
Alias Types ?

Frederick Smith David Walker Greg Morrisett

Cornell University

Abstract. Linear type systems allow destructive operations such as ob-
ject deallocation and imperative updates of functional data structures.
These operations and others, such as the ability to reuse memory at
different types, are essential in low-level typed languages. However, tra-
ditional linear type systems are too restrictive for use in low-level code
where it is necessary to exploit pointer aliasing. We present a new typed
language that allows functions to specify the shape of the store that they
expect and to track the flow of pointers through a computation. Our type
system is expressive enough to represent pointer aliasing and yet safely
permit destructive operations.

1 Introduction

Linear type systems [26, 25] give programmers explicit control over memory re-
sources. The critical invariant of a linear type system is that every linear value
is used exactly once. After its single use, a linear value is dead and the system
can immediately reclaim its space or reuse it to store another value. Although
this single-use invariant enables compile-time garbage collection and imperative
updates to functional data structures, it also limits the use of linear values. For
example, x is used twice in the following expression: let x = 〈1, 2〉 in let y =
fst(x) in let z = snd(x) in y + z. Therefore, x cannot be given a linear type,
and consequently, cannot be deallocated early.

Several authors [26, 9, 3] have extended pure linear type systems to allow
greater flexibility. However, most of these efforts have focused on high-level user
programming languages and as a result, they have emphasized simple typing
rules that programmers can understand and/or typing rules that admit effective
type inference techniques. These issues are less important for low-level typed
languages designed as compiler intermediate languages [22, 18] or as secure mo-
bile code platforms, such as the Java Virtual Machine [10], Proof-Carrying Code
(PCC) [13] or Typed Assembly Language (TAL) [12]. These languages are de-
signed for machine, not human, consumption. On the other hand, because sys-
tems such as PCC and TAL make every machine operation explicit and verify
that each is safe, the implementation of these systems requires new type-theoretic
mechanisms to make efficient use of computer resources.
? This material is based on work supported in part by the AFOSR grant F49620-97-

1-0013 and the National Science Foundation under Grant No. EIA 97-03470. Any
opinions, findings, and conclusions or recommendations expressed in this publication
are those of the authors and do not reflect the views of these agencies.

In existing high-level typed languages, every location is stamped with a
single type for the lifetime of the program. Failing to maintain this invariant
has resulted in unsound type systems or misfeatures (witness the interaction
between parametric polymorphism and references in ML [23,27]). In low-level
languages that aim to expose the resources of the underlying machine, this in-
variant is untenable. For instance, because machines contain a limited number
of registers, each register cannot be stamped with a single type. Also, when
two stack-allocated objects have disjoint lifetimes, compilers naturally reuse the
stack space, even when the two objects have different types. Finally, in a low-
level language exposing initialization, even the simplest objects change type. For
example, a pair x of type 〈int, int〉 may be created as follows:

malloc x, 2 ; (* x has type 〈junk, junk〉 *)
x[1]:=1 ; (* x has type 〈int, junk〉 *)
x[2]:=2 ; (* x has type 〈int, int〉 *)
...

At each step in this computation, the storage bound to x takes on a different
type ranging from nonsense (indicated by the type junk) to a fully initialized pair
of integers. In this simple example, there are no aliases of the pair and therefore
we might be able to use linear types to verify that the code is safe. However, in
a more complex example, a compiler might generate code to compute the initial
values of the tuple fields between allocation and the initializing assignments.
During the computation, a register allocator may be forced to move the unini-
tialized or partially initialized value x between stack slots and registers, creating
aliases:

OBJECTOBJECT

STACKSTACK R1 R1

Copy To Register

If x is a linear value, one of the pointers shown above would have to be
“invalidated” in some way after each move. Unfortunately, assuming the pointer
on the stack is invalidated, future register pressure may force x to be physically
copied back onto the stack. Although this additional copy is unnecessary because
the register allocator can easily remember that a pointer to the data structure
remains on the stack, the limitations of a pure linear type system require it.

Pointer aliasing and data sharing also occur naturally in other data structures
introduced by a compiler. For example, compilers often use a top-of-stack pointer
and a frame pointer, both of which point to the same data structure. Compiling
a language like Pascal using displays [1] generalizes this problem to having an
arbitrary (but statically known) number of pointers into the same data structure.
In each of these examples, a flexible type system will allow aliasing but ensure
that no inconsistencies arise. Type systems for low-level languages, therefore,
should support values whose types change even when those values are aliased.

We have devised a new type system that uses linear reasoning to allow mem-
ory reuse at different types, object initialization, safe deallocation, and tracking
of sharing in data structures. This paper formalizes the type system and pro-
vides a theoretical foundation for safely integrating operations that depend upon
pointer aliasing with type systems that include polymorphism and higher-order
functions.

We have extended the TAL implementation with the features described in
this paper.1 It was quite straightforward to augment the existing Fω-based type
system because many of the basic mechanisms, including polymorphism and
singleton types, were already present in the type constructor language. Popcorn,
an optimizing compiler for a safe C-like language, generates code for the new
TAL type system and uses the alias tracking features of our type system.

The Popcorn compiler and TAL implementation demonstrate that the ideas
presented in this paper can be integrated with a practical and complete pro-
gramming language. However, for the sake of clarity, we only present a small
fragment of our type system and, rather than formalizing it in the context of
TAL, we present our ideas in terms of a more familiar lambda calculus. Section 2
gives an informal overview of how to use aliasing constraints, a notion which ex-
tends conventional linear type systems, to admit destructive operations such
as object deallocation in the presence of aliasing. Section 3 describes the core
language formally, with emphasis on the rules for manipulating linear aliasing
constraints. Section 4 extends the language with non-linear aliasing constraints.
Finally, Section 5 discusses future and related work.

2 Informal Overview

The main feature of our new type system is a collection of aliasing constraints.
Aliasing constraints describe the shape of the store and every function uses them
to specify the store that it expects. If the current store does not conform to the
constraints specified, then the type system ensures that the function cannot
be called. To illustrate how our constraints abstract a concrete store, we will
consider the following example:

R1STACKSP

577

TRUE
42

Here, sp is a pointer to a stack frame, which has been allocated on the heap (as
might be done in the SML/NJ compiler [2], for instance). This frame contains a
pointer to a second object, which is also pointed to by register r1.

In our program model, every heap-allocated object occupies a particular
memory location. For example, the stack frame might occupy location `s and the
1 See http://www.cs.cornell.edu/talc for the latest software release.

second object might occupy location `o. In order to track the flow of pointers to
these locations accurately, we reflect locations into the type system: A pointer
to a location ` is given the singleton type ptr(`). Each singleton type contains
exactly one value (the pointer in question). This property allows the type sys-
tem to reason about pointers in a very fine-grained way. In fact, it allows us to
represent the graph structure of our example store precisely:

R1STACK

BOOL

SP

PTR(lo)

lo: INT

INTls: PTR(lo)PTR(ls)

We represent this picture in our formal syntax by declaring the program variable
sp to have type ptr(`s) and r1 to have type ptr(`o). The store itself is described
by the constraints {`s 7→ 〈int, bool, ptr(`o)〉} ⊕ {`o 7→ 〈int〉}, where the type
〈τ1, . . . , τn〉 denotes a memory block containing values with types τ1 through τn.

Constraints of the form {` 7→ τ} are a reasonable starting point for an
abstraction of the store. However, they are actually too precise to be useful
for general-purpose programs. Consider, for example, the simple function deref,
which retrieves an integer from a reference cell. There are two immediate prob-
lems if we demand that code call deref when the store has a shape described
by {` 7→ 〈int〉}. First, deref can only be used to derefence the location `, and
not, for example, the locations `′ or `′′. This problem is easily solved by adding
location polymorphism. The exact name of a location is usually unimportant; we
need only establish a dependence between pointer type and constraint. Hence
we could specify that deref requires a store {ρ 7→ 〈int〉} where ρ is a location
variable instead of some specific location `. Second, the constraint {` 7→ 〈int〉}
specifies a store with exactly one location ` although we may want to dereference
a single integer reference amongst a sea of other heap-allocated objects. Since
deref does not use or modify any of these other references, we should be able
to abstract away the size and shape of the rest of the store. We accomplish this
task using store polymorphism. An appropriate constraint for the function deref
is ε ⊕ {ρ 7→ 〈int〉} where ε is a constraint variable that may instantiated with
any other constraint.

The third main feature of our constraint language is the capability to distin-
guish between linear constraints {ρ 7→ τ} and non-linear constraints {ρ 7→ τ}ω.
Linear constraints come with the additional guarantee that the location on the
left-hand side of the constraint (ρ) is not aliased by any other location (ρ′).
This invariant is maintained despite the presence of location polymorphism and
store polymorphism. Intuitively, because ρ is unaliased, we can safely deallocate
its memory or change the types of the values stored there. The key property
that makes our system more expressive than traditional linear systems is that
although the aliasing constraints may be linear, the pointer values that flow
through a computation are not. Hence, there is no direct restriction on the copy-
ing and reuse of pointers.

The following example illustrates how the type system uses aliasing con-
straints and singleton types to track the evolution of the store across a series of
instructions that allocate, initialize, and then deallocate storage. In this exam-
ple, the instruction malloc x, ρ, n allocates n words of storage. The new storage
is allocated at a fresh location ` in the heap and ` is substituted for ρ in the
remaining instructions. A pointer to ` is substitued for x. Both ρ and x are
considered bound by this instruction. The free instruction deallocates storage.
Deallocated storage has type junk and the type system prevents any future use
of that space.

Instructions Constraints (Initially the constraints ε)
1. malloc sp, ρ1, 2; ε ⊕ {ρ1 7→ 〈junk, junk〉} sp : ptr(ρ1)
2. sp[1]:=1; ε ⊕ {ρ1 7→ 〈int, junk〉}
3. malloc r1, ρ2, 1; ε ⊕ {ρ1 7→ 〈int, junk〉, ρ2 7→ 〈junk〉} r1 : ptr(ρ2)
4. sp[2]:=r1; ε ⊕ {ρ1 7→ 〈int, ptr(ρ2)〉, ρ2 7→ 〈junk〉}
5. r1[1]:=2; ε ⊕ {ρ1 7→ 〈int, ptr(ρ2)〉, ρ2 7→ 〈int〉}
6. free r1; ε ⊕ {ρ1 7→ 〈int, ptr(ρ2)〉, ρ2 7→ junk}
7. free sp; ε ⊕ {ρ1 7→ junk, ρ2 7→ junk}

Again, we can intuitively think of sp as the stack pointer and r1 as a register
that holds an alias of an object on the stack. Notice that on line 5, the initial-
ization of r1 updates the type of the memory at location ρ2. This has the effect
of simultaneously updating the type of r1 and of sp[1]. Both of these paths are
similarly affected when r1 is freed in the next instruction. Despite the presence
of the dangling pointer at sp[1], the type system will not allow that pointer to
be derefenced.

By using singleton types to accurately track pointers, and aliasing constraints
to model the shape of the store, our type system can represent sharing and
simultaneously ensure safety in the presence of destructive operations.

3 The Language of Locations

This section describes our new type-safe “language of locations” formally. The
syntax for the language appears in Figure 1.

3.1 Values, Instructions, and Programs

A program is a pair of a store (S) and a list of instructions (ι). The store maps
locations (`) to values (v). Normally, the values held in the store are memory
blocks (〈τ1, . . . , τn〉), but after the memory at a location has been deallocated,
that location will point to the unusable value junk. Other values include integer
constants (i), variables (x or f), and, of course, pointers (ptr(`)).

Figure 2 formally defines the operational semantics of the language.2 The
main instructions of interest manipulate memory blocks. The instruction malloc x, ρ, n

2 Here and elsewhere, the notation X [c1, . . . , cn/x1, . . . , xn] denotes capture-avoiding
substitution of c1, . . . , cn for variables x1, . . . , xn in X .

` ∈ Locations ρ ∈ LocationVar ε ∈ ConstraintVar x, f ∈ ValueVar

locations η ::= ` | ρ
constraints C ::= ∅ | ε | {η 7→ τ} | C1 ⊕ C2

types τ ::= int | junk | ptr(η) | 〈τ1, . . . , τn〉 | ∀[∆; C].(τ1, . . . , τn)→0

value ctxts Γ ::= · | Γ, x:τ
type ctxts ∆ ::= · | ∆, ρ | ∆, ε
values v ::= x | i | junk | ptr(`) | 〈v1, . . . , vn〉 | fixf [∆; C; Γ].ι | v[η] | v[C]
instructions ι ::= malloc x, ρ, n; ι | x=v[i]; ι | v[i]:=v′; ι | free v; ι |

v(v1, . . . , vn) | halt
stores S ::= {`1 7→ v1, . . . , `n 7→ vn}
programs P ::= (S , ι)

Fig. 1. Language of Locations: Syntax

allocates an unitialized memory block (filled with junk) of size n at a new loca-
tion `, and binds x to the pointer ptr(`). The location variable ρ, bound by this
instruction, is the static representation of the dynamic location `. The instruc-
tion x=v[i] binds x to the ith component of the memory block pointed to by v
in the remaining instructions. The instruction v[i]:=v′ stores v′ in the ith com-
ponent of the block pointed to by v. The final memory management primitive,
free v, deallocates the storage pointed to by v. If v is the pointer ptr(`) then
deallocation is modeled by updating the store (S) so that the location ` maps
to junk.

The program ({}, malloc x, ρ, 2; x[1]:=3; x[2]:=5; free x; halt) allocates,
initializes and finally deallocates a pair of integers. Its evaluation is shown below:

Store Instructions
{ } malloc x, ρ, n (* allocate new location `, *)

(* substitute ptr(`), ` for x, ρ *)
{` 7→ 〈junk, junk〉} ptr(`)[1]:=3 (* initialize field 1 *)
{` 7→ 〈3, junk〉} ptr(`)[2]:=5 (* initialize field 2 *)
{` 7→ 〈3, 5〉} free ptr(`) (* free storage *)
{` 7→ junk}

A sequence of instructions (ι) ends in either a halt instruction, which stops
computation immediately, or a function application (v(v1, . . . , vn)). In order to
simplify the language and its typing constructs, our functions never return. How-
ever, a higher-level language that contains call and return statements can be com-
piled into our language of locations by performing a continuation-passing style
(CPS) transformation [14, 15]. It is possible to define a direct-style language, but
doing so would force us to adopt an awkward syntax that allows functions to
return portions of the store. In a CPS style, all control-flow transfers are handled
symmetrically by calling a continuation.

Functions are defined using the form fix f [∆; C; Γ].ι. These functions are
recursive (f may appear in ι). The context (∆; C; Γ) specifies a pre-condition

that must be satisfied before the function can be invoked. The type context ∆
binds the set of type variables that can occur free in the term; C is a collection
of aliasing constraints that statically approximates a portion of the store; and Γ
assigns types to free variables in ι.

To call a polymorphic function, code must first instantiate the type variables
in ∆ using the value form: v[η] or v[C]. These forms are treated as values because
type application has no computational effect (types and constraints are only used
for compile-time checking; they can be erased before executing a program).

(S, malloc x, ρ, n; ι) 7−→ (S{` 7→ 〈junk1, . . . , junkn〉}, ι[`/ρ][ptr(`)/x])
where ` 6∈ S

(S{` 7→ v}, freeptr(`); ι) 7−→ (S{` 7→ junk}, ι)
if v = 〈v1, . . . , vn〉

(S{` 7→ v}, ptr(`)[i]:=v′; ι) 7−→ (S{` 7→ 〈v1, . . . , vi−1, v
′, vi+1, . . . , vn〉}, ι)

if v = 〈v1, . . . , vn〉 and 1 ≤ i ≤ n
(S{` 7→ v}, x=ptr(`)[i]; ι) 7−→ (S{` 7→ v}, ι[vi/x])

if v = 〈v1, . . . , vn〉 and 1 ≤ i ≤ n
(S, v(v1, . . . , vn)) 7−→ (S, ι[c1, . . . , cm/β1, . . . , βm][v′, v1, . . . , vn/f, x1, . . . , xn])

if v = v′[c1, . . . , cm]
and v′ = fixf [∆; C; x1:τ1, . . . , xn:τn].ι
and Dom(∆) = β1, . . . , βm (where β ranges over ρ and ε)

Fig. 2. Language of Locations: Operational Semantics

3.2 Type Constructors

There are three kinds of type constructors: locations3 (η), types (τ), and aliasing
constraints (C). The simplest types are the base types, which we have chosen
to be integers (int). A pointer to a location η is given the singleton type ptr(η).
The only value in the type ptr(η) is the pointer ptr(η), so if v1 and v2 both have
type ptr(η), then they must be aliases. Memory blocks have types (〈τ1, . . . , τn〉)
that describe their contents.

A collection of constraints, C, establishes the connection between pointers of
type ptr(η) and the contents of the memory blocks they point to. The main form
of constraint, written {η 7→ τ}, models a store with a single location η containing
a value of type τ . Collections of constraints are constructed from more primitive
constraints using the join operator (⊕). The empty constraint is denoted by ∅.
We often abbreviate {η 7→ τ} ⊕ {η′ 7→ τ ′} with {η 7→ τ, η′ 7→ τ ′}.
3 We use the meta-variable ` to denote concrete locations, ρ to denote location vari-

ables, and η to denote either.

3.3 Static Semantics

Store Typing The central invariant maintained by the type system is that the
current constraints C are a faithful description of the current store S. We write
this store-typing invariant as the judgement ` S : C. Intuitively, whenever a
location ` contains a value v of type τ , the constraints should specify that location
` maps to τ (or an equivalent type τ ′). Formally:

·; · `v v1 : τ1 · · · ·; · `v vn : τn

` {`1 7→ v1, . . . , `n 7→ vn} : {`1 7→ τ1, . . . , `n 7→ τn}
where for 1 ≤ i ≤ n, the locations `i are all distinct. And,

` S : C ′ · ` C ′ = C
` S : C

Instruction Typing Instructions are type checked in a context ∆; C; Γ . The
judgement ∆; C; Γ `ι ι states that the instruction sequence is well-formed. A
related judgement, ∆; Γ `v v : τ , ensures that the value v is well-formed and
has type τ . 4

Our presentation of the typing rules for instructions focuses on how each rule
maintains the store-typing invariant. With this invariant in mind, consider the
rule for projection:

∆; Γ `v v : ptr(η)
∆ ` C = C ′ ⊕ {η 7→ 〈τ1, . . . , τn〉} ∆; C; Γ, x:τi `ι ι

∆; C; Γ `ι x=v[i]; ι

(
x 6∈ Γ

1 ≤ i ≤ n

)

The first pre-condition ensures that v is a pointer. The second uses C to deter-
mine the contents of the location pointed to by v. More precisely, it requires that
C equal a store description C ′⊕{η 7→ 〈τ1, . . . , τn〉}. (Constraint equality uses ∆
to denote the free type variables that may appear on the right-hand side.) The
store is unchanged by the operation so the final pre-condition requires that the
rest of the instructions be well-formed under the same constraints C.

Next, examine the rule for the assignment operation:

∆; Γ `v v : ptr(η) ∆; Γ `v v′ : τ ′

∆ ` C = C ′ ⊕ {η 7→ 〈τ1, . . . , τn〉} ∆; C ′ ⊕ {η 7→ τafter}; Γ `ι ι

∆; C; Γ `ι v[i]:=v′; ι
(1 ≤ i ≤ n)

where τafter is 〈τ1, . . . , τi−1, τ
′, τi+1, . . . , τn〉

Once again, the value v must be a pointer to some location η. The type of the
contents of η are given in C and must be a block with type 〈τ1, . . . , τn〉. This
time the store has changed, and the remaining instructions are checked under
the appropriately modified constraint C ′ ⊕ {η 7→ τafter}.
4 The subscripts on `v and `ι are used to distinguish judgement forms and for no

other purpose.

How can the type system ensure that the new constraints C ′ ⊕{η 7→ τafter}
correctly describe the store? If v′ has type τ ′ and the contents of the location
η originally has type 〈τ1, . . . , τn〉, then {η 7→ τafter} describes the contents of
the location η after the update accurately. However, we must avoid a situation
in which C ′ continues to hold an outdated type for the contents of the location
η. This task may appear trivial: Search C ′ for all occurrences of a constraint
{η 7→ τ} and update all of the mappings appropriately. Unfortunately, in the
presence of location polymorphism, this approach will fail. Suppose a value is
stored in location ρ1 and the current constraints are {ρ1 7→ τ, ρ2 7→ τ}. We
cannot determine whether or not ρ1 and ρ2 are aliases and therefore whether
the final constraint set should be {ρ1 7→ τ ′, ρ2 7→ τ ′} or {ρ1 7→ τ ′, ρ2 7→ τ}.

Our solution uses a technique from the literature on linear type systems.
Linear type systems prevent duplication of assumptions by disallowing uses of
the contraction rule. We use an analogous restriction in the definition of con-
straint equality: The join operator ⊕ is associative, and commutative, but not
idempotent. By ensuring that linear constraints cannot be duplicated, we can
prove that ρ1 and ρ2 from the example above cannot be aliases. The other equal-
ity rules are unsurprising. The empty constraint collection is the identity for ⊕
and equality on types τ is syntactic up to α-conversion of bound variables and
modulo equality on constraints. Therefore:

∆ ` {ρ1 7→ 〈int〉} ⊕ {ρ2 7→ 〈bool〉} = {ρ2 7→ 〈bool〉} ⊕ {ρ1 7→ 〈int〉}
but,

∆ 6` {ρ1 7→ 〈int〉}⊕{ρ2 7→ 〈bool〉} = {ρ1 7→ 〈int〉}⊕{ρ1 7→ 〈int〉}⊕{ρ2 7→ 〈bool〉}
Given these equality rules, we can prove that after an update of the store

with a value with a new type, the store typing invariant is preserved:

Lemma 1 (Store Update). If ` S{` 7→ v} : C ⊕ {` 7→ τ} and ·; · `v v′ : τ ′

then ` S{` 7→ v′} : C ⊕ {` 7→ τ ′} .

where S{` 7→ v} denotes the store S extended with the mapping ` 7→ v (provided
` does not already appear on the left-hand side of any elements in S).

Function Typing The rule for function application v(v1, . . . , vn) is the rule one
would expect. In general, v will be a value of the form v′[c1] · · · [cn] where v′

is a function polymorphic in locations and constraints and the type construc-
tors c1 through cn instantiate its polymorphic variables. After substituting c1

through cn for the polymorphic variables, the current constraints must equal
the constraints expected by the function v. This check guarantees that the no-
duplication property is preserved across function calls. To see why, consider the
polymorphic function foo where the type context ∆ is (ρ1, ρ2, ε) and the con-
straints C are ε ⊕ {ρ1 7→ 〈int〉, ρ2 7→ 〈int〉}:

fix foo[∆; C; x:ptr(ρ1), y:ptr(ρ2), cont:∀[·; ε].(int)→0].
free x; (* constraints = ε ⊕ {ρ2 7→ 〈int〉} *)
z=y[0]; (* ok because y : ptr(ρ2) and {ρ2 7→ 〈int〉} *)
free y; (* constraints = ε *)
cont(z) (* return/continue *)

This function deallocates its two arguments, x and y, before calling its continu-
ation with the contents of y. It is easy to check that this function type-checks,
but should it? If foo is called in a state where ρ1 and ρ2 are aliases, a run-time
error will result when the second instruction is executed because the location
pointed to by y will already have been deallocated. Fortunately, our type system
guarantees that foo can never be called from such a state.

Suppose that the store currently contains a single integer reference: {` 7→
〈3〉}. This store can be described by the constraints {` 7→ 〈int〉}. If the program-
mer attempts to instantiate both ρ1 and ρ2 with the same label `, the function
call foo[`, `, ∅](ptr(`)) will fail to type check because the constraints {` 7→ 〈int〉}
do not equal the pre-condition ∅ ⊕ {` 7→ 〈int〉, ` 7→ 〈int〉}.

Figure 3 contains the typing rules for values and instructions. Note that the
judgement ∆ `wf τ indicates that ∆ contains the free type variables in τ .

3.4 Soundness

Our typing rules enforce the property that well-typed programs cannot enter
stuck states. A state (S, ι) is stuck when no reductions of the operational seman-
tics apply and ι 6= halt . The following theorem captures this idea formally:

Theorem 1 (Soundness) If ` S : C and ·; C; · `ι ι and (S, ι) 7−→ . . . 7−→
(S′, ι′) then (S′, ι′) is not a stuck state.

We prove soundness syntactically in the style of Wright and Felleisen [28].
The proof appears in the companion technical report [19].

4 Non-linear Constraints

Most linear type systems contain a class of non-linear values that can be used
in a completely unrestricted fashion. Our system is similar in that it admits
non-linear constraints, written {η 7→ τ}ω. They are characterized by the axiom:

∆ ` {η 7→ τ}ω = {η 7→ τ}ω ⊕ {η 7→ τ}ω

Unlike the constraints of the previous section, non-linear constraints may be
duplicated. Therefore, it is not sound to deallocate memory described by non-
linear constraints or to use it at different types. Because there are strictly fewer
operations on non-linear constraints than linear constraints, there is a natural
subtyping relation between the two: {η 7→ τ} ≤ {η 7→ τ}ω. We extend the
subtyping relationship on single constraints to collections of constraints with
rules for reflexivity, transitivity, and congruence. For example, assume add has
type ∀[ρ1, ρ2, ε; {ρ1 7→ 〈int〉}ω ⊕ {ρ2 7→ 〈int〉}ω ⊕ ε].(ptr(ρ1), ptr(ρ2))→0 and
consider this code:

Instructions Constraints (Initially ∅)
malloc x, ρ, 1; C1 = {ρ 7→ 〈junk〉}, x : ptr(ρ)
x[0]:=3; C2 = {ρ 7→ 〈int〉}
add[ρ, ρ, ∅](x, x) C2 ≤ {ρ 7→ 〈int〉}ω = {ρ 7→ 〈int〉}ω ⊕ {ρ 7→ 〈int〉}ω ⊕ ∅

Typing rules for non-linear constraints are presented in Figure 4.

∆; Γ `v v : τ

∆; Γ `v i : int ∆; Γ `v x : Γ (x) ∆; Γ `v junk : junk

∆ `wf η

∆; Γ `v ptr(η) : ptr(η)

∆; Γ `v v1 : τ1 · · · ∆; Γ `v vn : τn

∆; Γ `v 〈v1, . . . , vn〉 : 〈τ1, . . . , τn〉

∆ `wf ∀[∆′; C].(τ1, . . . , τn)→0

∆, ∆′; C; Γ, f :∀[∆′; C].(τ1, . . . , τn)→0, x1:τ1, . . . , xn:τn `ι ι

∆; Γ `v fix f [∆′; C; x1:τ1, . . . , xn:τn].ι : ∀[∆′; C].(τ1, . . . , τn)→0
(f, x1, . . . , xn 6∈ Γ)

∆ `wf η ∆; Γ `v v : ∀[ρ, ∆′; C].(τ1, . . . , τn)→0

∆; Γ `v v[η] : ∀[∆′; C].(τ1, . . . , τn)→0[η/ρ]

∆ `wf C ∆; Γ `v v : ∀[ε,∆; C′].(τ1, . . . , τn)→0

∆; Γ `v v[C] : ∀[∆; C′].(τ1, . . . , τn)→0[C/ε]

∆; Γ `v v : τ ′ ∆ ` τ ′ = τ

∆; Γ `v v : τ

∆; C; Γ `ι ι

∆, ρ; C ⊕ {ρ 7→ 〈junk1, . . . , junkn〉}; Γ, x:ptr(ρ) `ι ι

∆; C; Γ `ι malloc x, ρ, n; ι
(x 6∈ Γ, ρ 6∈ ∆)

∆; Γ `v v : ptr(η)
∆ ` C = C′ ⊕ {η 7→ 〈τ1, . . . , τn〉} ∆; C′ ⊕ {η 7→ junk}; Γ `ι ι

∆; C; Γ `ι free v; ι

∆; Γ `v v : ptr(η) ∆ ` C = C′ ⊕ {η 7→ 〈τ1, . . . , τn〉}
∆; Γ `v v′ : τ ′ ∆; C′ ⊕ {η 7→ 〈τ1, . . . , τi−1, τ

′, τi+1, . . . , τn〉}; Γ `ι ι

∆; C; Γ `ι v[i]:=v′; ι
(1 ≤ i ≤ n)

∆; Γ `v v : ptr(η′)
∆ ` C = C′ ⊕ {η′ 7→ 〈τ1, . . . , τn〉} ∆; C; Γ, x:τi `ι ι

∆; C; Γ `ι x=v[i]; ι

(
x 6∈ Γ

1 ≤ i ≤ n

)

∆; Γ `v v : ∀[·; C′].(τ1, . . . , τn)→0 ∆ ` C = C′

∆; Γ `v v1 : τ1 · · · ∆; Γ `v vn : τn

∆; C; Γ `ι v(v1, . . . , vn) ∆; C; Γ `ι halt

Fig. 3. Language of Locations: Value and Instruction Typing

∆; Γ `v v : ptr(η)
∆ ` C = C′ ⊕ {η 7→ 〈τ1, . . . , τn〉}ω ∆; C; Γ, x:τi `ι ι

∆; C; Γ `ι x=v[i]; ι

(
x 6∈ Γ

1 ≤ i ≤ n

)

∆; Γ `v v : ptr(η) ∆; Γ `v v′ : τ ′

∆ ` C = C′ ⊕ {η 7→ 〈τ1, . . . , τn〉}ω ∆ ` τ ′ = τi ∆; C; Γ `ι ι

∆; C; Γ `ι v[i]:=v′; ι
(1 ≤ i ≤ n)

∆; Γ `v v : ∀[·;C′].(τ1, . . . , τn)→0 ∆ ` C ≤ C′

∆; Γ `v v1 : τ1 · · · ∆; Γ `v vn : τn

∆; C; Γ `ι v(v1, . . . , vn)

` S : C′ ` C′ ≤ C

` S : C

Fig. 4. Language of Locations: Non-linear Constraints

4.1 Non-linear Constraints and Dynamic Type Tests

Although data structures described by non-linear constraints cannot be deal-
located or used to store objects of varying types, we can still take advantage
of the sharing implied by singleton pointer types. More specifically, code can
use weak constraints to perform a dynamic type test on a particular object and
simultaneously refine the types of many aliases of that object.

To demonstrate this application, we extend the language discussed in the
previous section with a simple form of option type ?〈τ1, . . . , τn〉 (see Figure 5).
Options may be null or a memory block 〈τ1, . . . , τn〉. The mknull operation
associates the name ρ with null and the tosum v, τ instruction injects the value v
(a location containing null or a memory block) into a location for the option type
?〈τ1, . . . , τn〉. In the typing rules for tosum and ifnull, the annotation φ may
either be ω, which indicates a non-linear constraint or ·, the empty annotation,
which indicates a linear constraint.

The ifnull v then ι1 else ι2 construct tests an option to determine whether
it is null or not. Assuming v has type ptr(η), we check the first branch (ι1)
with the constraint {η 7→ null}φ and the second branch with the constraint
{η 7→ 〈τ1, . . . , τn〉}φ where 〈τ1, . . . , τn〉 is the appropriate non-null variant. As
before, imagine that sp is the stack pointer, which contains an integer option.

(* constraints = {η 7→ 〈ptr(η′)〉, η′ 7→ ?〈int〉}, sp:ptr(η) *)
r1=sp[1]; (* r1:ptr(η′) *)
ifnull r1 then halt (* null check *)
else · · · (* constraints = {η 7→ 〈ptr(η′)〉}⊕{η′ 7→ 〈int〉}ω *)

Notice that a single null test refines the type of multiple aliases; both r1 and
its alias on the stack sp[1] can be used as integer references in the else clause.
Future loads of r1 or its alias will not have to perform a null-check.

These additional features of our language are also proven sound in the com-
panion technical report [19].

Syntax:

types τ ::= . . . | ?〈τ1, . . . , τn〉 | null
values v ::= . . . | null
instructions ι ::= . . . | mknull x, ρ; ι | tosum v, ?〈τ1, . . . , τn〉 |

ifnull v then ι1 else ι2

Operational semantics:

(S, mknull x, ρ; ι) 7−→ (S{` 7→ null}, ι[`/ρ][ptr(`)/x])
where ` 6∈ S

(S, tosum v, ?〈τ1, . . . , τn〉; ι) 7−→ (S, ι)
(S{` 7→ null},

ifnull ptr(`) then ι1 else ι2) 7−→ (S{` 7→ null}, ι1)
(S{` 7→ 〈v1, . . . , vn〉},

ifnull ptr(`) then ι1 else ι2) 7−→ (S{` 7→ 〈v1, . . . , vn〉}, ι2)
Static Semantics:

∆; Γ `v null : null

∆, ρ; C ⊕ {ρ 7→ null}; Γ, x:ptr(ρ) `ι ι

∆; C; Γ `ι mknull x, ρ; ι
(x 6∈ Γ, ρ 6∈ ∆)

∆; Γ `v v : ptr(η) ∆ ` C = C′ ⊕ {η 7→ null}φ

∆ `wf ?〈τ1, . . . , τn〉 ∆; C′ ⊕ {η 7→ ?〈τ1, . . . , τn〉}φ; Γ `ι ι

∆; C; Γ `ι tosum v, ?〈τ1, . . . , τn〉; ι

∆; Γ `v v : ptr(η)

∆ ` C = C′ ⊕ {η 7→ 〈τ1, . . . , τn〉}φ ∆; C′ ⊕ {η 7→ ?〈τ1, . . . , τn〉}φ; Γ `ι ι

∆; C; Γ `ι tosum v, ?〈τ1, . . . , τn〉; ι

∆; Γ `v v : ptr(η) ∆ ` C = C′ ⊕ {η 7→ ?〈τ1, . . . , τn〉}φ

∆; C′ ⊕ {η 7→ null}φ; Γ `ι ι1 ∆; C′ ⊕ {η 7→ 〈τ1, . . . , τn〉}φ; Γ `ι ι2

∆; C; Γ `ι ifnull v then ι1 else ι2

Fig. 5. Language of Locations: Extensions for option types

5 Related and Future Work

Our research extends previous work on linear type systems [26] and syntactic
control of interference [16] by allowing both aliasing and safe deallocation. Sev-
eral authors [26, 3, 9] have explored alternatives to pure linear type systems to

allow greater flexibility. Wadler [26], for example, introduced a new let-form
let ! (x) y = e1 in e2 that permits the variable x to be used as a non-linear
value in e1 (i .e. it can be used many times, albeit in a restricted fashion) and
then later used as a linear value in e2. We believe we can encode similar behavior
by extending our simple subtyping with bounded quantification. For instance, if
a function f requires some collection of aliasing constraints ε that are bounded
above by {ρ1 7→ 〈int〉}ω ⊕ {ρ2 7→ 〈int〉}ω, then f may be called with a single
linear constraint {ρ 7→ 〈int〉} (instantiating both ρ1 and ρ2 with ρ and ε with
{ρ 7→ 〈int〉}). The constraints may now be used non-linearly within the body
of f . Provided f expects a continuation with constraints ε, its continuation will
retain the knowledge that {ρ 7→ 〈int〉} is linear and will be able to deallocate
the storage associated with ρ when it is called. However, we have not yet imple-
mented this feature.

Because our type system is constructed from standard type-theoretic building
blocks, including linear and singleton types, it is relatively straightforward to
implement these ideas in a modern type-directed compiler. In some ways, our new
mechanisms simplify previous work. Previous versions of TAL [12, 11] possessed
two separate mechanisms for initializing data structures. Uninitialized heap-
allocated data structures were stamped with the type at which they would be
used. On the other hand, stack slots could be overwritten with values of arbitrary
types. Our new system allows us to treat memory more uniformly. In fact, our
new language can encode stack types similar to those described by Morrisett
et al. [11] except that activation records are allocated on the heap rather than
using a conventional call stack. The companion technical report [19] shows how
to compile a simple imperative language in such a way that it allocates and
deletes its own stack frames.

This research is also related to other work on type systems for low-level
languages. Work on Java bytecode verification [20, 8] also develops type systems
that allows locations to hold values of different types. However, the Java bytecode
type system is not strong enough to represent aliasing as we do here.

The development of our language was inspired by the Calculus of Capa-
bilities (CC) [4]. CC provides an alternative to the region-based type system
developed by Tofte and Talpin [24]. Because safe region deallocation requires
that no aliases be used in the future, CC tracks region aliases. In our new lan-
guage we adapt CC’s techniques to track both object aliases and object type
information.

Our work also has close connections with research on alias analyses [5, 21,
17]. Much of that work aims to facilitate program optimizations that require
aliasing information in order to be correct. However, these optimizations do not
necessarily make it harder to check the safety of the resulting program. Other
work [7, 6] attempts to determine when programs written in unsafe languages,
such as C, perform potentially unsafe operations. Our goals are closer to the
latter application but differ because we are most interested in compiling safe
languages and producing low-level code that can be proven safe in a single pass
over the program. Moreover, our main result is not a new analysis technique,

but rather a sound system for representing and checking the results of analysis,
and, in particular, for representing aliasing in low-level compiler-introduced data
structures rather than for representing aliasing in source-level data.

The language of locations is a flexible framework for reasoning about sharing
and destructive operations in a type-safe manner. However, our work to date is
only a first step in this area and we are investigating a number of extensions. In
particular, we are working on integrating recursive types into the type system as
they would allow us to capture regular repeating structure in the store. When
we have completed this task, we believe our aliasing constraints will provide us
with a safe, but rich and reusable, set of memory abstractions.

Acknowledgements

This work arose in the context of implementing the Typed Assembly Language
compiler. We are grateful for the many stimulating discussions that we have
had on this topic with Karl Crary, Neal Glew, Dan Grossman, Dexter Kozen,
Stephanie Weirich, and Steve Zdancewic. Sophia Drossopoulou, Kathleen Fisher,
Andrew Myers, and Anne Rogers gave helpful comments on a previous draft of
this work.

References

1. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, 1986.

2. Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. In Martin
Wirsing, editor, Third International Symposium on Programming Language Imple-
mentation and Logic Programming, pages 1–13, New York, August 1991. Springer-
Verlag. Volume 528 of Lecture Notes in Computer Science.

3. Erik Barendsen and Sjaak Smetsers. Conventional and uniqueness typing in graph
rewrite systems (extended abstract). In Thirteenth Conference on the Foundations
of Software Technology and Theoretical Computer Science, pages 41–51, Bombay,
1993. In Shyamasundar, ed., Springer-Verlag, LNCS 761.

4. Karl Crary, David Walker, and Greg Morrisett. Typed memory management in a
calculus of capabilities. In Twenty-Sixth ACM Symposium on Principles of Pro-
gramming Languages, pages 262–275, San Antonio, January 1999.

5. Alain Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting.
In ACM Conference on Programming Language Design and Implementation, pages
230–241, Orlando, June 1994.

6. Nurit Dor, Michael Rodeh, and Mooly Sagiv. Detecting memory errors via static
pointer analysis (preliminary experience). In ACM Workshop on Program Analysis
for Software Tools and Engineering (PASTE’98), Montreal, June 1998.

7. David Evans. Static detection of dynamic memory errors. In ACM Conference on
Programming Language Design and Implementation, Philadelphia, May 1996.

8. Stephen N. Freund and John C. Mitchell. A formal framework for the Java bytecode
language and verifier. In Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 147–166, Denver, November 1999.

9. Naoki Kobayashi. Quasi-linear types. In Twenty-Sixth ACM Symposium on Prin-
ciples of Programming Languages, pages 29–42, San Antonio, January 1999.

10. Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 1996.

11. Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-based Typed
Assembly Language. In Second International Workshop on Types in Compilation,
pages 95–117, Kyoto, March 1998. Published in Xavier Leroy and Atsushi Ohori,
editors, Lecture Notes in Computer Science, volume 1473, pages 28-52. Springer-
Verlag, 1998.

12. Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to
Typed Assembly Language. ACM Transactions on Programming Languages and
Systems, 3(21):528–569, May 1999.

13. George Necula. Proof-carrying code. In Twenty-Fourth ACM Symposium on Prin-
ciples of Programming Languages, pages 106–119, Paris, 1997.

14. G. D. Plotkin. Call-by-name, call-by-value, and the lambda calculus. Theoretical
Computer Science, 1:125–159, 1975.

15. John C. Reynolds. Definitional interpreters for higher-order programming lan-
guages. In Conference Record of the 25th National ACM Conference, pages 717–
740, Boston, August 1972.

16. John C. Reynolds. Syntactic control of interference. In Fifth ACM Symposium on
Principles of Programming Languages, pages 39–46, Tucson, 1978.

17. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. ACM Transactions on Programming Languages and
Systems, 20(1):1–50, January 1996.

18. Z. Shao. An overview of the FLINT/ML compiler. In Workshop on Types in Com-
pilation, Amsterdam, June 1997. ACM. Published as Boston College Computer
Science Dept. Technical Report BCCS-97-03.

19. Frederick Smith, David Walker, and Greg Morrisett. Alias types. Technical Report
TR99-1773, Cornell University, October 1999.

20. Raymie Stata and Mart́ın Abadi. A type system for Java bytecode subroutines.
In Twenty-Fifth ACM Symposium on Principles of Programming Languages, San
Diego, January 1998.

21. B. Steensgaard. Points-to analysis in linear time. In Twenty-Third ACM Sympo-
sium on Principles of Programming Languages, January 1996.

22. D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A
type-directed optimizing compiler for ML. In ACM Conference on Programming
Language Design and Implementation, pages 181–192, Philadelphia, May 1996.

23. Mads Tofte. Type inference for polymorphic references. Information and Compu-
tation, 89:1–34, November 1990.

24. Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Infor-
mation and Computation, 132(2):109–176, 1997.

25. David N. Turner, Philip Wadler, and Christian Mossin. Once upon a type. In ACM
International Conference on Functional Programming and Computer Architecture,
San Diego, CA, June 1995.

26. Philip Wadler. Linear types can change the world! In M. Broy and C. Jones,
editors, Programming Concepts and Methods, Sea of Galilee, Israel, April 1990.
North Holland. IFIP TC 2 Working Conference.

27. A. K. Wright. Simple imperative polymorphism. LISP and Symbolic Computation,
8(4), December 1995.

28. Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38–94, 1994.

