
American Journal of Computing Research Repository, 2016, Vol. 4, No. 1, 15-20 
Available online at http://pubs.sciepub.com/ajcrr/4/1/3 
© Science and Education Publishing 
DOI:10.12691/ajcrr-4-1-3 

 

A Hybrid Algorithm for Detecting Web Based 
Applications Vulnerabilities  

Muiruri Chris Karumba*, Samuel Ruhiu, Christopher A. Moturi 

School of Computing and Informatics, University of Nairobi, Nairobi, Kenya 
*Corresponding author: chrismuiruri@yahoo.co.uk 

Abstract  Web vulnerability scanners (WVS) are tools for discovering vulnerabilities in a web application. 
However, they are not 100% accurate. In this paper we develop a hybrid algorithm for detecting web based 
applications vulnerabilities and compare its performance with other open source WVS. The comparison is based on 
three metrics namely time taken to scan, detection accuracy and consistency. 

Keywords: web vulnerability scanners, open source, algorithm, web based applications 

Cite This Article: Muiruri Chris Karumba, Samuel Ruhiu, and Christopher A. Moturi, “A Hybrid Algorithm 
for Detecting Web Based Applications Vulnerabilities.” American Journal of Computing Research Repository, 
vol. 4, no. 1 (2016): 15-20. doi: 10.12691/ajcrr-4-1-3. 

1. Introduction 
The number and importance of web applications have 

increased rapidly over the year [11] many organizations 
have embraced these technologies to explore new business 
opportunities and some companies have been forced to 
adopt the electronic commerce by their customers or 
competitors.  

Web applications have gained popularity and have 
become part of our daily lives interaction. New web 
application vulnerabilities emerge every now and then and 
endanger the use of the web-based applications. Therefore, 
manual code inspection or security audits must be done by 
highly trained experts who are labour-intensive, expensive, 
and prone to errors. For this reason, there is need to 
automate vulnerability discovery.  

Vulnerabilities exist in web applications due to 
development of such application by less experience 
programmers or failure to test these applications for 
loopholes. This results in deployment of vulnerable web 
application that can be hacked exposing confidential 
information.  

1.1. Problem Statement 
With advancement in web technologies and shift from 

traditional desktop application to web-based solutions, the 
popularity of web-based applications has grown 
tremendously. Today, the web-based applications are used 
in security-critical environments, such as medical, 
financial and military systems [28]. Although the internet 
infrastructure is developed by experienced programmers 
with security concerns in their mind, some of the web 
applications are engineered by less experienced consulting 
programmers with little or no knowledge about security. 
This exposes the web application to various vulnerabilities 

and provides avenues for cyber criminals to gain 
unauthorized access to confidential information.  

In one of the recent studies by the Ponemon Institute, 
they found out that that 45% of breaches exceed $500,000 
in losses. In the largest of incidents, many Fortune-listed 
companies have given shareholder guidance that the losses 
would vary from a few dollars to millions of dollars. For 
this reason, it is prudent to do something in a proactive 
manner to avert or reduce harm before a cyber-attack. 

Past studies have concentrated in benchmarking open 
source web vulnerability scanners to find out their 
capabilities and limitations. There is need to analyze 
different algorithms, identify their strength and 
weaknesses, with an aim of coming up with a hybrid 
algorithm that is superior, performs faster and can work on 
more inputs and in a complex situation. In this proposal, 
the researcher seeks to benchmarks different web 
vulnerability scanners, identify these tools and suggest an 
improved algorithm that can be adopted while developing 
tools. 

2. Literature Review 
According to [26] many organizations rely upon 

customized web applications to implement business 
processes. These may include full-blown applications, or 
consist of modules such as online, login pages shopping 
carts, and other kinds of dynamic content. Some of these 
software applications in your network could be developed 
in-house 

In their study, [31] noted that web application security 
vulnerabilities are on the increase. These vulnerabilities 
allow attackers to perform undesirable actions that range 
from gaining unauthorized account access, to obtaining 
confidential data such as credit card numbers and in some 
extreme cases, they threaten to reveal the identitiesof 
intelligencepersonnel.  



16 American Journal of Computing Research Repository  

 

Table 1. Web applicationVulnerabilities 
Web applicationVulnerabilities 

-Remote file inclusion -Command Injection 

-Local file inclusion, -Blind SQL Injection 

-Cross site crossing, -SQL Injection, 

-Cross site scripting, -LDAP Injection, 

-Sessionmanagement, -Buffer overflow 

-sever side injection -X-path Injection 

-cross site refrence forgery -HTTP Splitting 

3. Methodology 

3.1. Research Design 
A hybrid algorithm was designed based on the logic 

expressed in the diagram below. The major milestone of 
this algorithm is to increase the detection accuracy.  

The hybrid algorithm is derived from existing 
algorithms with a goal of increasing the vulnerability 
scanning accuracy and the time it takes to scan any given 
web application. Although the accuracy may not be 
achieved 100% emphasis, an effort has been put to raise it 
above the existing tools. The results of the tests will be 
benchmarked with OWASP results which is updated on a 
regular basis.  

The hybrid algorithm is based on the concept of 
carefully, combining desirable features of various 
components so that the new algorithm has the ability to 
discover more vulnerabilities. However the combination is 
not done blindly, it is based on various factors such as 
optimization and sophistication among others with an aim 
of increasing efficiency.  

 

Figure 1. Hybrid Algorithm methodology 

The hybrid algorithm comprises of five phases as 
shown in the figure above. Inspection or crawling this 
phase focuses on looking for information about the web 
application. The more the details found on this stage, the 
more successful the entire scanning process will be. Once 
the first phase is completed, the Scanning process begins, 
which involves, recognizing the weaknesses that exist in 
the web application. Once the vulnerabilities are 
discovered they are analysed in the next phase and then a 
report is displayed at the end of the entire process. 

3.2. Simulation Design 
A program to test and validate the hybrid algorithm is 

built, based on the flowchart below. This simulation will 
be useful in testing and validating the hybrid algorithm. 
The user will input the URL (uniform resource locator) of 
the web application to be scanned and click on the scan 
button.  

The scanning process involves crawling and parsing 
and the discovery of the vulnerabilities, this process is 
repeated until all the vulnerabilities have been discovered. 
Once this process is completed, the analysis is done and 
finally a report is displayed showing the discovered 
vulnerabilities discovered and their location.  

The scanning process includes, crawling and fuzzing. 
After the scanning process is completed, the results are 
submitted for analysis and a report is displayed.  

Input: The URL of the web application to be tested. 
This is provided by the user who initiates the web 
scanning process.  

Processing: This involves crawling all the web pages, 
fuzzing, and identification of any weakness and firing 
inputs to check for any vulnerability. 

Output: The results of processing are analysed and 
presented in a report format. 

 

Figure 2. 

3.3. SQL Injections Discovery 
The scanning method described in the algorithm below 

is used as a method two for checking SQL. Check 
Vulnerability (V) which looks for any special characters, 
and Boolean characters and keywords in the input fields of 
a web based application. It has a compilation of all the 
special characters such as <=>{([',&+=<>=])} and a 
comprehensive collection of major keywords such as 
update, select, intersect, union insert, delete, drop, truncate 
and Boolean characters such as , 'AND’ 'or '|'or',’. 

Using the actual inputs like a user interacting with a 
web browser, the values are tested against the database. If 
a mismatch is found in the results are submitted to the 
vulnerability information collector and then resets the Http 
request. 



 American Journal of Computing Research Repository 17 

 

The algorithm below detects SQLIs in an effective 
manner. Which can be applied for any real web-based 
applications wherever the user and the database interacts 

3.4. SQLAlgorithm 
1. initialize sql characters in an array 
2. create two maps or lists to store the sql error 

messages 
i. one for storing specific database error messages 
like oracle, mysql, microsoft sql error messages 
etc 
ii. Other for storing generic database error 
messages 

3. Initialize error values in to the maps/list 
mentioned above 

4. Initialize the scanner method – the scanner 
accepts the http message as input from the the 
crawler - http message has details on each request 
or url with the parameter list 

5. For each parameter in the http message 
i. Input sql characters from the sql characters 
array 
ii. Verify the response to check for any matches 
on error messages from the two maps or lists 
iii. If a match occurs -Flag as sql vulnerability 
iv. Else - Repeat step 5 until the end of parameter 
list is reached 

6. End 

 

Figure 3. 

Cross Site Scripting 
Algorithm 

1. For each url in the list of visited urls 

a. Identify all parameters 
b. Push parameters in to parameter list 
c. For each parameter in the parameter 

queue 
i. Supply a script or a XSS test 

case as input to the parameter 
and pass the request 

ii. Verify the response to identify 
the supplied script or test case 
reflected back 

2. Report the vulnerability if the response has a 
script 

Flowchart 

 

Figure 4. 

3.5. Data Collection and Analysis  
Data collection was done by using experiments. The 

data collected was further analysed into tables, graphs and 
pie charts. 

3.6. Experimental Design 
The experiments were performed by running seven 

opens source web application scanners on four web 
applications with known vulnerabilities. These web 
applications were installed on virtual machines which 
have similar configurations and resources. 

3.7. Resources Required for the Experiment 
i. Computer configured with four virtual machines 
ii. Operating system: windows 8.1 professional 

edition 
iii. Hypervisor such as VMware  
iv. Web servers such as apache, tom cat and Xamp. 
These web applications were installed on virtual 

machines which had similar configurations and resources. 



18 American Journal of Computing Research Repository  

 

The virtual machines specifications are processor, 2.6 
GHZ Core i5, 2 GB RAM, 100 GB HDD and running on 
windows 8.1 professional edition.  

In an effort to make sure that we have a similar test 
environment, similar configurations were used on the 
virtual machines regardless of the test conducted. Each 
scanning tool was run against identical yet distinct 
environment. This was critical to ensure that we obtain 
actual results without deviation due to different resources.  

Table 2. Vulnerability scanners and web applications  
Open Source Web scanning 
tools 

Web applications with known 
vulnerabilities 

• Wapiti  
• Websecurify 
• Arachni 
• W3af 
• Zed Attack Proxy 
• Vega 

• OWASP WebGoat 
• Mutillidae 
• zero.weapplication.com 
• phpBB 

Ck AppScan – A tool that was developed by the researcher to test and 
validate the hybrid algorithm.  

3.8. Testing Procedure 
In this research, all the selected web scanning tools 

were run on the aforementioned web applications and the 
results recorded. Below find the testing procedure. 

i. Launch the web scanning tool 
ii. Enter the url of the web application to be tested 
iii. Click on the scan button and wait for the 

scanning process to be completed 
iv. If the scan is carried out successfully, a report 

will is displayed with the results. During the 
scanning process web vulnerabilities discussed in 
section 2.3 are scanned and if found they will be 
displayed in the report. 

This process was repeated for all the tools used in this 
research project. 
Testing the Algorithm 

The algorithm was be tested by translating it in to a 
simulation developed using java platform. The simulation 
was be run against the four web applications and the results 
collected about detection accuracy, the time taken to scan 
a given application as well as reliability and consistency. 
After the testing process the results of the simulation were 
compared with the other opens source web scanners. 

 
Figure 5. Web Scanning Applications Vs. Vulnerabilities 

4. Results and Discussion 

4.1. Results 
Ck AppScan generated better results overall when 

compared to other tools used, although the tool has higher 
detection accuracy when compared to the other tool. The 
only drawback is that it was reported to take a longer time 
to scan than most of the web scanners that were used in 
this study. Its performance is not 100% accurate but it has 
a higher capacity to detect more vulnerabilities when 
compared to the other tools.  

4.2. Discussion 
A comparative study of web vulnerability scanners has 

also been performed by other researchers from different 
parts of the world. Although the tools and web 
applications used are not similar, the vulnerabilities are 
the same.  

In a study conducted by Doupe et al (2010) they used 
Acunetix WVS, burp scanner, IBM’s rational app scan, 
hailstorm, N-stalker, mileScan, Grendel-scan, NTO spider, 
W3AF, and HP web inspect against a web application 
known as wackPicko. They tested vulnerabilities such as 
XSS, SQL injection, file inclusion, file exposure and 
command line injection. The conclusion of the study was 
similar to those drawn by this study. They found out that 
crawling modern web based applications is indeed a 
serious challenge for many WVSs. There should be 
improved and more sophisticated algorithms needed to 
perform deep crawling. During the development of the 
hybrid algorithm the researcher was able to develop an 
algorithm that was able to detect the aforementioned 
vulnerabilities. This was achieved by employing a 
sophisticated method of discovering the weaknesses. 

In a study conducted by Fonseca et al (2014) shows that 
many open source WVS have a low ability to detect 
vulnerability. This is in line with the results analysed after 
the end of this study. The researcher has developed a more 
sophisticated algorithm that address this concern and 
increased the number of vulnerabilities detected.  

Khoury (2011) analysed three state-of–art black box 
WVSs against stored SQLI, and their results showed that 
stored (persistent) SQLI are not detected. The researcher 
was able to detect persistent SQL injections by fuzzing 
web applications using complex discovery algorithms.  

Shelly (2010) performed a similar study by using 
several penetration tools to analyse the performance of 
several WVS. She used a mix of commercial and open 
source tools such as wapiti, Grendel-scan, Acunetix WVS, 
N-stalker, W3AF, and hailstorm. These tools were run 
against a modified version of BuggyBank web based 
application. They tools were tested for SQLI, XSS, buffer 
overflow and session management. The conclusion of this 
study was that the testing of WVS using secure and non-
secure applications is indeed a suitable method to discover 
web vulnerabilities. In addition, she reported that for the 
discovery of non-traditional instances of XSS, SQLI, 
buffer overflow, malicious file execution and session 
management flows, more research needs to be done to 
improve the detection mechanisms used by these tools. 
The researcher addressed this issue by use of advanced 
heuristics and permutations during the detection process.  



 American Journal of Computing Research Repository 19 

 

The hybrid algorithm was able to address concerns 
raised by previous researchers in different studies. This 
was achieved by adoption of more than one method during 
the vulnerability discovery process as well as 
improvement of the existing vulnerability detection 
methods. For instance it was noted that most of the WVS 
use either GET or POST method to detect weaknesses. 
The use of the two methods requires more scanning time 
nevertheless, more accurate results are realised.  

5. Conclusion and Recommendations 

5.1. Conclusion 
The proposed hybrid algorithm is extensive in the 

execution of its detection mechanism against web 
application vulnerabilities. Testing of web applications for 
weaknesses is a significant step in safeguarding web 
applications. The proposed hybrid algorithm reports more 
vulnerabilities and presents a proficient manner while 
reporting discovered vulnerabilities. However since the 
proposed hybrid algorithm did not scan 100% of the 
existing vulnerabilities. There is need to increase the 
algorithm crawling component in order to ensure that it 
executed “deep” crawling. In addition the results 
presented shows that the proposed algorithm needs to be 
optimised to do the scanning in a short period of time. 
More research is needed to come up with a sophisticated 
algorithm that has the capacity to detect more 
vulnerabilities.  

5.2. Recommendations for future work  
i. Improved analysis and reporting 

The hybrid algorithm needs an improved analysis and 
reporting structure. The tools need to analyze the 
application in a more efficient manner and deliver the 
desired results.  
ii. Improved crawling capabilities 

The hybrid algorithm requires a more sophisticated 
crawling mechanism, it should be engineered further to 
ensure that all the contents of a web application are 
scanned without omitting anything.  
iii. Improved fuzzing component 

There is a need to use a more advanced logic in the 
fuzzing component of the algorithm to get getter results. 
The fuzzing component is responsible for firing the 
necessary inputs to determine whether vulnerabilities exist 
or not. The fuzzing logic used by Ck AppScan should be 
improved further to increase the detection accuracy.  
iv. Reduced scanning time 

Some of the tools used in this study took a very long 
period of time to scan a web application. For this reason, 
there is a need for tools that can scan web applications 
within a short time and provide accurate results. it is 
important to improve the overall scanning mechanisms of 
the algorithms.  

Acknowledgement 
I would like to sincerely thank the almighty God and 

the University of Nairobi who has been of great assistance 
during the research period.  

References 
[1] Alssir, F. T., & Ahmed, M. (2012). Web Security Testing 

Approaches: Comparison Framework. In Proceedings of the 2011 
2nd International Congress on Computer Applications and 
Computational Science (pp. 163-169). Springer Berlin Heidelberg. 

[2] Antunes & Vieira (2012). Defending against web application 
vulnerabilities. Computer, (2), 66-72. 

[3] Bau, J., Bursztein, E., Gupta, D., & Mitchell, J. (2010). State of 
the art: Automated black-box web application vulnerability testing. 
In Security and Privacy (SP), 2010 IEEE Symposium on (pp. 332-
345). IEEE. 

[4] Chen, S. (2014). wavsep. Available:  
http://sectooladdict.blogspot.com/2014/02/wavsep-web-
application-scanner.html. [Accessed 09 July 2015.] 

[5] Dessiatnikoff, A., Akrout, R., Alata, E., Kaaniche, M., & 
Nicomette, V. (2011). A clustering approach for web 
vulnerabilities detection. InDependable Computing (PRDC), 2011 
IEEE 17th Pacific Rim International Symposium on (pp. 194-203). 
IEEE. 

[6] Dougherty, C. (2012).Practical Identification of SQL Injection 
Vulnerabilities. 2012. US-CERT-United States Computer 
Emergency Readiness Team. Citado na, 34. [Accessed: 08th June 
2015]. 

[7] Doupe, A., Cova, M., & Vigna, G. (2010). Why Johnny can’t 
pentest: An analysis of black-box web vulnerability scanners. In 
Detection of Intrusions and Malware, and Vulnerability 
Assessment (pp. 111-131). Springer Berlin Heidelberg. [Accessed: 
10th June 2015]. 

[8] Fonseca, J., Vieira, M., & Madeira, H. (2014). Evaluation of Web 
Security Mechanisms using Vulnerability & Attack Injection. 
Dependable and Secure Computing, IEEE Transactions on, 11(5), 
440-453. 

[9] Granville, K . (2015).Nine Recent Cyber-attacks against Big 
Businesses. New York Times [online] Available from:  
http://www.nytimes.com/interactive/2015/02/05/technology/recent
-cyberattacks.html?_r=1. [Accessed 08 July 2015.]. 

[10] Howard, M., LeBlanc, D., & Viega, J. (2010). 24 deadly sins of 
software security [electronic book]: Programming flaws and how 
to fix them. New York: McGraw-Hill.  

[11] Jovanovic, N., Kruegel, C., & Pixy, E. K. (2010). A Static 
Analysis Tool for Detecting Web Application Vulnerabilities 
(Short Paper). In Proceedings of the 2006 IEEE symposium on 
Security and Privacy, Washington, DC, IEEE Computer Society 
(pp. 258-263). 

[12] Kalman., G. (2014). Ten Most Common Web Security 
Vulnerabilities.[online] Available from:  
http://www.toptal.com/security/10-most-common-web-security-
vulnerabilities [Accessed 08 July 2015.] 

[13] Kals, S., Kirda, E., Kruegel, C., & Jovanovic, N. (2014). A web 
vulnerability scanner. In Proceedings of the 15th international 
conference on World Wide Web (pp. 247-256). ACM. 

[14] Khoury, N., Zavarsky, P., Lindskog, D., & Ruhl, R. (2011). 
Testing and assessing web vulnerability scanners for persistent 
SQL injection attacks. In Proceedings of the First International 
Workshop on Security and Privacy Preserving in e-Societies (pp. 
12-18). ACM. 

[15] Kothari, C. R. (2009). Quantitative Techniques, 3E. Vikas 
publishing house PVT LTD. 

[16] McQuade, K. (2014). Open Source Web Vulnerability Scanners: 
The Cost Effective Choice?. In Proceedings of the Conference for 
Information Systems Applied Research ISSN (Vol. 2167, p. 1508). 
[Accessed: 18th June 2015]. 

[17] Mirjalili, M., Nowroozi, A., & Alidoosti, M. (2014). A survey on 
web penetration test. 

[18] Mugenda, O. Mugenda (2009) Research Methods: Quantitative 
and Qualitative Approaches. Nairobi: ACTS. 

[19] Myers, G. J., Sandler, C., & Badgett, T. (2011). The art of 
software testing. John Wiley & Sons. 

[20] Nagpal, B., Chauhan, N., & Singh, N. (2015). Defending Against 
Remote File Inclusion Attacks on Web Applications. i-Manager's 
Journal on Information Technology, 4(3), 25. 

[21] Park, N. (2015). Detection Experimentation and Validation of 
Web Applications using Both Static and Dynamic Analysis. 
International Information Institute (Tokyo). Information, 18(5 (A)), 
1735. 



20 American Journal of Computing Research Repository  

 

[22] Tripathi, A., & Singh, U. K. (2011). On prioritization of 
vulnerability categories based on CVSS scores. In Computer 
Sciences and Convergence Information Technology (ICCIT), 2011 
6th International Conference on (pp. 692-697).  

[23] Saunders, M. N., Saunders, M., Lewis, P., & Thornhill, A. (2011). 
Research methods for business students, 5/e. Pearson Education 
India. 

[24] Sekaran, U. (2011). Research methods for business: A skill 
building approach. John Wiley & Sons. 

[25] Shelly, D.A. (2010) .Using a Web Server Test Bed to Analyse the 
Limitations of Web Application Vulnerability Scanners. Master's 
thesis, Virginia Polytechnic Institute and State University, 
Blacksburg, Virginia. [Accessed: 10th June 2015]. 

[26] Shema. M, (2011). Web Application Security for Dummies. 
England: John Wiley & Sons Ltd. P27-68. 

[27] Snyder, B. (2014). 5 huge cyber security breaches at companies 
you know. Available from: http://fortune.com/2014/10/03/5-huge-

cybersecurity-breaches-at-big-companies/. [Accessed 08 July 
2015.] 

[28] Stuttard, D., & Pinto, M. (2011). The web application hacker's 
handbook: discovering and exploiting security flaws. John Wiley 
& Sons. Inc. p33-80, p200-243. 

[29] Van der Loo, F. (2011). Comparison of penetration testing tools 
for web applications (Doctoral dissertation, Master thesis, 
Radboud University Nijmegen.  
http://www.ru.nl/publish/pages/578936/frank_van_der_loo_scripti
e. pdf).[Accessed: 08th June 2015]. 

[30] WhiteHat Security team. (2015). WhiteHat Security Statistics 
Report 2015. Available From: 
https://www.whitehatsec.com/statistics-
report/featured/2015/05/21/statsreport.html. [Accessed 09 July 
2015.]. 

[31] Yu, Y., Yang, Y., Gu, J., & Shen, L. (2011). Analysis and 
suggestions for the security of web applications. In Computer 
Science and Network Technology (ICCSNT), 2011 International 
Conference on (Vol. 1, pp. 236-240). 

 


