
A First Encounter with Machine Learning

Max Welling
Donald Bren School of Information and Computer Science

University of California Irvine

November 4, 2011

2

Contents

Preface iii

Learning and Intuition vii

1 Data and Information 1
1.1 Data Representation . 2
1.2 Preprocessing the Data . 4

2 Data Visualization 7

3 Learning 11
3.1 In a Nutshell . 15

4 Types of Machine Learning 17
4.1 In a Nutshell . 20

5 Nearest Neighbors Classification 21
5.1 The Idea In a Nutshell . 23

6 The Naive Bayesian Classifier 25
6.1 The Naive Bayes Model . 25
6.2 Learning a Naive Bayes Classifier 27
6.3 Class-Prediction for New Instances28
6.4 Regularization . 30
6.5 Remarks . 31
6.6 The Idea In a Nutshell . 31

7 The Perceptron 33
7.1 The Perceptron Model . 34

i

ii CONTENTS

7.2 A Different Cost function: Logistic Regression 37
7.3 The Idea In a Nutshell . 38

8 Support Vector Machines 39
8.1 The Non-Separable case . 43

9 Support Vector Regression 47

10 Kernel ridge Regression 51
10.1 Kernel Ridge Regression . 52
10.2 An alternative derivation . 53

11 Kernel K-means and Spectral Clustering 55

12 Kernel Principal Components Analysis 59
12.1 Centering Data in Feature Space 61

13 Fisher Linear Discriminant Analysis 63
13.1 Kernel Fisher LDA . 66
13.2 A Constrained Convex Programming Formulation of FDA 68

14 Kernel Canonical Correlation Analysis 69
14.1 Kernel CCA . 71

A Essentials of Convex Optimization 73
A.1 Lagrangians and all that . 73

B Kernel Design 77
B.1 Polynomials Kernels . 77
B.2 All Subsets Kernel . 78
B.3 The Gaussian Kernel . 79

Preface

In winter quarter 2007 I taught an undergraduate course in machine learning at
UC Irvine. While I had been teaching machine learning at a graduate level it
became soon clear that teaching the same material to an undergraduate class was
a whole new challenge. Much of machine learning is build uponconcepts from
mathematics such as partial derivatives, eigenvalue decompositions, multivariate
probability densities and so on. I quickly found that these concepts could not
be taken for granted at an undergraduate level. The situation was aggravated by
the lack of a suitable textbook. Excellent textbooks do exist for this field, but I
found all of them to be too technical for a first encounter withmachine learning.
This experience led me to believe there was a genuine need fora simple,intuitive
introduction into the concepts of machine learning. A first read to wet the appetite
so to speak, a prelude to the more technical and advanced textbooks. Hence, the
book you see before you is meant for those starting out in the field who need a
simple, intuitive explanation of some of the most useful algorithms that our field
has to offer.

Machine learning is a relatively recent discipline that emerged from the gen-
eral field of artificial intelligence only quite recently. Tobuild intelligent machines
researchers realized that these machines should learn fromand adapt to their en-
vironment. It is simply too costly and impractical to designintelligent systems by
first gathering all the expert knowledge ourselves and then hard-wiring it into a
machine. For instance, after many years of intense researchthe we can now recog-
nize faces in images to a high degree accuracy. But the world has approximately
30,000 visual object categories according to some estimates (Biederman). Should
we invest the same effort to build good classifiers for monkeys, chairs, pencils,
axes etc. or should we build systems to can observe millions of training images,
some with labels (e.g. in these pixels in the image correspond to a car) but most
of them without side information? Although there is currently no system which
can recognize even in the order of 1000 object categories (the best system can get

iii

iv PREFACE

about 60% correct on 100 categories), the fact thatwepull it off seemingly effort-
lessly serves as a “proof of concept” that it can be done. But there is no doubt in
my mind that building truly intelligent machines will involve learning from data.

The first reason for the recent successes of machine learningand the growth of
the field as a whole is rooted in its multidisciplinary character. Machine learning
emerged from AI but quickly incorporated ideas from fields asdiverse as statis-
tics, probability, computer science, information theory,convex optimization, con-
trol theory, cognitive science, theoretical neuroscience, physics and more. To
give an example, the main conference in this field is called:advances in neural
information processing systems, referring to information theory and theoretical
neuroscience and cognitive science.

The second, perhaps more important reason for the growth of machine learn-
ing is the exponential growth of both available data and computer power. While
the field is build on theory and tools developed statistics machine learning recog-
nizes that the most exiting progress can be made to leverage the enormous flood
of data that is generated each year by satellites, sky observatories, particle accel-
erators, the human genome project, banks, the stock market,the army, seismic
measurements, the internet, video, scanned text and so on. It is difficult to ap-
preciate the exponential growth of data that our society is generating. To give
an example, a modern satellite generates roughly the same amount of data all
previous satellites produced together. This insight has shifted the attention from
highly sophisticated modeling techniques on small datasets to more basic analy-
sis on much larger data-sets (the latter sometimes calleddata-mining). Hence the
emphasis shifted to algorithmic efficiency and as a result many machine learning
faculty (like myself) can typically be found in computer science departments. To
give some examples of recent successes of this approach one would only have
to turn on one computer and perform an internet search. Modern search engines
do not run terribly sophisticated algorithms, but they manage to store and sift
through almost the entire content of the internet to return sensible search results.
There has also been much success in the field of machine translation, not because
a new model was invented but because many more translated documents became
available.

The field of machine learning is multifaceted and expanding fast. To sample
a few sub-disciplines: statistical learning, kernel methods, graphical models, ar-
tificial neural networks, fuzzy logic, Bayesian methods andso on. The field also
covers many types of learning problems, such as supervised learning, unsuper-
vised learning, semi-supervised learning, active learning, reinforcement learning
etc. I will only cover the most basic approaches in this book from a highly per-

v

sonal perspective. Instead of trying to cover all aspects ofthe entire field I have
chosen to present a few popular and perhaps useful tools and approaches. But
what will (hopefully) be significantly different than most other scientific books is
the manner in which I will present these methods. I have always been frustrated
by the lack of proper explanation of equations. Many times I have been staring at
a formula having not the slightest clue where it came from or how it was derived.
Many books also excel in stating facts in an almost encyclopedic style, without
providing the proper intuition of the method. This is my primary mission: to write
a book which conveys intuition. The first chapter will be devoted to why I think
this is important.

MEANT FOR INDUSTRY AS WELL AS BACKGROUND READING]
This book was written during my sabbatical at the Radboudt University in Ni-

jmegen (Netherlands). Hans for discussion on intuition. I like to thank Prof. Bert
Kappen who leads an excellent group of postocs and students for his hospitality.
Marga, kids, UCI,...

vi PREFACE

Learning and Intuition

We have all experienced the situation that the solution to a problem presents itself
while riding your bike, walking home, “relaxing” in the washroom, waking up in
the morning, taking your shower etc. Importantly, it did notappear while bang-
ing your head against the problem in a conscious effort to solve it, staring at the
equations on a piece of paper. In fact, I would claim, that allmy bits and pieces
of progress have occured while taking a break and “relaxing out of the problem”.
Greek philosophers walked in circles when thinking about a problem; most of us
stare at a computer screen all day. The purpose of this chapter is to make you more
aware of where your creative mind is located and to interact with it in a fruitful
manner.

My general thesis is that contrary to popular belief, creative thinking is not
performed by conscious thinking. It is rather an interplay between your con-
scious mind who prepares the seeds to be planted into the unconscious part of
your mind. The unconscious mind will munch on the problem “out of sight” and
return promising roads to solutions to the consciousness. This process iterates
until the conscious mind decides the problem is sufficientlysolved, intractable or
plain dull and moves on to the next. It maybe a little unsettling to learn that at
least part of your thinking goes on in a part of your mind that seems inaccessible
and has a very limited interface with what you think of as yourself. But it is un-
deniable that it is there and it is also undeniable that it plays a role in the creative
thought-process.

To become a creative thinker one should how learn to play thisgame more
effectively. To do so, we should think about the language in which to represent
knowledge that is most effective in terms of communication with the unconscious.
In other words, what type of “interface” between conscious and unconscious mind
should we use? It is probably not a good idea to memorize all the details of a
complicated equation or problem. Instead we should extractthe abstract idea and
capture the essence of it in a picture. This could be a movie with colors and other

vii

viii LEARNING AND INTUITION

baroque features or a more “dull” representation, whateverworks. Some scientist
have been asked to describe how they represent abstract ideas and they invari-
ably seem to entertain some type of visual representation. Abeautiful account
of this in the case of mathematicians can be found in a marvellous book “XXX”
(Hardamard).

By building accurate visual representations of abstract ideas we create a data-
base of knowledge in the unconscious. This collection of ideas forms the basis for
what we call intuition. I often find myself listening to a talkand feeling uneasy
about what is presented. The reason seems to be that the abstract idea I am trying
to capture from the talk clashed with a similar idea that is already stored. This in
turn can be a sign that I either misunderstood the idea beforeand need to update
it, or that there is actually something wrong with what is being presented. In a
similar way I can easily detect that some idea is a small perturbation of what I
already knew (I feel happily bored), or something entirely new (I feel intrigued
and slightly frustrated). While the novice is continuouslychallenged and often
feels overwhelmed, the more experienced researcher feels at ease 90% of the time
because the “new” idea was already in his/her data-base which therefore needs no
and very little updating.

Somehow our unconscious mind can also manipulate existing abstract ideas
into new ones. This is what we usually think of as creative thinking. One can
stimulate this by seeding the mind with a problem. This is a conscious effort
and is usually a combination of detailed mathematical derivations and building
an intuitive picture or metaphor for the thing one is trying to understand. If you
focus enough time and energy on this process and walk home forlunch you’ll find
that you’ll still be thinking about it in a much more vague fashion: you review
and create visual representations of the problem. Then you get your mind off the
problem altogether and when you walk back to work suddenly parts of the solu-
tion surface into consciousness. Somehow, your unconscious took over and kept
working on your problem. The essence is that you created visual representations
as the building blocks for the unconscious mind to work with.

In any case, whatever the details of this process are (and I amno psychologist)
I suspect that any good explanation should include both an intuitive part, including
examples, metaphors and visualizations, and a precise mathematical part where
every equation and derivation is properly explained. This then is the challenge I
have set to myself. It will be your task to insist on understanding the abstract idea
that is being conveyed and build your own personalized visual representations. I
will try to assist in this process but it is ultimately you whowill have to do the
hard work.

ix

Many people may find this somewhat experimental way to introduce students
to new topics counter-productive. Undoubtedly for many it will be. If you feel
under-challenged and become bored I recommend you move on tothe more ad-
vanced text-books of which there are many excellent sampleson the market (for
a list see (books)). But I hope that for most beginning students thisintuitivestyle
of writing may help to gain a deeper understanding of the ideas that I will present
in the following. Above all, have fun!

x LEARNING AND INTUITION

Chapter 1

Data and Information

Data is everywhere in abundant amounts. Surveillance cameras continuously
capture video, every time you make a phone call your name and location gets
recorded, often your clicking pattern is recorded when surfing the web, most fi-
nancial transactions are recorded, satellites and observatories generate tera-bytes
of data every year, the FBI maintains a DNA-database of most convicted crimi-
nals, soon all written text from our libraries is digitized,need I go on?

But data in itself is useless. Hidden inside the data is valuable information.
The objective of machine learning is to pull the relevant information from the data
and make it available to the user. What do we mean by “relevantinformation”?
When analyzing data we typically have a specific question in mind such as :“How
many types of car can be discerned in this video” or “ what will be weather next
week”. So the answer can take the form of a single number (there are5 cars), or a
sequence of numbers or (the temperature next week) or a complicated pattern (the
cloud configuration next week). If the answer to our query is itself complex we
like to visualize it using graphs, bar-plots or even little movies. But one should
keep in mind that the particular analysis depends on the taskone has in mind.

Let me spell out a few tasks that are typically considered in machine learning:

Prediction: Here we ask ourselves whether we can extrapolate the information
in the data to new unseen cases. For instance, if I have a data-base of attributes
of Hummers such as weight, color, number of people it can holdetc. and another
data-base of attributes of Ferraries, then one can try to predict the type of car
(Hummer or Ferrari) from a new set of attributes. Another example is predicting
the weather (given all the recorded weather patterns in the past, can we predict the
weather next week), or the stock prizes.

1

2 CHAPTER 1. DATA AND INFORMATION

Interpretation: Here we seek to answer questions about the data. For instance,
what property of this drug was responsible for its high success-rate? Does a secu-
rity officer at the airport apply racial profiling in decidingwho’s luggage to check?
How many natural groups are there in the data?

Compression: Here we are interested in compressing the original data, a.k.a.
the number of bits needed to represent it. For instance, filesin your computer can
be “zipped” to a much smaller size by removing much of the redundancy in those
files. Also, JPEG and GIF (among others) are compressed representations of the
original pixel-map.

All of the above objectives depend on the fact that there isstructure in the
data. If data is completely random there is nothing to predict, nothing to interpret
and nothing to compress. Hence, all tasks are somehow related to discovering
or leveraging this structure. One could say that data is highly redundant and that
this redundancy is exactly what makes it interesting. Take the example of natu-
ral images. If you are required to predict the color of the pixels neighboring to
some random pixel in an image, you would be able to do a pretty good job (for
instance 20% may be blue sky and predicting the neighbors of ablue sky pixel
is easy). Also, if we would generate images at random they would not look like
natural scenes at all. For one, it wouldn’t contain objects.Only a tiny fraction of
all possible images looks “natural” and so the space of natural images is highly
structured.

Thus, all of these concepts are intimately related: structure, redundancy, pre-
dictability, regularity, interpretability, compressibility. They refer to the “food”
for machine learning, without structure there is nothing tolearn. The same thing
is true for human learning. From the day we are born we start noticing that there
is structure in this world. Our survival depends on discovering and recording this
structure. If I walk into this brown cylinder with a green canopy I suddenly stop,
it won’t give way. In fact, it damages my body. Perhaps this holds for all these
objects. When I cry my mother suddenly appears. Our game is topredict the
future accurately, and we predict it by learning its structure.

1.1 Data Representation

What does “data” look like? In other words, what do we download into our com-
puter? Data comes in many shapes and forms, for instance it could be words from
a document or pixels from an image. But it will be useful to convert data into a

1.1. DATA REPRESENTATION 3

standard format so that the algorithms that we will discuss can be applied to it.
Most datasets can be represented as a matrix,X = [Xin], with rows indexed by
“attribute-index” i and columns indexed by “data-index”n. The valueXin for
attributei and data-casen can be binary, real, discrete etc., depending on what
we measure. For instance, if we measure weight and color of100 cars, the matrix
X is 2 × 100 dimensional andX1,20 = 20, 684.57 is the weight of car nr.20 in
some units (a real value) whileX2,20 = 2 is the color of car nr.20 (say one of6
predefined colors).

Most datasets can be cast in this form (but not all). For documents, we can
give each distinct word of a prespecified vocabulary a nr. andsimply count how
often a word was present. Say the word “book” is defined to havenr. 10, 568 in the
vocabulary thenX10568,5076 = 4 would mean: the word book appeared 4 times in
document5076. Sometimes the different data-cases do not have the same number
of attributes. Consider searching the internet for images about rats. You’ll retrieve
a large variety of images most with a different number of pixels. We can either
try to rescale the images to a common size or we can simply leave those entries in
the matrix empty. It may also occur that a certain entry is supposed to be there but
it couldn’t be measured. For instance, if we run an optical character recognition
system on a scanned document some letters will not be recognized. We’ll use a
question mark “?”, to indicate that that entry wasn’t observed.

It is very important to realize that there are many ways to represent data and
not all are equally suitable for analysis. By this I mean thatin some represen-
tation the structure may be obvious while in other representation is may become
totally obscure. It is still there, but just harder to find. The algorithms that we will
discuss are based on certain assumptions, such as, “Hummers and Ferraries can
be separated with by a line, see figure??. While this may be true if we measure
weight in kilograms and height in meters, it is no longer trueif we decide to re-
code these numbers into bit-strings. The structure is stillin the data, but we would
need a much more complex assumption to discover it. A lesson to be learned is
thus to spend some time thinking about in which representation the structure is as
obvious as possible and transform the data if necessary before applying standard
algorithms. In the next section we’ll discuss some standardpreprocessing opera-
tions. It is often advisable to visualize the data before preprocessing and analyzing
it. This will often tell you if the structure is a good match for the algorithm you
had in mind for further analysis. Chapter??will discuss some elementary visual-
ization techniques.

4 CHAPTER 1. DATA AND INFORMATION

1.2 Preprocessing the Data

As mentioned in the previous section, algorithms are based on assumptions and
can become more effective if we transform the data first. Consider the following
example, depicted in figure??a. The algorithm we consists of estimating the area
that the data occupy. It grows a circle starting at the originand at the point it
contains all the data we record the area of circle. In the figure why this will be
a bad estimate: the data-cloud is not centered. If we would have first centered it
we would have obtained reasonable estimate. Although this example is somewhat
simple-minded, there are many, much more interesting algorithms that assume
centered data. To center data we will introduce thesample meanof the data, given
by,

E[X]i =
1

N

N
∑

n=1

Xin (1.1)

Hence, for every attributei separately, we simple add all the attribute value across
data-cases and divide by the total number of data-cases. To transform the data so
that their sample mean is zero, we set,

X ′
in = Xin − E[X]i ∀n (1.2)

It is now easy to check that the sample mean ofX ′ indeed vanishes. An illustra-
tion of the global shift is given in figure??b. We also see in this figure that the
algorithm described above now works much better!

In a similar spirit as centering, we may also wish to scale thedata along the
coordinate axis in order make it more “spherical”. Considerfigure ??a,b. In
this case the data was first centered, but the elongated shapestill prevented us
from using the simplistic algorithm to estimate the area covered by the data. The
solution is to scale the axes so that the spread is the same in every dimension. To
define this operation we first introduce the notion ofsample variance,

V[X]i =
1

N

N
∑

n=1

X2
in (1.3)

where we have assumed that the data was first centered. Note that this is similar
to the sample mean, but now we have used the square. It is important that we
have removed the sign of the data-cases (by taking the square) because otherwise
positive and negative signs might cancel each other out. By first taking the square,
all data-cases first get mapped to positive half of the axes (for each dimension or

1.2. PREPROCESSING THE DATA 5

attribute separately) and then added and divided byN . You have perhaps noticed
that variance does not have the sameunitsasX itself. If X is measured in grams,
then variance is measured in grams squared. So to scale the data to have the same
scale in every dimension we divide by the square-root of the variance, which is
usually called thesample standard deviation.,

X ′′
in =

X ′
in

√

V[X ′]i
∀n (1.4)

Note again that sphering requires centering implying that we always have to per-
form these operations in this order, first center, then sphere. Figure??a,b,c illus-
trate this process.

You may now be asking, “well what if the data where elongated in a diagonal
direction?”. Indeed, we can also deal with such a case by firstcentering, then
rotating such that the elongated direction points in the direction ofone of the
axes, and then scaling. This requires quite a bit more math, and will postpone this
issue until chapter??on “principal components analysis”. However, the question
is in fact a very deep one, because one could argue that one could keep changing
the data using more and more sophisticated transformationsuntil all the structure
was removed from the data and there would be nothing left to analyze! It is indeed
true that the pre-processing steps can be viewed as part of the modeling process
in that it identifies structure (and then removes it). By remembering the sequence
of transformations you performed you have implicitly builda model. Reversely,
many algorithm can be easily adapted to model the mean and scale of the data.
Now, the preprocessing is no longer necessary and becomes integrated into the
model.

Just as preprocessing can be viewed as building a model, we can use a model
to transform structured data into (more) unstructured data. The details of this
process will be left for later chapters but a good example is provided by compres-
sion algorithms. Compression algorithms are based on models for the redundancy
in data (e.g. text, images). The compression consists in removing this redun-
dancy and transforming the original data into a less structured or less redundant
(and hence more succinct) code. Models and structure reducing data transforma-
tions are in sense each others reverse: we often associate with a model an under-
standing of how the data was generated, starting from randomnoise. Reversely,
pre-processing starts with the data and understands how we can get back to the
unstructured random state of the data [FIGURE].

Finally, I will mention one more popular data-transformation technique. Many
algorithms are are based on the assumption that data is sort of symmetric around

6 CHAPTER 1. DATA AND INFORMATION

the origin. If data happens to be just positive, it doesn’t fitthis assumption very
well. Taking the following logarithm can help in that case,

X ′
in = log(a + Xin) (1.5)

Chapter 2

Data Visualization

The process of data analysis does not just consist of pickingan algorithm, fitting
it to the data and reporting the results. We have seen that we need to choose a
representation for the data necessitating data-preprocessing in many cases. De-
pending on the data representation and the task at hand we then have to choose
an algorithm to continue our analysis. But even after we haverun the algorithm
and study the results we are interested in, we may realize that our initial choice of
algorithm or representation may not have been optimal. We may therefore decide
to try another representation/algorithm, compare the results and perhaps combine
them. This is an iterative process.

What may help us in deciding the representation and algorithm for further
analysis? Consider the two datasets in Figure??. In the left figure we see that the
data naturally forms clusters, while in the right figure we observe that the data is
approximately distributed on a line. The left figure suggests a clustering approach
while the right figure suggests a dimensionality reduction approach. This illus-
trates the importance of looking at the data before you startyour analysis instead
of (literally) blindly picking an algorithm. After your first peek, you may decide
to transform the data and then look again to see if the transformed data better suit
the assumptions of the algorithm you have in mind.

“Looking at the data” sounds more easy than it really is. The reason is that
we are not equipped to think in more than 3 dimensions, while most data lives
in much higher dimensions. For instance image patches of size 10 × 10 live in a
100 pixel space. How are we going to visualize it? There are many answers to
this problem, but most involveprojection: we determine a number of, say, 2 or
3 dimensional subspaces onto which we project the data. The simplest choice of
subspaces are the ones aligned with the features, e.g. we canplot X1n versusX2n

7

8 CHAPTER 2. DATA VISUALIZATION

etc. An example of such ascatter plotis given in Figure??.
Note that we have a total ofd(d − 1)/2 possible two dimensional projections

which amounts to 4950 projections for 100 dimensional data.This is usually too
many to manually inspect. How do we cut down on the number of dimensions?
perhaps random projections may work? Unfortunately that turns out to be not a
great idea in many cases. The reason is that data projected ona random subspace
often looks distributed according to what is known as a Gaussian distribution (see
Figure??). The deeper reason behind this phenomenon is thecentral limit theo-
remwhich states that the sum of a large number of independent random variables
is (under certain conditions) distributed as a Gaussian distribution. Hence, if we
denote withw a vector inR

d and byx the d-dimensional random variable, then
y = wTx is the value of the projection. This is clearly is a weighted sum of
the random variablesxi, i = 1..d. If we assume thatxi are approximately in-
dependent, then we can see that their sum will be governed by this central limit
theorem. Analogously, a dataset{Xin} can thus be visualized in one dimension
by “histogramming”1 the values ofY = wT X, see Figure??. In this figure we
clearly recognize the characteristic “Bell-shape” of the Gaussian distribution of
projected and histogrammed data.

In one sense the central limit theorem is a rather helpful quirk of nature. Many
variables follow Gaussian distributions and the Gaussian distribution is one of
the few distributions which have very nice analytic properties. Unfortunately, the
Gaussian distribution is also the mostuninformativedistribution. This notion of
“uninformative” can actually be made very precise using information theory and
states:Given a fixed mean and variance, the Gaussian density represents the least
amount of information among all densities with the same meanand variance. This
is rather unfortunate for our purposes because Gaussian projections are the least
revealing dimensions to look at. So in general we have to worka bit harder to see
interesting structure.

A large number of algorithms has been devised to search for informative pro-
jections. The simplest being “principal component analysis” or PCA for short??.
Here, interesting means dimensions of high variance. However, it was recognized
that high variance is not always a good measure of interestingness and one should
rather search for dimensions that are non-Gaussian. For instance, “independent
components analysis” (ICA)?? and “projection pursuit”?? searches for dimen-

1A histogram is a bar-plot where the height of the bar represents the number items that had a
value located in the interval on the x-axis o which the bar stands (i.e. the basis of the bar). If many
items have a value around zero, then the bar centered at zero will be very high.

9

sions that have heavy tails relative to Gaussian distributions. Another criterion
is to to find projections onto which the data has multiple modes. A more recent
approach is to project the data onto a potentially curved manifold ??.

Scatter plots are of course not the only way to visualize data. Its a creative
exercise and anything that helps enhance your understanding of the data is allowed
in this game. To illustrate I will give a few examples form a

10 CHAPTER 2. DATA VISUALIZATION

Chapter 3

Learning

This chapter is without question the most important one of the book. It concerns
the core, almost philosophical question of what learning really is (and what it is
not). If you want to remember one thing from this book you willfind it here in
this chapter.

Ok, let’s start with an example. Alice has a rather strange ailment. She is not
able to recognize objects by their visual appearance. At herhome she is doing
just fine: her mother explained Alice for every object in her house what is is and
how you use it. When she is home, she recognizes these objects(if they have not
been moved too much), but when she enters a new environment she is lost. For
example, if she enters a new meeting room she needs a long timeto infer what
the chairs and the table are in the room. She has been diagnosed with a severe
case of ”overfitting”. What is the matter with Alice? Nothingis wrong with her
memory because she remembers the objects once she has seem them. In fact, she
has a fantastic memory. She remembers every detail of the objects she has seen.
And every time she sees a new objects she reasons that the object in front of her
is surely not a chair because it doesn’t have all the featuresshe has seen in ear-
lier chairs. The problem is that Alice cannotgeneralizethe information she has
observed from one instance of a visual object category to other, yet unobserved
members of the same category. The fact that Alice’s disease is so rare is under-
standable there must have been a strong selection pressure against this disease.
Imagine our ancestors walking through the savanna one million years ago. A lion
appears on the scene. Ancestral Alice has seen lions before,but not this particular
one and it does not induce a fear response. Of course, she has no time to infer the
possibility that this animal may be dangerous logically. Alice’s contemporaries
noticed that the animal was yellow-brown, had manes etc. andimmediately un-

11

12 CHAPTER 3. LEARNING

derstood that this was a lion. They understood that all lionshave these particular
characteristics in common, but may differ in some other ones(like the presence
of a scar someplace).

Bob has another disease which is called over-generalization. Once he has seen
an object he believes almost everything is some, perhaps twisted instance of the
same object class (In fact, I seem to suffer from this so now and then when I
think all of machine learning can be explained by this one newexciting principle).
If ancestral Bob walks the savanna and he has just encountered an instance of
a lion and fled into a tree with his buddies, the next time he sees a squirrel he
believes it is a small instance of a dangerous lion and flees into the trees again.
Over-generalization seems to be rather common among small children.

One of the main conclusions from this discussion is that we should neither
over-generalize nor over-fit. We need to be on the edge of being just right. But
just right about what? It doesn’t seem there is one correct God-given definition
of the category chairs. We seem to all agree, but one can surely find examples
that would be difficult to classify. When do we generalize exactly right? The
magic word isPREDICTION. From an evolutionary standpoint, all we have to
do is make correct predictions about aspects of life that help us survive. Nobody
really cares about the definition of lion, but we do care aboutthe our responses
to the various animals (run away for lion, chase for deer). And there are a lot
of things that can be predicted in the world. This food kills me but that food is
good for me. Drumming my fists on my hairy chest in front of a female generates
opportunities for sex, sticking my hand into that yellow-orange flickering“flame”
hurts my hand and so on. The world is wonderfully predictableand we are very
good at predicting it.

So why do we care about object categories in the first place? Well, apparently
they help us organize the world and make accurate predictions. The category lions
is anabstractionand abstractions help us to generalize. In a certain sense, learning
is all about finding useful abstractions or concepts that describe the world. Take
the concept “fluid”, it describes all watery substances and summarizes some of
their physical properties. Ot he concept of “weight”: an abstraction that describes
a certain property of objects.

Here is one very important corollary for you:“machine learning is not in
the business of remembering and regurgitating observed information, it is in the
business of transferring (generalizing) properties from observed data onto new,
yet unobserved data”. This is the mantra of machine learning that you should
repeat to yourself every night before you go to bed (at least until the final exam).

The information we receive from the world has two componentsto it: there

13

is the part of the information which does not carry over to thefuture, the un-
predictable information. We call this “noise”. And then there is the information
that is predictable, the learnable part of the information stream.The task of any
learning algorithm is to separate the predictable part fromthe unpredictable part.

Now imagine Bob wants to send an image to Alice. He has to pay 1 dollar cent
for every bit that he sends. If the image were completely white it would be really
stupid of Bob to send the message:pixel 1: white, pixel 2: white, pixel 3: white,.....
He could just have send the messageall pixels are white!. The blank image is
completely predictable but carries very little information. Now imagine a image
that consist of white noise (your television screen if the cable is not connected).
To send the exact image Bob will have to sendpixel 1: white, pixel 2: black, pixel
3: black,.... Bob can not do better because there is no predictable information in
that image, i.e. there is nostructureto be modeled. You can imagine playing a
game and revealing one pixel at a time to someone and pay him 1$for every next
pixel he predicts correctly. For the white image you can do perfect, for the noisy
picture you would be random guessing. Real pictures are in between: some pixels
are very hard to predict, while others are easier. To compress the image, Bob can
extract rules such as: always predict the same color as the majority of the pixels
next to you, except when there is an edge. These rules constitute the model for the
regularities of the image. Instead of sending the entire image pixel by pixel, Bob
will now first send his rules and ask Alice to apply the rules. Every time the rule
fails Bob also send a correction:pixel 103: white, pixel 245: black. A few rules
and two corrections is obviously cheaper than 256 pixel values and no rules.

There is one fundamental tradeoff hidden in this game. SinceBob is sending
only a single image it does not pay to send an incredibly complicated model that
would require more bits to explain than simply sending all pixel values. If he
would be sending 1 billion images it would pay off to first sendthe complicated
model because he would be saving a fraction of all bits for every image. On the
other hand, if Bob wants to send 2 pixels, there really is no need in sending a
model whatsoever. Therefore:the size of Bob’s model depends on the amount
of data he wants to transmit. Ironically, the boundary between what is model
and what is noise depends on how much data we are dealing with!If we use a
model that is too complex we overfit to the data at hand, i.e. part of the model
represents noise. On the other hand, if we use a too simple model we ”underfit”
(over-generalize) and valuable structure remains unmodeled. Both lead to sub-
optimal compression of the image. But both also lead to suboptimal prediction
on new images. The compression game can therefore be used to find the right
size of model complexity for a given dataset. And so we have discovered a deep

14 CHAPTER 3. LEARNING

connection between learning and compression.

Now let’s think for a moment what we really mean with “a model”. A model
represents our prior knowledge of the world. It imposes structure that is not nec-
essarily present in the data. We call this the “inductive bias”. Our inductive bias
often comes in the form of a parametrized model. That is to say, we define a
family of models but let the data determine which of these models is most appro-
priate. A strong inductive bias means that we don’t leave flexibility in the model
for the data to work on. We are so convinced of ourselves that we basically ignore
the data. The downside is that if we are creating a “bad bias” towards to wrong
model. On the other hand, if we are correct, we can learn the remaining degrees
of freedom in our model from very few data-cases. Conversely, we may leave the
door open for a huge family of possible models. If we now let the data zoom in
on the model that best explains the training data it will overfit to the peculiarities
of that data. Now imagine you sampled 10 datasets of the same size N and train
these very flexible models separately on each of these datasets (note that in reality
you only have access to one such dataset but please play alongin this thought
experiment). Let’s say we want to determine the value of someparameterθ. Be-
cause the models are so flexible, we can actually model the idiosyncrasies of each
dataset. The result is that the value forθ is likely to be very different for each
dataset. But because we didn’t impose much inductive bias the average of many
of such estimates will be about right. We say that the bias is small, but the vari-
ance is high. In the case of very restrictive models the opposite happens: the bias
is potentially large but the variance small. Note that not only is a large bias is bad
(for obvious reasons), a large variance is bad as well: because we only have one
dataset of sizeN , our estimate could be very far off simply we were unlucky with
the dataset we were given. What we should therefore strive for is to inject all our
prior knowledge into the learning problem (this makes learning easier) but avoid
injecting the wrong prior knowledge. If we don’t trust our prior knowledge we
should let the data speak. However, letting the data speak too much might lead to
overfitting, so we need to find the boundary between too complex and too simple
a model and get its complexity just right. Access to more datameans that the data
can speak more relative to prior knowledge. That, in a nutshell is what machine
learning is all about.

3.1. IN A NUTSHELL 15

3.1 In a Nutshell

Learning is all about generalizing regularities in the training data to new, yet un-
observed data. It is not about remembering the training data. Good generalization
means that you need to balance prior knowledge with information from data. De-
pending on the dataset size, you can entertain more or less complex models. The
correct size of model can be determined by playing a compression game. Learning
= generalization = abstraction = compression.

16 CHAPTER 3. LEARNING

Chapter 4

Types of Machine Learning

We now will turn our attention and discuss some learning problems that we will
encounter in this book. The most well studied problem in ML isthat ofsupervised
learning. To explain this, let’s first look at an example. Bob want to learn how
to distinguish between bobcats and mountain lions. He typesthese words into
Google Image Search and closely studies all catlike images of bobcats on the one
hand and mountain lions on the other. Some months later on a hiking trip in the
San Bernardino mountains he sees a big cat....

The data that Bob collected was labelled because Google is supposed to only
return pictures of bobcats when you search for the word ”bobcat” (and similarly
for mountain lions). Let’s call the imagesX1, ..Xn and the labelsY1, ..., Yn. Note
that Xi are much higher dimensional objects because they representall the in-
formation extracted from the image (approximately 1 million pixel color values),
while Yi is simply−1 or 1 depending on how we choose to label our classes. So,
that would be a ratio of about 1 million to 1 in terms of information content! The
classification problem can usually be posed as finding (a.k.a. learning) a function
f(x) that approximates the correct class labels for any inputx. For instance, we
may decide that sign[f(x)] is the predictor for our class label. In the following we
will be studying quite a few of these classification algorithms.

There is also a different family of learning problems known as unsupervised
learningproblems. In this case there are no labelsY involved, just the features
X. Our task is not to classify, but to organize the data, or to discover the structure
in the data. This may be very useful for visualization data, compressing data,
or organizing data for easy accessibility. Extracting structure in data often leads
to the discovery of concepts, topics, abstractions, factors, causes, and more such
terms that all really mean the same thing. These are the underlying semantic

17

18 CHAPTER 4. TYPES OF MACHINE LEARNING

factors that can explain the data. Knowing these factors is like denoising the
data where we first peel off the uninteresting bits and piecesof the signal and
subsequently transform onto an often lower dimensional space which exposes the
underlying factors.

There are two dominant classes of unsupervised learning algorithms: cluster-
ing based algorithms assume that the data organizes into groups. Finding these
groups is then the task of the ML algorithm and the identity ofthe group is the se-
mantic factor. Another class of algorithms strives to project the data onto a lower
dimensional space. This mapping can be nonlinear, but the underlying assump-
tion is that the data is approximately distributed on some (possibly curved) lower
dimensional manifold embedded in the input space. Unrolling that manifold is
then the task of the learning algorithm. In this case the dimensions should be
interpreted as semantic factors.

There are many variations on the above themes. For instance,one is often
confronted with a situation where you have access to many more unlabeled data
(only Xi) and many fewer labeled instances (both(Xi, Yi). Take the task of clas-
sifying news articles by topic (weather, sports, national news, international etc.).
Some people may have labeled some news-articles by hand but there won’t be all
that many of those. However, we do have a very large digital library of scanned
newspapers available. Shouldn’t it be possible to use thosescanned newspapers
somehow to to improve the classifier? Imagine that the data naturally clusters into
well separated groups (for instance because news articles reporting on different
topics use very different words). This is depicted in Figure??). Note that there
are only very few cases which have labels attached to them. From this figure it
becomes clear that the expected optimal decision boundary nicely separates these
clusters. In other words, you do not expect that the decisionboundary will cut
through one of the clusters. Yet that is exactly what would happen if you would
only be using the labeled data. Hence, by simply requiring that decision bound-
aries do not cut through regions of high probability we can improve our classifier.
The subfield that studies how to improve classification algorithms using unlabeled
data goes under the name “semi-supervised learning”.

A fourth major class of learning algorithms deals with problems where the
supervised signal consists only of rewards (or costs) that are possibly delayed.
Consider for example a mouse that needs to solve a labyrinth in order to obtain
his food. While making his decisions he will not receive any feedback (apart from
perhaps slowly getting more hungry). It’s only at the end when he reaches the
cheese that receives his positive feedback, and he will haveuse this to reinforce
his perhaps random earlier decisions that lead him to the cheese. These problem

19

fall under the name ”reinforcement learning”. It is a very general setup in which
almost all known cases of machine learning can be cast, but this generality also
means that these type of problems can be very difficult. The most general RL
problems do not even assume that you know what the world lookslike (i.e. the
maze for the mouse), so you have to simultaneously learn a model of the world
and solve your task in it. This dual task induces interestingtrade-offs: should
you invest time now to learn machine learning and reap the benefit later in terms
of a high salary working for Yahoo!, or should you stop investing now and start
exploiting what you have learned so far? This is clearly a function of age, or
the time horizon that you still have to take advantage of these investments. The
mouse is similarly confronted with the problem of whether heshould try out this
new alley in the maze that can cut down his time to reach the cheese considerably,
or whether he should simply stay with he has learned and take the route he already
knows. This clearly depends on how often he thinks he will have to run through the
same maze in the future. We call this the exploration versus exploitation trade-off.
The reason that RL is a very exciting field of research is because of its biological
relevance. Do we not also have figure out how the world works and survive in it?

Let’s go back to the news-articles. Assume we have control over what article
we will label next. Which one would be pick. Surely the one that would be most
informative in some suitably defined sense. Or the mouse in the maze. Given that
decides to explore, where does he explore? Surely he will tryto seek out alleys
that look promising, i.e. alleys that he expects to maximizehis reward. We call
the problem of finding the next best data-case to investigate“active learning”.

One may also be faced with learning multiple tasks at the sametime. These
tasks are related but not identical. For instance, considerthe problem if recom-
mending movies to customers of Netflix. Each person is different and would re-
ally require a separate model to make the recommendations. However, people also
share commonalities, especially when people show evidenceof being of the same
“type” (for example a sf fan or a comedy fan). We can learn personalized models
but share features between them. Especially for new customers, where we don’t
have access to many movies that were rated by the customer, weneed to “draw
statistical strength” from customers who seem to be similar. From this example
it has hopefully become clear that we are trying to learn models for many differ-
ent yet related problems and that we can build better models if we share some of
the things learned for one task with the other ones. The trickis not to share too
much nor too little and how much we should share depends on howmuch data and
prior knowledge we have access to for each task. We call this subfield of machine
learning:“multi-task learning.

20 CHAPTER 4. TYPES OF MACHINE LEARNING

4.1 In a Nutshell

There are many types of learning problems within machine learning. Supervised
learning deals with predicting class labels from attributes, unsupervised learn-
ing tries to discover interesting structure in data, semi-supervised learning uses
both labeled and unlabeled data to improve predictive performance, reinforcement
learning can handle simple feedback in the form of delayed reward, active learn-
ing optimizes the next sample to include in the learning algorithm and multi-task
learning deals with sharing common model components between related learning
tasks.

Chapter 5

Nearest Neighbors Classification

Perhaps the simplest algorithm to perform classification isthe “k nearest neigh-
bors (kNN) classifier”. As usual we assume that we have data of the form{Xin, Yn}
whereXin is the value of attributei for data-casen andYn is the label for data-
casen. We also need a measure of similarity between data-cases, which we will
denote withK(Xn,Xm) where larger values ofK denote more similar data-cases.

Given these preliminaries, classification is embarrassingly simple: when you
are provided with the attributesXt for a new (unseen) test-case, you first find the
k most similar data-cases in the dataset by computingK(Xt,Xn) for all n. Call
this setS. Then, each of thesek most similar neighbors inS can cast a vote on
the label of the test case, where each neighbor predicts thatthe test case has the
same label as itself. Assuming binary labels and an odd number of neighbors, this
will always result in a decision.

Although kNN algorithms are often associated with this simple voting scheme,
more sophisticated ways of combining the information of these neighbors is al-
lowed. For instance, one could weigh each vote by the similarity to the test-case.
This results in the following decision rule,

Yt = 1 if
∑

n∈S

K(Xt,Xn)(2Yn − 1) > 0 (5.1)

Yt = 0 if
∑

n∈S

K(Xt,Xn)(2Yn − 1) < 0 (5.2)

(5.3)

and flipping a coin if it is exactly0.
Why do we expect this algorithm to work intuitively? The reason is that we

expect data-cases with similar labels to cluster together in attribute space. So to

21

22 CHAPTER 5. NEAREST NEIGHBORS CLASSIFICATION

figure out the label of a test-case we simply look around and see what labels our
neighbors have. Asking your closest neighbor is like betting all your money on a
single piece of advice and you might get really unlucky if your closest neighbor
happens to be an odd-one-out. It’s typically better to ask several opinions before
making your decision. However, if you ask too much around youwill be forced to
ask advice from data-cases that are no longer very similar toyou. So there is some
optimal number of neighbors to ask, which may be different for every problem.
Determining this optimal number of neighbors is not easy, but we can again use
cross validation (section??) to estimate it.

So what is good and bad about kNN? First, it’s simplicity makes it attractive.
Very few assumptions about the data are used in the classification process. This
property can also be a disadvantage: if you have prior knowledge about how the
data was generated, its better to use it, because less information has to be ex-
tracted from the data. A second consideration is computation time and memory
efficiency. Assume you have a very large dataset, but you needto make decisions
very quickly. As an example, consider surfing the web-pages of Amazone.com.
Whenever you search for a book, it likes to suggest 10 others.To do that it could
classify books into categories and suggest the top ranked inthat category. kNN re-
quires Amazone to store all features of all books at a location that is accessible for
fast computation. Moreover, to classify kNN has to do the neighborhood search
every time again. Clearly, there are tricks that can be played with smart indexing,
but wouldn’t it be much easier if we would have summarized allbooks by a sim-
ple classification functionfθ(X), that “spits out” a class for any combination of
featuresX?

This distinction between algorithms/models that require memorizing every
data-item data is often called “parametric” versus “non-parametric”. It’s impor-
tant to realize that this is somewhat of a misnomer: non-parametric models can
have parameters (such as the number of neighbors to consider). The key distinc-
tion is rather wether the data is summarized through a set of parameters which
together comprise a classification functionfθ(X), or whether we retain all the
data to do the classification “on the fly”.

KNN is also known to suffer from the “curse of high dimensions”. If we
use many features to describe our data, and in particular when most of these fea-
tures turn out to be irrelevant and noisy for the classification, then kNN is quickly
confused. Imagine that there are two features that contain all the information nec-
essary for a perfect classification, but that we have added 98noisy, uninformative
features. The neighbors in the two dimensional space of the relevant features are
unfortunately no longer likely to be the neighbors in the 100dimensional space,

5.1. THE IDEA IN A NUTSHELL 23

because 98 noisy dimensions have been added. This effect is detrimental to the
kNN algorithm. Once again, it is very important to choose your initial represen-
tation with much care and preprocess the data before you apply the algorithm. In
this case, preprocessing takes the form of “feature selection” on which a whole
book in itself could be written.

5.1 The Idea In a Nutshell

To classify a new data-item you first look for thek nearest neighbors in feature
space and assign it the same label as the majority of these neighbors.

24 CHAPTER 5. NEAREST NEIGHBORS CLASSIFICATION

Chapter 6

The Naive Bayesian Classifier

In this chapter we will discuss the “Naive Bayes” (NB) classifier. It has proven to
be very useful in many application both in science as well as in industry. In the
introduction I promised I would try to avoid the use of probabilities as much as
possible. However, in chapter I’ll make an exception, because the NB classifier is
most naturally explained with the use of probabilities. Fortunately, we will only
need the most basic concepts.

6.1 The Naive Bayes Model

NB is mostly used when dealing with discrete-valued attributes. We will explain
the algorithm in this context but note that extensions to continuous-valued at-
tributes are possible. We will restrict attention to classification problems between
two classes and refer to section?? for approaches to extend this two more than
two classes.

In our usual notation we considerD discrete valued attributesXi ∈ [0, .., Vi], i =
1..D. Note that each attribute can have a different number of valuesVi. If the orig-
inal data was supplied in a different format, e.g.X1 = [Y es, No], then we simply
reassign these values to fit the above format,Y es = 1, No = 0 (or reversed). In
addition we are also provided with a supervised signal, in this case the labels are
Y = 0 andY = 1 indicating that that data-item fell in class0 or class1. Again,
which class is assigned to0 or 1 is arbitrary and has no impact on the performance
of the algorithm.

Before we move on, let’s consider a real world example: spam-filtering. Every
day your mailbox get’s bombarded with hundreds of spam emails. To give an

25

26 CHAPTER 6. THE NAIVE BAYESIAN CLASSIFIER

example of the traffic that it generates: the university of California Irvine receives
on the order of 2 million spam emailsa day. Fortunately, the bulk of these emails
(approximately97%) is filtered out or dumped into your spam-box and will reach
your attention. How is this done? Well, it turns out to be a classic example of
a classification problem: spam or ham, that’s the question. Let’s say that spam
will receive a label1 and ham a label0. Our task is thus to label each new email
with either0 or 1. What are the attributes? Rephrasing this question, what would
you measure in an email to see if it is spam? Certainly, if I would read “viagra”
in the subject I would stop right there and dump it in the spam-box. What else?
Here are a few: “enlargement, cheap, buy, pharmacy, money, loan, mortgage,
credit” and so on. We can build a dictionary of words that we can detect in each
email. This dictionary could also include word phrases suchas “buy now”, “penis
enlargement”, one can make phrases as sophisticated as necessary. One could
measure whether the words or phrases appear at least once or one could count the
actual number of times they appear. Spammers know about the way these spam
filters work and counteract by slight misspellings of certain key words. Hence we
might also want to detect words like “via gra” and so on. In fact, a small arms race
has ensued where spam filters and spam generators find new tricks to counteract
the tricks of the “opponent”. Putting all these subtleties aside for a moment we’ll
simply assume that we measure a number of these attributes for every email in a
dataset. We’ll also assume that we have spam/ham labels for these emails, which
were acquired by someone removing spam emails by hand from his/her inbox.
Our task is then to train a predictor for spam/ham labels for future emails where
we have access to attributes but not to labels.

The NB model is what we call a “generative” model. This means that we
imagine how the data was generated in an abstract sense. For emails, this works
as follows, an imaginary entity first decides how many spam and ham emails it will
generate on a daily basis. Say, it decides to generate 40% spam and 60% ham. We
will assume this doesn’t change with time (of course it does,but we will make
this simplifying assumption for now). It will then decide what the chance is that
a certain word appearsk times in a spam email. For example, the word “viagra”
has a chance of96% to not appear at all,1% to appear once,0.9% to appear twice
etc. These probabilities are clearly different for spam andham, “viagra” should
have a much smaller probability to appear in a ham email (but it could of course;
consider I send this text to my publisher by email). Given these probabilities, we
can then go on and try to generate emails that actually look like real emails, i.e.
with proper sentences, but we won’t need that in the following. Instead we make
the simplifying assumption that email consists of “a bag of words”, in random

6.2. LEARNING A NAIVE BAYES CLASSIFIER 27

order.

6.2 Learning a Naive Bayes Classifier

Given a dataset,{Xin, Yn}, i = 1..D, n = 1..N , we wish to estimate what these
probabilities are. To start with the simplest one, what would be a good estimate
for the number of the percentage of spam versus ham emails that our imaginary
entity uses to generate emails? Well, we can simply count howmany spam and
ham emails we have in our data. This is given by,

P (spam) =
spam emails
total # emails

=

∑

n I[Yn = 1]

N
(6.1)

Here we mean withI[A = a] a function that is only equal to1 if its argument is
satisfied, and zero otherwise. Hence, in the equation above it counts the number
of instances thatYn = 1. Since the remainder of the emails must be ham, we also
find that

P (ham) = 1 − P (spam) =
ham emails
total # emails

=

∑

n I[Yn = 0]

N
(6.2)

where we have used thatP (ham) + P (spam) = 1 since an email is either ham or
spam.

Next, we need to estimate how often we expect to see a certain word or phrase
in either a spam or a ham email. In our example we could for instance ask
ourselves what the probability is that we find the word “viagra” k times, with
k = 0, 1, > 1, in a spam email. Let’s recode this asXviagra = 0 meaning that
we didn’t observe “viagra”,Xviagra = 1 meaning that we observed it once and
Xviagra = 2 meaning that we observed it more than once. The answer is again
that we can count how often these events happened in our data and use that as an
estimate for the real probabilities according to whichit generated emails. First for
spam we find,

Pspam(Xi = j) =
spam emails for which the wordi was foundj times

total # of spam emails
(6.3)

=

∑

n I[Xin = j ∧ Yn = 1]
∑

n I[Yn = 1]
(6.4)

Here we have defined the symbol∧ to mean that both statements to the left and
right of this symbol should hold true in order for the entire sentence to be true.

28 CHAPTER 6. THE NAIVE BAYESIAN CLASSIFIER

For ham emails, we compute exactly the same quantity,

Pham(Xi = j) =
ham emails for which the wordi was foundj times

total # of ham emails
(6.5)

=

∑

n I[Xin = j ∧ Yn = 0]
∑

n I[Yn = 0]
(6.6)

Both these quantities should be computed for all words or phrases (or more gen-
erally attributes).

We have now finished the phase where we estimate the model fromthe data.
We will often refer to this phase as “learning” or training a model. The model
helps us understand how data was generated in some approximate setting. The
next phase is that of prediction or classification of new email.

6.3 Class-Prediction for New Instances

New email does not come with a label ham or spam (if it would we could throw
spam in the spam-box right away). What we do see are the attributes{Xi}. Our
task is to guess the label based on the model and the measured attributes. The
approach we take is simple: calculate whether the email has ahigher probability
of being generated from the spam or the ham model. For example, because the
word “viagra” has a tiny probability of being generated under the ham model it
will end up with a higher probability under the spam model. But clearly, all words
have a say in this process. It’s like a large committee of experts, one for each
word. each member casts a vote and can say things like: “I am 99% certain its
spam”, or “It’s almost definitely not spam (0.1% spam)”. Eachof these opinions
will be multiplied together to generate a final score. We thenfigure out whether
ham or spam has the highest score.

There is one little practical caveat with this approach, namely that the product
of a large number of probabilities, each of which is necessarily smaller than one,
very quickly gets so small that your computer can’t handle it. There is an easy fix
though. Instead of multiplying probabilities as scores, weuse the logarithms of
those probabilities and add the logarithms. This is numerically stable and leads to
the same conclusion because ifa > b then we also have thatlog(a) > log(b) and
vice versa. In equations we compute the score as follows:

Sspam=
∑

i

log Pspam(Xi = vi) + log P (spam) (6.7)

6.3. CLASS-PREDICTION FOR NEW INSTANCES 29

where withvi we mean the value for attributei that we observe in the email under
consideration, i.e. if the email contains no mention of the word “viagra” we set
vviagra = 0.

The first term in Eqn.6.7 adds all the log-probabilities under the spam model
of observing the particular value of each attribute. Every time a word is observed
that has high probability for the spam model, and hence has often been observed
in the dataset, will boost this score. The last term adds an extra factor to the score
that expresses our prior belief of receiving a spam email instead of a ham email.

We compute a similar score for ham, namely,

Sham =
∑

i

log Pham(Xi = vi) + log P (ham) (6.8)

and compare the two scores. Clearly, a large score for spam relative to ham pro-
vides evidence that the email is indeed spam. If your goal is to minimize the total
number of errors (whether they involve spam or ham) then the decision should be
to choose the class which has the highest score.

In reality, one type of error could have more serious consequences than an-
other. For instance, a spam email making it in my inbox is not too bad, bad an
important email that ends up in my spam-box (which I never check) may have
serious consequences. To account for this we introduce a general thresholdθ and
use the following decision rule,

Y = 1 if S1 > S0 + θ (6.9)

Y = 0 if S1 < S0 + θ (6.10)

(6.11)

If these quantities are equal you flip a coin.

If θ = −∞, we always decide in favor of labelY = 1, while if we use
θ = +∞ we always decide in favor ofY = 0. The actual value is a matter of
taste. To evaluate a classifier we often draw an ROC curve. An ROC curve is
obtained by slidingθ between−∞ and+∞ and plotting the true positive rate
(the number of examples with labelY = 1 also classified asY = 1 divided by the
total number of examples withY = 1) versus the false positive rate (the number
of examples with labelY = 0 classified asY = 1 divided by the total number of
examples withY = 0). For more details see chapter??.

30 CHAPTER 6. THE NAIVE BAYESIAN CLASSIFIER

6.4 Regularization

The spam filter algorithm that we discussed in the previous sections does unfortu-
nately not work very well if we wish to use many attributes (words, word-phrases).
The reason is that for many attributes we may not encounter a single example in
the dataset. Say for example that we defined the word “Nigeria” as an attribute, but
that our dataset did not include one of those spam emails where you are promised
mountains of gold if you invest your money in someone bank in Nigeria. Also
assume there are indeed a few ham emails which talk about the nice people in
Nigeria. Then any future email that mentions Nigeria is classified as ham with
100% certainty. More importantly, one cannot recover from this decision even if
the email also mentions viagra, enlargement, mortgage and so on, all in a single
email! This can be seen by the fact thatlog Pspam(X“Nigeria” > 0) = −∞ while the
final score is a sum of these individual word-scores.

To counteract this phenomenon, we give each word in the dictionary a small
probability of being present in any email (spam or ham), before seeing the data.
This process is called smoothing. The impact on the estimated probabilities are
given below,

Pspam(Xi = j) =
α +

∑

n I[Xin = j ∧ Yn = 1]

Viα +
∑

n I[Yn = 1]
(6.12)

Pham(Xi = j) =
α +

∑

n I[Xin = j ∧ Yn = 0]

Viα +
∑

n I[Yn = 0]
(6.13)

whereVi is the number of possible values of attributei. Thus,α can be interpreted
as a small, possibly fractional number of “pseudo-observations” of the attribute in
question. It’s like adding these observations to the actualdataset.

What value forα do we use? Fitting its value on the dataset will not work,
because the reason we added it was exactly because we assumedthere was too
little data in the first place (we hadn’t received one of thoseannoying “Nigeria”
emails yet) and thus will relate to the phenomenon of overfitting. However, we
can use the trick described in section?? where we split the data two pieces. We
learn a model on one chunk and adjustα such that performance of the other chunk
is optimal. We play this game this multiple times with different splits and average
the results.

6.5. REMARKS 31

6.5 Remarks

One of the main limitations of the NB classifier is that it assumes independence be-
tween attributes (This is presumably the reason why we call it thenaiveBayesian
classifier). This is reflected in the fact that each classifierhas an independent
vote in the final score. However, imagine that I measure the words, “home” and
“mortgage”. Observing “mortgage” certainly raises the probability of observing
“home”. We say that they are positively correlated. It wouldtherefore be more
fair if we attributed a smaller weight to “home” if we alreadyobserved mortgage
because they convey the same thing: this email is about mortgages for your home.
One way to obtain a more fair voting scheme is to model these dependencies ex-
plicitly. However, this comes at a computational cost (a longer time before you
receive your email in your inbox) which may not always be worth the additional
accuracy. One should also note that more parameters do not necessarily improve
accuracy because too many parameters may lead to overfitting.

6.6 The Idea In a Nutshell

Consider Figure??. We can classify data by building a model of how the data was
generated. For NB we first decide whether we will generate a data-item from class
Y = 0 or classY = 1. Given that decision we generate the values forD attributes
independently. Each class has a different model for generating attributes. Clas-
sification is achieved by computing which model was more likely to generate the
new data-point, biasing the outcome towards the class that is expected to generate
more data.

32 CHAPTER 6. THE NAIVE BAYESIAN CLASSIFIER

Chapter 7

The Perceptron

We will now describe one the simplest parametric classifiers: the perceptron
and its cousin thelogistic regressionclassifier. However, despite its simplicity
it should not be under-estimated! It is the workhorse for most companies in-
volved with some form of machine learning (perhaps tying with thedecision tree
classifier). One could say that it represents the canonical parametric approach to
classification where we believe that a straight line is sufficient to separate the two
classes of interest. An example of this is given in Figure??where the assumption
that the two classes can be separated by a line is clearly valid.

However, this assumption need not always be true. Looking atFigure?? we
clearly observe that there is no straight line that will do the job for us. What can
we do? Our first inclination is probably to try and fit a more complicated sepa-
ration boundary. However, there is another trick that we illbe using often in this
book. Instead we can increase the dimensionality of the space by “measuring”
more things of the data. Callφk(X) featurek that was measured from the data.
The features can be highly nonlinear functions. The simplest choice may be to
also measureφi(X) = X2

i , ∀k for each attributeXk. But we may also measure
cross-products such asφij(X) = XiXj, ∀i, j. The latter will allow you to ex-
plicitly model correlations between attributes. For example, if Xi represents the
presence (1) or absence (0) of the word “viagra” and similarly forXj and the pres-
ence/absence of the word “dysfunction”, then the cross product featureXiXj let’s
you model the presence of both words simultaneously (which should be helpful in
trying to find out what this document is about). We can add as many features as we
like, adding another dimension for every new feature. In this higher dimensional
space we can now be more confident in assuming that the data canbe separated
by a line.

33

34 CHAPTER 7. THE PERCEPTRON

I like to warn the reader at this point that more features is not necessarily
a good thing if the new features are uninformative for the classification task at
hand. The problem is that they introduce noise in the input that can mask the
actual signal (i.e. the good, discriminative features). Infact, there is a whole
subfield of ML that deals with selecting relevant features from a set that is too
large. The problem of too many dimensions is sometimes called “the curse of
high dimensionality”. Another way of seeing this is that more dimensions often
lead to more parameters in the model (as in the case for the perceptron) and can
hence lead to overfitting. To combat that in turn we can add regularizers as we
will see in the following.

With the introduction of regularizers, we can sometimes play magic and use
an infinite number of features. How we play this magic will be explained when
we will discuss kernel methods in the next sections. But let us first start simple
with the perceptron.

7.1 The Perceptron Model

Our assumption is that a line can separate the two classes of interest. To make our
life a little easier we will switch to theY = {+1,−1} representation. With this,
we can express the condition mathematically expressed as1,

Yn ≈ sign(
∑

k

wkXkn − α) (7.1)

where “sign” is the sign-function (+1 for nonnegative reals and−1 for negative
reals). We have introducedK +1 parameters{w1, .., wK, α} which define the line
for us. The vectorw represents the direction orthogonal to the decision boundary
depicted in Figure??. For example, a line through the origin is represented by
wTx = 0, i.e. all vectorsx with a vanishing inner product withw. The scalar
quantityα represents the offset of the linewTx = 0 from the origin, i.e. the
shortest distance from the origin to the line. This can be seen by writing the points
on the line asx = y + v wherey is a fixed vector pointing to an arbitrary point
on the line andv is the vector on the line starting aty (see Figure??). Hence,
wT (y + v) − α = 0. Since by definitionwTv = 0, we findwTy = α which
means thatα is the projection ofy ontow which is the shortest distance from the
origin to the line.

1Note that we can replaceXk → φk(X) but that for the sake of simplicity we will refrain from
doing so at this point.

7.1. THE PERCEPTRON MODEL 35

We like to estimate these parameters from the data (which we will do in a
minute), but it is important to notice that the number of parameters is fixed in
advance. In some sense, we believe so much in our assumption that the data is
linearly separable that we stick to it irrespective of how many data-cases we will
encounter. This fixed capacity of the model is typical for parametric methods, but
perhaps a little unrealistic for real data. A more reasonable assumption is that
the decision boundary may become more complex as we see more data. Too few
data-cases simply do not provide the resolution (evidence)necessary to see more
complex structure in the decision boundary. Recall that non-parametric methods,
such as the “nearest-neighbors” classifiers actually do have this desirable feature.
Nevertheless, the linear separability assumption comes with some computation
advantages as well, such as very fast class prediction on newtest data. I believe
that this computational convenience may be at the root for its popularity. By the
way, when we take the limit of an infinite number of features, we will have happily
returned the land of “non-parametrics” but we have exercisea little patience before
we get there.

Now let’s write down a cost function that we wish to minimize in order for our
linear decision boundary to become a good classifier. Clearly, we would like to
control performance on future, yet unseen test data. However, this is a little hard
(since we don’t have access to this data by definition). As a surrogate we will
simply fit the line parameters on the training data. It can notbe stressed enough
that this is dangerous in principle due to the phenomenon of overfitting (see sec-
tion ??). If we have introduced very many features and no form of regularization
then we have many parameters to fit. When this capacity is too large relative to
the number of data cases at our disposal, we will be fitting theidiosyncrasies of
this particular dataset and these will not carry over to the future test data. So,
one should split of a subset of the training data and reserve it for monitoring per-
formance (one should not use this set in the training procedure). Cycling though
multiple splits and averaging the result was the cross-validation procedure dis-
cussed in section??. If we do not use too many features relative to the number of
data-cases, the model class is very limited and overfitting is not an issue. (In fact,
one may want to worry more about “underfitting” in this case.)

Ok, so now that we agree on writing down a cost on the training data, we need
to choose an explicit expression. Consider now the following choice:

C(w, α) =
1

2

1

n

n
∑

i=1

(Yn − wT Xn + α)2 (7.2)

36 CHAPTER 7. THE PERCEPTRON

where we have rewrittenwT Xn =
∑

k wkXkn. If we minimize this cost then
wTXn − α tends to be positive whenYn = +1 and negative whenYn = −1. This
is what we want! Once optimized we can then easily use our optimal parameters
to perform prediction on new test dataXtest as follows:

Ỹtest = sign(
∑

k

w∗
kXtest − α∗) (7.3)

whereỸ is used to indicate thepredictedvalue forY .
So far so good, but how do we obtain our values for{w∗, α∗}? The simplest

approach is to compute the gradient and slowly descent on thecost function (see
appendix?? for background). In this case, the gradients are simple:

∇wC(w, α) = −
1

n

n
∑

i=1

(Yn − wT Xn + α)Xn = −X(Y − XTw + α)(7.4)

∇αC(w, α) =
1

n

n
∑

i=1

(Yn − wT Xn + α) = (Y − XTw + α) (7.5)

where in the latter matrix expression we have used the convention thatX is the
matrix with elementsXkn. Our gradient descent is now simply given as,

wt+1 = wt − η∇wC(wt, αt) (7.6)

αt+1 = αt − η∇αC(wt, αt) (7.7)

Iterating these equations until convergence will minimizethe cost function. One
may criticize plain vanilla gradient descent for many reasons. For example you
need to be carefully choose the stepsizeη or risk either excruciatingly slow conver-
gence or exploding values of the iterateswt, αt. Even if convergence is achieved
asymptotically, it is typically slow. Using a Newton-Ralphson method will im-
prove convergence properties considerably but is also veryexpensive. Many meth-
ods have been developed to improve the optimization of the cost function, but that
is not the focus of this book.

However, I do want to mention a very popular approach to optimization on
very large datasets known as “stochastic gradient descent”. The idea is to select
a single data-item randomly and perform an update on the parameters based on
that:

wt+1 = wt + η(Yn −wT Xn + α)Xn (7.8)

αt+1 = αt = η(Yn − wTXn + α) (7.9)

7.2. A DIFFERENT COST FUNCTION: LOGISTIC REGRESSION 37

The fact that we are picking data-cases randomly injects noise in the updates, so
even close to convergence we are “wiggling around” the solution. If we decrease
the stepsize however, the wiggles get smaller. So it seems a sensible strategy
would be to slowly decrease the stepsize and wiggle our way tothe solution. This
stochastic gradient descent is actually very efficient in practice if we can find a
good annealing schedule for the stepsize. Why really? It seems that if we use
more data-cases in a mini-batch to perform a parameter update we should be able
to make larger steps in parameter space by using bigger stepsizes. While this
reasoning holds close to the solution it does not far away from the solution. The
intuitive reason is that far away from convergence every datapoint will tell you
the same story: move in direction X to improve your model. Yousimply do not
need to query datapoints in order to extract that information. So for a bad model
there is a lot of redundancy in the information that data-cases can convey about
improving the parameters and querying a few is sufficient. Closer to convergence
you need to either use more data or decrease the stepsize to increase the resolution
of your gradients.

This type of reasoning clearly makes an effort to include thecomputational
budget part of the overall objective. This is what we have argued in chapter XX
is the distinguishing feature of machine learning. If you are not convinced about
how important this is in the face of modern day datasets imaginer the following.
Company C organizes a contest where they provide a virtuallyinfinite dataset
for some prediction task. You can earn 1 million dollars if you make accurate
predictions on some test set by Friday next week. You can choose between a
single parameter update based on all the data or many updateson small subsets of
the data, Who do you think will win the contest?

7.2 A Different Cost function: Logistic Regression

The cost function of Eq. 7.2 penalizes gross violations of ones predictions rather
severely (quadratically). This is sometimes counter-productive because the algo-
rithm might get obsessed with improving the performance of one single data-case
at the expense of all the others. The real cost simply counts the number of mis-
labelled instances, irrespective of how badly off you prediction functionwT Xn+α
was. So, a different function is often used,

C(w, α) = −
1

n

n
∑

i=1

Yn tanh(wT Xn + α) (7.10)

38 CHAPTER 7. THE PERCEPTRON

The functiontanh(·) is plotted in figure??. It shows that the cost can never be
larger than2 which ensures the robustness against outliers. We leave it to the
reader to derive the gradients and formulate the gradient descent algorithm.

7.3 The Idea In a Nutshell

Figure?? tells the story. One assumes that your data can be separated by a line.
Any line can be represented bywTx = α. Data-cases from one class satisfy
wTXn ≤ α while data-cases from the other class satisfywTXn ≥ α. To achieve
that, you write down a cost function that penalizes data-cases falling on the wrong
side of the line and minimize it over{w, α}. For a test case you simply compute
the sign ofwT Xtest− α to make a prediction as to which class it belongs to.

Chapter 8

Support Vector Machines

Our task is to predict whether a test sample belongs to one of two classes. We
receive training examples of the form:{xi, yi}, i = 1, ..., n andxi ∈ R

d, yi ∈
{−1, +1}. We call {xi} the co-variates or input vectors and{yi} the response
variables or labels.

We consider a very simple example where the data are in fact linearly sepa-
rable: i.e. I can draw a straight linef(x) = wTx − b such that all cases with
yi = −1 fall on one side and havef(xi) < 0 and cases withyi = +1 fall on the
other and havef(xi) > 0. Given that we have achieved that, we could classify
new test cases according to the ruleytest = sign(xtest).

However, typically there are infinitely many such hyper-planes obtained by
small perturbations of a given solution. How do we choose between all these
hyper-planes which the solve the separation problem for ourtraining data, but
may have different performance on the newly arriving test cases. For instance,
we could choose to put the line very close to members of one particular class,
sayy = −1. Intuitively, when test cases arrive we will not make many mistakes
on cases that should be classified withy = +1, but we will make very easily
mistakes on the cases withy = −1 (for instance, imagine that a new batch of
test cases arrives which are small perturbations of the training data). A sensible
thing thus seems to choose the separation line as far away from bothy = −1 and
y = +1 training cases as we can, i.e. right in the middle.

Geometrically, the vectorw is directed orthogonal to the line defined bywTx =
b. This can be understood as follows. First takeb = 0. Now it is clear that all vec-
tors,x, with vanishing inner product withw satisfy this equation, i.e. all vectors
orthogonal tow satisfy this equation. Now translate the hyperplane away from the
origin over a vectora. The equation for the plane now becomes:(x− a)T w = 0,

39

40 CHAPTER 8. SUPPORT VECTOR MACHINES

i.e. we find that for the offsetb = aT w, which is the projection ofa onto to the
vectorw. Without loss of generality we may thus choosea perpendicular to the
plane, in which case the length||a|| = |b|/||w|| represents the shortest, orthogonal
distance between the origin and the hyperplane.

We now define 2 more hyperplanes parallel to the separating hyperplane. They
represent that planes that cut through the closest trainingexamples on either side.
We will call them “support hyper-planes” in the following, because the data-
vectors they contain support the plane.

We define the distance between the these hyperplanes and the separating hy-
perplane to bed+ andd− respectively. Themargin, γ, is defined to bed+ + d−.
Our goal is now to find a the separating hyperplane so that the margin is largest,
while the separating hyperplane is equidistant from both.

We can write the following equations for the support hyperplanes:

wTx = b + δ (8.1)

wTx = b − δ (8.2)

We now note that we have over-parameterized the problem: if we scalew, b and
δ by a constant factorα, the equations forx are still satisfied. To remove this
ambiguity we will require thatδ = 1, this sets the scale of the problem, i.e. if we
measure distance in millimeters or meters.

We can now also compute the values ford+ = (||b+1|−|b||)/||w|| = 1/||w||
(this is only true ifb /∈ (−1, 0) since the origin doesn’t fall in between the hyper-
planes in that case. Ifb ∈ (−1, 0) you should used+ = (||b + 1| + |b||)/||w|| =
1/||w||). Hence the margin is equal to twice that value:γ = 2/||w||.

With the above definition of the support planes we can write down the follow-
ing constraint that any solution must satisfy,

wTxi − b ≤ −1 ∀ yi = −1 (8.3)

wTxi − b ≥ +1 ∀ yi = +1 (8.4)

or in one equation,
yi(w

Txi − b) − 1 ≥ 0 (8.5)

We now formulate the primal problem of the SVM:

minimizew,b

1

2
||w||2

subject to yi(w
Txi − b) − 1 ≥ 0 ∀i (8.6)

41

Thus, we maximize the margin, subject to the constraints that all training cases
fall on either side of the support hyper-planes. The data-cases that lie on the
hyperplane are called support vectors, since they support the hyper-planes and
hence determine the solution to the problem.

The primal problem can be solved by a quadratic program. However, it is
not ready to be kernelised, because its dependence is not only on inner products
between data-vectors. Hence, we transform to the dual formulation by first writing
the problem using a Lagrangian,

L(w, b, α) =
1

2
||w||2 −

N
∑

i=1

αi

[

yi(w
Txi − b) − 1

]

(8.7)

The solution that minimizes the primal problem subject to the constraints is given
byminw maxαL(w, α), i.e. a saddle point problem. When the original objective-
function is convex, (and only then), we can interchange the minimization and
maximization. Doing that, we find that we can find the condition onw that must
hold at the saddle point we are solving for. This is done by taking derivatives wrt
w andb and solving,

w −
∑

i

αiyixi = 0 ⇒ w∗ =
∑

i

αiyixi (8.8)

∑

i

αiyi = 0 (8.9)

Inserting this back into the Lagrangian we obtain what is known as the dual prob-
lem,

maximize LD =
N
∑

i=1

αi −
1

2

∑

ij

αiαjyiyjx
T
i xj

subject to
∑

i

αiyi = 0 (8.10)

αi ≥ 0 ∀i (8.11)

The dual formulation of the problem is also a quadratic program, but note that the
number of variables,αi in this problem is equal to the number of data-cases,N .

The crucial point is however, that this problemonly depends onxi through the
inner productxT

i xj . This is readily kernelised through the substitutionxT
i xj →

k(xi, xj). This is a recurrent theme: the dual problem lends itself to kernelisation,
while the primal problem did not.

42 CHAPTER 8. SUPPORT VECTOR MACHINES

The theory of duality guarantees that for convex problems, the dual prob-
lem will be concave, and moreover, that the unique solution of the primal prob-
lem corresponds tot the unique solution of the dual problem.In fact, we have:
LP (w∗) = LD(α∗), i.e. the “duality-gap” is zero.

Next we turn to the conditions that must necessarily hold at the saddle point
and thus the solution of the problem. These are called the KKTconditions (which
stands for Karush-Kuhn-Tucker). These conditions are necessary in general, and
sufficient for convex optimization problems. They can be derived from the pri-
mal problem by setting the derivatives wrt tow to zero. Also, the constraints
themselves are part of these conditions and we need that forinequalityconstraints
the Lagrange multipliers are non-negative. Finally, an important constraint called
“complementary slackness” needs to be satisfied,

∂wLP = 0 → w −
∑

i

αiyixi = 0 (8.12)

∂bLP = 0 →
∑

i

αiyi = 0 (8.13)

constraint - 1 yi(w
Txi − b) − 1 ≥ 0 (8.14)

multiplier condition αi ≥ 0 (8.15)

complementary slacknessαi

[

yi(w
Txi − b) − 1

]

= 0 (8.16)

It is the last equation which may be somewhat surprising. It states that either
the inequality constraint is satisfied, but not saturated:yi(w

Txi − b) − 1 > 0
in which caseαi for that data-case must be zero, or the inequality constraint is
saturatedyi(w

Txi − b) − 1 = 0, in which caseαi can be any valueαi ≥ 0. In-
equality constraints which are saturated are said to be “active”, while unsaturated
constraints are inactive. One could imagine the process of searching for a solution
as a ball which runs down the primary objective function using gradient descent.
At some point, it will hit a wall which is the constraint and although the derivative
is still pointing partially towards the wall, the constraints prohibits the ball to go
on. This is an active constraint because the ball is glued to that wall. When a
final solution is reached, we could remove some constraints,without changing the
solution, these are inactive constraints. One could think of the term∂wLP as the
force acting on the ball. We see from the first equation above that only the forces
with αi 6= 0 exsert a force on the ball that balances with the force from the curved
quadratic surfacew.

The training cases withαi > 0, representing active constraints on the posi-
tion of the support hyperplane are called support vectors. These are the vectors

8.1. THE NON-SEPARABLE CASE 43

that are situated in the support hyperplane and they determine the solution. Typi-
cally, there are only few of them, which people call a “sparse” solution (mostα’s
vanish).

What we are really interested in is the functionf(·) which can be used to
classify future test cases,

f(x) = w∗Tx − b∗ =
∑

i

αiyix
T
i x − b∗ (8.17)

As an application of the KKT conditions we derive a solution for b∗ by using the
complementary slackness condition,

b∗ =

(

∑

j

αjyjx
T
j xi − yi

)

i a support vector (8.18)

where we usedy2
i = 1. So, using any support vector one can determineb, but for

numerical stability it is better to average over all of them (although they should
obviously be consistent).

The most important conclusion is again that this functionf(·) can thus be
expressed solely in terms of inner productsxT

i xi which we can replace with ker-
nel matricesk(xi,xj) to move to high dimensional non-linear spaces. Moreover,
sinceα is typically very sparse, we don’t need to evaluate many kernel entries in
order to predict the class of the new inputx.

8.1 The Non-Separable case

Obviously, not all datasets are linearly separable, and so we need to change the
formalism to account for that. Clearly, the problem lies in the constraints, which
cannot always be satisfied. So, let’s relax those constraints by introducing “slack
variables”,ξi,

wTxi − b ≤ −1 + ξi ∀ yi = −1 (8.19)

wTxi − b ≥ +1 − ξi ∀ yi = +1 (8.20)

ξi ≥ 0 ∀i (8.21)

The variables,ξi allow for violations of the constraint. We should penalize the
objective function for these violations, otherwise the above constraints become
void (simply always pickξi very large). Penalty functions of the formC(

∑

i ξi)
k

44 CHAPTER 8. SUPPORT VECTOR MACHINES

will lead to convex optimization problems for positive integersk. For k = 1, 2
it is still a quadratic program (QP). In the following we willchoosek = 1. C
controls the tradeoff between the penalty and margin.

To be on the wrong side of the separating hyperplane, a data-case would need
ξi > 1. Hence, the sum

∑

i ξi could be interpreted as measure of how “bad” the
violations are and is an upper bound on the number of violations.

The new primal problem thus becomes,

minimizew,b,ξ LP =
1

2
||w||2 + C

∑

i

ξi

subject to yi(w
Txi − b) − 1 + ξi ≥ 0 ∀i (8.22)

ξi ≥ 0 ∀i (8.23)

leading to the Lagrangian,

L(w, b, ξ, α, µ) =
1

2
||w||2+C

∑

i

ξi−
N
∑

i=1

αi

[

yi(w
Txi − b) − 1 + ξi

]

−
N
∑

i=1

µiξi

(8.24)
from which we derive the KKT conditions,

1.∂wLP = 0 → w −
∑

i

αiyixi = 0 (8.25)

2.∂bLP = 0 →
∑

i

αiyi = 0 (8.26)

3.∂ξLP = 0 → C − αi − µi = 0 (8.27)

4.constraint-1 yi(w
Txi − b) − 1 + ξi ≥ 0 (8.28)

5.constraint-2 ξi ≥ 0 (8.29)

6.multiplier condition-1 αi ≥ 0 (8.30)

7.multiplier condition-2 µi ≥ 0 (8.31)

8.complementary slackness-1αi

[

yi(w
Txi − b) − 1 + ξi

]

= 0 (8.32)

9.complementary slackness-1µiξi = 0 (8.33)

(8.34)

From here we can deduce the following facts. If we assume thatξi > 0, then
µi = 0 (9), henceαi = C (1) and thusξi = 1 − yi(x

T
i w − b) (8). Also, when

ξi = 0 we haveµi > 0 (9) and henceαi < C. If in addition toξi = 0 we also have
thatyi(w

Txi − b) − 1 = 0, thenαi > 0 (8). Otherwise, ifyi(w
Txi − b) − 1 > 0

8.1. THE NON-SEPARABLE CASE 45

thenαi = 0. In summary, as before for points not on the support plane andon the
correct side we haveξi = αi = 0 (all constraints inactive). On the support plane,
we still haveξi = 0, but nowαi > 0. Finally, for data-cases on the wrong side of
the support hyperplane theαi max-out toαi = C and theξi balance the violation
of the constraint such thatyi(w

Txi − b) − 1 + ξi = 0.
Geometrically, we can calculate the gap between support hyperplane and the

violating data-case to beξi/||w||. This can be seen because the plane defined by
yi(w

Tx − b) − 1 + ξi = 0 is parallel to the support plane at a distance|1 + yib −
ξi|/||w|| from the origin. Since the support plane is at a distance|1 + yib|/||w||
the result follows.

Finally, we need to convert to the dual problem to solve it efficiently and to
kernelise it. Again, we use the KKT equations to get rid ofw, b andξ,

maximize LD =

N
∑

i=1

αi −
1

2

∑

ij

αiαjyiyjx
T
i xj

subject to
∑

i

αiyi = 0 (8.35)

0 ≤ αi ≤ C ∀i (8.36)

Surprisingly, this is almost the same QP is before, but with an extra constraint on
the multipliersαi which now live in a box. This constraint is derived from the fact
thatαi = C − µi andµi ≥ 0. We also note that it only depends on inner products
xT

i xj which are ready to be kernelised.

46 CHAPTER 8. SUPPORT VECTOR MACHINES

Chapter 9

Support Vector Regression

In kernel ridge regression we have seen the final solution wasnot sparse in the
variablesα. We will now formulate a regression method that is sparse, i.e. it has
the concept of support vectors that determine the solution.

The thing to notice is that the sparseness arose from complementary slackness
conditions which in turn came from the fact that we had inequality constraints.
In the SVM the penalty that was paid for being on the wrong sideof the support
plane was given byC

∑

i ξ
k
i for positive integersk, whereξi is the orthogonal

distance away from the support plane. Note that the term||w||2 was there to
penalize largew and hence to regularize the solution. Importantly, there was no
penalty if a data-case was on the right side of the plane. Because all these data-
points do not have any effect on the final solution theα was sparse. Here we do
the same thing: we introduce a penalty for being to far away from predicted line
wΦi + b, but once you are close enough, i.e. in some “epsilon-tube” around this
line, there is no penalty. We thus expect that all the data-cases which lie inside the
data-tube will have no impact on the final solution and hence have corresponding
αi = 0. Using the analogy of springs: in the case of ridge-regression the springs
were attached between the data-cases and the decision surface, hence every item
had an impact on the position of this boundary through the force it exerted (recall
that the surface was from “rubber” and pulled back because itwas parameterized
using a finite number of degrees of freedom or because it was regularized). For
SVR there are only springs attached between data-cases outside the tube and these
attach to the tube, not the decision boundary. Hence, data-items inside the tube
have no impact on the final solution (or rather, changing their position slightly
doesn’t perturb the solution).

We introduce different constraints for violating the tube constraint from above

47

48 CHAPTER 9. SUPPORT VECTOR REGRESSION

and from below,

minimize− w, ξ, ξ̂
1

2
||w||2 +

C

2

∑

i

(ξ2
i + ξ̂2

i)

subject to wT Φi + b − yi ≤ ε + ξi ∀i

yi − wTΦi − b ≤ ε + ξ̂i ∀i (9.1)

The primal Lagrangian becomes,

LP =
1

2
||w||2+

C

2

∑

i

(ξ2
i +ξ̂2

i)+
∑

i

αi(w
TΦi+b−yi−ε−ξi)+

∑

i

α̂i(yi−wT Φi−b−ε−ξ̂i)

(9.2)
Remark I: We could have added the constraints thatξi ≥ 0 andξ̂i ≥ 0. However,
it is not hard to see that the final solution will have that requirement automatically
and there is no sense in constraining the optimization to theoptimal solution as
well. To see this, imagine someξi is negative, then, by settingξi = 0 the cost is
lower and non of the constraints is violated, so it is preferred. We also note due to
the above reasoning we will always have at least one of theξ, ξ̂ zero, i.e. inside
the tube both are zero, outside the tube one of them is zero. This means that at the
solution we haveξξ̂ = 0.
Remark II: Note that we don’t scaleε = 1 like in the SVM case. The reason is that
{yi} now determines the scale of the problem, i.e. we have not over-parameterized
the problem.

We now take the derivatives w.r.t.w, b, ξ and ξ̂ to find the following KKT
conditions (there are more of course),

w =
∑

i

(α̂i − αi)Φi (9.3)

ξi = αi/C ξ̂i = α̂i/C (9.4)

Plugging this back in and using that now we also haveαiα̂i = 0 we find the dual
problem,

maximizeα,α̂ −
1

2

∑

ij

(α̂i − αi)(α̂j − αj)(Kij +
1

C
δij) +

∑

i

(α̂i − αi)yi −
∑

i

(α̂i + αi)ε

subject to
∑

i

(α̂i − αi) = 0

αi ≥ 0, α̂i ≥ 0 ∀i (9.5)

49

From the complementary slackness conditions we can read thesparseness of the
solution out:

αi(w
TΦi + b − yi − ε − ξi) = 0 (9.6)

α̂i(yi −wT Φi − b − ε − ξ̂i) = 0 (9.7)

ξiξ̂i = 0, αiα̂i = 0 (9.8)

where we added the last conditions by hand (they don’t seem todirectly follow
from the formulation). Now we clearly see that if a case is above the tubeξ̂i

will take on its smallest possible value in order to make the constraints satisfied
ξ̂i = yi − wT Φi − b − ε. This implies that̂αi will take on a positive value and
the farther outside the tube the larger theα̂i (you can think of it as a compensating
force). Note that in this caseαi = 0. A similar story goes ifξi > 0 andαi > 0. If
a data-case is inside the tube theαi, α̂i are necessarily zero, and hence we obtain
sparseness.

We now change variables to make this optimization problem look more similar
to the SVM and ridge-regression case. Introduceβi = α̂i − αi and usêαiαi = 0
to write α̂i + αi = |βi|,

maximizeβ −
1

2

∑

ij

βiβj(Kij +
1

C
δij) +

∑

i

βiyi −
∑

i

|βi|ε

subject to
∑

i

βi = 0 (9.9)

where the constraint comes from the fact that we included a bias term1 b.

From the slackness conditions we can also find a value forb (similar to the
SVM case). Also, as usual, the prediction of new data-case isgiven by,

y = wTΦ(x) + b =
∑

i

βiK(xi,x) + b (9.10)

It is an interesting exercise for the reader to work her way through the case

1Note by the way that we could not use the trick we used in ridge-regression by defining a
constant featureφ0 = 1 andb = w0. The reason is that the objective does not depend onb.

50 CHAPTER 9. SUPPORT VECTOR REGRESSION

where the penalty is linear instead of quadratic, i.e.

minimize
w,ξ,ξ̂

1

2
||w||2 + C

∑

i

(ξi + ξ̂i)

subject to wT Φi + b − yi ≤ ε + ξi ∀i

yi − wTΦi − b ≤ ε + ξ̂i ∀i (9.11)

ξi ≥ 0, ξ̂i ≥ 0 ∀i (9.12)

leading to the dual problem,

maximizeβ −
1

2

∑

ij

βiβjKij +
∑

i

βiyi −
∑

i

|βi|ε

subject to
∑

i

βi = 0 (9.13)

−C ≤ βi ≤ +C ∀i (9.14)

where we note that the quadratic penalty on the size ofβ is replaced by a box
constraint, as is to be expected in switching fromL2 norm toL1 norm.

Final remark: Let’s remind ourselves that the quadratic programs that we have
derived are convex optimization problems which have a unique optimal solution
which can be found efficiently using numerical methods. Thisis often claimed as
great progress w.r.t. the old neural networks days which were plagued by many
local optima.

Chapter 10

Kernel ridge Regression

Possibly the most elementary algorithm that can be kernelized is ridge regression.
Here our task is to find a linear function that models the dependencies between
covariates{xi} and response variables{yi}, both continuous. The classical way
to do that is to minimize the quadratic cost,

C(w) =
1

2

∑

i

(yi − wTxi)
2 (10.1)

However, if we are going to work in feature space, where we replacexi → Φ(xi),
there is an clear danger that we overfit. Hence we need to regularize. This is an
important topic that will return in future classes.

A simple yet effective way to regularize is to penalize the norm of w. This
is sometimes called “weight-decay”. It remains to be determined how to choose
λ. The most used algorithm is to use cross validation or leave-one-out estimates.
The total cost function hence becomes,

C =
1

2

∑

i

(yi −wTxi)
2 +

1

2
λ||w||2 (10.2)

which needs to be minimized. Taking derivatives and equating them to zero gives,

∑

i

(yi −wTxi)xi = λw ⇒ w =

(

λI +
∑

i

xix
T
i

)−1(
∑

j

yjxj

)

(10.3)

We see that the regularization term helps to stabilize the inverse numerically by
bounding the smallest eigenvalues away from zero.

51

52 CHAPTER 10. KERNEL RIDGE REGRESSION

10.1 Kernel Ridge Regression

We now replace all data-cases with their feature vector:xi → Φi = Φ(xi). In
this case the number of dimensions can be much higher, or eveninfinitely higher,
than the number of data-cases. There is a neat trick that allows us to perform the
inverse above in smallest space of the two possibilities, either the dimension of
the feature space or the number of data-cases. The trick is given by the following
identity,

(P−1 + BT R−1B)−1BT R−1 = PBT (BPBT + R)−1 (10.4)

Now note that ifB is not square, the inverse is performed in spaces of different
dimensionality. To apply this to our case we defineΦ = Φai andy = yi. The
solution is then given by,

w = (λId + ΦΦT)−1Φy = Φ(ΦT Φ + λIn)−1y (10.5)

This equation can be rewritten as:w =
∑

i αiΦ(xi) with α = (ΦT Φ + λIn)−1y.
This is an equation that will be a recurrent theme and it can beinterpreted as: The
solutionw must lie in the span of the data-cases, even if the dimensionality of the
feature space is much larger than the number of data-cases. This seems intuitively
clear, since the algorithm is linear in feature space.

We finally need to show that we never actually need access to the feature vec-
tors, which could be infinitely long (which would be rather impractical). What we
need in practice is is the predicted value for anew test point, x. This is computed
by projecting it onto the solutionw,

y = wTΦ(x) = y(ΦT Φ + λIn)
−1ΦT Φ(x) = y(K + λIn)−1κ(x) (10.6)

whereK(bxi, bxj) = Φ(xi)
T Φ(xj) andκ(x) = K(xi,x). The important message

here is of course that we only need access to the kernelK.
We can now add bias to the whole story by adding one more, constant feature

to Φ: Φ0 = 1. The value ofw0 then represents the bias since,

wT Φ =
∑

a

waΦai + w0 (10.7)

Hence, the story goes through unchanged.

10.2. AN ALTERNATIVE DERIVATION 53

10.2 An alternative derivation

Instead of optimizing the cost function above we can introduce Lagrange multi-
pliers into the problem. This will have the effect that the derivation goes along
similar lines as the SVM case. We introduce new variables,ξi = yi − wTΦi and
rewrite the objective as the following constrained QP,

minimize−w, ξ LP =
∑

i

ξ2
i

subject to yi −wT Φi = ξi ∀i (10.8)

||w|| ≤ B (10.9)

This leads to the Lagrangian,

LP =
∑

i

ξ2
i +

∑

i

βi[yi −wT Φi − ξi] + λ(||w||2 − B2) (10.10)

Two of the KKT conditions tell us that at the solution we have:

2ξi = βi ∀i, 2λw =
∑

i

βiΦi (10.11)

Plugging it back into the Lagrangian, we obtain the dual Lagrangian,

LD =
∑

i

(−
1

4
β2

i + βiyi) −
1

4λ

∑

ij

(βiβjKij) − λB2 (10.12)

We now redefineαi = βi/(2λ) to arrive at the following dual optimization prob-
lem,

maximize−α, λ −λ2
∑

i

α2
i +2λ

∑

i

αiyi−λ
∑

ij

αiαjKij−λB2 s.t.λ ≥ 0

(10.13)
Taking derivatives w.r.t.α gives precisely the solution we had already found,

α∗
i = (K + λI)−1y (10.14)

Formally we also need to maximize overλ. However, different choices ofλ cor-
respond to different choices forB. Eitherλ or B should be chosen using cross-
validation or some other measure, so we could as well varyλ in this process.

54 CHAPTER 10. KERNEL RIDGE REGRESSION

One big disadvantage of the ridge-regression is that we don’t have sparseness
in the α vector, i.e. there is no concept of support vectors. This is useful be-
cause when we test a new example, we only have to sum over the support vectors
which is much faster than summing over the entire training-set. In the SVM the
sparseness was born out of the inequality constraints because the complementary
slackness conditions told us that either if the constraint was inactive, then the
multiplier αi was zero. There is no such effect here.

Chapter 11

Kernel K-means and Spectral
Clustering

The objective in K-means can be written as follows:

C(z, µ) =
∑

i

||xi − µzi
||2 (11.1)

where we wish to minimize over the assignment variableszi (which can take val-
ueszi = 1, .., K, for all data-casesi, and over the cluster meansµk, k = 1..K. It
is not hard to show that the following iterations achieve that,

zi = arg min
k

||xi − µk||
2 (11.2)

µk =
1

Nk

∑

i∈Ck

xi (11.3)

whereCk is the set of data-cases assigned to cluster k.
Now, let’s assume we have defined many features,φ(xi) and wish to do clus-

tering in feature space. The objective is similar to before,

C(z, µ) =
∑

i

||φ(xi) − µzi
||2 (11.4)

We will now introduce aN × K assignment matrix,Znk, each column of which
represents a data-case and contains exactly one1 at row k if it is assigned to
clusterk. As a result we have

∑

k Znk = 1 andNk =
∑

n Znk. Also define

55

56 CHAPTER 11. KERNEL K-MEANS AND SPECTRAL CLUSTERING

L = diag[1/
∑

n Znk] = diag[1/Nk]. Finally defineΦin = φi(xn). With these
definitions you can now check that the matrixM defined as,

M = ΦZLZT (11.5)

consists ofN columns, one for each data-case, where each column containsa
copy of the cluster meanµk to which that data-case is assigned.

Using this we can write out the K-means cost as,

C = tr[(Φ − M)(Φ − M)T] (11.6)

Next we can show thatZT Z = L−1 (check this), and thus that(ZLZT)2 =
ZLZT . In other words, it is a projection. Similarly,I − ZLZT is a projection on
the complement space. Using this we simplify eqn.11.6 as,

C = tr[Φ(I − ZLZT)2ΦT] (11.7)

= tr[Φ(I − ZLZT)ΦT] (11.8)

= tr[ΦΦT] − tr[ΦZLZT ΦT] (11.9)

= tr[K] − tr[L
1

2 ZT KZL
1

2] (11.10)

where we used thattr[AB] = tr[BA] andL
1

2 is defined as taking the square root
of the diagonal elements.

Note that only the second term depends on the clustering matrix Z, so we can
we can now formulate the following equivalent kernel clustering problem,

max
Z

tr[L
1

2 ZT KZL
1

2] (11.11)

such that:Z is a binary clustering matrix. (11.12)

This objective is entirely specified in terms of kernels and so we have once again
managed to move to the ”dual” representation. Note also thatthis problem is
very difficult to solve due to the constraints which forces usto search of binary
matrices.

Our next step will be to approximate this problem through a relaxation on
this constraint. First we recall thatZT Z = L−1 ⇒ L

1

2 ZT ZL
1

2 = I. Renaming
H = ZL

1

2 , with H anN ×K dimensional matrix, we can formulate the following
relaxation of the problem,

max
H

tr[HT KH] (11.13)

subject toHT H = I (11.14)

57

Note that we did not requireH to be binary any longer. The hope is that the
solution is close to some clustering solution that we can then extract a posteriori.

The above problem should look familiar. Interpret the columns of H as a
collection ofK mutually orthonormal basis vectors. The objective can thenbe
written as,

K
∑

k=1

hT
k Khk (11.15)

By choosinghk proportional to theK largest eigenvectors ofK we will maximize
the objective, i.e. we have

K = UΛUT , ⇒ H = U[1:K]R (11.16)

whereR is a rotation inside the eigenvalue space,RRT = RT R = I. Using this
you can now easily verify thattr[HTKH] =

∑K

k=1 λk where{λk}, k = 1..K are
the largest K eigenvalues.

What is perhaps surprising is that the solution to this relaxed kernel-clustering
problem is given by kernel-PCA! Recall that for kernel PCA wealso solved for the
eigenvalues ofK. How then do we extract a clustering solution from kernel-PCA?

Recall that the columns ofH (the eigenvectors ofK) should approximate the
binary matrixZ which had a single1 per row indicating to which cluster data-case
n is assigned. We could try to simply threshold the entries ofH so that the largest
value is set to1 and the remaining ones to0. However, it often works better to
first normalizeH,

Ĥnk =
Hnk

√

∑

k H2
nk

(11.17)

All rows of Ĥ are located on the unit sphere. We can now run a simple clustering
algorithm such as K-means on the data matrixĤ to extract K clusters. The above
procedure is sometimes referred to as “spectral clustering”.

Conclusion: Kernel-PCA can be viewed as a nonlinear featureextraction tech-
nique. Input is a matrix of similarities (the kernel matrix or Gram matrix) which
should be positive semi-definite and symmetric. If you extract two or three fea-
tures (dimensions) you can use it as a non-linear dimensionality reduction method
(for purposes of visualization). If you use the result as input to a simple clustering
method (such as K-means) it becomes a nonlinear clustering method.

58 CHAPTER 11. KERNEL K-MEANS AND SPECTRAL CLUSTERING

Chapter 12

Kernel Principal Components
Analysis

Let’s fist see what PCA is when we do not worry about kernels andfeature spaces.
We will always assume that we have centered data, i.e.

∑

i xi = 0. This can
always be achieved by a simple translation of the axis.

Our aim is to find meaningful projections of the data. However, we are facing
an unsupervised problem where we don’t have access to any labels. If we had,
we should be doing Linear Discriminant Analysis. Due to thislack of labels,
our aim will be to find the subspace of largest variance, wherewe choose the
number of retained dimensions beforehand. This is clearly astrong assumption,
because it may happen that there is interesting signal in thedirections of small
variance, in which case PCA in not a suitable technique (and we should perhaps
use a technique called independent component analysis). However, usually it is
true that the directions of smallest variance represent uninteresting noise.

To make progress, we start by writing down the sample-covariance matrixC,

C =
1

N

∑

i

xix
T
i (12.1)

The eigenvalues of this matrix represent the variance in theeigen-directions of
data-space. The eigen-vector corresponding to the largesteigenvalue is the direc-
tion in which the data is most stretched out. The second direction is orthogonal
to it and picks the direction of largest variance in that orthogonal subspace etc.
Thus, to reduce the dimensionality of the data, we project the data onto the re-

59

60 CHAPTER 12. KERNEL PRINCIPAL COMPONENTS ANALYSIS

tained eigen-directions of largest variance:

UΛUT = C ⇒ C =
∑

a

λauau
T
a (12.2)

and the projection is given by,

yi = UT
k xi ∀i (12.3)

whereUk means thed×k sub-matrix containing the firstk eigenvectors as columns.
As a side effect, we can now show that the projected data are de-correlated in this
new basis:

1

N

∑

i

yiy
T
i =

1

N

∑

i

UT
k xix

T
i Uk = UT

k CUk = UT
k UΛUT UT

k = Λk (12.4)

whereΛk is the (diagonal)k × k sub-matrix corresponding to the largest eigen-
values.

Another convenient property of this procedure is that the reconstruction error
in L2-norm between fromy to x is minimal, i.e.

∑

i

||xi − Pkxi||
2 (12.5)

wherePk = UkU
T
k is the projection onto the subspace spanned by the columns of

Uk, is minimal.
Now imagine that there are more dimensions than data-cases,i.e. some di-

mensions remain unoccupied by the data. In this case it is nothard to show that
the eigen-vectors that span the projection space must lie inthe subspace spanned
by the data-cases. This can be seen as follows,

λaua = Cua =
1

N

∑

i

xix
T
i ua =

1

N

∑

i

(xT
i ua)xi ⇒ ua =

∑

i

(xT
i ua)

Nλa

xi =
∑

i

αa
i xi

(12.6)
whereua is some arbitrary eigen-vector ofC. The last expression can be inter-
preted as: “every eigen-vector can be exactly written (i.e.losslessly) as some
linear combination of the data-vectors, and hence it must lie in its span”. This
also implies that instead of the eigenvalue equationsCu = λu we may consider
theN projected equationsxT

i Cu = λxT
i u ∀i. From this equation the coefficients

12.1. CENTERING DATA IN FEATURE SPACE 61

αa
i can be computed efficiently a space of dimensionN (and notd) as follows,

xT
i Cua = λax

T
i ua ⇒

xT
i

1

N

∑

k

xkx
T
k

∑

j

αa
jxj = λax

T
i

∑

j

αa
jxj ⇒

1

N

∑

j,k

αa
j [x

T
i xk][x

T
k xj] = λa

∑

j

αa
j [x

T
i xj] (12.7)

We now rename the matrix[xT
i xj] = Kij to arrive at,

K2αa = NλaKαa ⇒ Kαa = (λ̃a)α
a with λ̃a = Nλa (12.8)

So, we have derived an eigenvalue equation forα which in turn completely deter-
mines the eigenvectorsu. By requiring thatu is normalized we find,

uT
a ua = 1 ⇒

∑

i,j

αa
i α

a
j [x

T
i xj] = αT

a Kαa = Nλaα
T
a αa = 1 ⇒ ||αa|| = 1/

√

Nλa

(12.9)
Finally, when we receive a new data-caset and we like to compute its projections
onto the new reduced space, we compute,

uT
a t =

∑

i

αa
i x

T
i t =

∑

i

αa
i K(xi, t) (12.10)

This equation should look familiar, it is central to most kernel methods.
Obviously, the whole exposition was setup so that in the end we only needed

the matrixK to do our calculations. This implies that we are now ready to ker-
nelize the procedure by replacingxi → Φ(xi) and definingKij = Φ(xi)Φ(xj)

T ,
whereΦ(xi) = Φia.

12.1 Centering Data in Feature Space

It is in fact very difficult to explicitly center the data in feature space. But, we
know that the final algorithm only depends on the kernel matrix, so if we can
center the kernel matrix we are done as well. A kernel matrix is given byKij =
ΦiΦ

T
j . We now center the features using,

Φi = Φi −
1

N

∑

k

Φk (12.11)

62 CHAPTER 12. KERNEL PRINCIPAL COMPONENTS ANALYSIS

Hence the kernel in terms of the new features is given by,

Kc
ij = (Φi −

1

N

∑

k

Φk)(Φj −
1

N

∑

l

Φl)
T (12.12)

= ΦiΦ
T
j − [

1

N

∑

k

Φk]Φ
T
j − Φi[

1

N

∑

l

ΦT
l] + [

1

N

∑

k

Φk][
1

N

∑

l

ΦT
l](12.13)

= Kij − κi1
T
j − 1iκ

T
j + k1i1

T
j (12.14)

with κi =
1

N

∑

k

Kik (12.15)

and k =
1

N2

∑

ij

Kij (12.16)

Hence, we can compute the centered kernel in terms of the non-centered kernel
alone and no features need to be accessed.

At test-time we need to compute,

Kc(ti,xj) = [Φ(ti) −
1

N

∑

k

Φ(xk)][Φ(xj) −
1

N

∑

l

Φ(xl)]
T (12.17)

Using a similar calculation (left for the reader) you can findthat this can be ex-
pressed easily in terms ofK(ti,xj) andK(xi,xj) as follows,

Kc(ti,xj) = K(ti,xj) − κ(ti)1
T
j − 1iκ(xj)

T + k1i1
T
j (12.18)

Chapter 13

Fisher Linear Discriminant Analysis

The most famous example of dimensionality reduction is ”principal components
analysis”. This technique searches for directions in the data that have largest vari-
ance and subsequently project the data onto it. In this way, we obtain a lower
dimensional representation of the data, that removes some of the ”noisy” direc-
tions. There are many difficult issues with how many directions one needs to
choose, but that is beyond the scope of this note.

PCA is an unsupervised technique and as such does not includelabel informa-
tion of the data. For instance, if we imagine 2 cigar like clusters in 2 dimensions,
one cigar hasy = 1 and the othery = −1. The cigars are positioned in parallel
and very closely together, such that the variance in the total data-set, ignoring the
labels, is in the direction of the cigars. For classification, this would be a terrible
projection, because all labels get evenly mixed and we destroy the useful infor-
mation. A much more useful projection is orthogonal to the cigars, i.e. in the
direction of least overall variance, which would perfectlyseparate the data-cases
(obviously, we would still need to perform classification inthis 1-D space).

So the question is, how do we utilize the label information infinding informa-
tive projections? To that purpose Fisher-LDA considers maximizing the following
objective:

J(w) =
wT SBw

wT SWw
(13.1)

whereSB is the “between classes scatter matrix” andSW is the “within classes
scatter matrix”. Note that due to the fact that scatter matrices are proportional to
the covariance matrices we could have definedJ using covariance matrices – the
proportionality constant would have no effect on the solution. The definitions of

63

64 CHAPTER 13. FISHER LINEAR DISCRIMINANT ANALYSIS

the scatter matrices are:

SB =
∑

c

Nc(µc − x̄)(µc − x̄)T (13.2)

SW =
∑

c

∑

i∈c

(xi − µc)(xi − µc)
T (13.3)

where,

µc =
1

Nc

∑

i∈c

xi (13.4)

x̄ = =
1

N

∑

i

xi =
1

N

∑

c

Ncµc (13.5)

andNc is the number of cases in classc. Oftentimes you will see that for 2 classes
SB is defined asS ′

B = (µ1 − µ2)(µ1 − µ2)
T . This is the scatter of class 1 with

respect to the scatter of class 2 and you can show thatSB = N1N2

N
S ′

B, but since it
boils down to multiplying the objective with a constant is makes no difference to
the final solution.

Why does this objective make sense. Well, it says that a good solution is one
where the class-means are well separated, measured relative to the (sum of the)
variances of the data assigned to a particular class. This isprecisely what we want,
because it implies that the gap between the classes is expected to be big. It is also
interesting to observe that since the total scatter,

ST =
∑

i

(xi − x̄)(xi − x̄)T (13.6)

is given byST = SW + SB the objective can be rewritten as,

J(w) =
wT STw

wT SWw
− 1 (13.7)

and hence can be interpreted as maximizing the total scatterof the data while
minimizing the within scatter of the classes.

An important property to notice about the objectiveJ is that is is invariant
w.r.t. rescalings of the vectorsw → αw. Hence, we can always choosew such
that the denominator is simplywTSWw = 1, since it is a scalar itself. For this rea-
son we can transform the problem of maximizing J into the following constrained

13.1. KERNEL FISHER LDA 65

optimization problem,

minw −
1

2
wT SBw (13.8)

s.t. wT SWw = 1 (13.9)

corresponding to the lagrangian,

LP = −
1

2
wTSBw +

1

2
λ(wT SWw − 1) (13.10)

(the halves are added for convenience). The KKT conditions tell us that the fol-
lowing equation needs to hold at the solution,

SBw = λSWw (13.11)

This almost looks like an eigen-value equation. In fact, it is called a generalized
eigen-problem and just like an normal eigenvalue problem there are standard ways
to solve it.

Remains to choose which eigenvalue and eigenvector corresponds to the de-
sired solution. Plugging the solution back into the objectiveJ , we find,

J(w) =
wT SBw

wTSWw
= λk

wT
k SWwk

wT
k SWwk

= λk (13.12)

from which it immediately follows that we want the largest eigenvalue to maxi-
mize the objective1.

13.1 Kernel Fisher LDA

So how do we kernelize this problem? Unlike SVMs it doesn’t seem the dual
problem reveal the kernelized problem naturally. But inspired by the SVM case
we make the following key assumption,

w =
∑

i

αiΦ(xi) (13.13)

1If you try to find the dual and maximize that, you’ll get the wrong sign it seems. My best
guess of what goes wrong is that the constraint is not linear and as a result the problem is not
convex and hence we cannot expect the optimal dual solution to be the same as the optimal primal
solution.

66 CHAPTER 13. FISHER LINEAR DISCRIMINANT ANALYSIS

This is a central recurrent equation that keeps popping up inevery kernel machine.
It says that although the feature space is very high (or even infinite) dimensional,
with a finite number of data-cases the final solution,w∗, will not have a component
outside the space spanned by the data-cases. It would not make much sense to
do this transformation if the number of data-cases is largerthan the number of
dimensions, but this is typically not the case for kernel-methods. So, we argue
that although there are possibly infinite dimensions available a priori, at mostN
are being occupied by the data, and the solutionw must lie in its span. This is a
case of the “representers theorem” that intuitively reasons as follows. The solution

w is the solution to some eigenvalue equation,S
1

2

BS−1
W S

1

2

Bw = λw, where bothSB

andSW (and hence its inverse) lie in the span of the data-cases. Hence, the part
w⊥ that is perpendicular to this span will be projected to zero and the equation
above puts no constraints on those dimensions. They can be arbitrary and have no
impact on the solution. If we now assume a very general form ofregularization on
the norm ofw, then these orthogonal components will be set to zero in the final
solution:w⊥ = 0.

In terms ofα the objectiveJ(α) becomes,

J(α) =
αT SΦ

Bα

αT SΦ
W α

(13.14)

where it is understood that vector notation now applies to a different space, namely
the space spanned by the data-vectors,R

N . The scatter matrices in kernel space
can expressed in terms of the kernel only as follows (this requires some algebra to
verify),

SΦ
B =

∑

c

Nc

[

κcκ
T
c − κκT

]

(13.15)

SΦ
W = K2 −

∑

c

Ncκcκ
T
c (13.16)

κc =
1

Nc

∑

i∈c

Kij (13.17)

κ =
1

N

∑

i

Kij (13.18)

So, we have managed to express the problem in terms of kernelsonly which
is what we were after. Note that since the objective in terms of α has exactly
the same form as that in terms ofw, we can solve it by solving the generalized

13.2. A CONSTRAINED CONVEX PROGRAMMING FORMULATION OF FDA67

eigenvalue equation. This scales asN3 which is certainly expensive for many
datasets. More efficient optimization schemes solving a slightly different problem
and based on efficient quadratic programs exist in the literature.

Projections of new test-points into the solution space can be computed by,

wT Φ(x) =
∑

i

αiK(xi,x) (13.19)

as usual. In order to classify the test point we still need to divide the space into
regions which belong to one class. The easiest possibility is to pick the cluster
with smallest Mahalonobis distance:d(x, µΦ

c) = (xα − µα
c)2/(σα

c)2 whereµα
c

andσα
c represent the class mean and standard deviation in the 1-d projected space

respectively. Alternatively, one could train any classifier in the 1-d subspace.
One very important issue that we did not pay attention to is regularization.

Clearly, as it stands the kernel machine will overfit. To regularize we can add a
term to the denominator,

SW → SW + βI (13.20)

By adding a diagonal term to this matrix makes sure that very small eigenvalues
are bounded away from zero which improves numerical stability in computing the
inverse. If we write the Lagrangian formulation where we maximize a constrained
quadratic form inα, the extra term appears as a penalty proportional to||α||2

which acts as a weight decay term, favoring smaller values ofα over larger ones.
Fortunately, the optimization problem has exactly the sameform in the regularized
case.

13.2 A Constrained Convex Programming Formu-
lation of FDA

68 CHAPTER 13. FISHER LINEAR DISCRIMINANT ANALYSIS

Chapter 14

Kernel Canonical Correlation
Analysis

Imagine you are given 2 copies of a corpus of documents, one written in English,
the other written in German. You may consider an arbitrary representation of
the documents, but for definiteness we will use the “vector space” representation
where there is an entry for every possible word in the vocabulary and a document
is represented by count values for every word, i.e. if the word “the appeared 12
times and the first word in the vocabulary we haveX1(doc) = 12 etc.

Let’s say we are interested in extracting low dimensional representations for
each document. If we had only one language, we could considerrunning PCA
to extract directions in word space that carry most of the variance. This has the
ability to infer semantic relations between the words such as synonymy, because
if words tend to co-occur often in documents, i.e. they are highly correlated, they
tend to be combined into a single dimension in the new space. These spaces can
often be interpreted as topic spaces.

If we have two translations, we can try to find projections of each representa-
tion separately such that the projections are maximally correlated. Hopefully, this
implies that they represent the same topic in two different languages. In this way
we can extract language independent topics.

Let x be a document in English andy a document in German. Consider the
projections:u = aT x andv = bTy. Also assume that the data have zero mean.
We now consider the following objective,

ρ =
E[uv]

√

E[u2]E[v2]
(14.1)

69

70 CHAPTER 14. KERNEL CANONICAL CORRELATION ANALYSIS

We want to maximize this objective, because this would maximize the correlation
between the univariatesu andv. Note that we divided by the standard deviation
of the projections to remove scale dependence.

This exposition is very similar to the Fisher discriminant analysis story and I
encourage you to reread that. For instance, there you can findhow to generalize
to cases where the data is not centered. We also introduced the following “trick”.
Since we can rescalea andb without changing the problem, we can constrain
them to be equal to1. This then allows us to write the problem as,

maximizea,b ρ = E[uv]

subject to E[u2] = 1

E[v2] = 1 (14.2)

Or, if we construct a Lagrangian and write out the expectations we find,

mina,bmaxλ1,λ2

∑

i

aT xiy
T
i b−

1

2
λ1(
∑

i

aT xix
T
i a−N)−

1

2
λ2(
∑

i

bTyiy
T
i b−N)

(14.3)
where we have multiplied by N. Let’s take derivatives wrt toa andb to see what
the KKT equations tell us,

∑

i

xiy
T
i b− λ1

∑

i

xix
T
i a = 0 (14.4)

∑

i

yix
T
i a − λ2

∑

i

yiy
T
i b = 0 (14.5)

First notice that if we multiply the first equation withaT and the second with
bT and subtract the two, while using the constraints, we arriveat λ1 = λ2 = λ.
Next, renameSxy =

∑

i xiy
T
i , Sx =

∑

i xix
T
i andSy =

∑

i yiy
T
i . We define

the following larger matrices:SD is the block diagonal matrix withSx andSy on
the diagonal and zeros on the off-diagonal blocks. Also, we defineSO to be the
off-diagonal matrix withSxy on the off diagonal. Finally we definec = [a,b].
The two equations can then we written jointly as,

SOc = λSDc ⇒ S−1
D SOc = λc ⇒ S

1

2

OS−1
D S

1

2

O(S
1

2

Oc) = λ(S
1

2

Oc) (14.6)

which is again an regular eigenvalue equation forc′ = S
1

2

Oc

14.1. KERNEL CCA 71

14.1 Kernel CCA

As usual, the starting point to map the data-cases to featurevectorsΦ(xi) and
Ψ(yi).When the dimensionality of the space is larger than the number of data-
cases in the training-set, then the solution must lie in the span of data-cases, i.e.

a =
∑

i

αiΦ(xi) b =
∑

i

βiΨ(yi) (14.7)

Using this equation in the Lagrangian we get,

L = αT KxKyβ −
1

2
λ(αT K2

xα − N) −
1

2
λ(βT K2

yβ − N) (14.8)

whereα is a vector in a differentN-dimensional space than e.g.a which lives in
aD-dimensional space, andKx =

∑

i Φ(xi)
T Φ(xi) and similarly forKy.

Taking derivatives w.r.t.α andβ we find,

KxKyβ = λK2
xα (14.9)

KyKxα = λK2
yβ (14.10)

Let’s try to solve these equations by assuming thatKx is full rank (which is typ-
ically the case). We get,α = λ−1K−1

x Kyβ and hence,K2
yβ = λ2K2

yβ which
always has a solution forλ = 1. By recalling that,

ρ =
1

N

∑

i

aT Sxyb =
1

N

∑

i

λaT Sxa = λ (14.11)

we observe that this represents the solution with maximal correlation and hence
the preferred one. This is a typical case of over-fitting emphasizes again the need
to regularize in kernel methods. This can be done by adding a diagonal term to the
constraints in the Lagrangian (or equivalently to the denominator of the original
objective), leading to the Lagrangian,

L = αT KxKyβ −
1

2
λ(αT K2

xα + η||α||2 − N) −
1

2
λ(βT K2

yβ + η||β||2 − N)

(14.12)
One can see that this acts as a quadratic penalty on the norm ofα andβ. The
resulting equations are,

KxKyβ = λ(K2
x + ηI)α (14.13)

KyKxα = λ(K2
y + ηI)β (14.14)

72 CHAPTER 14. KERNEL CANONICAL CORRELATION ANALYSIS

Analogues to the primal problem, we will define big matrices,KD which contains
(K2

x + ηI) and(K2
y + ηI) as blocks on the diagonal and zeros at the blocks off

the diagonal, and the matrixKO which has the matricesKxKy on the right-upper
off diagonal block andKyKx at the left-lower off-diagonal block. Also, we define
γ = [α, β]. This leads to the equation,

KOγ = λKDγ ⇒ K−1
D KOγ = λγ ⇒ K

1

2

OK−1
D K

1

2

O(K
1

2

Oγ) = λ(K
1

2

Oγ)
(14.15)

which is again a regular eigenvalue equation. Note that the regularization also
moved the smallest eigenvalue away from zero, and hence madethe inverse more
numerically stable. The value forη needs to be chosen using cross-validation or
some other measure. Solving the equations using this largereigen-value problem
is actually not quite necessary, and more efficient methods exist (see book).

The solutions are not expected to be sparse, because eigen-vectors are not
expected to be sparse. One would have to replaceL2 norm penalties withL1

norm penalties to obtain sparsity.

Appendix A

Essentials of Convex Optimization

A.1 Lagrangians and all that

Most kernel-based algorithms fall into two classes, eitherthey use spectral tech-
niques to solve the problem, or they use convex optimizationtechniques to solve
the problem. Here we will discuss convex optimization.

A constrained optimization problem can be expressed as follows,

minimizex f0(x)

subject to fi(x) ≤ 0 ∀i

hj(x) = 0 ∀j (A.1)

That is we have inequality constraints and equality constraints. We now write
the primal Lagrangian of this problem, which will be helpfulin the following
development,

LP (x, λ, ν) = f0(x) +
∑

i

λifi(x) +
∑

j

νjhj(x) (A.2)

where we will assume in the following thatλi ≥ 0 ∀i. From here we can define
the dual Lagrangian by,

LD(λ, ν) = infxLP (x, λ, ν) (A.3)

This objective can actually become−∞ for certain values of its arguments. We
will call parametersλ ≥ 0, ν for whichLD > −∞ dual feasible.

73

74 APPENDIX A. ESSENTIALS OF CONVEX OPTIMIZATION

It is important to notice that the dual Lagrangian is a concave function ofλ, ν
because it is a pointwise infimum of a family of linear functions inλ, ν function.
Hence, even if the primal is not convex, the dual is certainlyconcave!

It is not hard to show that

LD(λ, ν) ≤ p∗ (A.4)

wherep∗ is the primal optimal point. This simply follows because
∑

i λifi(x) +
∑

j νjhj(x) ≤ 0 for a primal feasible pointx∗.
Thus, the dual problem always provides lower bound to the primal problem.

The optimal lower bound can be found by solving the dual problem,

maximizeλ,ν LD(λ, ν)

subject to λi ≥ 0 ∀i (A.5)

which is therefore a convex optimization problem. If we calld∗ the dual optimal
point we always have:d∗ ≤ p∗, which is called weak duality.p∗ − d∗ is called
the duality gap. Strong duality holds whenp∗ = d∗. Strong duality is very nice,
in particular if we can express the primal solutionx∗ in terms of the dual solution
λ∗, ν∗, because then we can simply solve the dual problem and convert to the
answer to the primal domain since we know that solution must then be optimal.
Often the dual problem is easier to solve.

So when does strong duality hold? Up to some mathematical details the an-
swer is: if the primal problem is convex and the equality constraintsare linear.
This means thatf0(x) and{fi(x)} are convex functions andhj(x) = Ax − b.

The primal problem can be written as follows,

p∗ = inf
x

sup
λ≥0,ν

LP (x, λ, ν) (A.6)

This can be seen as follows by noting thatsupλ≥0,ν LP (x, λ, ν) = f0(x) when
x is feasible but∞ otherwise. To see this first check that by violating one of
the constraints you can find a choice ofλ, ν that makes the Lagrangian infinity.
Also, when all the constraints are satisfied, the best we can do is maximize the
additional terms to be zero, which is always possible. For instance, we can simply
set allλ, ν to zero, even though this is not necessary if the constraintsthemselves
vanish.

The dual problem by definition is given by,

d∗ = sup
λ≥0,ν

inf
x

LP (x, λ, ν) (A.7)

A.1. LAGRANGIANS AND ALL THAT 75

Hence, the “sup” and “inf” can be interchanged if strong duality holds, hence
the optimal solution is a saddle-point. It is important to realize that the order of
maximization and minimization matters for arbitrary functions (but not for convex
functions). Try to imagine a “V” shapes valley which runs diagonally across the
coordinate system. If we first maximize over one direction, keeping the other
direction fixed, and then minimize the result we end up with the lowest point on
the rim. If we reverse the order we end up with the highest point in the valley.

There are a number of important necessary conditions that hold for problems
with zero duality gap. These Karush-Kuhn-Tucker conditions turn out to be suffi-
cient for convex optimization problems. They are given by,

∇f0(x
∗) +

∑

i

λ∗
i∇fi(x

∗) +
∑

j

ν∗
j∇hj(x

∗) = 0 (A.8)

fi(x
∗) ≤ 0 (A.9)

hj(x
∗) = 0 (A.10)

λ∗
i ≥ 0 (A.11)

λ∗
i fi(x

∗) = 0 (A.12)

The first equation is easily derived because we already saw thatp∗ = infx LP (x, λ∗, ν∗)
and hence all the derivatives must vanish. This condition has a nice interpretation
as a “balancing of forces”. Imagine a ball rolling down a surface defined byf0(x)
(i.e. you are doing gradient descent to find the minimum). Theball gets blocked
by a wall, which is the constraint. If the surface and constraint is convex then if the
ball doesn’t move we have reached the optimal solution. At that point, the forces
on the ball must balance. The first term represent the force ofthe ball against the
wall due to gravity (the ball is still on a slope). The second term represents the re-
action force of the wall in the opposite direction. Theλ represents the magnitude
of the reaction force, which needs to be higher if the surfaceslopes more. We say
that this constraint is “active”. Other constraints which do not exert a force are
“inactive” and haveλ = 0. The latter statement can be read of from the last KKT
condition which we call “complementary slackness”. It saysthat eitherfi(x) = 0
(the constraint is saturated and hence active) in which caseλ is free to take on a
non-zero value. However, if the constraint is inactive:fi(x) ≤ 0, thenλ must
vanish. As we will see soon, the active constraints will correspond to the support
vectors in SVMs!

76 APPENDIX A. ESSENTIALS OF CONVEX OPTIMIZATION

Complementary slackness is easily derived by,

f0(x
∗) = LD(λ∗, ν∗) = inf

x

(

f0(x) +
∑

i

λ∗
i fi(x) +

∑

j

ν∗
j hj(x)

)

≤ f0(x
∗) +

∑

i

λ∗
i fi(x

∗) +
∑

j

ν∗
j hj(x

∗) (A.13)

≤ f0(x
∗) (A.14)

where the first line follows from Eqn.A.6 the second because the inf is always
smaller than anyx∗ and the last becausefi(x

∗) ≤ 0, λ∗
i ≥ 0 andhj(x

∗) = 0.
Hence all inequalities are equalities and each term is negative so each term must
vanish separately.

Appendix B

Kernel Design

B.1 Polynomials Kernels

The construction that we will follow below is to first write feature vectors products
of subsets of input attributes, i.e. define features vectorsas follows,

φI(x) = xi1
1 xi2

2 ...xin
n (B.1)

where we can put various restrictions on the possible combinations of indices
which are allowed. For instance, we could require that theirsum is a constant
s, i.e. there are preciselys terms in the product. Or we could require that each
ij = [0, 1]. Generally speaking, the best choice depends on the problemyou are
modelling, but another important constraint is that the corresponding kernel must
be easy to compute.

Let’s define the kernel as usual as,

K(x,y) =
∑

I

φI(x)φI(y) (B.2)

whereI = [i1, i2, ...in]. We have already encountered the polynomial kernel as,

K(x,y) = (R + xTy)d =

d
∑

s=0

d!

s!(d − s)!
Rd−s(xT y)s (B.3)

where the last equality follows from a binomial expansion. If we write out the

77

78 APPENDIX B. KERNEL DESIGN

term,

(xTy)s = (x1y1+x2y2+...+xnyn)s =
∑

i1,i2,...,in
i1+i2+...+in=s

s!

i1!i2!...in!
(x1y1)

i1(x2y2)
i2 ...(xnyn)in

(B.4)
Taken together with eqn. B.3 we see that the features correspond to,

φI(x) =

√

d!

(d − s)!

1

i1!i2!...in!
Rd−s xi1

1 xi2
2 ...xin

n with i1+i2+...+in = s < d

(B.5)
The point is really that in order to efficiently compute the total sum of(n+d)!

n! d!
terms

we have inserted very special coefficients. The only true freedom we have left is
in choosingR: for largerR we down-weight higher order polynomials more.

The question we want to answer is: how much freedom do we have in choosing
different coefficients and still being able to compute the inner product efficiently.

B.2 All Subsets Kernel

We define the feature again as the product of powers of input attributes. However,
in this case, the choice of power is restricted to [0,1], i.e.the feature is present
or absent. Forn input dimensions (number of attributes) we have2n possible
combinations.

Let’s compute the kernel function:

K(x,y) =
∑

I

φI(x)φI(y) =
∑

I

∏

j:ij=1

xjyj =

n
∏

i=1

(1 + xiyi) (B.6)

where the last identity follows from the fact that,

n
∏

i=1

(1 + zi) = 1 +
∑

i

zi +
∑

ij

zizj + ... + z1z2...zn (B.7)

i.e. a sum over all possible combinations. Note that in this case again, it is much
efficient to compute the kernel directly than to sum over the features. Also note
that in this case there is no decaying factor multiplying themonomials.

B.3. THE GAUSSIAN KERNEL 79

B.3 The Gaussian Kernel

This is given by,

K(x,y) = exp(−
1

2σ2
||x − y||2) (B.8)

whereσ controls the flexibility of the kernel: for very smallσ the Gram matrix
becomes the identity and every points is very dissimilar to any other point. On
the other hand, forσ very large we find the constant kernel, with all entries equal
to 1, and hence all points looks completely similar. This underscores the need in
kernel-methods for regularization; it is easy to perform perfect on the training data
which does not imply you will do well on new test data.

In the RKHS construction the features corresponding to the Gaussian kernel
are Gaussians around the data-case, i.e. smoothed versionsof the data-cases,

φ(x) = exp(−
1

2σ2
||x− ·||2) (B.9)

and thus every new direction which is added to the feature space is going to be or-
thogonal to all directions outside the width of the Gaussianand somewhat aligned
to close-by points.

Since the inner product of any feature vector with itself is1, all vectors have
length1. Moreover, inner products between any two different feature vectors is
positive, implying that all feature vectors can be represented in the positive orthant
(or any other orthant), i.e. they lie on a sphere of radius1 in a single orthant.

80 APPENDIX B. KERNEL DESIGN

Bibliography

81

