ism). We expect to present details of such an algorithm in
the near future.

The mathematical formalism presented in this paper can
also be extended and developed in a humber of interesting
directions. We can, for example, define a covariance ma-
trix that measures the relative uncertainty in the pose esti-
mates for pairs of robots. This matrix can then be used as a
signal to actively control the behavior of robots. If, for ex-
ample, two robots need to cooperate, but their relative pose
is not well know, they can undertake actions (such seeking
out other robots) that will reduce this uncertainty. We are
also working on a distributed version of the formalism that
will allow a team of robots to collectively localize them-
selves without the need for any form of centralized com-
putation. We believe that this distributed formalism can be
implemented using a constant-time, constant-bandwidth al-
gorithm, and will therefore scale to teams of any size.
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