Separate Abstract Interpretation
for Control-Flow Analysis

Yan Mei Tang and Pierre Jouvelot

CRI, Ecole des Mines de Paris, France

Abstract. Effect systems and abstract interpretation are two methods
to perform static analysis of programs. We present a new technique that
builds upon the type and effect information of module signatures to
extend abstract interpretation in the context of separate compilation.
We use control-flow analysis as an application of this idea to support our
claim.

Control-flow analysis strives to determine at compile time which func-
tions, in a given call environment, may be called by a particular ap-
plication expression. This static control-flow analysis can be expressed
using either a type and effect system or abstract interpretation. The type
and effect approach supports separate compilation but, being structural,
collapses all call environments together, thus limiting the precision of
control-flow information. By contrast, the abstract interpretation ap-
proach fails to support separate compilation but, because of its more
operational nature, can distinguish between call environments, thus per-
forming a more precise analysis.

We present a new static control-flow analysis that combines both tech-
niques in a single framework. This separate abstract interpretation is as
effective as the abstract interpretation approach on closed expressions,
but is also able to tackle expressions with free variables, using their
types to approximate their abstract values. We prove that this separate
abstract interpretation analysis is a conservative extension of abstract
interpretation.

1 Introduction

Effect systems [3, 4, 7, 8] and abstract interpretation [2, 6] are two methods
for performing static analysis of programs. Abstract interpretation is based on
the approximation of the fixed point nature of the language dynamic semantics
while effect systems only rely on the local structure of program syntax. If the
abstract interpretation approach performs more precise static analysis due to
its more operational nature, effect systems support separate compilation more
naturally via module signatures. We present a new technique, called separate
abstract interpretation, to extend abstract interpretation in the context of sepa-
rate compilation based on the type and effect information of module signatures.
Types, enriched with effect information, are used to conservatively approximate
abstract values of the free variables of programs, thus enabling abstract interpre-
tation to be performed on non-closed expressions. We use control-flow analysis
as a motivating example of this new idea.

Control-flow analysis strives to determine at compile time control- flow be-
haviors of expressions in given call environments. Its relative precision crucially
depends on the accuracy of the static representation of the dynamic call envi-
ronments. Shivers in [6] introduces the notion of order to indicate the number of
pending calls remembered during the analysis of a given application expression.

Static control-flow analysis can be expressed using either a type and effect
system [8] or an abstract interpretation [6]. The type and effect approach sup-
ports separate compilation but, being syntactic, collapses all call environments
together, thus limiting the precision of control-flow information to Oth order anal-
ysis. By contrast, the abstract interpretation approach fails to support separate
compilation but, because of its more operational nature, can distinguish between
call environments, thus allowing more precise analysis. We present a new static
control-flow analysis that combines both techniques in a single framework. It is
as effective as the abstract interpretation approach on closed expressions, but is
also able to tackle expressions with free variables, using their types to approxi-
mate their abstract values. Types describe the structure of values. In particular,

from the latent definition d of a function type ¢’ 4, t, one can determine the set of
functions this type may correspond to, together with their control-flow behavior.
From such types, one can define conservative approximations of abstract values
which are used to pursue the abstract interpretation. We have proved that this
new static system conservatively extends the abstract interpretation system and
retains all its properties.

In the remainder of the paper, we briefly discuss the related work (Section 2),
give the syntax and semantics of our language (Section 3), recall both the ab-
stract interpretation (Section 4) and the type and effect system (Section 5) for
control-flow analysis, show how these two techniques can be merged together
(Section 6) to perform separate abstract interpretation (Section 7), discuss opti-
mizations for increasing its flexibity and accuracy (Section 8) before concluding
(Section 9). Unless precised otherwise, all proofs are presented in the appendix.

2 Related Work

In Shivers's thesis [6], control-flow analyses of arbitrary order (nCFA, where n is
the order) on programs written in continuation-passing style (CPS) [1] are de-
fined and performed by using an abstract interpretation approach. These control-
flow analyses are able to distinguish different call environments but fail to sup-
port separate compilation, thus limiting their real-world application.

Effect systems extend type systems with effect information. Just as types de-
scribe the possible values of expressions, effects describe their possible evaluation
behaviors. Our previous paper [8] presented a type and control-flow effect sys-
tem where the inferred control-flow effects of expressions describe all control-flow
traces possibly occurring during their evaluation. This analysis supports separate
compilation but collapses call environments together, thus is less precise.

Here, we extend the abstract interpretation approach for 1CFA to support
modularity, i.e. separate compilation, by approximating unknown value environ-

ments of expressions via their type environments. Thus our control-flow analysis
performs 1CFA, and possibly nCFA, even in the presence of separate compila-
tion.

3 Language

3.1 Syntax

A simple functional language suffices to present our ideas, although our analysis
can be easily extended to more complicated languages.

en=x value identifier
(An (%) e) abstraction
(ee

"Y1 application

where function definitions and function calls are tagged with unique labels (1
and n) that allow to uniquely distinguish them. How this labeling is actually
performed is not important, as long as the uniqueness property is preserved.
Note however that these labels will appear in types and, eventually, module type
signatures, so they must be easily understandable by the user. Since abstraction
expressions are uniquely identified by their function label, we sometimes only
use labels where lambda expressions are expected.

n € LFun = Label label of functions
1 € LCall = Label label of function calls

Since Shivers’s abstract interpretation approach uses CPS-transformed pro-
grams, we need to define an extended syntax for CPS programs. The main dif-
ference with the user language is the introduction of binary functions (to deal
with continuation arguments) and the restriction of arguments to self-evaluating
expressions.

an=x value identifier
(An (x k) e) user-defined function
(An (%) e) continuation function
eu=(aa a”’)y] function application
(aa') continuation application

User-defined functions are always binary, while continuation functions are unary.
In the sequel, without loss of generality, we only specify the semantics of unary
functions and calls. By convention, we use k as identifiers of continuation func-
tions.

3.2 Dynamic Semantics

The dynamic semantics not only defines the values of expressions, but also keeps
track of control-flow information during evaluation. We restrict the presentation
of the dynamic semantics to CPS expressions.

Following [6], we use the notion of contours to keep track of scoping infor-
mation. A contour b is a list of labels of function calls describing the current
call path. A contour environment (also called a call environment) § maps any
variable to the call path that precedes its actual value binding. A wvalue v is
either an integer or a closure. A closure cl is composed of a lambda expression
(including the function label, argument name and function body) and contour
environment. A binding environment E is a finite map from pairs of identifiers
and contours to values, recording the bindings of identifiers in a given contour.

b & Contour = LCall” contour

(B € ContourEnv = Id — Contour contour environment
v € Value = Int + Closure value

cl € Closure = Fun * ContourEnv closure

E € Binding = Id * Contour — Value binding environment

The control-flow information records the set of functions called at a given
call environment. It is defined as a set of tuples {(1, 3, s)} where the functions
in s are called at call site 1 and the call environment (3; we write such tuples
{(1,5) ~ s}. In the dynamic semantics, this set is always a singleton. We use
sets to be compatible with the subsequent non-standard semantics, where they
usually have more than one element. The emptyset () indicates the absence of
control-flow information.

¢ € Control = P(LCall * ContourEnv * P(LFun)) control-flow information

The dynamic semantics is specified by a set of inference rules [5]. The usual
value environment is split in Shivers’ approach in two components: a contour
environment # and a binding environment E. The purpose of this uncoupling
is to separate the syntactic component of closures from their semantic aspect.
This is of outmost importance when performing abstract interpretation where
this syntactic component is furthermore restricted to finite expressions.

The inference rule 3, F F a — v associates the argument a in the contour
environment # and global binding environment F with the value v it evaluates
to. In the (var) rule, the value of x is retrieved from the binding environment F
according to the contour where it was bound (recorded by the current contour
environment (). In the (abs) rule, the closure is built with its lambda expression
and current contour environment. Note that we use the function label n instead
of the lambda expression.

(var) : B, E+x — E(x, 3(x))

(abs) : B, E+n— (n,0)

The inference rule b, 3, E' = e — v, ¢ associates the function application e in
the current contour b, contour environment 3 and global binding environment
E with (1) the value v it evaluates to and (2) the control-flow information ¢
recording the control-flow traces during its evaluation. In the (app) rule, control
reaches the function call site 1 in the contour environment g, binding environ-
ment £ and contour b, where the function n is called. Then control enters the
function body e, whose control-flow information is c¢. Note that, for simplicity,
the binding environment E is global to the whole expression evaluation.

B, Eta— (Mn(x) e,)
G, EFa —
b =01
(app) : bV, 0 [x—V],Ete—uvc
Ex,b)=1v
b,B,EF (aa')] —v,cU{(1,5)~ {n}}
where f[x — v] is the extension of f with the property that f[x — v](x) = v

and f[x — v](y) = f(y). [x > v] is shorthand for [|[x — v] where [] is the empty
constant function.

4 Abstract Interpretation Semantics

In Shivers’ thesis, first-order control-flow analysis (1CFA) is performed with an
abstract interpretation. The contour of the dynamic semantic, which is a call
path, is abstracted to a single call site, which is the last element of the call path.
Shivers uses a denotational approach for specifying his analysis; we give here a
new presentation of this technique using an operational framework which allows
us to merge it nicely with the type and effect approach (see Section 6).

4.1 Definition

The abstract domains correspond to those in the dynamic semantics, except
that, since control-flow analysis only deals with functions and ignores integers,
values are abstracted to sets of abstract closures. The empty set () represents
any integer.

b € Contour = LCall contour

B € ContourEnv = Id — Contour contour environment

o € Value = P(Clg-sﬁre) abstract value

cl € Closure = Fun * ContourEnv closure

E e Bin/\ding = Id * Contour — Value binding environment

¢ € Control = P(LCall = ContourEnv P(LFun)) control-flow information

The inference rule 6 E + a — 1 associates the argument a in the contour
environment (3 and global binding environment E with the value 9 it evaluates
to.

(var) : B, Erx— E(x, B(x))

(abs) : B, E+n— {(n,)}

The inference rule 6 E ke — 0, ¢ associates the function application e in
the contour environment 3 and global binding environment £ with (1) the value
¥ it evaluates to and (2) the control-flow information ¢. In the (app) rule, when
control reaches the function call site 1 in the contour environment 3 and binding
environment F, the function a is evaluated to a set of closures, while the actual
argument a’ is evaluated to its value ©'. Each function n; is possibly called at 1
at the call environment § from which control transfers to its function body e;.
Note that, compared to the dynamic semantics, the call path b is limited to a
single call site; so, calls to the same function but in different environments in
the dynamic semantics may get merged together.

6E|—a—>{()\n (%i) el,ﬂ)|i:1...r}
ﬂEl—a -

b—l

Bilxi — b1, ei*ﬁ“@}izy..r

(X’La):
B,EtF (aa)y — Uj_ 10, U_ (& U{(1,) ~ {ni}})

(app)

4.2 Correctness

Since the abstract interpretation semantics is defined on finite domains, it ter-
minates. We prove it is well-formed and consistent w.r.t. the dynamic semantics.
Contour environments (3, global binding environments E and abstract values
v are related. We define a well-formedness relation WF between them that
ensures that free variables of abstract closures are appropriately bound:

Definition1 (Well-Formedness).

W.’F(v E)@V(n B) € b, W}"(ﬂ E) A)
WEF (B, B) & Vx € Dom(f), (x,5(x)) € Dom(E) A WF(E(x, 3(x)), E)

Using this definition, we prove that the abstract interpretation semantics is well-
formed.

Lemma?2. If 3, E+ a— o and WF(, E), then WF (0, E).

Proof. By direct application of Definition 1.

Theorem 3 (Well-Formedness of Abstract Semantics). If 3, E+ e — o, ¢
and WF (B, E), then

— (b, E) is well-formed.
— all (B/, E/) used in the — derivation tree of e are well-formed.

We define the < relation as an approximation relation between abstract val-

~ ~/ A~/ [
ues: (0,F) < (¢, F) if (¢', F') is a conservative approximation of (4, F). This
relation can be straightforwardly extended to compare exact and abstract values.

Definition 4 (Consistency of Abstract Values). For the well-formed (4, E),
(&, E'), (3.B) and (8, E),

(6,B) < (&f
(3.B) < (4,

=
IN N

3 3
/

A N ~ A~ ~l ~

B) e¥@p) o, 3, st) ed A (BE) <@ E)
E') & vx € Dom(3), x € Dom(ﬂ) A

~/ ~l ~/

(E(x,8(x)), B) < (E'(x, 8 (x)), E)

We next define the C relation as an approximation relation between abstract

control-flow effects: ¢ E ¢’ if ¢ is a conservative approximation of c. In other
words, ¢ is a more precise control-flow information than c’.

Q> (S
T

Definition 5 (Accuracy of Abstract Effects).
cCd & Y1,8)~sec, HB/,S/ s.t. (l,B/)«»s’ ed N sCé

Using the previous definitions, we can express that the abstract semantics safely
approximates the dynamic one for both arguments and expressions:

Lemma 6.
G, EFa—wv
B, EFa—1 = (v, E)< (b, E)
(B,E) < (B,E)

Proof. By direct application of Definition 4.

Theorem 7 (Consistency of Abstract Semantics).

b,8,EFe—uv,c o
BEre—ie ¢ = {(”E)S(”’E)
c
(8, E) < (B. B)
5 Effect System Semantics
We designed an effect system [8] to perform Oth-order control-flow analysis in

which all call environments are collapsed together. We adapt below this system
to CPS expressions.

5.1 Definition

A type t can either be the basic type int, a user-defined function type (¢’ xt") 2y

or continuation function type t’ 2 t. The latent definition d is a set of possibly
aliased functions n; of the same data type, together with their control-flow effect
¢;- A type environment £ is a finite map from identifiers to types.

d € Def ={(n,0)} | d' Ud function definition
t € Type =int | (t’*t”)iﬂt’ittype
€ € TEnv =1d+— Type type environment

c € Control

The control-flow effect ¢ of an expression records all the function calls that
possibly occur during its evaluation. Since this type and effect semantics does
not keep track of call environments, all contour environments that appear in
the domain of control-flow effects are unknown, and thus denoted by the empty
constant function [].

The inference rule £ | a : ¢ associates the argument a in the type environment
& with its type t. In the (abs) rule, the function label n paired with its control-
flow effect ¢ is added to the latent definition d of the function type. These rules
use implicit subeffecting by adding more functions to d, thus allowing functions
of the same data type to be gathered together. This can be used whenever a
type mismatch occurs in an application.

(var): EF x: E(x)
Ex[x—t)ke:tc

(abs) : (n,0) €d
EF(On(x)e):t' St

The inference rule £ - e : t, ¢ associates the function application e with its
type t and control-flow effect ¢. In the (app) rule, the latent definition of the
function type is used to determine all the functions n possibly called at the call
site 1 and their possible control-flow effect .

Etha:t' 4t
(app): E+a' ¢t
Er(aa)y 1 t,Umeea(cU{(,[]) ~ {n}})

5.2 Correctness

We prove that the type and effect semantics is a conservative approximation of
the abstract semantics, which means that the abstract interpretation performs
more precise control-flow analysis than the effect system.

To define the consistency between the abstract interpretation and the effect
system, we introduce the “:” relation between abstract values, abstract environ-
ments and types, noted as (0, E) : t. This can be easily extended to environments.

Definition 8 (Types of Abstract Values). For the well-formed (4, E),

] A).:t ©V(n,B) €d, 3E, st (B,E):E A EFn:it
(6,E):E < Vxe Dom(B), x € Dom(E) N (E(x,0(x)), E) : E(x)

Using these definitions, we can express that the type semantic conservatively
approximates the abstract semantics for both arguments and expressions.

Lemma9.

EFa:t
B,Etra—by = (6,E):t
(B, E): €

Proof. By direct application of Definition 8.

Theorem 10 (Types of Abstract Semantics).

é’l—e:t,é NS
B EFe—iél = {(A’EE_”t
(B.B): € =

6 Approximating Abstract Values From Types

As stated before, control-flow analysis by abstract interpretation is more precise
than the one based on the type and effect inference system since it distinguishes
between call environments. It however fails to support separate compilation be-
cause the value environments 3 and E are unknown for separately compiled
expressions. Note that the type environments £ would be available in this set-
ting.

6.1 Approximation Function A

The key idea is to determine a priori the unknown abstract value environment
from the type environment, therefore extending the abstract interpretation tech-
nique to support separate compilation. The approximation function A takes a
type t and returns its abstract value v, along with a binding environment E that
binds the free variables of ©. Abstract closures are thus either built from actual
function definitions or approximated from function types.

The type int denotes integers; its abstract value is thus () and its binding
environment [].

A(int) = (0,11)

The function type (' * o) KA t1, where d is {(n;,¢) | i = 1...q}, describes a
set of user-defined functions n; with their control-flow effect ¢; possibly occurring

when calling n;. Since the program is in CPS form, ¢y is a continuation type

t LN t1 where t is the type of the result value passed to the final continuation.
Thus the abstract value ¢’ corresponding to the function type is a set of closures
{(On,(x k) e;),53; | i = 1...q} in which the body e; simulates the control-flow
effect ¢; and the contour environment Bl binds a fresh variable x; to a fresh
coutour 1;. The binding environment ol corresponding to the function type
maps the pair x; and 1; to the abstract value ¢ corresponding to the return type
t. By binding x; to ¥ in E and applying, in e;, the final continuation k; to x; (see
below), the abstract value ¥ of the result type is passed to its final continuation
k;.

At tg <, t1) =let {x;}, {1:} and 1 fresh
to =Ati/>t1
(0, E) = A(¥)
{ei} = {S(¢i, ki, i, 1)}
A/—{()\n (xki) e [xi—L])|i=1...q}
E = El(xi,1) — 0]i=1...q]
n (0, E)

where

d={(ni,¢)|i=1...q}

G = {0,)~ {1 oong} |G = 1.5}

Each closure body e; simulates the control-flow effect ¢; where, for each call
site 1, all nj;, functions may be called. The expression S(¢, k, x, 1) simulates the
control-flow effect ¢ and, eventually, applies the continuation k to the result x at
call site 1. It is defined by induction on control-flow effects as below:

S([]’kax’ 1) = (k X)l
SE@u{@,])~{n1...n.}}, k%1 =8 ({n:...n,},7, 1,k x,1)
S'0,7,1,k, x 1) =8(@,k,x%1)

S'(s' {n} "k, x,1) =((M (¥) S'(s,¢,1.kx,1)) k)/

where k' is fresh

At each call site 1’ in ¢, the function S recursively calls S’ which is recursively
defined on the set of functions {n; ...n,} possibly called at 1’. Simulating the
behavior of ¢ may require replicating call site labels; this is nonetheless acceptable
here since this abstract value is automatically generated.

This general definition of S being somewhat notationally confusing, we give
below an example of a closure body for the simple control-flow effect ¢:

¢={11,[)~ {n1}, (12, []) ~ {n2,n3}}

where the number of call sites is limited to two, and each call site can only call
one or two functions. The corresponding closure body S(¢, k;, x;,1) is then:

6.2 Correctness of A

The approximation function A has the following properties :
Lemmall (Well-Formedness of A(t)). A(t) is well-formed.

Note that the abstract values ¢’ defined by A include simulated call environ-
ments whose domains contain only fresh variables. We thus extend the approxi-
mation relation < to compare the abstract values and the approximated ones in
the following way:

Definition 12 (Consistent Abstract Values and Environments). For the
well-formed (9, E) and (¢/, E'), if (¢/, E') is defined via A, then
(0,B)< (0, E) &Y, B)ev, 38, s.t.m,F) e
Using this extended definition, we get:
Lemma 13 (Consistency of A(t)). If (8, E) : t, then (9, E) < A(t)
Proof. By direct application of Definition 12.

Since simulated call environments do not correspond to actual call environ-
ments, we define, for the purpose of comparing them, a function D to delete
these simulated environments in the control-flow effects obtained by abstract
interpretation.

D)) =
D(eU{(1,B)~ s}) =D(@) U{(L,[]) ~ s}

Using the initial identity continuation Id at a given call site 1j, the abstract
interpretation of any of the g expressions e;, built by the function § from the
control-flow effect ¢; given by the type semantics, yields a control-flow effect ¢;
which, modulo D, is the same as ¢;.

Lemma 14 (Simulation). For any (3, and Ey, if
Bl[xi = 11][k’t = 1k]7 El[(xia 1i) = ’[)H(kla 1k) = {Id}] = S(EU ki, xi, 1) — 0,6

then D(¢;) = & U{(1, []) ~ {Id}}.

7 Separate Abstract Interpretation

Separate abstract interpretation uses types and effects to compute conservative
approximations of abstract values of the free variables occurring in a separately
compiled CPS expression e. These values are used to create initial environments
in which the classical abstract interpretation is performed. These initial abstract
value environments 3, and E are defined via the function A, based on the type
environment & of e. A

Given a CPS expression e, its initial contour environment (3, maps its free
variables to fresh call site labels, since their real binding call sites are unknown.
Its initial binding environment Ey is defined not only on the free variables of e,
but also on those introduced by A; these additional identifiers are bound in the
additional binding environments E given by A.

Bo = [x—1|x€ Dom(E) N fresh 1]

Eo = Yxe Dom(&) n (6. E)=AE) E[(x, Bo(x)) — 9]

where U is the function union with the property that (f U g)(x) = f(x) U g(x).
The approximated initial environments have the following properties, corre-
sponding to those of the approximation function A.

Lemma 15 (Well-Formedness of (3,, Eo)). (By, Eo) is well-formed.
~ A~ N A~/ ~ ~/ ~ A~
Lemma 16 (Consistency of (8, Ey)). If (8, E,) : €, then (8y, Ey) < (8o, Eo)

Classical abstract interpretation can then simply be applied on e with these
approximated initial environments:

By, Eole—0,¢

to implement the notion of separate abstract interpretation. Thanks to these
approximated environments, we extended the abstract interpretation approach
to support separate compilation. This new interpretation enjoys all the properties
of the abstract interpretation semantics presented above, i.e. it terminates and is
well-formed. It is thus a conservative approximation of abstract interpretation.

Theorem 17 (Separate Abstract Interpretation). Separate abstract inter-

pretation is a conservative extension of abstract interpretation.

8 Optimizations of Separate Abstract Interpretation

8.1 Flexibility of Abstract Semantics

The abstract interpretation semantics defined in Section 4 restricts a lambda
expression n in the value environment 3, E to a singleton {(n,)}, which limits
the number of programs derivable by the abstract semantics. To increase the

flexibility of the abstract semantics, we could adjust (abs) rule to (abs’), which
allows a lambda expression to admit a larger abstract value as long as its type
is perserved.

(B,E): &
EkFn:t
(abs') : Wﬁ(ﬁ,E)
(0,E):t
B, EFn— {(n,p)}UD

By direct application of Definition 1 and Definition 8, we can see that (abs’)
rule perserves the properties of (abs), namely (1) well-formedness, i.e. it WF (3, E),
then WF({(n,)} U 4, E) and (2) typability, i.e ({(n, 3)}U &, E) : ¢. Thus this
new abstract semantics enjoys all of the properties (see Section 4 and Section 5)
of the previous abstract semantics, but is more flexible. It terminates, is well-
formed, is a conservative approximation of the dynamic semantics, and is more
precise than the type semantics.

8.2 Local Control-Flow Effects

Even though the previously described approximation function A enables abstract
interpretation to be applied in the presence of separate compilation, it has the
major drawback of limiting its accuracy. Indeed, in the function types of CPS
expressions, the control-flow effects in their latent definitions d represent not only
the local control-flow effects of function bodies but also,via final continuation
calls, those of the continuation of the program. Consequently, the accuracy of
separate abstract interpretation is only as good as the one of the type and effect
analysis.

To improve the analysis requires the use of A on types restricted to local
control-flow effects. This can be achieved by computing the abstract values of
the free variables on the basis of their direct, non-CPS type in the following way.

Using the previous notations, the continuation type tg = ¢ LR t1, where
d = {(n},¢)|i = 1...p}, describes a set of continuation functions nj} and

their control-flow effect ¢,. User-defined functions of type (¢ o) <+, where
d={(n;,¢) | i=1...q}, accept continuations of type g, beside the argument of
type t’. The control-flow effects ¢; of their bodies include the control-flow effects
that correspond to applying the final continuation to their result. By subtracting
this control-flow effect Ul_,&; from ¢&;, the remaining effect only corresponds to
the local control-flow effect of the body of the function n;. This is equivalent to
the control-flow effect recorded in the corresponding direct function type, if one
ignores all continuation calls in CPS types.

To summarize, given a non-closed expression e, control-flow analysis using
separate abstract interpretation is performed according to the following steps:

1. Apply type and effect inference to get the type environment £ of e.

2. Use the function A onto £ to approximate the corresponding initial abstract

value environment (3, Eo).

Transform e to its CPS form e’. o

4. Apply the classical abstract interpretation algorithm to e’, based on (53, Eo),
to get the control-flow information.

w

9 Conclusion

We presented a new static control-flow analysis that combines both abstract
interpretation and type and effect systems in a single framework. It is as effec-
tive as the abstract interpretation approach on closed expressions, but is also
able to tackle expressions with free variables, using their type to approximate
their abstract value. We have thus extended abstract interpretation to support
separate compilation by approximating unknown abstract value environments of
expressions from their type environments.

We have proved that the control-flow information obtained by this new analy-
sis is a conservative approximation of abstract interpretation and is more precise
than the type and effect system.

References

1. Appel, A. W. Compiling with Continuations. Princeton University, 1992.

2. Cousot, P., and Cousot, R. Abstract Interpretation, a unified lattice model for
static analysis of programs by construction of approximation of fixpoints. In ACM
Symposium on Principles of Programming Languages. 1977.

3. Jouvelot, P., and Gifford, D. K. Algebraic Reconstruction of Types and Effects. In
Proceedings of the 1991 ACM Conference on Principles of Programming Languages.
ACM, New-York, 1991.

4. Lucassen, J. M., and Gifford, D. K. Polymorphic Effect Systems. In Proceedings of
the 1988 ACM Conference on Principles of Programming Languages. ACM, New-
York, 1988.

5. Plotkin, G. A structural approach to operational semantics. In Technical report
DAIMI-FN-19. Aarhus University, 1981.

6. Shivers, O. Control-Flow Analysis of Higher-Order Languages. PhD thesis, CMU,
May 1991.

7. Talpin, J. P., and Jouvelot, P. Polymorphic Type, Region and Effect Inference.
Journal of Functional Programming, vol.2, no. 3, July 1992.

8. Tang, Y. M., and Jouvelot, P. Control-Flow Effects for Escape Analysis. WSA’92,
Bordeauz, France, September 1992.

Appendix

Proof of Theorem 3 (Well-Formedness of Abstract Semantics)

Proof. By induction on the number of reduction steps of expressions.

— The hypotheses are
(1) 8. B+ (a)1 — Uiy 05, Uiy (& U{(L, B) ~ {ni}})
(2) WF (B, E)

From hypothesis (1), by (app) in abstract semantics
(3) B, EFa— {(Om,(xi) e, 0) | i=1...7}

(4) B, BFa — 1

(5) Bilxs = b), B+ &) — i, ¢

(6) E(Xu by =

whereb =landi=1.

From (2)(3)(4), by Lemma 2

(1) WE({(Ma, (x:) e B;) | i = 1...7}, E)
(8) WF(', E)

From (7), by Definition 1

(9) WF(B:. B)

From (6)(8)(), by Definition 1
(10) WF(Bilxi = b1, B)

From , by induction
All B/ /) used in the — derivation tree of e are well-formed

From (5)(10), by induction

(11) (0,) is well-formed

From (11), by Definition 1
(UI_,0;, E) is well-formed

Proof of Theorem 7 (Consistency of Abstract Semantics)
Proof. By induction on the number of reduction steps of expressions.

— The hypotheses are

(1) (3.B) < (3. E)
()Q@EF®ah—chK 8)~ {n}}
(3) B, B+ (a @)y — Uiybi, Uiy (6 U{(1, B) ~ {n,}})

From hypothesis (2), by (app) in the dynamic semantics
(4) B, EFa— (A(x) e,)

(5)8,EFa — v

6)V,fx—V],Et+re—uv,c

(7) E(x,0) =4

where b = 0.1

From hypothesis (3), by (app) in the abstract semantics
(8) B, Bt a— {(An,(xi) er, B) i =1...7}

9) B, EFa’ — o

(10) Bilx;i — b, EF e — b4,

(11) B(x;,b) = o'

where b =landi=1...r

From (1)(4)(8) and (1)(5)(9), by Lemma 6 A

((
(12) (n(x) e, 8),) < ({(n,(x) 1, B) [1= 1.7},)
(13) (v, B) < (', B)

From (12), by Definition 4, 35 (1 <j <r) s.t.
(19) dn(x) & = An, (35) o

From (15)(7)(11)(13)(1)/ by Deﬁmt10n4
(16) (x> b, B) < (Bj[x; — b, E)

From (16)(6)(10), by induction
(17) (v, E) < (95, E)
(17) cC ¢

From (17), by Definition 4
(U7 E) < (Ule’f}i, E)

From (14)(17)’, by Definition 5 R
cU{(L, B) ~ {n}} E Ui (& UL, B) ~ {ni}})

Proof of Theorem 10 (Types of Abstract Semantics)

Proof. By induction on the number of reduction steps of expressions.

— The l}ygotheses are
(1) (8, E) - €
)2+ (@2 b UmpeeU (1) ()
(3) B, EF (aa’)y — Ui_y0i, Ui (& U{(L, 5) ~ {ni}})

From (2), by (app) in the type semantics
(4)Era:t/ St
(5)EkRa

From (3), by (app) in the abstract semantics
6) B, Eta— {(n,(x:) e, B)) | i=1...1}
(7) B,El—a’ — ¢

(8) Bi[x; = 0], B+ e — o4, ¢

9) B(xi,b) =o'

where l;/:l andi=1...r

From (1)(4)(6) an /()(5)(7), by LeIAnmaQ
(10) ({(An, (xi) €, B) [i=1...r}, B) it/ St
(11) (', E) : ¢/

From (10), by Definition 8, Vi (i = 1...7), 3€; s.t.
Al A

(12) (B, E) - €

(13) & + (An, (et St

From (13), by (abs) in the type semantics, 3¢;

(14) Eix,[xi —) e 1,6
(15) (n;, ;) € d

From (12)()(), by Definition 8
(16) (Fifxs = b, B) : €y [v]

From (16)(8)(14), by induction

(17) (04, F) : ¢
(17Y ¢ C g

From (17), by Definition 8
(Ule’f}i, E) 0t

From (15)(17)’, by Definition 5
Uiz1 (@ U{(L, 0) ~ {ni}}) E Uneea(@U{(L,[]) ~ {n}})

Proof of Lemma 11 (Well-Formedness of A(t))
Proof. By induction on the structure of types.

— Case int
By the definition of .4
Alint) = (0,1])

By Definition 1
A(int) is well-formed

— Case (t' xtg) 4, t1 where to =t & t1
By the definition of A
A((t to) & 1) = (o, B
where
(1) ={(n,(x ki) e, i > L)) [i =1...q}
(2)E = E[(x L) —0]i=1...q]
(3) (0, B) = A(t)

From (3), by induction .
(4) A(t) is well-formed, i.e. (0,F) is well-formed

From (2)(4), since x; is fresh, by Definition 1
(5) (6, E) is well-formed

From (5), by Definition 1, Vi
(6) ([x; — 1), E') is well-formed

From (6)(1)(2) by Definition 1
A((t *tg) — tl) is well-formed

Proof of Lemma 14 (Simulation)

Proof. By induction on ¢;.

We note Vj > 1
B/- = B'[Xi = 1] [k = 1y
E Ej(xi, 1i) = 0][(ks, 1) = {Id}]
— Case ¢; =]
By the definition of &
S({]: ki, x4, 1) = (ki xi)1

By the abstract semantics, since k; is bound to Id
~/ A~/ N N
61) El F (kl Xi)l -, {(laﬂl) ~ {Id}}
By the definition of D
~!
D({(1, By) ~ {Id}}) = {(1,[]) ~ {Id}}

— Case ¢; =c, U{1,[))~{n1...n,}}
By the definition of &
(1) S(Eiakiaxial) = 8/({111 nT}7 151 ;kiaxial)

By the definition of S, Vj =1...7r
(2)S'({nj .. .n,}, ¢, ki, %, 1) = (((An,; (k) S'({njp1 -0, }, 8,1 ke, %3, 1)) K)y
Note that {n,41...n,} =0

By induction on j, we prove that if

N A

B E; FS'({n;...n.},¢,1 ki, x;,1) — ©,¢ then
D(E) = U{(L,[)~ {Id}} U{(¥.[)~ {n;...n;}}
where

¢ =& u{@,)~ {n}}.. Q. 5) ~ {n}}

ﬂj+1 = B;[k; — 1]

J
Ej = Ej[(kj, 1) = k]

e Case j=r+1
By the definition of &, since {n,41...n,} =0
(3) S/(Q)aa/pl/akiax’ial) = S(EQ;k’L;X’Lal)

From (3), by induction on ¢;
B By B S'(0,6,1 ki, %i,1) — 9,6, implies
D(¢&) = ¢ UL, []) ~ {Id}}

e Case j=1...r
By induction on j

/ ~/ A . .
(4) By, By F S'({njt1...n.},¢,1 %k, %;,1) — 9,¢ implies

(5) D(&) = ¢ U{(1,)~ {Id}} u{@", [) ~ {mjs1.. .0}

where

¢ = U{, By~ fnyad} - AW B) ~ {ar}}

From (2)(4), by the abstract semantics
~ A~ N
BB F S'({ny .. om,), 8,1 ki, xi, 1) — 0,8 U{(, 5)) ~ {n;}}

From (5), by the definition of D
D(& V{1, 3)) ~ {mj}}) = G U{(,)~ {Zd}u{,)~ {n;...0}}

From (1), using the initial abstract value environments ﬁ; and E/l, we get :
B, By F 8@, ki, xi,1) — 0,6 implies

D(&) = & U{(,[]) ~ {Id}}

where

& =& U{(,B) ~ {m}}.. Q. 5) ~ ()} »

Proof of Lemma 15 (Well-Formedness of (3, Eq))

Proof. — By the cAleﬁnitionA of (BO, EO) X
(1) Yx € Dom(8,), (x,08y(x)) € Dom(E)

(2) Eolx, By(x)) =0 _
(3) Dom(E) C Dom(Eo)
(4) (5,) = A(E(x))

From (4), by Lemma 11
(5) (0, E) is well-formed

From (5)(3), by Definition 1
(6) (0, Ep) is well-formed

From (1)(2)(6), by Definition 1
(8o, Eo) is well-formed

Proof of Lemma 16 (Consistency of (3,, Eo))

Proof. — By the definition of (BO, Eo)
(1) vx e Dom(é’), x € Dom(f,)

)
(2) Eo(x, By(x)) = _
(3) Dom(E) € Dom(E)
(4) (0, E) = AE(x))
Since (BO, EO) : £, by Definition 8
(5) V)E/E Dezn(ﬁg),ﬁx € Dom(€E)
(6) (Eo(x, Bo(x)), Eq) : €(x)

From (6), by Lemma 13
(7) (Eo(x, Bo(x)), Eg) < A(E(x))

From (7)(4)
(8) (Ey(x, Bo(x)), Eg) < (0, E)

From (8)(3), by Definition 4
(9) (Eo(x, Bo(x)), Eg) < (9, Eo)

From (5)(1)
(10) Vx € Dom(Bg), X € Dom(Bo)

From (10)(9)(2), by Definition 4
(60) EO) < (60) EO)

This article was processed using the I#TpX macro package with LLNCS style

