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Preface

In winter quarter 2007 | taught an undergraduate course ichina learning at
UC Irvine. While | had been teaching machine learning at algmte level it
became soon clear that teaching the same material to angnadeate class was
a whole new challenge. Much of machine learning is build upmmcepts from
mathematics such as partial derivatives, eigenvalue decsmtions, multivariate
probability densities and so on. | quickly found that thesaaepts could not
be taken for granted at an undergraduate level. The situaias aggravated by
the lack of a suitable textbook. Excellent textbooks doteiisthis field, but |
found all of them to be too technical for a first encounter watachine learning.
This experience led me to believe there was a genuine needsiarple intuitive
introduction into the concepts of machine learning. A fiestd to wet the appetite
S0 to speak, a prelude to the more technical and advancdmbtkd. Hence, the
book you see before you is meant for those starting out in die Who need a
simple, intuitive explanation of some of the most usefubalipms that our field
has to offer.

Machine learning is a relatively recent discipline that egee from the gen-
eral field of artificial intelligence only quite recently. Baild intelligent machines
researchers realized that these machines should learrafndradapt to their en-
vironment. It is simply too costly and impractical to desigtelligent systems by
first gathering all the expert knowledge ourselves and theed-tiring it into a
machine. For instance, after many years of intense res#@aete can now recog-
nize faces in images to a high degree accuracy. But the waddapproximately
30,000 visual object categories according to some estgiBiederman). Should
we invest the same effort to build good classifiers for moskepairs, pencils,
axes etc. or should we build systems to can observe millibbsiming images,
some with labels (e.g. in these pixels in the image corredpom car) but most
of them without side information? Although there is curfgmo system which
can recognize even in the order of 1000 object categoriedght system can get
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about 60% correct on 100 categories), the factwegbull it off seemingly effort-
lessly serves as a “proof of concept” that it can be done. Beretis no doubt in
my mind that building truly intelligent machines will inwg learning from data.

The first reason for the recent successes of machine leanahthe growth of
the field as a whole is rooted in its multidisciplinary chaeacMachine learning
emerged from Al but quickly incorporated ideas from fieldda®rse as statis-
tics, probability, computer science, information the@gnvex optimization, con-
trol theory, cognitive science, theoretical neurosciemteg/sics and more. To
give an example, the main conference in this field is calkdizances in neural
information processing systemeferring to information theory and theoretical
neuroscience and cognitive science.

The second, perhaps more important reason for the growtlaohime learn-
ing is the exponential growth of both available data and aaeyppower. While
the field is build on theory and tools developed statisticshiree learning recog-
nizes that the most exiting progress can be made to levenagenormous flood
of data that is generated each year by satellites, sky cdteei®s, particle accel-
erators, the human genome project, banks, the stock mahnieegrmy, seismic
measurements, the internet, video, scanned text and sa @ndifficult to ap-
preciate the exponential growth of data that our societyeisegating. To give
an example, a modern satellite generates roughly the saroararof data all
previous satellites produced together. This insight h#teshthe attention from
highly sophisticated modeling techniques on small dasasemore basic analy-
sis on much larger data-sets (the latter sometimes cd#iestmining. Hence the
emphasis shifted to algorithmic efficiency and as a resuitynmaachine learning
faculty (like myself) can typically be found in computeresace departments. To
give some examples of recent successes of this approach aud anly have
to turn on one computer and perform an internet search. Nosksirch engines
do not run terribly sophisticated algorithms, but they nggnéo store and sift
through almost the entire content of the internet to retemsible search results.
There has also been much success in the field of machinesatiansinot because
a new model was invented but because many more translatedhéots became
available.

The field of machine learning is multifaceted and expandasg.fTo sample
a few sub-disciplines: statistical learning, kernel mearaphical models, ar-
tificial neural networks, fuzzy logic, Bayesian methods andn. The field also
covers many types of learning problems, such as supervesedihg, unsuper-
vised learning, semi-supervised learning, active legnieinforcement learning
etc. | will only cover the most basic approaches in this baoknfa highly per-
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sonal perspective. Instead of trying to cover all aspecth®tentire field | have
chosen to present a few popular and perhaps useful toolsgprdaches. But
what will (hopefully) be significantly different than modther scientific books is
the manner in which | will present these methods. | have adwseen frustrated
by the lack of proper explanation of equations. Many timeaJenbeen staring at
a formula having not the slightest clue where it came fromaaw It was derived.
Many books also excel in stating facts in an almost encydpstyle, without
providing the proper intuition of the method. This is my pairy mission: to write
a book which conveys intuition. The first chapter will be d&gbto why | think
this is important.

MEANT FOR INDUSTRY AS WELL AS BACKGROUND READING]

This book was written during my sabbatical at the Radboudvéssity in Ni-
jmegen (Netherlands). Hans for discussion on intuitioikd to thank Prof. Bert

Kappen who leads an excellent group of postocs and studamitésf hospitality.
Marga, kids, UCI,...
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Learning and Intuition

We have all experienced the situation that the solution tahlpm presents itself
while riding your bike, walking home, “relaxing” in the wastom, waking up in
the morning, taking your shower etc. Importantly, it did appear while bang-
ing your head against the problem in a conscious effort teesit] staring at the
equations on a piece of paper. In fact, | would claim, thatraflbits and pieces
of progress have occured while taking a break and “relaxirtgpbthe problem”.
Greek philosophers walked in circles when thinking aboutablem; most of us
stare at a computer screen all day. The purpose of this atiaptemnake you more
aware of where your creative mind is located and to interattt itvin a fruitful
manner.

My general thesis is that contrary to popular belief, ckaathinking is not
performed by conscious thinking. It is rather an interplagween your con-
scious mind who prepares the seeds to be planted into thenscioos part of
your mind. The unconscious mind will munch on the problemt ‘@iusight” and
return promising roads to solutions to the consciousnesss ffrocess iterates
until the conscious mind decides the problem is sufficiesdlyed, intractable or
plain dull and moves on to the next. It maybe a little ungggtlio learn that at
least part of your thinking goes on in a part of your mind trestras inaccessible
and has a very limited interface with what you think of as elft But it is un-
deniable that it is there and it is also undeniable that ypkarole in the creative
thought-process.

To become a creative thinker one should how learn to playghme more
effectively. To do so, we should think about the language Inictv to represent
knowledge that is most effective in terms of communicatidthe unconscious.
In other words, what type of “interface” between consciaus anconscious mind
should we use? It is probably not a good idea to memorize alldgtails of a
complicated equation or problem. Instead we should exthacabstract idea and
capture the essence of it in a picture. This could be a mowteawlors and other

Vii



viii LEARNING AND INTUITION

baroque features or a more “dull” representation, whatexseks. Some scientist
have been asked to describe how they represent abstrastadéathey invari-
ably seem to entertain some type of visual representatiobeautiful account
of this in the case of mathematicians can be found in a mawglbook “XXX”
(Hardamard).

By building accurate visual representations of abstrasdve create a data-
base of knowledge in the unconscious. This collection cisderms the basis for
what we call intuition. | often find myself listening to a tadikd feeling uneasy
about what is presented. The reason seems to be that thacilidéa | am trying
to capture from the talk clashed with a similar idea thattieady stored. This in
turn can be a sign that | either misunderstood the idea befwieneed to update
it, or that there is actually something wrong with what isngepresented. In a
similar way | can easily detect that some idea is a small peation of what |
already knew (I feel happily bored), or something entiredyvr(l feel intrigued
and slightly frustrated). While the novice is continuoushallenged and often
feels overwhelmed, the more experienced researcher fesdsa 90% of the time
because the “new” idea was already in his/her data-baséwimecefore needs no
and very little updating.

Somehow our unconscious mind can also manipulate exisbatyact ideas
into new ones. This is what we usually think of as creativekimg. One can
stimulate this by seeding the mind with a problem. This is ascmus effort
and is usually a combination of detailed mathematical déions and building
an intuitive picture or metaphor for the thing one is tryimgunderstand. If you
focus enough time and energy on this process and walk honhenfch you'll find
that you'll still be thinking about it in a much more vagueHam: you review
and create visual representations of the problem. Then gbyayir mind off the
problem altogether and when you walk back to work suddentispd the solu-
tion surface into consciousness. Somehow, your unconstomk over and kept
working on your problem. The essence is that you createdivigpresentations
as the building blocks for the unconscious mind to work with.

In any case, whatever the details of this process are (anchbgmychologist)
| suspect that any good explanation should include bothtaitive part, including
examples, metaphors and visualizations, and a preciseematfcal part where
every equation and derivation is properly explained. Thentis the challenge |
have set to myself. It will be your task to insist on underdtag the abstract idea
that is being conveyed and build your own personalized Vispmesentations. |
will try to assist in this process but it is ultimately you whall have to do the
hard work.
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Many people may find this somewhat experimental way to intcedstudents
to new topics counter-productive. Undoubtedly for many iit e. If you feel
under-challenged and become bored | recommend you move tbe tmore ad-
vanced text-books of which there are many excellent sangriébe market (for
a list see (books)). But | hope that for most beginning stteldnsintuitive style
of writing may help to gain a deeper understanding of theddeat | will present
in the following. Above all, have fun!
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Chapter 1

Data and Information

Data is everywhere in abundant amounts. Surveillance @smsontinuously
capture video, every time you make a phone call your name @catibn gets
recorded, often your clicking pattern is recorded when sgrthe web, most fi-
nancial transactions are recorded, satellites and oliseiemgenerate tera-bytes
of data every year, the FBI maintains a DNA-database of marsticted crimi-
nals, soon all written text from our libraries is digitizewed | go on?

But data in itself is useless. Hidden inside the data is \@é&iaformation.
The objective of machine learning is to pull the relevanbiniation from the data
and make it available to the user. What do we mean by “relevdotmation”?
When analyzing data we typically have a specific questioniimdrauch as :How
many types of car can be discerned in this video" what will be weather next
weeK. So the answer can take the form of a single number (therd ages), or a
sequence of numbers or (the temperature next week) or a watgal pattern (the
cloud configuration next week). If the answer to our querytself complex we
like to visualize it using graphs, bar-plots or even littlevies. But one should
keep in mind that the particular analysis depends on thedmskas in mind.

Let me spell out a few tasks that are typically consideredacmme learning:

Prediction: Here we ask ourselves whether we can extrapolate the infamma
in the data to new unseen cases. For instance, if | have abdatef attributes
of Hummers such as weight, color, number of people it can wdand another
data-base of attributes of Ferraries, then one can try tdigiréhe type of car
(Hummer or Ferrari) from a new set of attributes. Anothemepke is predicting
the weather (given all the recorded weather patterns indee pan we predict the
weather next week), or the stock prizes.

1
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Interpretation: Here we seek to answer questions about the data. For instance
what property of this drug was responsible for its high sasa@ate? Does a secu-
rity officer at the airport apply racial profiling in decidimgho’s luggage to check?
How many natural groups are there in the data?

Compression: Here we are interested in compressing the original dataa.a.k
the number of bits needed to represent it. For instance jfiggur computer can
be “zipped” to a much smaller size by removing much of the nelduncy in those
files. Also, JPEG and GIF (among others) are compressedsesgiegions of the
original pixel-map.

All of the above objectives depend on the fact that therstrigcturein the
data. If data is completely random there is nothing to ptedathing to interpret
and nothing to compress. Hence, all tasks are somehow delatdiscovering
or leveraging this structure. One could say that data islyigldundant and that
this redundancy is exactly what makes it interesting. Talkeexample of natu-
ral images. If you are required to predict the color of theefExeighboring to
some random pixel in an image, you would be able to do a pretbtyl gob (for
instance 20% may be blue sky and predicting the neighborsbidiesky pixel
is easy). Also, if we would generate images at random theyldvoot look like
natural scenes at all. For one, it wouldn’t contain obje€sly a tiny fraction of
all possible images looks “natural” and so the space of ahtarages is highly
structured.

Thus, all of these concepts are intimately related: strectwdundancy, pre-
dictability, regularity, interpretability, compresdiby. They refer to the “food”
for machine learning, without structure there is nothingern. The same thing
is true for human learning. From the day we are born we stditing that there
is structure in this world. Our survival depends on discongeand recording this
structure. If | walk into this brown cylinder with a green cguy | suddenly stop,
it won't give way. In fact, it damages my body. Perhaps thiklbdor all these
objects. When | cry my mother suddenly appears. Our game fisedict the
future accurately, and we predict it by learning its struetu

1.1 Data Representation

What does “data” look like? In other words, what do we dowdlo@o our com-
puter? Data comes in many shapes and forms, for instancelit be words from
a document or pixels from an image. But it will be useful toem data into a
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standard format so that the algorithms that we will discuss lee applied to it.
Most datasets can be represented as a malfrix [X;,], with rows indexed by
“attribute-index”: and columns indexed by “data-index. The valueX;, for
attribute; and data-case can be binary, real, discrete etc., depending on what
we measure. For instance, if we measure weight and colth(ofars, the matrix

X is 2 x 100 dimensional andX; 5o = 20, 684.57 is the weight of car nr20 in
some units (a real value) whil¥; 5o = 2 is the color of car nr20 (say one ot
predefined colors).

Most datasets can be cast in this form (but not all). For dasus) we can
give each distinct word of a prespecified vocabulary a nr. samgbly count how
often a word was present. Say the word “book” is defined to have), 568 in the
vocabulary thenXpses 5076 = 4 would mean: the word book appeared 4 times in
documenb076. Sometimes the different data-cases do not have the samaenum
of attributes. Consider searching the internet for imagpesirats. You'll retrieve
a large variety of images most with a different number of [six&Ve can either
try to rescale the images to a common size or we can simplg lgese entries in
the matrix empty. It may also occur that a certain entry igpsgpd to be there but
it couldn’t be measured. For instance, if we run an opticalrabter recognition
system on a scanned document some letters will not be recyniVe’ll use a
question mark ?”, to indicate that that entry wasn't observed.

It is very important to realize that there are many ways toesgnt data and
not all are equally suitable for analysis. By this | mean thasome represen-
tation the structure may be obvious while in other repres@nt is may become
totally obscure. It is still there, but just harder to find.eldlgorithms that we will
discuss are based on certain assumptions, suchHasprhers and Ferraries can
be separated with by a linsee figure??. While this may be true if we measure
weight in kilograms and height in meters, it is no longer tifuse decide to re-
code these numbers into bit-strings. The structure isistiie data, but we would
need a much more complex assumption to discover it. A lesste fearned is
thus to spend some time thinking about in which represemtalie structure is as
obvious as possible and transform the data if necessaryebapplying standard
algorithms. In the next section we’ll discuss some stang@aegrocessing opera-
tions. Itis often advisable to visualize the data befor@meessing and analyzing
it. This will often tell you if the structure is a good matchr filne algorithm you
had in mind for further analysis. Chapt®? will discuss some elementary visual-
ization techniques.
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1.2 Preprocessing the Data

As mentioned in the previous section, algorithms are baseaissumptions and
can become more effective if we transform the data first. @enshe following
example, depicted in figurg?a. The algorithm we consists of estimating the area
that the data occupy. It grows a circle starting at the oragid at the point it
contains all the data we record the area of circle. In the éiguiny this will be

a bad estimate: the data-cloud is not centered. If we would Fiest centered it
we would have obtained reasonable estimate. Although xaisiple is somewhat
simple-minded, there are many, much more interesting dkgos that assume
centered data. To center data we will introducesaple meanof the data, given

by, .
1
E[X]; = Z Xin (1.1)

Hence, for every attributeseparately, we simple add all the attribute value across
data-cases and divide by the total number of data-casesaisférm the data so
that their sample mean is zero, we set,

It is now easy to check that the sample mearkéindeed vanishes. An illustra-
tion of the global shift is given in figur@?b. We also see in this figure that the
algorithm described above now works much better!

In a similar spirit as centering, we may also wish to scaledda along the
coordinate axis in order make it more “spherical”. Consifigure ??a,b. In
this case the data was first centered, but the elongated shidgeevented us
from using the simplistic algorithm to estimate the areaeced by the data. The
solution is to scale the axes so that the spread is the samemnpdimension. To
define this operation we first introduce the notiorsample variance

VIX)i=— ) X} (1.3)

where we have assumed that the data was first centered. Nothithis similar
to the sample mean, but now we have used the square. It is tampdhat we
have removed the sign of the data-cases (by taking the gcherause otherwise
positive and negative signs might cancel each other out.réytéiking the square,
all data-cases first get mapped to positive half of the axase@dch dimension or
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attribute separately) and then added and divided/byrou have perhaps noticed
that variance does not have the samésas X itself. If X is measured in grams,
then variance is measured in grams squared. So to scaletthivdeave the same
scale in every dimension we divide by the square-root of #réamnce, which is
usually called thesample standard deviatign.

(/ — Xl/n

" VIX):
Note again that sphering requires centering implying thatiways have to per-
form these operations in this order, first center, then spheigure??a,b,c illus-
trate this process.

You may now be asking, “well what if the data where elongated diagonal
direction?”. Indeed, we can also deal with such a case bydastering, then
rotating such that the elongated direction points in the directioomé of the
axes, and then scaling. This requires quite a bit more mathwal postpone this
issue until chapte?? on “principal components analysis”. However, the question
is in fact a very deep one, because one could argue that otetleep changing
the data using more and more sophisticated transformatiutiisall the structure
was removed from the data and there would be nothing leftatyaa! Itis indeed
true that the pre-processing steps can be viewed as pant ofitleling process
in that it identifies structure (and then removes it). By rarhering the sequence
of transformations you performed you have implicitly buslanodel. Reversely,
many algorithm can be easily adapted to model the mean atel aicthe data.
Now, the preprocessing is no longer necessary and becoreggdted into the
model.

Just as preprocessing can be viewed as building a model, weasesa model
to transform structured data into (more) unstructured.ddtae details of this
process will be left for later chapters but a good exampleasided by compres-
sion algorithms. Compression algorithms are based on rmdéaiethe redundancy
in data (e.g. text, images). The compression consists ivam this redun-
dancy and transforming the original data into a less stradtor less redundant
(and hence more succinct) code. Models and structure megldeita transforma-
tions are in sense each others reverse: we often assoctata wiodel an under-
standing of how the data was generated, starting from ranumge. Reversely,
pre-processing starts with the data and understands hovaweget back to the
unstructured random state of the data [FIGURE].

Finally, I will mention one more popular data-transformoattechnique. Many
algorithms are are based on the assumption that data isfsymtnonetric around

(1.4)
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the origin. If data happens to be just positive, it doesnthis assumption very
well. Taking the following logarithm can help in that case,

X! =log(a+ Xip) (1.5)



Chapter 2

Data Visualization

The process of data analysis does not just consist of pickingigorithm, fitting
it to the data and reporting the results. We have seen thateed to choose a
representation for the data necessitating data-premincesr many cases. De-
pending on the data representation and the task at hand wé#ve to choose
an algorithm to continue our analysis. But even after we mamethe algorithm
and study the results we are interested in, we may realiz@tinanitial choice of
algorithm or representation may not have been optimal. Wethexefore decide
to try another representation/algorithm, compare theltseand perhaps combine
them. This is an iterative process.

What may help us in deciding the representation and algoritr further
analysis? Consider the two datasets in Figtiteln the left figure we see that the
data naturally forms clusters, while in the right figure weetve that the data is
approximately distributed on a line. The left figure suggestlustering approach
while the right figure suggests a dimensionality reductippraach. This illus-
trates the importance of looking at the data before you gtant analysis instead
of (literally) blindly picking an algorithm. After your fitspeek, you may decide
to transform the data and then look again to see if the tram&fd data better suit
the assumptions of the algorithm you have in mind.

“Looking at the data” sounds more easy than it really is. Tdason is that
we are not equipped to think in more than 3 dimensions, whitstrdata lives
in much higher dimensions. For instance image patches efiSix 10 live in a
100 pixel space. How are we going to visualize it? There are masyvars to
this problem, but most involvprojection we determine a number of, say, 2 or
3 dimensional subspaces onto which we project the data. ifriest choice of
subspaces are the ones aligned with the features, e.g. weataXy,, versusXs,,

7



8 CHAPTER 2. DATA VISUALIZATION

etc. An example of suchscatter plotis given in Figure??.

Note that we have a total @fd — 1)/2 possible two dimensional projections
which amounts to 4950 projections for 100 dimensional dahas is usually too
many to manually inspect. How do we cut down on the number mkdsions?
perhaps random projections may work? Unfortunately thaistout to be not a
great idea in many cases. The reason is that data projectedasmiom subspace
often looks distributed according to what is known as a Gangdistribution (see
Figure??). The deeper reason behind this phenomenon isehéal limit theo-
remwhich states that the sum of a large number of independedbrawariables
is (under certain conditions) distributed as a Gaussianildigion. Hence, if we
denote withw a vector inR? and byx the d-dimensional random variable, then
y = wlx is the value of the projection. This is clearly is a weightedsof
the random variables;, i = 1..d. If we assume that; are approximately in-
dependent, then we can see that their sum will be governeli®ygentral limit
theorem. Analogously, a dataseX;,,} can thus be visualized in one dimension
by “histogramming? the values ofy’ = w’ X, see Figure&?. In this figure we
clearly recognize the characteristic “Bell-shape” of th@u€sian distribution of
projected and histogrammed data.

In one sense the central limit theorem is a rather helpfukgpfinature. Many
variables follow Gaussian distributions and the Gaussiatrildution is one of
the few distributions which have very nice analytic prost Unfortunately, the
Gaussian distribution is also the mastinformativedistribution. This notion of
“uninformative” can actually be made very precise usinginfation theory and
statesGiven a fixed mean and variance, the Gaussian density rapiete least
amount of information among all densities with the same nagahvariance This
is rather unfortunate for our purposes because Gaussiggcpons are the least
revealing dimensions to look at. So in general we have to \adyk harder to see
interesting structure.

A large number of algorithms has been devised to search fmmmative pro-
jections. The simplest being “principal component analyysir PCA for short??.
Here, interesting means dimensions of high variance. Hewéwas recognized
that high variance is not always a good measure of integgstiss and one should
rather search for dimensions that are non-Gaussian. Famice, “independent
components analysis” (ICA}Y? and “projection pursuit?? searches for dimen-

A histogram is a bar-plot where the height of the bar reprissis@ number items that had a
value located in the interval on the x-axis o0 which the bandsg(i.e. the basis of the bar). If many
items have a value around zero, then the bar centered at #ebewery high.



sions that have heavy tails relative to Gaussian distobsti Another criterion
is to to find projections onto which the data has multiple nsod&® more recent
approach is to project the data onto a potentially curvedifolan??.

Scatter plots are of course not the only way to visualize.ddtaa creative
exercise and anything that helps enhance your understaaftiihe data is allowed
in this game. To illustrate | will give a few examples form a
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Chapter 3

Learning

This chapter is without question the most important one efttbok. It concerns
the core, almost philosophical question of what learniradlyes (and what it is
not). If you want to remember one thing from this book you wiild it here in

this chapter.

Ok, let’s start with an example. Alice has a rather stranjeait. She is not
able to recognize objects by their visual appearance. Atbere she is doing
just fine: her mother explained Alice for every object in heuse what is is and
how you use it. When she is home, she recognizes these ofjebtsy have not
been moved too much), but when she enters a new environmelig &bst. For
example, if she enters a new meeting room she needs a londdiméer what
the chairs and the table are in the room. She has been diagnitbea severe
case of "overfitting”. What is the matter with Alice? Nothirggwrong with her
memory because she remembers the objects once she has saenmntfact, she
has a fantastic memory. She remembers every detail of tleetstghe has seen.
And every time she sees a new objects she reasons that th iobfl@nt of her
is surely not a chair because it doesn’t have all the featsineshas seen in ear-
lier chairs. The problem is that Alice canng¢neralizethe information she has
observed from one instance of a visual object category terpttet unobserved
members of the same category. The fact that Alice’s disesase rare is under-
standable there must have been a strong selection pregminstathis disease.
Imagine our ancestors walking through the savanna oneompiears ago. A lion
appears on the scene. Ancestral Alice has seen lions betdreot this particular
one and it does not induce a fear response. Of course, she hiasato infer the
possibility that this animal may be dangerous logicallyicAks contemporaries
noticed that the animal was yellow-brown, had manes etc.irantkdiately un-

11
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derstood that this was a lion. They understood that all lleange these particular
characteristics in common, but may differ in some other dfiks the presence
of a scar someplace).

Bob has another disease which is called over-generalizaflace he has seen
an object he believes almost everything is some, perhassetvinstance of the
same object class (In fact, | seem to suffer from this so noavtaen when |
think all of machine learning can be explained by this one ereiting principle).
If ancestral Bob walks the savanna and he has just encodra@rénstance of
a lion and fled into a tree with his buddies, the next time he sesquirrel he
believes it is a small instance of a dangerous lion and fleestle trees again.
Over-generalization seems to be rather common among shilalifen.

One of the main conclusions from this discussion is that waukhneither
over-generalize nor over-fit. We need to be on the edge ofjhest right. But
just right about what? It doesn’t seem there is one correc-@ween definition
of the category chairs. We seem to all agree, but one canysiimdl examples
that would be difficult to classify. When do we generalize atlyaright? The
magic word iISPREDICTION From an evolutionary standpoint, all we have to
do is make correct predictions about aspects of life thad bslsurvive. Nobody
really cares about the definition of lion, but we do care altbetour responses
to the various animals (run away for lion, chase for deer)d Almere are a lot
of things that can be predicted in the world. This food kille fut that food is
good for me. Drumming my fists on my hairy chest in front of a é&generates
opportunities for sex, sticking my hand into that yellovawge flickering“flame”
hurts my hand and so on. The world is wonderfully predictaild we are very
good at predicting it.

So why do we care about object categories in the first placdl? &gparently
they help us organize the world and make accurate predgctibime category lions
is anabstractionand abstractions help us to generalize. In a certain sexgejhg
is all about finding useful abstractions or concepts thatmies the world. Take
the concept “fluid”, it describes all watery substances amdmearizes some of
their physical properties. Ot he concept of “weight”: antedotion that describes
a certain property of objects.

Here is one very important corollary for yodmachine learning is not in
the business of remembering and regurgitating observexrmtion, it is in the
business of transferring (generalizing) properties frobserved data onto new,
yet unobserved data” This is the mantra of machine learning that you should
repeat to yourself every night before you go to bed (at leaskthe final exam).

The information we receive from the world has two componénts:. there
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is the part of the information which does not carry over to finerre, the un-
predictable information. We call this “noise”. And then tbes the information
thatis predictable, the learnable part of the information stredime task of any
learning algorithm is to separate the predictable part filo@unpredictable part.
Now imagine Bob wants to send an image to Alice. He has to pajlarccent
for every bit that he sends. If the image were completely evititvould be really
stupid of Bob to send the messagexel 1: white, pixel 2: white, pixel 3: white,....
He could just have send the messadjepixels are white! The blank image is
completely predictable but carries very little informatidNow imagine a image
that consist of white noise (your television screen if theleas not connected).
To send the exact image Bob will have to sgxel 1: white, pixel 2: black, pixel
3: black,... Bob can not do better because there is no predictable iatowmin
that image, i.e. there is ngtructureto be modeled. You can imagine playing a
game and revealing one pixel at a time to someone and pay hfor &8ery next
pixel he predicts correctly. For the white image you can ddgeg, for the noisy
picture you would be random guessing. Real pictures aretuadmsan: some pixels
are very hard to predict, while others are easier. To comsfilesimage, Bob can
extract rules such as: always predict the same color as tfeitypaf the pixels
next to you, except when there is an edge. These rules atestie model for the
regularities of the image. Instead of sending the entireyanaxel by pixel, Bob
will now first send his rules and ask Alice to apply the rulesely time the rule
fails Bob also send a correctiopixel 103: white, pixel 245: blackA few rules
and two corrections is obviously cheaper than 256 pixelasand no rules.
There is one fundamental tradeoff hidden in this game. Shuteis sending
only a single image it does not pay to send an incredibly carafd model that
would require more bits to explain than simply sending aXepivalues. If he
would be sending 1 billion images it would pay off to first sehd complicated
model because he would be saving a fraction of all bits foryeireage. On the
other hand, if Bob wants to send 2 pixels, there really is nednie sending a
model whatsoever. Thereforéhe size of Bob’s model depends on the amount
of data he wants to transmitlronically, the boundary between what is model
and what is noise depends on how much data we are dealing it use a
model that is too complex we overfit to the data at hand, i.et gfahe model
represents noise. On the other hand, if we use a too simplelmad’underfit”
(over-generalize) and valuable structure remains unneddeBoth lead to sub-
optimal compression of the image. But both also lead to stimap prediction
on new images. The compression game can therefore be used tthd right
size of model complexity for a given dataset. And so we haseadiered a deep
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connection between learning and compression.

Now let’s think for a moment what we really mean with “a modeX model
represents our prior knowledge of the world. It imposescétme that is not nec-
essarily present in the data. We call this tivedtictive bias. Our inductive bias
often comes in the form of a parametrized model. That is to s&ydefine a
family of models but let the data determine which of these ef®@ most appro-
priate. A strong inductive bias means that we don't leavallity in the model
for the data to work on. We are so convinced of ourselves tiediasically ignore
the data. The downside is that if we are creating a “bad b@masatds to wrong
model. On the other hand, if we are correct, we can learn tin@ireng degrees
of freedom in our model from very few data-cases. Conversadymay leave the
door open for a huge family of possible models. If we now let data zoom in
on the model that best explains the training data it will Gvéw the peculiarities
of that data. Now imagine you sampled 10 datasets of the semé/sand train
these very flexible models separately on each of these da{aste that in reality
you only have access to one such dataset but please play ialdhig thought
experiment). Let’'s say we want to determine the value of spatameter. Be-
cause the models are so flexible, we can actually model tbsyidcrasies of each
dataset. The result is that the value fois likely to be very different for each
dataset. But because we didn’t impose much inductive bestkrage of many
of such estimates will be about right. We say that the biasiglls but the vari-
ance is high. In the case of very restrictive models the appbsappens: the bias
is potentially large but the variance small. Note that ndy @a large bias is bad
(for obvious reasons), a large variance is bad as well: [secese only have one
dataset of sizéV, our estimate could be very far off simply we were unluckyhwit
the dataset we were given. What we should therefore strivis to inject all our
prior knowledge into the learning problem (this makes leagreasier) but avoid
injecting the wrong prior knowledge. If we don't trust outigorknowledge we
should let the data speak. However, letting the data speaktech might lead to
overfitting, so we need to find the boundary between too coxgie too simple
a model and get its complexity just right. Access to more daans that the data
can speak more relative to prior knowledge. That, in a nlitgheshat machine
learning is all about.
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3.1 In a Nutshell

Learning is all about generalizing regularities in thertnag data to new, yet un-
observed data. It is not about remembering the training dadad generalization
means that you need to balance prior knowledge with infaondtom data. De-
pending on the dataset size, you can entertain more or lesglew models. The
correct size of model can be determined by playing a comiregame. Learning
= generalization = abstraction = compression.
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Chapter 4

Types of Machine Learning

We now will turn our attention and discuss some learning lemols that we will
encounter in this book. The most well studied problem in Mthest ofsupervised
learning To explain this, let’s first look at an example. Bob want tarfehow
to distinguish between bobcats and mountain lions. He tyipese words into
Google Image Search and closely studies all catlike imafjeshats on the one
hand and mountain lions on the other. Some months later okirgghtrip in the
San Bernardino mountains he sees a big cat....

The data that Bob collected was labelled because Googl@msed to only
return pictures of bobcats when you search for the word "at@and similarly
for mountain lions). Let’s call the images,, .. X,, and the label¥7, ..., Y,,. Note
that X; are much higher dimensional objects because they repraighe in-
formation extracted from the image (approximately 1 millfgxel color values),
while Y; is simply —1 or 1 depending on how we choose to label our classes. So,
that would be a ratio of about 1 million to 1 in terms of infortea content! The
classification problem can usually be posed as finding (al¢aaning) a function
f(x) that approximates the correct class labels for any isplEor instance, we
may decide that sigyfi(x)] is the predictor for our class label. In the following we
will be studying quite a few of these classification algarith

There is also a different family of learning problems knoveruasupervised
learning problems. In this case there are no labglivolved, just the features
X. Our task is not to classify, but to organize the data, or $oa@ker the structure
in the data. This may be very useful for visualization datanpressing data,
or organizing data for easy accessibility. Extracting&tite in data often leads
to the discovery of concepts, topics, abstractions, factauses, and more such
terms that all really mean the same thing. These are the lyntgeisemantic

17
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factors that can explain the data. Knowing these factor&kés denoising the

data where we first peel off the uninteresting bits and pietabke signal and

subsequently transform onto an often lower dimensionalespdnich exposes the
underlying factors.

There are two dominant classes of unsupervised learnimgigdgs: cluster-
ing based algorithms assume that the data organizes intpgird-inding these
groups is then the task of the ML algorithm and the identitthefgroup is the se-
mantic factor. Another class of algorithms strives to pcbjbe data onto a lower
dimensional space. This mapping can be nonlinear, but tderlying assump-
tion is that the data is approximately distributed on sonosgbly curved) lower
dimensional manifold embedded in the input space. Un@lirat manifold is
then the task of the learning algorithm. In this case the dsmns should be
interpreted as semantic factors.

There are many variations on the above themes. For instaneeis often
confronted with a situation where you have access to manyg molabeled data
(only X;) and many fewer labeled instances (bo#, Y;). Take the task of clas-
sifying news articles by topic (weather, sports, natiore/s, international etc.).
Some people may have labeled some news-articles by handdsatwon't be all
that many of those. However, we do have a very large digivahty of scanned
newspapers available. Shouldn’t it be possible to use thogened newspapers
somehow to to improve the classifier? Imagine that the dataalyy clusters into
well separated groups (for instance because news artighesting on different
topics use very different words). This is depicted in Figa® Note that there
are only very few cases which have labels attached to theom fnis figure it
becomes clear that the expected optimal decision boundzelyrseparates these
clusters. In other words, you do not expect that the decismmdary will cut
through one of the clusters. Yet that is exactly what wouldges if you would
only be using the labeled data. Hence, by simply requirirg tlecision bound-
aries do not cut through regions of high probability we capriove our classifier.
The subfield that studies how to improve classification allgors using unlabeled
data goes under the nams'mi-supervised learnifig

A fourth major class of learning algorithms deals with peshk where the
supervised signal consists only of rewards (or costs) ttepassibly delayed.
Consider for example a mouse that needs to solve a labynntinder to obtain
his food. While making his decisions he will not receive aegdback (apart from
perhaps slowly getting more hungry). It's only at the end whe reaches the
cheese that receives his positive feedback, and he will isgehis to reinforce
his perhaps random earlier decisions that lead him to thesghel'hese problem
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fall under the namerginforcement learning It is a very general setup in which
almost all known cases of machine learning can be cast, mugémerality also
means that these type of problems can be very difficult. Thetmeneral RL
problems do not even assume that you know what the world Ibkégi.e. the
maze for the mouse), so you have to simultaneously learn @heddhe world
and solve your task in it. This dual task induces interestiade-offs: should
you invest time now to learn machine learning and reap thefiidater in terms
of a high salary working for Yahoo!, or should you stop inuegtnow and start
exploiting what you have learned so far? This is clearly acfiam of age, or
the time horizon that you still have to take advantage ofdhegestments. The
mouse is similarly confronted with the problem of whetheisheuld try out this
new alley in the maze that can cut down his time to reach thesgheonsiderably,
or whether he should simply stay with he has learned and keketute he already
knows. This clearly depends on how often he thinks he wiletavun through the
same maze in the future. We call this the exploration verspkgation trade-off.
The reason that RL is a very exciting field of research is beead its biological
relevance. Do we not also have figure out how the world workissamvive in it?

Let’'s go back to the news-articles. Assume we have contred ahat article
we will label next. Which one would be pick. Surely the onettivauld be most
informative in some suitably defined sense. Or the mousesimtiize. Given that
decides to explore, where does he explore? Surely he witbtseek out alleys
that look promising, i.e. alleys that he expects to maxinhizereward. We call
the problem of finding the next best data-case to investigative learning.

One may also be faced with learning multiple tasks at the sam& These
tasks are related but not identical. For instance, consiageproblem if recom-
mending movies to customers of Netflix. Each person is @ifieand would re-
ally require a separate model to make the recommendaticwever, people also
share commonalities, especially when people show evidefifoeing of the same
“type” (for example a sf fan or a comedy fan). We can learn gestized models
but share features between them. Especially for new custombere we don’t
have access to many movies that were rated by the customeredeto “draw
statistical strength” from customers who seem to be simfaom this example
it has hopefully become clear that we are trying to learn rteofibe many differ-
ent yet related problems and that we can build better motiels share some of
the things learned for one task with the other ones. The tsiclot to share too
much nor too little and how much we should share depends omiasi data and
prior knowledge we have access to for each task. We call tinBedd of machine
learning:‘multi-task learning
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4.1 In a Nutshell

There are many types of learning problems within machinmiag. Supervised
learning deals with predicting class labels from attrisutensupervised learn-
ing tries to discover interesting structure in data, sempiesvised learning uses
both labeled and unlabeled data to improve predictive pedioce, reinforcement
learning can handle simple feedback in the form of delayedre, active learn-
ing optimizes the next sample to include in the learning @digo and multi-task
learning deals with sharing common model components beiwedated learning
tasks.



Chapter 5

Nearest Neighbors Classification

Perhaps the simplest algorithm to perform classificatiahésk nearest neigh-
bors (kNN) classifiét As usual we assume that we have data of the foiy,, Y,,}
whereX;,, is the value of attribute for data-case: andY,, is the label for data-
casen. We also need a measure of similarity between data-caseésh wie will
denote withK'(X,,, X,,,) where larger values df denote more similar data-cases.

Given these preliminaries, classification is embarrasgisighple: when you
are provided with the attributes, for a new (unseen) test-case, you first find the
k most similar data-cases in the dataset by compuking,, X,,) for all n. Call
this setS. Then, each of these most similar neighbors i can cast a vote on
the label of the test case, where each neighbor predictshtbdest case has the
same label as itself. Assuming binary labels and an odd nuaflmeighbors, this
will always result in a decision.

Although kNN algorithms are often associated with this deoting scheme,
more sophisticated ways of combining the information osthaeighbors is al-
lowed. For instance, one could weigh each vote by the siityiltr the test-case.
This results in the following decision rule,

Y, =1 if Y KX, X,)(2Y,—1)>0  (5.1)
nes

Y; =0 if d KX, X,)2Y,-1)<0 (5.2
nesS

(5.3)

and flipping a coin if it is exactly.
Why do we expect this algorithm to work intuitively? The reass that we
expect data-cases with similar labels to cluster togethettribute space. So to
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figure out the label of a test-case we simply look around aedrdet labels our
neighbors have. Asking your closest neighbor is like bgttith your money on a
single piece of advice and you might get really unlucky if yolosest neighbor
happens to be an odd-one-out. It's typically better to askrsg opinions before
making your decision. However, if you ask too much aroundwdlbe forced to
ask advice from data-cases that are no longer very similguoSo there is some
optimal number of neighbors to ask, which may be differentefeery problem.
Determining this optimal number of neighbors is not easyvimel can again use
cross validation (sectioR?) to estimate it.

So what is good and bad about kNN? First, it's simplicity nsiteattractive.
Very few assumptions about the data are used in the classifigarocess. This
property can also be a disadvantage: if you have prior kriydeabout how the
data was generated, its better to use it, because less mifonrhas to be ex-
tracted from the data. A second consideration is compurtdiioe and memory
efficiency. Assume you have a very large dataset, but you toeedke decisions
very quickly. As an example, consider surfing the web-padesmazone.com.
Whenever you search for a book, it likes to suggest 10 otAerslo that it could
classify books into categories and suggest the top rankibdircategory. kNN re-
quires Amazone to store all features of all books at a londtiat is accessible for
fast computation. Moreover, to classify KNN has to do theyhkorhood search
every time again. Clearly, there are tricks that can be playieh smart indexing,
but wouldn’t it be much easier if we would have summarizedatlks by a sim-
ple classification functiorf,(X), that “spits out” a class for any combination of
featuresX'?

This distinction between algorithms/models that requirenmarizing every
data-item data is often called “parametric” versus “norapaetric”. It's impor-
tant to realize that this is somewhat of a misnomer: nonspatac models can
have parameters (such as the number of neighbors to consider key distinc-
tion is rather wether the data is summarized through a seamahpeters which
together comprise a classification functigy{.X'), or whether we retain all the
data to do the classification “on the fly”.

KNN is also known to suffer from the “curse of high dimensionsf we
use many features to describe our data, and in particulan wiust of these fea-
tures turn out to be irrelevant and noisy for the classifiegtthen kNN is quickly
confused. Imagine that there are two features that conllgimeainformation nec-
essary for a perfect classification, but that we have addewB, uninformative
features. The neighbors in the two dimensional space ofelegant features are
unfortunately no longer likely to be the neighbors in the tdfiensional space,
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because 98 noisy dimensions have been added. This effeetrimdntal to the
KNN algorithm. Once again, it is very important to choosenyioitial represen-
tation with much care and preprocess the data before yoy dpphlgorithm. In
this case, preprocessing takes the form of “feature sel&ctin which a whole

book in itself could be written.

5.1 The ldea In a Nutshell

To classify a new data-item you first look for tienearest neighbors in feature
space and assign it the same label as the majority of thegbbues.
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Chapter 6

The Naive Bayesian Classifier

In this chapter we will discuss thé\aive Bayes(NB) classifier. It has proven to
be very useful in many application both in science as welhasdustry. In the

introduction | promised | would try to avoid the use of prolhigies as much as
possible. However, in chapter I'll make an exception, beeate NB classifier is
most naturally explained with the use of probabilities. tBoately, we will only

need the most basic concepts.

6.1 The Naive Bayes Model

NB is mostly used when dealing with discrete-valued attebuWe will explain
the algorithm in this context but note that extensions toticolwus-valued at-
tributes are possible. We will restrict attention to cléieation problems between
two classes and refer to secti®@f for approaches to extend this two more than
two classes.

In our usual notation we considérdiscrete valued attributes; € [0, ..,V;], i =
1..D. Note that each attribute can have a different number olegdu If the orig-
inal data was supplied in a different format, eXj. = [Yes, No], then we simply
reassign these values to fit the above formvats = 1, No = 0 (or reversed). In
addition we are also provided with a supervised signal, im¢hse the labels are
Y = 0 andY = 1 indicating that that data-item fell in clagsor classl. Again,
which class is assigned toor 1 is arbitrary and has no impact on the performance
of the algorithm.

Before we move on, let’s consider a real world example: sfiliering. Every
day your mailbox get’'s bombarded with hundreds of spam emaib give an
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example of the traffic that it generates: the university dffGania Irvine receives
on the order of 2 million spam emagsday. Fortunately, the bulk of these emails
(approximately97%) is filtered out or dumped into your spam-box and will reach
your attention. How is this done? Well, it turns out to be assia example of
a classification problem: spam or ham, that's the questicet'silsay that spam
will receive a labell and ham a labe). Our task is thus to label each new email
with either0 or 1. What are the attributes? Rephrasing this question, whatdvo
you measure in an email to see if it is spam? Certainly, if | oead “viagra”

in the subject | would stop right there and dump it in the sg@om- What else?
Here are a few: “enlargement, cheap, buy, pharmacy, mooay, Imortgage,
credit” and so on. We can build a dictionary of words that we datect in each
email. This dictionary could also include word phrases agtbuy now”, “penis
enlargement”, one can make phrases as sophisticated assagceOne could
measure whether the words or phrases appear at least onte cowld count the
actual number of times they appear. Spammers know aboutdiighese spam
filters work and counteract by slight misspellings of certeey words. Hence we
might also want to detect words like “via gra” and so on. Irt facsmall arms race
has ensued where spam filters and spam generators find nksvttricounteract
the tricks of the “opponent”. Putting all these subtletissla for a moment we’'ll
simply assume that we measure a number of these attributesdoy email in a
dataset. We'll also assume that we have spam/ham labelsdse €mails, which
were acquired by someone removing spam emails by hand frefheniinbox.
Our task is then to train a predictor for spam/ham labelsdture emails where
we have access to attributes but not to labels.

The NB model is what we call a “generative” model. This medrat tve
imagine how the data was generated in an abstract sensemids ethis works
as follows, an imaginary entity first decides how many spadteam emails it will
generate on a daily basis. Say, it decides to generate 40%a&pd60% ham. We
will assume this doesn’t change with time (of course it ddees,we will make
this simplifying assumption for now). It will then decide atithe chance is that
a certain word appea¥stimes in a spam email. For example, the word “viagra”
has a chance &% to not appear at all,% to appear oncd).9% to appear twice
etc. These probabilities are clearly different for spam haah, “viagra” should
have a much smaller probability to appear in a ham email {lauld of course;
consider | send this text to my publisher by email). Giversehprobabilities, we
can then go on and try to generate emails that actually Id&ekrial emails, i.e.
with proper sentences, but we won’t need that in the follgwimstead we make
the simplifying assumption that email consists afljag of word$ in random
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order.

6.2 Learning a Naive Bayes Classifier

Given a dataset, X,,, Y, }, i = 1..D, n = 1..N, we wish to estimate what these
probabilities are. To start with the simplest one, what widag a good estimate
for the number of the percentage of spam versus ham emailsdhamaginary
entity uses to generate emails? Well, we can simply countriawy spam and
ham emails we have in our data. This is given by,

#spam emails > 1[Y, = 1]

total # emails N (6.1)

P(spam =

Here we mean witfi{A = «] a function that is only equal tbif its argument is
satisfied, and zero otherwise. Hence, in the equation alb@eeints the number

of instances that,, = 1. Since the remainder of the emails must be ham, we also
find that

#hamemails > 1[Y, = 0]
total # emails N

P(ham =1 — P(span) = (6.2)
where we have used th&tham) + P(spam = 1 since an email is either ham or
spam.

Next, we need to estimate how often we expect to see a certathav phrase
in either a spam or a ham email. In our example we could foraims ask
ourselves what the probability is that we find the worddyra” k times, with
k = 0,1,> 1, in a spam email. Let's recode this &5iaga = 0 meaning that
we didn't observe “viagra” X,iaga = 1 meaning that we observed it once and
Xviagra = 2 meaning that we observed it more than once. The answer ia agai
that we can count how often these events happened in our miditasa that as an
estimate for the real probabilities according to whicpenerated emails. First for
spam we find,

Prpan X: = ) = # spam emails for which the wordvas found; times
spam i = J total # of spam emails
2 X =AY, =1]
B 2 1Y = 1]
Here we have defined the symbelto mean that both statements to the left and
right of this symbol should hold true in order for the entientence to be true.

(6.3)

(6.4)
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For ham emails, we compute exactly the same quantity,

Pranl X = ) = # ham emails for which the woridwas found; times
ham e = total # of ham emails
B EHH[XM =JANY, = 0]
N > 1Y = 0]

Both these quantities should be computed for all words oag#s (or more gen-
erally attributes).

We have now finished the phase where we estimate the modetlir@ata.
We will often refer to this phase as “learning” or training a@adel. The model
helps us understand how data was generated in some apptexsetéing. The
next phase is that of prediction or classification of new émai

(6.5)

(6.6)

6.3 Class-Prediction for New Instances

New email does not come with a label ham or spam (if it would wela throw
spam in the spam-box right away). What we do see are thewttsb.X;}. Our
task is to guess the label based on the model and the meadtribdtas. The
approach we take is simple: calculate whether the email égheer probability
of being generated from the spam or the ham model. For exaietause the
word “viagra” has a tiny probability of being generated unttee ham model it
will end up with a higher probability under the spam modelt &aarly, all words
have a say in this process. It’s like a large committee of @gpene for each
word. each member casts a vote and can say things like: “I & &9tain its
spam”, or “It's almost definitely not spam (0.1% spam)”. Eaélthese opinions
will be multiplied together to generate a final score. We thguare out whether
ham or spam has the highest score.

There is one little practical caveat with this approach, elgrthat the product
of a large number of probabilities, each of which is necelysamaller than one,
very quickly gets so small that your computer can’t handl&litere is an easy fix
though. Instead of multiplying probabilities as scores,use the logarithms of
those probabilities and add the logarithms. This is nuradlyictable and leads to
the same conclusion because if- b then we also have thaig(a) > log(b) and
vice versa. In equations we compute the score as follows:

Sspam= Y108 Pepan{ X; = v;) + log P(spam (6.7)
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where withv; we mean the value for attributéhat we observe in the email under
consideration, i.e. if the email contains no mention of tledv'viagra” we set
Uviagra = 0.

The first term in Eqn.6.7 adds all the log-probabilities urttie spam model
of observing the particular value of each attribute. Eveneta word is observed
that has high probability for the spam model, and hence hags tkeen observed
in the dataset, will boost this score. The last term adds &a &ctor to the score
that expresses our prior belief of receiving a spam emagadsof a ham email.

We compute a similar score for ham, namely,

Sham =Y _ 108 Pram(X; = v;) + log P(ham) (6.8)

and compare the two scores. Clearly, a large score for spativesto ham pro-
vides evidence that the email is indeed spam. If your goal msihimize the total
number of errors (whether they involve spam or ham) then ¢oéstbn should be
to choose the class which has the highest score.

In reality, one type of error could have more serious conseges than an-
other. For instance, a spam email making it in my inbox is notltad, bad an
important email that ends up in my spam-box (which | neverckhenay have
serious consequences. To account for this we introduceerglehreshold and
use the following decision rule,

Y =1 if Si>S,+0 (6.9)
Y =0 if S; < So+0 (6.10)
(6.11)

If these quantities are equal you flip a coin.

If & = —o0, we always decide in favor of labél = 1, while if we use
0 = +oo we always decide in favor of = 0. The actual value is a matter of
taste. To evaluate a classifier we often draw an ROC curve. @€ Burve is
obtained by sliding between—oco and +oc and plotting the true positive rate
(the number of examples with labgl = 1 also classified a& = 1 divided by the
total number of examples with = 1) versus the false positive rate (the number
of examples with label” = 0 classified a3” = 1 divided by the total number of
examples with” = 0). For more details see chapt&?.
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6.4 Regularization

The spam filter algorithm that we discussed in the previoos@es does unfortu-
nately not work very well if we wish to use many attributes (ds word-phrases).
The reason is that for many attributes we may not encountigrgéesexample in
the dataset. Say for example that we defined the word “Nigasian attribute, but
that our dataset did not include one of those spam emailseyoer are promised
mountains of gold if you invest your money in someone bank igeNa. Also
assume there are indeed a few ham emails which talk aboutickeprople in
Nigeria. Then any future email that mentions Nigeria is siféexd as ham with
100% certainty. More importantly, one cannot recover frtis tecision even if
the email also mentions viagra, enlargement, mortgage @oth,sall in a single
email! This can be seen by the fact thag Pspan{ XNigeriar > 0) = —oo while the
final score is a sum of these individual word-scores.

To counteract this phenomenon, we give each word in theodiaty a small
probability of being present in any email (spam or ham), tefeeing the data.
This process is called smoothing. The impact on the estonatebabilities are
given below,

Pavanl Xi = j) = n
a+> I[X, =AY, =0]
Via + 5 1Y, = 0]

(6.12)

(6.13)

Pham(Xz‘ = ]) =

whereV; is the number of possible values of attribut&hus,« can be interpreted
as a small, possibly fractional number of “pseudo-obse@mat of the attribute in
guestion. It’s like adding these observations to the actatdset.

What value fora do we use? Fitting its value on the dataset will not work,
because the reason we added it was exactly because we astharedas too
little data in the first place (we hadn'’t received one of thasaoying “Nigeria”
emails yet) and thus will relate to the phenomenon of overgjtt However, we
can use the trick described in secti®dwhere we split the data two pieces. We
learn a model on one chunk and adjustuch that performance of the other chunk
is optimal. We play this game this multiple times with difet splits and average
the results.
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6.5 Remarks

One of the main limitations of the NB classifier is that it as&s independence be-
tween attributes (This is presumably the reason why we tclénaiveBayesian
classifier). This is reflected in the fact that each classhigs an independent
vote in the final score. However, imagine that | measure thelsydhome” and
“mortgage”. Observing “mortgage” certainly raises thelyability of observing
“home”. We say that they are positively correlated. It wotlidrefore be more
fair if we attributed a smaller weight to “home” if we alreadipserved mortgage
because they convey the same thing: this email is about ageyfor your home.
One way to obtain a more fair voting scheme is to model theperm#encies ex-
plicitly. However, this comes at a computational cost (eglemtime before you
receive your email in your inbox) which may not always be \Wwdhe additional
accuracy. One should also note that more parameters do cedsaily improve
accuracy because too many parameters may lead to overfitting

6.6 The ldea In a Nutshell

Consider Figur@?. We can classify data by building a model of how the data was
generated. For NB we first decide whether we will generatdaitlam from class

Y = 0orclassy” = 1. Given that decision we generate the valuesiattributes
independently. Each class has a different model for geingrattributes. Clas-
sification is achieved by computing which model was mordyike generate the
new data-point, biasing the outcome towards the classsleigected to generate
more data.
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Chapter 7

The Perceptron

We will now describe one the simplest parametric classifi¢he perceptron
and its cousin thdogistic regressiorclassifier. However, despite its simplicity
it should not be under-estimated! It is the workhorse for tme@msnpanies in-
volved with some form of machine learning (perhaps tyindwittedecision tree
classifier). One could say that it represents the canonararpetric approach to
classification where we believe that a straight line is sigfficto separate the two
classes of interest. An example of this is given in Figeffevhere the assumption
that the two classes can be separated by a line is clearty. vali

However, this assumption need not always be true. Lookirkjcatre?? we
clearly observe that there is no straight line that will de jbb for us. What can
we do? Our first inclination is probably to try and fit a more gdicated sepa-
ration boundary. However, there is another trick that weellusing often in this
book. Instead we can increase the dimensionality of theespgc'measuring”
more things of the data. Call,(X) featurek that was measured from the data.
The features can be highly nonlinear functions. The sinilesice may be to
also measure;(X) = X?, Vk for each attributeX;. But we may also measure
cross-products such a@s;(X) = X;X;, Vi,j. The latter will allow you to ex-
plicitly model correlations between attributes. For exéng X; represents the
presencel() or absence) of the word “viagra” and similarly foX; and the pres-
ence/absence of the word “dysfunction”, then the crossymoieéatureX; X; let’s
you model the presence of both words simultaneously (whiclilsl be helpful in
trying to find out what this document is about). We can add asyfeatures as we
like, adding another dimension for every new feature. Is thgher dimensional
space we can now be more confident in assuming that the datzecsgparated
by a line.

33
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| like to warn the reader at this point that more features isnmexessarily
a good thing if the new features are uninformative for thessifecation task at
hand. The problem is that they introduce noise in the inpat dan mask the
actual signal (i.e. the good, discriminative features).fdct, there is a whole
subfield of ML that deals with selecting relevant featuresrira set that is too
large. The problem of too many dimensions is sometimescaétiee curse of
high dimensionality”. Another way of seeing this is that malimensions often
lead to more parameters in the model (as in the case for tloegteon) and can
hence lead to overfitting. To combat that in turn we can addleegers as we
will see in the following.

With the introduction of regularizers, we can sometimey pheagic and use
an infinite number of features. How we play this magic will bglained when
we will discuss kernel methods in the next sections. But $efingt start simple
with the perceptron.

7.1 The Perceptron Model

Our assumption is that a line can separate the two classeteoést. To make our
life a little easier we will switch to thé” = {+1, —1} representation. With this,
we can express the condition mathematically expressed as

Y, = sign>  wiXpm — ) (7.1)
k

where “sign” is the sign-functior#{1 for nonnegative reals and1 for negative
reals). We have introducdd + 1 parametergws, .., wg, o} which define the line
for us. The vectow represents the direction orthogonal to the decision baynda
depicted in Figure??. For example, a line through the origin is represented by
wlix = 0, i.e. all vectorsx with a vanishing inner product witiv. The scalar
quantity o represents the offset of the line’x = 0 from the origin, i.e. the
shortest distance from the origin to the line. This can be bgawriting the points
on the line ax = y + v wherey is a fixed vector pointing to an arbitrary point
on the line andv is the vector on the line starting gt(see Figure??). Hence,
wl(y +v) —a = 0. Since by definitorw?v = 0, we findw’y = a which
means thatv is the projection ofy ontow which is the shortest distance from the
origin to the line.

INote that we can replack;, — ¢, (X) but that for the sake of simplicity we will refrain from
doing so at this point.
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We like to estimate these parameters from the data (which iVeavin a
minute), but it is important to notice that the number of paeters is fixed in
advance. In some sense, we believe so much in our assumpéibthe data is
linearly separable that we stick to it irrespective of hownsndata-cases we will
encounter. This fixed capacity of the model is typical forgmaetric methods, but
perhaps a little unrealistic for real data. A more reasanasisumption is that
the decision boundary may become more complex as we see at@.eTdo few
data-cases simply do not provide the resolution (evideneeg¢ssary to see more
complex structure in the decision boundary. Recall thatparametric methods,
such as the “nearest-neighbors” classifiers actually de Has desirable feature.
Nevertheless, the linear separability assumption com#s same computation
advantages as well, such as very fast class prediction orteswwdata. | believe
that this computational convenience may be at the root $gpajpularity. By the
way, when we take the limit of an infinite number of features will have happily
returned the land of “non-parametrics” but we have exereigde patience before
we get there.

Now let’s write down a cost function that we wish to minimipearder for our
linear decision boundary to become a good classifier. Giead would like to
control performance on future, yet unseen test data. Hawths is a little hard
(since we don’t have access to this data by definition). Asreogate we will
simply fit the line parameters on the training data. It canbestressed enough
that this is dangerous in principle due to the phenomenoweffitting (see sec-
tion ??). If we have introduced very many features and no form of laaggation
then we have many parameters to fit. When this capacity isaige Irelative to
the number of data cases at our disposal, we will be fittingdiwsyncrasies of
this particular dataset and these will not carry over to thtere test data. So,
one should split of a subset of the training data and reséfee monitoring per-
formance (one should not use this set in the training praegd€ycling though
multiple splits and averaging the result was the crossdaibn procedure dis-
cussed in sectio?. If we do not use too many features relative to the number of
data-cases, the model class is very limited and overfitamgpt an issue. (In fact,
one may want to worry more about “underfitting” in this case.)

Ok, so now that we agree on writing down a cost on the trainatg,dve need
to choose an explicit expression. Consider now the follgvahoice:

n

C(w,a) = %% Z(Yn —wiX, +a)? (7.2)

i=1
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where we have rewrittew?”X,, = > x WeXgn. If we minimize this cost then
w’! X, — «tends to be positive wheyj, = +1 and negative whel,, = —1. This
is what we want! Once optimized we can then easily use oun@biparameters
to perform prediction on new test dakges; as follows:

Yiest= Sign) _ wj Xeq — ") (7.3)
k

whereY is used to indicate theredictedvalue forY'.

So far so good, but how do we obtain our values{far, o*}? The simplest
approach is to compute the gradient and slowly descent ooatefunction (see
appendix?? for background). In this case, the gradients are simple:

n

VwC(w,a) = —% Z(Yn —w' X, +a)X, =X — XTw + af7.4)
=1

n

1
VoC(w, ) == (Y, - w'X,+0a)=( - X"w+a) (7.5)
n
=1
where in the latter matrix expression we have used the coiovethat X is the
matrix with elementsYy,,. Our gradient descent is now simply given as,

Wip1 = Wy — VW C(Wy, ay) (7.6)
a1 = oy — NV C(Wy, ay) (7.7)

Iterating these equations until convergence will minintize cost function. One
may criticize plain vanilla gradient descent for many ressoFor example you
need to be carefully choose the stepsipe risk either excruciatingly slow conver-
gence or exploding values of the iterateg ;. Even if convergence is achieved
asymptotically, it is typically slow. Using a Newton-Rakdn method will im-
prove convergence properties considerably but is alsoesgrgnsive. Many meth-
ods have been developed to improve the optimization of teefaaction, but that
is not the focus of this book.

However, | do want to mention a very popular approach to ogatron on
very large datasets known as “stochastic gradient desc&h® idea is to select
a single data-item randomly and perform an update on thermess based on
that:

W1 =W + (Y, —w' X, + )X, (7.8)
Q1 = G = n(Yn - WTXn + Oé) (79)
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The fact that we are picking data-cases randomly injectsenioi the updates, so
even close to convergence we are “wiggling around” the snlutf we decrease
the stepsize however, the wiggles get smaller. So it seenesigibde strategy
would be to slowly decrease the stepsize and wiggle our weyetsolution. This
stochastic gradient descent is actually very efficient ecpce if we can find a
good annealing schedule for the stepsize. Why really? Ihsdbat if we use
more data-cases in a mini-batch to perform a parameter @pdaashould be able
to make larger steps in parameter space by using biggeriztepsWhile this
reasoning holds close to the solution it does not far awaw filee solution. The
intuitive reason is that far away from convergence evergpuaint will tell you
the same story: move in direction X to improve your model. ¥ouaply do not
need to query datapoints in order to extract that inforrmati®o for a bad model
there is a lot of redundancy in the information that dataesasan convey about
improving the parameters and querying a few is sufficiends@i to convergence
you need to either use more data or decrease the stepsizedase the resolution
of your gradients.

This type of reasoning clearly makes an effort to includedbmputational
budget part of the overall objective. This is what we haveiadyin chapter XX
is the distinguishing feature of machine learning. If yoe aot convinced about
how important this is in the face of modern day datasets imaghe following.
Company C organizes a contest where they provide a virtuafigite dataset
for some prediction task. You can earn 1 million dollars iuymake accurate
predictions on some test set by Friday next week. You canszhbetween a
single parameter update based on all the data or many upmtasesall subsets of
the data, Who do you think will win the contest?

7.2 A Different Cost function: Logistic Regression

The cost function of Eq. 7.2 penalizes gross violations @&sooredictions rather
severely (quadratically). This is sometimes counter-pobisie because the algo-
rithm might get obsessed with improving the performancenaf single data-case
at the expense of all the others. The real cost simply cotetatmber of mis-
labelled instances, irrespective of how badly off you pe&di functionw” X, +o
was. So, a different function is often used,

C(w,a) = —% Z Y, tanh(w’ X, + a) (7.10)

i=1
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The functiontanh(-) is plotted in figure??. It shows that the cost can never be
larger than2 which ensures the robustness against outliers. We leawetlitet
reader to derive the gradients and formulate the gradiestesie algorithm.

7.3 The ldea In a Nutshell

Figure?? tells the story. One assumes that your data can be sepasateline.
Any line can be represented w"x = a. Data-cases from one class satisfy
w’ X, < a while data-cases from the other class satigfyX,, > a. To achieve
that, you write down a cost function that penalizes dat@séalling on the wrong
side of the line and minimize it ovdw, a'}. For a test case you simply compute
the sign ofw” Xest — a to make a prediction as to which class it belongs to.



Chapter 8

Support Vector Machines

Our task is to predict whether a test sample belongs to onemtlasses. We
receive training examples of the fornfix;, 3}, i = 1,...,n andx; € R?, y; €
{-1,+1}. We call{x;} the co-variates or input vectors afg;} the response
variables or labels.

We consider a very simple example where the data are in fagaily sepa-
rable: i.e. | can draw a straight lingx) = w’x — b such that all cases with
y; = —1 fall on one side and havg(x;) < 0 and cases witly; = +1 fall on the
other and havg(x;) > 0. Given that we have achieved that, we could classify
new test cases according to the rulg; = sign(Xesy)-

However, typically there are infinitely many such hyperaaa obtained by
small perturbations of a given solution. How do we chooseveenh all these
hyper-planes which the solve the separation problem forti@iming data, but
may have different performance on the newly arriving tesesa For instance,
we could choose to put the line very close to members of oncphar class,
sayy = —1. Intuitively, when test cases arrive we will not make mangtatdkes
on cases that should be classified wjth= +1, but we will make very easily
mistakes on the cases with= —1 (for instance, imagine that a new batch of
test cases arrives which are small perturbations of theitigidata). A sensible
thing thus seems to choose the separation line as far awantfothy = —1 and
y = +1 training cases as we can, i.e. right in the middle.

Geometrically, the vector is directed orthogonal to the line definedwyx =
b. This can be understood as follows. First take 0. Now it is clear that all vec-
tors, x, with vanishing inner product witk satisfy this equation, i.e. all vectors
orthogonal tow satisfy this equation. Now translate the hyperplane away the
origin over a vectoa. The equation for the plane now becomgs— a)’w = 0,

39
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i.e. we find that for the offsét = a’w, which is the projection of onto to the
vectorw. Without loss of generality we may thus choasperpendicular to the
plane, in which case the lengtla|| = |b|/||w|| represents the shortest, orthogonal
distance between the origin and the hyperplane.

We now define 2 more hyperplanes parallel to the separatipgrplane. They
represent that planes that cut through the closest tragxamples on either side.
We will call them “support hyper-planes” in the followingetause the data-
vectors they contain support the plane.

We define the distance between the these hyperplanes anepdwasng hy-
perplane to bel, andd_ respectively. Thenargin, v, is defined to bel, + d_.
Our goal is now to find a the separating hyperplane so that trgimis largest,
while the separating hyperplane is equidistant from both.

We can write the following equations for the support hypangis:

wix = b+94 (8.1)
wix = b—90 (8.2)

We now note that we have over-parameterized the probleme $ealew, b and

0 by a constant factoty, the equations fok are still satisfied. To remove this
ambiguity we will require that = 1, this sets the scale of the problem, i.e. if we
measure distance in millimeters or meters.

We can now also compute the valuesdar= (||b+1|—[b||)/||w]|| = 1/||w||
(this is only true ifb ¢ (—1,0) since the origin doesn't fall in between the hyper-
planes in that case. if€ (—1,0) you should use, = (||b + 1| + [b]])/||w]| =
1/]|w]|). Hence the margin is equal to twice that valge= 2/||w||.

With the above definition of the support planes we can writgrdthe follow-
ing constraint that any solution must satisfy,

wix,—b< -1 Vuy=-1 (8.3)
wix;—b>+1 V oy =+1 (8.4)

or in one equation,
yi(wix; —b) —1>0 (8.5)

We now formulate the primal problem of the SVM:

minimize, , —||w||

subjectto  y;(w'x; —b) —1 >0 Vi (8.6)
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Thus, we maximize the margin, subject to the constraintsatharaining cases
fall on either side of the support hyper-planes. The dasesdhat lie on the
hyperplane are called support vectors, since they supperhyper-planes and
hence determine the solution to the problem.

The primal problem can be solved by a quadratic program. kewyét is
not ready to be kernelised, because its dependence is nobomhner products
between data-vectors. Hence, we transform to the dual flation by first writing
the problem using a Lagrangian,

1 2 = T

ﬁW@M—?MH—;mmmxr@—ﬂ (8.7)
The solution that minimizes the primal problem subject ®¢bnstraints is given
by min,, max,, £(w, ), i.e. a saddle point problem. When the original objective-
function is convex, (and only then), we can interchange tlmmization and
maximization. Doing that, we find that we can find the conditom w that must
hold at the saddle point we are solving for. This is done bintakerivatives wrt
w andb and solving,

W — Z X, =0 = w'= Z QX (8.8)
Z a;y; =0 (8-9)

Inserting this back into the Lagrangian we obtain what isikmas the dual prob-
lem,

N
o 1
maximize Lp = E a; — 5 g OézajyiijzTXj
i=1 ij

subjectto Y "oy =0 (8.10)

a; >0 Vi (8.11)

The dual formulation of the problem is also a quadratic progrbut note that the
number of variablesy; in this problem is equal to the number of data-casgés,

The crucial point is however, that this problemly depends or; through the
inner productx! x;. This is readily kernelised through the substitutighx; —
k(x;, x;). Thisis arecurrent theme: the dual problem lends itseleto&lisation,
while the primal problem did not.
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The theory of duality guarantees that for convex problerns, dual prob-
lem will be concave, and moreover, that the unique solutioth@ primal prob-
lem corresponds tot the unique solution of the dual problémfact, we have:
Lp(w*) = Lp(a*), i.e. the “duality-gap” is zero.

Next we turn to the conditions that must necessarily holdhatsaddle point
and thus the solution of the problem. These are called the &¥ditions (which
stands for Karush-Kuhn-Tucker). These conditions are sy in general, and
sufficient for convex optimization problems. They can bewet from the pri-
mal problem by setting the derivatives wrt ¥o to zero. Also, the constraints
themselves are part of these conditions and we need thiaefgualityconstraints
the Lagrange multipliers are non-negative. Finally, anangnt constraint called
“complementary slackness” needs to be satisfied,

OwLlp=0 — W — Z a;yx; =0 (8.12)
HWLp=0 — > agy; =0 (8.13)
constraint - 1 yi(wlx; —b) —1>0 (8.14)
multiplier condition  «; >0 (8.15)
complementary slacknessy; [y;(w'x; —b) — 1] =0 (8.16)

It is the last equation which may be somewhat surprising.tates that either
the inequality constraint is satisfied, but not saturatg@w’x;, — ) — 1 > 0
in which casex; for that data-case must be zero, or the inequality constigin
saturated;;(w’x; — b) — 1 = 0, in which casey; can be any value; > 0. In-
equality constraints which are saturated are said to bé/&¢ctvhile unsaturated
constraints are inactive. One could imagine the processasthing for a solution
as a ball which runs down the primary objective function gginadient descent.
At some point, it will hit a wall which is the constraint andlaugh the derivative
is still pointing partially towards the wall, the constremprohibits the ball to go
on. This is an active constraint because the ball is gluetiabwall. When a
final solution is reached, we could remove some constraintisput changing the
solution, these are inactive constraints. One could thfrtk@termd,, L as the
force acting on the ball. We see from the first equation ablatdnly the forces
with «; # 0 exsert a force on the ball that balances with the force frarctirved
guadratic surfacev.

The training cases with; > 0, representing active constraints on the posi-
tion of the support hyperplane are called support vectores& are the vectors
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that are situated in the support hyperplane and they deterthe solution. Typi-
cally, there are only few of them, which people call a “spassdution (mosta’s
vanish).

What we are really interested in is the functigr) which can be used to
classify future test cases,

f(x)=wTx - = Z yixix — b (8.17)

As an application of the KKT conditions we derive a solution#* by using the
complementary slackness condition,

b" = <Z ajYX; X — yi> i a support vector (8.18)
j

where we useg? = 1. So, using any support vector one can deternijri®it for
numerical stability it is better to average over all of theaitti{ough they should
obviously be consistent).

The most important conclusion is again that this functjgn can thus be
expressed solely in terms of inner produgfsc; which we can replace with ker-
nel matrices:(x;, x;) to move to high dimensional non-linear spaces. Moreover,
sincea is typically very sparse, we don’t need to evaluate manyeédegntries in
order to predict the class of the new input

8.1 The Non-Separable case

Obviously, not all datasets are linearly separable, andesoeed to change the
formalism to account for that. Clearly, the problem lieshe tonstraints, which
cannot always be satisfied. So, let’s relax those conssraintntroducing “slack

variables”&;,

wix;—b< —14+& Voy=-—1 (8.19)
wix;—b>4+1-§& YV y=+1 (8.20)
& >0 Vi (8.21)

The variablesg; allow for violations of the constraint. We should penalibe t
objective function for these violations, otherwise the \aboonstraints become
void (simply always pick; very large). Penalty functions of the for@y", &;)*
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will lead to convex optimization problems for positive igesk. Fork = 1,2
it is still a quadratic program (QP). In the following we wdhooset = 1. C
controls the tradeoff between the penalty and margin.

To be on the wrong side of the separating hyperplane, a ds@would need
& > 1. Hence, the sun}_, ¢; could be interpreted as measure of how “bad” the
violations are and is an upper bound on the number of vialatio

The new primal problem thus becomes,

o 1
minimize, ,¢ Lp = §||w||2 +CY ¢

subjectto  yi(wix; —b) —1+& >0 Vi (8.22)
§& =0 Vi (8.23)

leading to the Lagrangian,

N
£<Wab7§7aaﬂ'> _||WH2+CZ£Z Zaz yZ(W Xz_b _1+§2 Z,uzgz
i=1

(8 24)

from which we derive the KKT conditions,
1.0wLp =0 — W= X =0 (8.25)
2.0,Lp =0 — D agy; =0 (8.26)
3.05,613 =0 — C - QG — My = 0 (827)
4.constraint-1 yi(wlix; —b) —14+& >0 (8.28)
5.constraint-2 & >0 (8.29)
6.multiplier condition-1  «o; > 0 (8.30)
7.multiplier condition-2 ~ p; >0 (8.31)
8.complementary slackness-1y; [yi(wai —b)—1+&] =0 (8.32)
9.complementary slackness-1;& =0 (8.33)
(8.34)

From here we can deduce the following facts. If we assumeéhat 0, then
1 = 0(9), hencen; = C (1) and thust; = 1 — y;(x/'w — b) (8). Also, when
& = 0we haveu; > 0(9) and hencey; < C. Ifin addition to&; = 0 we also have
thaty;(w’x; — b) — 1 = 0, thena; > 0 (8). Otherwise, ify;(w'x; —b) —1 >0
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thena; = 0. In summary, as before for points not on the support planearitie
correct side we havg = «; = 0 (all constraints inactive). On the support plane,
we still haveg; = 0, but nowq; > 0. Finally, for data-cases on the wrong side of
the support hyperplane the max-out too; = C' and the; balance the violation
of the constraint such thgt(w’x; — b) — 1+ & = 0.

Geometrically, we can calculate the gap between supporrpiane and the
violating data-case to bg/||w||. This can be seen because the plane defined by
yi(wlx —b) — 1+ & = 0is parallel to the support plane at a distafhice ;b —
&|/||w|| from the origin. Since the support plane is at a distatce y;b|/||w]]|
the result follows.

Finally, we need to convert to the dual problem to solve itcedfitly and to
kernelise it. Again, we use the KKT equations to get ridwoh and¢,

N
. 1
maximize Lp = g oy — B E aiajyiij;!xj
i=1 ij

subjectto Y oy =0 (8.35)
0<a; <C Vi (8.36)

Surprisingly, this is almost the same QP is before, but witkextra constraint on
the multipliersa; which now live in a box. This constraint is derived from thetfa
thato; = C' — p; andy; > 0. We also note that it only depends on inner products
x]x; which are ready to be kernelised.
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Chapter 9

Support Vector Regression

In kernel ridge regression we have seen the final solutionneasparse in the
variablesa.. We will now formulate a regression method that is sparsejtihas
the concept of support vectors that determine the solution.

The thing to notice is that the sparseness arose from conepl@mny slackness
conditions which in turn came from the fact that we had indiuaonstraints.
In the SVM the penalty that was paid for being on the wrong sidde support
plane was given by’ >". ¢F for positive integers:, where¢; is the orthogonal
distance away from the support plane. Note that the téwi|*> was there to
penalize largew and hence to regularize the solution. Importantly, thers mea
penalty if a data-case was on the right side of the plane. iBecall these data-
points do not have any effect on the final solution ¢hevas sparse. Here we do
the same thing: we introduce a penalty for being to far awamfpredicted line
w®; + b, but once you are close enough, i.e. in some “epsilon-tub®iral this
line, there is no penalty. We thus expect that all the dasesavhich lie inside the
data-tube will have no impact on the final solution and heraseltorresponding
a; = 0. Using the analogy of springs: in the case of ridge-regoestfie springs
were attached between the data-cases and the decisiooesuréamce every item
had an impact on the position of this boundary through thesfd@rexerted (recall
that the surface was from “rubber” and pulled back becausastparameterized
using a finite number of degrees of freedom or because it vgpdaigzed). For
SVR there are only springs attached between data-casedeotlis tube and these
attach to the tube, not the decision boundary. Hence, tltssiinside the tube
have no impact on the final solution (or rather, changingrtpesition slightly
doesn't perturb the solution).

We introduce different constraints for violating the tuloastraint from above
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and from below,

C .. I 1 2 C 2 F2
minimize— w, §, & §||W|| +§Z;(§z + &)
subject to wlid, +b—y <ec+& Vi

The primal Lagrangian becomes,

1 C . ) i
Lp= §||W| |2+§ Z(€?+§ZZ>+Z ai(WTq)i+b_yi_5_§i)+Z Gi(yi—w' ®;—b—e—&;)

(9.2)

Remark | We could have added the constraints that 0 andéi > 0. However,
itis not hard to see that the final solution will have that iegment automatically
and there is no sense in constraining the optimization tafienal solution as
well. To see this, imagine songgis negative, then, by setting = 0 the cost is
lower and non of the constraints is violated, so it is prefériWe also note due to
the above reasoning we will always have at least one of thezero, i.e. inside
the tube both are zero, outside the tube one of them is zeis nidans that at the
solution we haves = 0.
Remark It Note that we don’t scale = 1 like in the SVM case. The reason is that
{y;} now determines the scale of the problem, i.e. we have notmaemeterized
the problem.

We now take the derivatives w.r.tv, b, & and¢ to find the following KKT
conditions (there are more of course),

W= Z(@i—ai)q)i (9.3)

& = o)C & =a;/C (9.4)

(2

Plugging this back in and using that now we also haye = 0 we find the dual
problem,
- 1 . . 1 . .
maximize, s —5 ;(Oél — Oél')(Oéj — Oéj)(KZ'j + E(Sw) + Z(Ozl — Oéi)yi — Z(Ozl + 042‘)6
subjectto ) (4 — ;) =0
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From the complementary slackness conditions we can reaspdrseness of the
solution out:

a(W'di+b—y;—e—§&)=0 (9.6)
iy — W —b—c—§) =0 (9.7)
§& =0, a4;=0 (9.8)

where we added the last conditions by hand (they don’t seedireatly follow
from the formulation). Now we clearly see that if a case isv@bthe tubeg;
will take on its smallest possible value in order to make thvestraints satisfied
é,- = y; — wl®; — b— e. This implies thaty; will take on a positive value and
the farther outside the tube the larger th€you can think of it as a compensating
force). Note that in this case, = 0. A similar story goes it; > 0 anda; > 0. If
a data-case is inside the tube thea; are necessarily zero, and hence we obtain
sparseness.

We now change variables to make this optimization problesk fnore similar
to the SVM and ridge-regression case. Introddce- &; — «; and usey;a; = 0
to write &; + «o; = |5;],

. 1 1
maximize;  — > 6iﬂj(Kij+55ij)+ > Biyi — > _|Bile
ij % 7

subjectto 3, =0 (9.9)

where the constraint comes from the fact that we includecs tieirm b.

From the slackness conditions we can also find a valué {smilar to the
SVM case). Also, as usual, the prediction of new data-cageés by,

y=w'Ox)+b=> BK(xix)+b (9.10)

It is an interesting exercise for the reader to work her wagugh the case

INote by the way that we could not use the trick we used in ridgggession by defining a
constant featurey, = 1 andb = wy. The reason is that the objective does not depend on
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where the penalty is linear instead of quadratic, i.e.

o 1 -
minimize,, , ; §HW||2 + CZ(& + &)

subjectto w'd, +b—y; <e+& Vi
yi — Wi, —b<e+& Vi (9.11)
§>0, &>0Vi (9.12)

leading to the dual problem,
I 1
maximizgs  —; Z BiB; Kij + Z Biyi — Z |Bile
1% ) 7
subjectto Y ;=0 (9.13)

—C < B < +C Vi (9.14)

where we note that the quadratic penalty on the siz8 of replaced by a box
constraint, as is to be expected in switching frépnorm toL; norm.

Final remark: Let's remind ourselves that the quadratigpams that we have
derived are convex optimization problems which have a unigptimal solution
which can be found efficiently using numerical methods. Thisften claimed as
great progress w.r.t. the old neural networks days whiclevaéagued by many
local optima.



Chapter 10

Kernel ridge Regression

Possibly the most elementary algorithm that can be kereeblzridge regression.
Here our task is to find a linear function that models the ddpeaies between
covariates{z;} and response variablég, }, both continuous. The classical way
to do that is to minimize the quadratic cost,

C(w) =35> (yi—w'x)? (10.1)

)

However, if we are going to work in feature space, where wiamx; — ¢(x;),
there is an clear danger that we overfit. Hence we need toargel This is an
important topic that will return in future classes.

A simple yet effective way to regularize is to penalize thenm@f w. This
is sometimes called “weight-decay”. It remains to be debeeah how to choose
A. The most used algorithm is to use cross validation or lesmeout estimates.
The total cost function hence becomes,

_ 1 T 2 1 2
C=3> (i~ w'x)’ + gA|wl| (10.2)

which needs to be minimized. Taking derivatives and eqgatiem to zero gives,
-1
Z@i —wWix)x; =Aw = w= ()\I + inxf) (Z ijj> (10.3)
% % i

We see that the regularization term helps to stabilize therge numerically by
bounding the smallest eigenvalues away from zero.
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10.1 Kernel Ridge Regression

We now replace all data-cases with their feature vector— ®; = ®(x;). In
this case the number of dimensions can be much higher, oriefieitely higher,
than the number of data-cases. There is a neat trick thatslis to perform the
inverse above in smallest space of the two possibilitigbeeithe dimension of
the feature space or the number of data-cases. The trickaa by the following
identity,

(P'+B"R'B)'B"R™ = PBY(BPBT + R)™* (10.4)

Now note that if B is not square, the inverse is performed in spaces of differen
dimensionality. To apply this to our case we defihe= ¢, andy = y;. The
solution is then given by,

w = (Mg + 00" oy = d(dTP + ML,) "ty (10.5)

This equation can be rewritten as: = >, a;®(x;) with a = (®7® + A\IL,,) 'y,
This is an equation that will be a recurrent theme and it canteepreted as: The
solutionw must lie in the span of the data-cases, even if the dimenigipoathe
feature space is much larger than the number of data-caksss@ems intuitively
clear, since the algorithm is linear in feature space.

We finally need to show that we never actually need accesstie#ture vec-
tors, which could be infinitely long (which would be rathemractical). What we
need in practice is is the predicted value for anew test pginthis is computed
by projecting it onto the solutiow,

y=wox)=y(@®'®+ I\, 'oTd(z) = y(K + \I,) 'k(x)  (10.6)
whereK (bx;, bx;) = ®(z;)" ®(z;) andk(x) = K(x;,x). The important message
here is of course that we only need access to the kéfnel

We can now add bias to the whole story by adding one more, aonfgtature
to : &, = 1. The value ofw, then represents the bias since,

WP =" w,, + wo (10.7)

Hence, the story goes through unchanged.



10.2. AN ALTERNATIVE DERIVATION 53

10.2 An alternative derivation

Instead of optimizing the cost function above we can intoeduagrange multi-
pliers into the problem. This will have the effect that theidetion goes along
similar lines as the SVM case. We introduce new varialgdes; y; — w’ ®; and
rewrite the objective as the following constrained QP,

minimize—w,&  Lp = ng

subject to v —wid, =& Vi (10.8)
lw|| < B (10.9)

This leads to the Lagrangian,

Lp=) &+ Bilyi—w'® — &+ A(||wl|* — B?) (10.10)

i

Two of the KKT conditions tell us that at the solution we have:
26 =53 Vi, 2w =Y 3 (10.11)
Plugging it back into the Lagrangian, we obtain the dual bagran,
1 2 1 2
Lp= ;(_Zﬁi + Bii) — 75\ izj(ﬁiﬁjKij) — AB (10.12)

We now redefiney; = /3;/(2)) to arrive at the following dual optimization prob-
lem,

maximize-o, A —A*> al+20 Y aigi—A Y i K—AB®  stA >0
7 7 ¥

(10.13)
Taking derivatives w.r.ta gives precisely the solution we had already found,

of = (K+ )y (10.14)

Formally we also need to maximize over However, different choices of cor-
respond to different choices fd@. Either\ or B should be chosen using cross-
validation or some other measure, so we could as well Xanythis process.
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One big disadvantage of the ridge-regression is that wet thane sparseness
in the a vector, i.e. there is no concept of support vectors. Thissiful be-
cause when we test a new example, we only have to sum overgperswectors
which is much faster than summing over the entire trainieig-b1 the SVM the
sparseness was born out of the inequality constraints bedhe complementary
slackness conditions told us that either if the constraias wactive, then the
multiplier o;; was zero. There is no such effect here.



Chapter 11

Kernel K-means and Spectral
Clustering

The objective in K-means can be written as follows:

Clzpr) = 3l = pa | (11.1)

where we wish to minimize over the assignment variab)éwhich can take val-
uesz; = 1, .., K, for all data-caseg and over the cluster meapg, £ = 1..K. It
is not hard to show that the following iterations achievé,tha

z; = argmin ||z; — pug||? (11.2)
k
1
Ly = — Z x; (11.3)
Nk 1€C

where(C, is the set of data-cases assigned to cluster k.
Now, let’s assume we have defined many featupés;) and wish to do clus-
tering in feature space. The objective is similar to before,

2 (11.4)

Clz,p) = Z (i) — ey

We will now introduce aV x K assignment matrix?,,,, each column of which
represents a data-case and contains exactlylogerow £ if it is assigned to
clusterk. As a result we have_, Z,, = 1 andN, = > Z,. Also define
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L = diagl/ ), Z.) = diagl/N]. Finally define®;, = ¢;(x,). With these
definitions you can now check that the mattik defined as,

M=o2L7" (11.5)

consists of N columns, one for each data-case, where each column comains
copy of the cluster meam, to which that data-case is assigned.
Using this we can write out the K-means cost as,

C = tr[(® — M)(®— M)T] (11.6)

Next we can show that”Z = L=! (check this), and thus thaZ LZ7)? =
ZLZ™. In other words, it is a projection. Similarly,— ZLZ" is a projection on
the complement space. Using this we simplify eqn.11.6 as,

C =tr[®(I — ZLZ")*®T| (11.7)
=tr[®( — ZLZ")®"] (11.8)
= tr[®d”] — tr[®dZLZT T (11.9)
= tr[K] — tr[L2ZTK ZL?] (11.10)

where we used thar[AB] = tr[BA] andL: is defined as taking the square root
of the diagonal elements.

Note that only the second term depends on the clusteringxzatso we can
we can now formulate the following equivalent kernel clustg problem,

max tr[L2 2" KZ L] (11.11)
such that:7 is a binary clustering matrix. (11.12)

This objective is entirely specified in terms of kernels andve have once again
managed to move to the "dual” representation. Note alsotttiatproblem is
very difficult to solve due to the constraints which forcesasearch of binary
matrices.

Our next step will be to approximate this problem through laxation on
this constraint. First we recall that”Z = L=! = L2Z7ZLz = I. Renaming
H = ZL3, with H anN x K dimensional matrix, we can formulate the following
relaxation of the problem,

max tr[HT K H| (11.13)
subjecttoH" H = I (11.14)
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Note that we did not requiré/ to be binary any longer. The hope is that the

solution is close to some clustering solution that we can théract a posteriori.
The above problem should look familiar. Interpret the cahsnof H as a

collection of K mutually orthonormal basis vectors. The objective can then

written as,
K

> hiKh (11.15)
k=1
By choosingh, proportional to thes” largest eigenvectors @ we will maximize
the objective, i.e. we have

K=UAU", = H=UpgR (11.16)

whereR is a rotation inside the eigenvalue spaB&’ = RTR = I. Using this
you can now easily verify that[HT K H] = Zsz1 A Where{\;}, k = 1..K are
the largest K eigenvalues.

What is perhaps surprising is that the solution to this mdiekernel-clustering
problem is given by kernel-PCA! Recall that for kernel PCAal®o solved for the
eigenvalues of(. How then do we extract a clustering solution from kerne/ARPC

Recall that the columns df (the eigenvectors ak’) should approximate the
binary matrixZ which had a singlé per row indicating to which cluster data-case
n is assigned. We could try to simply threshold the entried @ that the largest
value is set tal and the remaining ones tb However, it often works better to

first normalizeH "
e = ——e (11.17)

H,, =
V Zkz Hr%k

All rows of H are located on the unit sphere. We can now run a simple clogter
algorithm such as K-means on the data makfixo extract K clusters. The above
procedure is sometimes referred to as “spectral clustering

Conclusion: Kernel-PCA can be viewed as a nonlinear feaxiraction tech-
nique. Input is a matrix of similarities (the kernel matrix@ram matrix) which
should be positive semi-definite and symmetric. If you ectttevo or three fea-
tures (dimensions) you can use it as a hon-linear dimenigipreduction method
(for purposes of visualization). If you use the result asiirtp a simple clustering
method (such as K-means) it becomes a nonlinear clusteratigad.
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Chapter 12

Kernel Principal Components
Analysis

Let’s fist see what PCA is when we do not worry about kernelsfeatlire spaces.
We will always assume that we have centered data, Y.ex; = 0. This can
always be achieved by a simple translation of the axis.

Our aim is to find meaningful projections of the data. Howewer are facing
an unsupervised problem where we don’'t have access to aalslalh we had,
we should be doing Linear Discriminant Analysis. Due to tlaisk of labels,
our aim will be to find the subspace of largest variance, wherechoose the
number of retained dimensions beforehand. This is cleaslyang assumption,
because it may happen that there is interesting signal imlitleetions of small
variance, in which case PCA in not a suitable technique (amdhould perhaps
use a technique called independent component analysisyevéo, usually it is
true that the directions of smallest variance represemtteresting noise.

To make progress, we start by writing down the sample-camag matrixC,
1 T
C= N ZX@XZ- (12.1)

The eigenvalues of this matrix represent the variance iretgen-directions of
data-space. The eigen-vector corresponding to the laeggestvalue is the direc-
tion in which the data is most stretched out. The second tilirecs orthogonal
to it and picks the direction of largest variance in that ogbnal subspace etc.
Thus, to reduce the dimensionality of the data, we projestdéita onto the re-
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tained eigen-directions of largest variance:

UNU" =C = C=) Auu, (12.2)

and the projection is given by,
yi = Ul'x; Vi (12.3)

wherelU, means the x k sub-matrix containing the firéteigenvectors as columns.
As a side effect, we can now show that the projected data acemelated in this
new basis:

1 1
5 2y = 5 YU Uy = UL CU = UTUAUUL = A, (12.4)

whereA,, is the (diagonal} x k& sub-matrix corresponding to the largest eigen-
values.

Another convenient property of this procedure is that tli@mstruction error
in Ly-norm between frony to x is minimal, i.e.

> i — Pexi (12.5)

whereP,, = U, Ul is the projection onto the subspace spanned by the columns of
Uy, is minimal.

Now imagine that there are more dimensions than data-casessome di-
mensions remain unoccupied by the data. In this case it ibarotto show that
the eigen-vectors that span the projection space must tleeisubspace spanned
by the data-cases. This can be seen as follows,

Au, = Cu, = % ;Xixfua = %;(X?UQ)XZ‘ = u, = Z (};\Z::;\l:)xz = ZOZ?Xz

(12.6)
whereu, is some arbitrary eigen-vector 6f. The last expression can be inter-
preted as: “every eigen-vector can be exactly written (lasslessly) as some
linear combination of the data-vectors, and hence it measinliits span”. This
also implies that instead of the eigenvalue equatiGns= Au we may consider
the N projected equations! Cu = A\x’u Vi. From this equation the coefficients
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a¢ can be computed efficiently a space of dimensiofand notd) as follows,

XZTCU(I = )\aX;‘FUa =
1
XZTN Z XXt Z ajx; = AoX? Z X
k J J
1 a a
N Z aj xXI'xi|[xix;] = A Z j [xIx;] (22.7)

We now rename the matrix! x;] = K; to arrive at,
K20 =N)\Ka® = Ka®=(\)a® with X\, =N\, (12.8)

So, we have derived an eigenvalue equatiorofavhich in turn completely deter-
mines the eigenvectors By requiring thatu is normalized we find,

=1 = Zoz xI'xj]=alKa, = N\ola,=1 = |la.|=1/vVN\

(12.9)
Finally, when we receive a new data-cassnd we like to compute its projections
onto the new reduced space, we compute,

ult = Z alxlt = Z alK(x;,t) (12.10)

This equation should look familiar, it is central to mostrermethods.

Obviously, the whole exposition was setup so that in the eadmly needed
the matrix X' to do our calculations. This implies that we are now readyeao k
nelize the procedure by replacisg — ®(x;) and definingK;; = ®(x;)®(x;)?,
whered(x;) = ®,.

12.1 Centering Data in Feature Space

It is in fact very difficult to explicitly center the data ind&ure space. But, we
know that the final algorithm only depends on the kernel maso if we can
center the kernel matrix we are done as well. A kernel masrigiven byK;; =
®;®7. We now center the features using,

1
D= — ; o, (12.11)
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Hence the kernel in terms of the new features is given by,

Ky = (@i > - = S (12.12)
= o] -y o] - el Sl ¢ [y Y ol S0eay
= Kj—rl] — Lk + kL1 (12.14)
with  k; = % zk: K (12.15)
and k= % > Ky (12.16)
j

Hence, we can compute the centered kernel in terms of theaotered kernel
alone and no features need to be accessed.
At test-time we need to compute,

Koltixg) = [0(t) — 1 D @0xu)][005) — - S o0 (12.17)

Using a similar calculation (left for the reader) you can fthdt this can be ex-
pressed easily in terms &f (t;, x,;) and K (x;, x;) as follows,
K (ti,x;) = K(t;,x;) — K(t;)1] —

J

Lik(x;)" + k1,17 (12.18)
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Fisher Linear Discriminant Analysis

The most famous example of dimensionality reduction isrigipal components
analysis”. This technique searches for directions in tha theat have largest vari-
ance and subsequently project the data onto it. In this wayphiain a lower
dimensional representation of the data, that removes sdrie dnoisy” direc-
tions. There are many difficult issues with how many diredi@ne needs to
choose, but that is beyond the scope of this note.

PCA is an unsupervised technique and as such does not inah&lenforma-
tion of the data. For instance, if we imagine 2 cigar like tdus in 2 dimensions,
one cigar hag = 1 and the otheyy = —1. The cigars are positioned in parallel
and very closely together, such that the variance in thédata-set, ignoring the
labels, is in the direction of the cigars. For classificatitms would be a terrible
projection, because all labels get evenly mixed and we aestre useful infor-
mation. A much more useful projection is orthogonal to thgacs, i.e. in the
direction of least overall variance, which would perfecBparate the data-cases
(obviously, we would still need to perform classificatiorths 1-D space).

So the question is, how do we utilize the label informatiofinding informa-
tive projections? To that purpose Fisher-LDA considersimaing the following
objective:

T
J(w) = w' Spw

where Sy is the “between classes scatter matrix” &g is the “within classes
scatter matrix”. Note that due to the fact that scatter ro@sriare proportional to
the covariance matrices we could have defidagsing covariance matrices — the
proportionality constant would have no effect on the solutiThe definitions of

63



64 CHAPTER 13. FISHER LINEAR DISCRIMINANT ANALYSIS

the scatter matrices are:

Sp = > Ne(p,—%)(p,—x)" (13.2)
Sw = ij%}(xi—uc)(xi—uf (13.3)

where,
e = Ni i (13.4)

(13.5)

&Kl
I
I
=]~
]
&
I
=]~
]
=
=

andJV, is the number of cases in clasOftentimes you will see that for 2 classes
Sy is defined asS; = (uy — po) (e — po)™. This is the scatter of class 1 with
respect to the scatter of class 2 and you can showSthat %Sjg, but since it
boils down to multiplying the objective with a constant iskea no difference to
the final solution.

Why does this objective make sense. Well, it says that a goluicn is one
where the class-means are well separated, measured edlative (sum of the)
variances of the data assigned to a particular class. Thistssely what we want,
because it implies that the gap between the classes is exitedbe big. It is also
interesting to observe that since the total scatter,

Sr=> (xi—7)(x; — z)" (13.6)

is given bySr = Sy + Sp the objective can be rewritten as,

T
J(w) = w' STw

=—— -1 13.7
wl Syw (13.7)

and hence can be interpreted as maximizing the total saafttdre data while
minimizing the within scatter of the classes.

An important property to notice about the objectiyas that is is invariant
w.r.t. rescalings of the vectoss — aw. Hence, we can always choosesuch
that the denominator is simply” Sy w = 1, since itis a scalar itself. For this rea-
son we can transform the problem of maximizing J into theofeihg constrained
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optimization problem,

min,, —%WTSBW (13.8)
st. wiSyw=1 (23.9)

corresponding to the lagrangian,
Lp= —%WTSBW —+ %)\(WTSWW — 1) (1310)

(the halves are added for convenience). The KKT conditiehss that the fol-
lowing equation needs to hold at the solution,

This almost looks like an eigen-value equation. In facts italled a generalized
eigen-problem and just like an normal eigenvalue problesrethre standard ways
to solve it.

Remains to choose which eigenvalue and eigenvector camdspo the de-
sired solution. Plugging the solution back into the objexii, we find,

wlSpw wlSyw,

from which it immediately follows that we want the largesgenvalue to maxi-
mize the objectivke

13.1 Kernel Fisher LDA

So how do we kernelize this problem? Unlike SVMs it doesné&msehe dual
problem reveal the kernelized problem naturally. But insgiby the SVM case
we make the following key assumption,

W= a®(x) (13.13)

LIf you try to find the dual and maximize that, you'll get the wgpsign it seems. My best
guess of what goes wrong is that the constraint is not linedras a result the problem is not
convex and hence we cannot expect the optimal dual soluiiba the same as the optimal primal
solution.
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This is a central recurrent equation that keeps popping apery kernel machine.
It says that although the feature space is very high (or evamite) dimensional,
with a finite number of data-cases the final solutwn, will not have a component
outside the space spanned by the data-cases. It would nat magh sense to
do this transformation if the number of data-cases is latigen the number of
dimensions, but this is typically not the case for kernetirods. So, we argue
that although there are possibly infinite dimensions alskla priori, at mostV
are being occupied by the data, and the solutiomust lie in its span. This is a
case of the “representers theorem” that intuitively reasmfollows. The solution

w is the solution to some eigenvalue equati@ﬁilsv‘vlsgw = Aw, where bothSp
and Sy, (and hence its inverse) lie in the span of the data-casesce;léme part
w that is perpendicular to this span will be projected to zed the equation
above puts no constraints on those dimensions. They catblteagy and have no
impact on the solution. If we now assume a very general forregiilarization on
the norm ofw, then these orthogonal components will be set to zero in tia fi
solution:w+ = 0.

In terms ofa the objective/(«) becomes,

T g®
a Spa

N = orsta

(13.14)
where itis understood that vector notation now applies tiffardnt space, namely
the space spanned by the data-vect&rfé, The scatter matrices in kernel space
can expressed in terms of the kernel only as follows (thiaireq some algebra to

verify),

Sp = > N [ker! — kK" (13.15)
Sy = K*=) Nekew! (13.16)
1
K, = EZKH (13.17)
1€C
1
Kk = NZKU (13.18)

So, we have managed to express the problem in terms of kesngtswhich
is what we were after. Note that since the objective in terie& dnas exactly
the same form as that in terms @f, we can solve it by solving the generalized



13.2. ACONSTRAINED CONVEX PROGRAMMING FORMULATION OF FD&7

eigenvalue equation. This scaless$ which is certainly expensive for many
datasets. More efficient optimization schemes solvinggsi different problem
and based on efficient quadratic programs exist in the tileza

Projections of new test-points into the solution space @odmputed by,

wld(x) = Z%‘K(Xux) (13.19)

as usual. In order to classify the test point we still needivadd the space into
regions which belong to one class. The easiest possibdlity pick the cluster
with smallest Mahalonobis distancd{x, u?) = (z* — u2)?/(c®)* where u
ando? represent the class mean and standard deviation in the djetf®d space
respectively. Alternatively, one could train any classifirethe 1-d subspace.

One very important issue that we did not pay attention to gsiliaization.
Clearly, as it stands the kernel machine will overfit. To lagae we can add a
term to the denominator,

Sw — Sw + 1 (13.20)

By adding a diagonal term to this matrix makes sure that vergliseigenvalues
are bounded away from zero which improves numerical stglmlicomputing the
inverse. If we write the Lagrangian formulation where we imaze a constrained
quadratic form ino, the extra term appears as a penalty proportionaldj?
which acts as a weight decay term, favoring smaller values oVer larger ones.
Fortunately, the optimization problem has exactly the skoma in the regularized
case.

13.2 A Constrained Convex Programming Formu-
lation of FDA
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Chapter 14

Kernel Canonical Correlation
Analysis

Imagine you are given 2 copies of a corpus of documents, oitewin English,
the other written in German. You may consider an arbitrapgresentation of
the documents, but for definiteness we will use the “vectacsprepresentation
where there is an entry for every possible word in the vocalpudnd a document
is represented by count values for every word, i.e. if thedatihe appeared 12
times and the first word in the vocabulary we h&¥/g doc) = 12 etc.

Let's say we are interested in extracting low dimensionpftesentations for
each document. If we had only one language, we could congia&ing PCA
to extract directions in word space that carry most of théavae. This has the
ability to infer semantic relations between the words sugkymonymy, because
if words tend to co-occur often in documents, i.e. they aghlyicorrelated, they
tend to be combined into a single dimension in the new spalbesd spaces can
often be interpreted as topic spaces.

If we have two translations, we can try to find projections aflerepresenta-
tion separately such that the projections are maximallyetated. Hopefully, this
implies that they represent the same topic in two differangliages. In this way
we can extract language independent topics.

Let x be a document in English anda document in German. Consider the
projections:u = a’x andv = b”y. Also assume that the data have zero mean.
We now consider the following objective,

p=— i (14.1)
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We want to maximize this objective, because this would m&erthe correlation
between the univariatesandv. Note that we divided by the standard deviation
of the projections to remove scale dependence.

This exposition is very similar to the Fisher discriminanalysis story and |
encourage you to reread that. For instance, there you camdwdo generalize
to cases where the data is not centered. We also introdueddltbwing “trick”.
Since we can rescake and b without changing the problem, we can constrain
them to be equal td. This then allows us to write the problem as,

maximize, ,, p
subjectto E 1
=1 (14.2)

Or, if we construct a Lagrangian and write out the expeatatige find,

, 1 1
Min, pMax, x, Z a’x;y ' b— 5)\1 (Z a’x;x’a—N)— 3 Ao (Z b’y;y;b—N)

Z (14.3)
where we have multiplied by N. Let’s take derivatives wratandb to see what
the KKT equations tell us,

Z Xy b — A Z XX a=0 (14.4)

Z yix; a— A Z yiyib =0 (14.5)

First notice that if we multiply the first equation witsf and the second with
b? and subtract the two, while using the constraints, we aatvg = )\, = \.
Next, renameS,, = > . x;yl, S; = Y, x;x] andS, = >, y;y!. We define
the following larger matricesS), is the block diagonal matrix witly, and.S, on
the diagonal and zeros on the off-diagonal blocks. Also, efnd Sy to be the
off-diagonal matrix withS,, on the off diagonal. Finally we define = [a, b].
The two equations can then we written jointly as,

Soc=ASpc = SplSoc=Ac = SIS5LSE(Sic)=A(Sic) (14.6)

1
which is again an regular eigenvalue equationdot S2c
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14.1 Kernel CCA

As usual, the starting point to map the data-cases to feato®rs®(x;) and
U(y;).When the dimensionality of the space is larger than the murobdata-
cases in the training-set, then the solution must lie in e of data-cases, i.e.

a=> a;®(x) b=> B¥(y) (14.7)
Using this equation in the Lagrangian we get,
L=a"K,K,— %A(aTKga —N) - %)\(ﬂTKjﬂ —N) (14.8)

wherea is a vector in a differentv-dimensional space than egwhich lives in
a D-dimensional space, arfd, = Y, ®(x;)” ®(x;) and similarly fork,.
Taking derivatives w.r.tac and3 we find,

KK,8 = AKlo (14.9)
K,K,a = \K23 (14.10)

Let’s try to solve these equations by assuming tkiais full rank (which is typ-
ically the case). We getx = \"'K'K,3 and henceK;3 = A\>K;3 which
always has a solution for = 1. By recalling that,

1 T 1 T
pzﬁzi:a Sxybzﬁzi:)\a S,a =\ (14.11)

we observe that this represents the solution with maximaktation and hence
the preferred one. This is a typical case of over-fitting eages again the need
to regularize in kernel methods. This can be done by addinggodal term to the
constraints in the Lagrangian (or equivalently to the deinator of the original
objective), leading to the Lagrangian,

1 1
£ ="K, JK,B — ;Mo Kla+illall? = N) = JA(B" K28+ nl|| - N)
(14.12)

One can see that this acts as a quadratic penalty on the nottraati3. The
resulting equations are,

K.K,8 = MNK2+nl)a (14.13)
K,K,a = ANK]+nl)3 (14.14)
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Analogues to the primal problem, we will define big matric&s, which contains
(K2 +nl) and (K} + nI) as blocks on the diagonal and zeros at the blocks off
the diagonal, and the matr#X, which has the matrice&’, K, on the right-upper

off diagonal block ands, K, at the left-lower off-diagonal block. Also, we define
~ = |, B]. This leads to the equation,

Koy =AKpy = Kj'Kov=XM = K2K;'Ka(Kay) = ANK2)
(14.15)

which is again a regular eigenvalue equation. Note that ¢gelarization also
moved the smallest eigenvalue away from zero, and hence thadeverse more
numerically stable. The value fgrneeds to be chosen using cross-validation or
some other measure. Solving the equations using this largen-value problem
is actually not quite necessary, and more efficient methrids @ee book).

The solutions are not expected to be sparse, because adgwrs/are not
expected to be sparse. One would have to replaceorm penalties withl;
norm penalties to obtain sparsity.



Appendix A

Essentials of Convex Optimization

A.1 Lagrangians and all that

Most kernel-based algorithms fall into two classes, eithey use spectral tech-
niques to solve the problem, or they use convex optimizagohniques to solve
the problem. Here we will discuss convex optimization.

A constrained optimization problem can be expressed asis||

minimize,  fo(x
subjectto  f;(x) < 0Vi
h;(x) =0Vj (A.1)
That is we have inequality constraints and equality coirgga We now write

the primal Lagrangian of this problem, which will be helpfalthe following
development,

Lp(x, A vV) = folx) + Z Aifi(x) + Z vih;(x) (A.2)

where we will assume in the following that > 0 Vi. From here we can define
the dual Lagrangian by,

Lp(Av)=IinfyLp(x, A, V) (A.3)

This objective can actually becomexo for certain values of its arguments. We
will call parameters\ > 0, v for which £, > —oc dual feasible.

73
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It is important to notice that the dual Lagrangian is a coedawmction of\, v
because it is a pointwise infimum of a family of linear funasan A, v function.
Hence, even if the primal is not convex, the dual is certatalycave!

It is not hard to show that

LpAv)<p* (A.4)

wherep* is the primal optimal point. This simply follows because A, f;(x) +
> vih;j(x) < 0 for a primal feasible point*.

Thus, the dual problem always provides lower bound to theglrproblem.
The optimal lower bound can be found by solving the dual pobl

maximize,,, Lp(A,v)
subjectto ;> 0Vi (A.5)

which is therefore a convex optimization problem. If we célthe dual optimal
point we always haved* < p*, which is called weak dualityp* — d* is called
the duality gap. Strong duality holds wheh = d*. Strong duality is very nice,
in particular if we can express the primal solutiwhin terms of the dual solution
A", v*, because then we can simply solve the dual problem and dotovéne
answer to the primal domain since we know that solution nmhest toe optimal.
Often the dual problem is easier to solve.

So when does strong duality hold? Up to some mathematicailsi¢he an-
swer is: if the primal problem is convex and the equality constraants linear.
This means thafy(x) and{ f;(x) } are convex functions and (x) = Ax —b.

The primal problem can be written as follows,

p* =inf sup Lp(x, A, v) (A.6)

X A>0,v

This can be seen as follows by noting thap,.,, Lr(x, A, v) = fo(x) when
x is feasible butxo otherwise. To see this first check that by violating one of
the constraints you can find a choiceXfv that makes the Lagrangian infinity.
Also, when all the constraints are satisfied, the best we cais thaximize the
additional terms to be zero, which is always possible. Fstaince, we can simply
set all\, v to zero, even though this is not necessary if the constrietaselves
vanish.

The dual problem by definition is given by,

d* = sup inf Lp(x, A, V) (A.7)

A>0,v X
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Hence, the “sup” and “inf” can be interchanged if strong duaholds, hence
the optimal solution is a saddle-point. It is important talize that the order of
maximization and minimization matters for arbitrary fuoats (but not for convex
functions). Try to imagine a “V” shapes valley which runsgbaally across the
coordinate system. If we first maximize over one directioeeping the other
direction fixed, and then minimize the result we end up with ltwest point on
the rim. If we reverse the order we end up with the highesttpoithe valley.

There are a number of important necessary conditions tHdtfboproblems
with zero duality gap. These Karush-Kuhn-Tucker condgiturn out to be suffi-
cient for convex optimization problems. They are given by,

Vﬁ&ﬂ+§:ﬁvﬁ@ﬂ+§:@V@@ﬂ:0 (A.8)

fi(x") <0 (A.9)
hi(x*) =0 (A.10)
AL >0 (A.11)
A fi(x") =0 (A.12)

The first equation is easily derived because we already sstw'th- inf, Lp(x, A*, v*)
and hence all the derivatives must vanish. This conditiaehaice interpretation
as a “balancing of forces”. Imagine a ball rolling down a aud defined by (x)

(i.e. you are doing gradient descent to find the minimum). B&legets blocked
by a wall, which is the constraint. If the surface and comstia convex then if the
ball doesn’'t move we have reached the optimal solution. At ploint, the forces
on the ball must balance. The first term represent the fortleeoball against the
wall due to gravity (the ball is still on a slope). The secoewit represents the re-
action force of the wall in the opposite direction. Theepresents the magnitude
of the reaction force, which needs to be higher if the surégpes more. We say
that this constraint is “active”. Other constraints whiah ribt exert a force are
“inactive” and have\ = 0. The latter statement can be read of from the last KKT
condition which we call “complementary slackness”. It sthat eitherf;(x) = 0
(the constraint is saturated and hence active) in which sasdree to take on a
non-zero value. However, if the constraint is inactiigix) < 0, then A must
vanish. As we will see soon, the active constraints will espond to the support
vectors in SVMs!
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Complementary slackness is easily derived by,

fo(x*) = Lp(X", v") = inf (fo(x) + Z AL fi(x) + Z thj(x)>
< fo(xX) + D NF(x) + ) vih(xT) (A.13)
< fo(x") (A.14)

where the first line follows from Eqn.A.6 the second becabseinf is always
smaller than ank* and the last becausg(x*) < 0, A\¥ > 0 andh;(x*) = 0.
Hence all inequalities are equalities and each term is ivegs each term must
vanish separately.



Appendix B

Kernel Design

B.1 Polynomials Kernels

The construction that we will follow below is to first writedture vectors products
of subsets of input attributes, i.e. define features veet®ifsllows,

br(x) = 2. ain (B.1)

where we can put various restrictions on the possible coatibims of indices
which are allowed. For instance, we could require that teem is a constant
s, i.e. there are preciselyterms in the product. Or we could require that each
i; = [0,1]. Generally speaking, the best choice depends on the projwerare
modelling, but another important constraint is that theesponding kernel must
be easy to compute.

Let’s define the kernel as usual as,

K(x,y) =Y ¢:1(x)1(y) (B.2)

wherel = [iy, is, ...i,,|. We have already encountered the polynomial kernel as,

d
K(x,y)=(R+x"y)'=>"

s=0

d!
de_S(XTY)S (B.3)

where the last equality follows from a binomial expansiohwé write out the
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term,

s s s! i i i
(XT}’) = (z1y1+2oyet.. . 420y,)° = E 7@»1,1»2, ; ,($1y1) H(ay2) (Tnyn)™
01,82, yin Traretme

11+i2+...Fin=s

(B.4)
Taken together with egn. B.3 we see that the features cameldo,

! o
or(x) = \/(d iis)! illigll...in!Rd_s riag..ayr With i 4is+...+i, = s < d
(B.5)

The pointis really that in order to efficiently compute th&at@um of(ffj!)’ terms

we have inserted very special coefficients. The only truedoen we have left is

in choosingR: for larger R we down-weight higher order polynomials more.
The question we want to answer is: how much freedom do we hareiosing

different coefficients and still being able to compute theeinproduct efficiently.

B.2 All Subsets Kernel

We define the feature again as the product of powers of inpiltates. However,
in this case, the choice of power is restricted to [0,1], thee feature is present
or absent. For input dimensions (number of attributes) we ha’epossible
combinations.

Let's compute the kernel function:

n

K(x,y)=>_ ¢:()61(y) =D [ = =1 +2w) (B.6)

I jrij=1 i=1

where the last identity follows from the fact that,

n

H(1+Zi) = 1+Zzi+Zzizj+...+zlzg...zn (B.7)

i=1 i ij

I.e. a sum over all possible combinations. Note that in thsecagain, it is much
efficient to compute the kernel directly than to sum over #eudres. Also note
that in this case there is no decaying factor multiplyingrtf@omials.
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B.3 The Gaussian Kernel

This is given by,
1
K(x,y) = eXp(—T‘QHX —yl%) (B.8)

whereo controls the flexibility of the kernel: for very smail the Gram matrix
becomes the identity and every points is very dissimilarrty ather point. On
the other hand, for very large we find the constant kernel, with all entries equal
to 1, and hence all points looks completely similar. This undeirss the need in
kernel-methods for regularization; it is easy to perfornfee on the training data
which does not imply you will do well on new test data.

In the RKHS construction the features corresponding to thesSian kernel
are Gaussians around the data-case, i.e. smoothed ver§ibiesdata-cases,

6(x) = exp(—5 5 b — |1} 8.9

and thus every new direction which is added to the featuressigagoing to be or-
thogonal to all directions outside the width of the Gaussiathsomewhat aligned
to close-by points.

Since the inner product of any feature vector with itself,igll vectors have
length1. Moreover, inner products between any two different featwectors is
positive, implying that all feature vectors can be représgim the positive orthant
(or any other orthant), i.e. they lie on a sphere of radiusa single orthant.
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