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Abstract 

The second half of the twenties century saw a sharp worldwide decline in the both 

incidence and mortality of gastric cancer. Despite this the condition remains the world’s 

second leading cause of cancer mortality, second only to lung cancer. Although most 

gastric cancers arise in the antrum and body (non-cardia) of the stomach, the incidence of 

proximal tumours of the cardia and distal oesophagus have increased dramatically over the 

last fifty years throughout the world. This major change in the pattern of the disease 

suggests that gastric cancer (cardia versus non-cardia) is not one but two separate disorders 

with regard to cause and pathogenesis. Over the last fifty years there has been concern 

about luminal nitrite, derived from dietary nitrate, as a risk factor for upper gastro-

intestinal malignancies. This has arisen from evidence that the salivary nitrite is rapidly 

converted to nitrosating species and (in the presence of ascorbic acid) nitric oxide (NO), 

which are both potentially mutagenics.  

Thus this study aimed to investigate the influence of ascorbic acid (AA), sodium 

thiocyanate (NaSCN), oxygen (O2) and pH (1.5, 2.5 and 3.0) on the nitrite chemistry in 

simulated gastric juice. Another aim of the present study was to investigate the influence of 

a range of water-soluble dietary phenolics antioxidants on the nitrite chemistry to compare 

their effect with that of ascorbic acid. The capacity of dietary phenolics and ascorbic acid 

to reduce the acidified nitrite to nitric oxide was also investigated under both aerobic and 

anaerobic conditions. 

These studies were performed in a newly designed closed bench-top model reproducing the 

chemical environment occurring at the human gastro-oesophageal junction. Each of the 

experiments was performed with and without NaSCN at different pH values (1.5, 2.5 and 

3.0) under both aerobic and anaerobic conditions. The studies were focused on the 

measurement of NO formation and O2 consumption by electrochemical detection, 
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according to the antioxidant present in the system (ascorbic acid, ferulic acid, caffeic acid, 

gallic acid or chlorogenic acid, in a range of concentrations).  

Nitric oxide production increased with increasing ascorbic acid concentration, and was 

greatest at the lowest pH of 1.5. The absence of oxygen in the system markedly increased 

nitric oxide levels in the presence of ascorbic acid, while the addition of NaSCN enhanced 

nitric oxide production and oxygen consumption. A different pattern of nitric oxide 

production was seen with the dietary phenolics compared with ascorbic acid. In addition, 

two different patterns of nitric oxide response were seen with ferulic acid and caffeic acid 

and another with gallic acid and chlorogenic acid. Ferulic and caffeic acids produced only 

a small initial increase in nitric oxide, which was not sustained under either aerobic or 

anaerobic conditions. In contrast, gallic and chlorogenic acids produced a much more 

marked rise in nitric oxide, which remained elevated under both aerobic and anaerobic 

conditions. The only phenolic experiment in which an equivalent concentration of nitric 

oxide to that with ascorbic acid was observed was with high concentration of gallic acid 

under anaerobic conditions. 

These studies indicated that nitrite in the simulated GOJ environment is converted to 

varying extents to nitric oxide and factors influencing this include luminal pH, thiocyanate, 

oxygen tension and presence of antioxidants. We have also found that the capacity of 

antioxidants to convert acidified nitrite to nitric oxide varies as does the temporal profile of 

the nitric oxide concentration generated by them. 
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Chapter 1 - Introduction 
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1.1 Anatomy and physiology of stomach 

The stomach is a J-shaped muscular bag located in the left upper part of the abdominal 

cavity mainly in the left hypochondrial, epigastric and umbilical regions, which has two 

openings: the cardia and the pylorus (1-3). These openings join the stomach with the 

oesophagus proximally and with the duodenum distally to form the gastro-oesophageal 

junction and gastro-duodenal junction respectively (Figure 1.1A). The former lies 2.5 cm 

to the left of mid line at the level of T 10 vertebra, and the latter lies to the right of mid line 

at the level of L 1vertebra (1-3). 

The stomach is completely invested by peritoneum to form the lesser and greater omenta 

that contain the vascular and lymphatic supply (3).  

 

Figure 1.1:Anatomy and histology of the stomach is described the stomach and its subdivision (A), cut 
section shows the muscular layers and internal anatomy (B) and stomach wall histology (C) (4). 
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The stomach has four anatomically distinct areas, each containing different types of 

histological cell. The cardia, distal to the gastro-oesophageal junction (GOJ), 

predominantly consists of simple tubular glands lined by mucus secreting cells, numerous 

endocrine cells, and a few acid secreting cells (1, 5-7). The fundus is the uppermost part of 

the stomach, occupying the area above the opening of oesophagus into the stomach (above 

the gastro-oesophageal junction). The body is the largest part of the stomach, representing 

about two third of gastric area. The glands of the fundus and body consist of a range of 

secretary cells:   

- parietal cells mainly in the upper part of the gland, which in addition to acid also 

produces intrinsic factor and blood group substances;   

- chief cells mostly located in the lower part of gland, which are the main source of 

pepsinogen and proteolytic enzymes. In addition to these cells the body mucosa also 

contains some mucus neck cells and endocrine cells, the latter producing histamine in 

response to gastrin (1, 5-7).  

The pyloric antrum represents the lower third of the stomach and has a funnel shaped 

appearance. Its wide part connects to the stomach whereas the narrowing portion connects 

the stomach with the pyloric canal. The gland of the pylorus consists of cell secreting 

mucus and gastrin hormone and occasionally parietal cells (1, 5-7).  

The stomach wall is composed of four different layers, which are arranged from inside to 

outside. These are the mucosa, sub mucosa, muscularis layer, and serosa (Figure 1.1C). 

The stomach mucosa is an entirely tubular glandular form, with a variety of secretary cells, 

these cells differ from one to another anatomical sub-division described before. In general, 

the gastric mucosa has two components - the surface epithelium and its pits (foveolae) and 

the glandular structure. The surface epithelium and the pits appear throughout the stomach 

wall and are lined by mucus-secreting columnar cells which also secrete bicarbonate and 

sodium ions. The glandular component differs in the thickness and type of the cells from 
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one region to another. For example, the foveolae zone of cardiac and pyloric is the half 

thickness of the mucosa, while the glandular component in the fundus and body is much 

thicker than the foveolar zone (5-8).  

The stomach sub mucosa is composed entirely of a thick sheet of connective tissue, which 

provides elasticity to the stomach. It contains many vascular and lymphatic vessels as well 

as sub mucosal nerve plexus (6-8). In addition to the standard pattern of wall structure which 

is present throughout the digestive tract, longitudinal and circular muscle layers, the 

stomach wall has a third layer of oblique muscles, or muscular layer (5-8). The serosa is the 

outer layer of the stomach wall and consists of supporting connective tissue, the inner layer 

of fibrous tissue provides structural support while the epithelial tissue “mesothelium”, 

secrets a watery lubricant fluid (6-8). 

1.2 Stomach pathologies 

The stomach, like any other organ in the body, can experience both benign and malignant 

tumours. Adenocarcinoma are much more common than any other malignant tumours 

(such as carinoid tumours, malignant stromal tumours and lymphoma) or benign tumours 

(8-10).  

Adenocarcinoma have been divided histologically into two main types; the diffuse and 

intestinal types (11). The diffuse type adenocarcinoma consists of sheets of neoplastic cells 

with minimal gland formation which leads to a significant thickening of the gastric wall. 

The development of the diffuse cancer is correlated with genetic factors, is more common 

in the younger population, and has a male to female ratio of 1:1. Unfortunately this type of 

adenocarcinoma carries a bad prognosis and survival rate is lower than the intestinal type 

tumours (8-12) (Figure 1.2A).  
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Intestinal type adenocarcinoma, on the other hand, shows glandular formation similar to 

that of colonic adenocarcinoma. This intestinal sub-type of adenocarcinoma is also 

associated with the presence of metaplastic intestinal epithelium, tends to be more common 

in countries presenting high-incidence of gastric cancer, and significantly correlates with 

environmental factors such as H. pylori-associated chronic gastritis. Furthermore, the 

intestinal type is more common in males than females; with a ratio of 2:1, and the mean 

age of patients is 55 years (8-12). However, some tumours show features of both types and 

are more difficult to categorise (11) (Figure 1.2B). 

Recently, gastric cancer has been sub-classified according to the intra- gastric anatomical 

site. It either arises from the proximal region of the stomach (cardia) or more distal part 

(non cardia) (13-15). Most gastric cancer arises in the antrum and body (non cardia) of the 

stomach, however, the incidence of proximal tumours of the cardia and the gastro-

oesophageal junction has increased dramatically over the last 25 years (16-18).  

These changes in the pattern of stomach malignancies throughout the world is not merely 

to be related to changes in tumour classification, change in diagnostic methods or an 

increased general awareness of this disease aetiology and epidemiology (14, 19). It is possible 

to conclude that gastric cancer (cardia versus non-cardia) is not one but two separate 

disorders with regard to cause and pathogenesis (14). 
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(A) 

 

 

 

 

 

(B) 

 

Figure 1.2: Histological classification of gastric adenocarcinoma, the diffuse type (A), and intestinal 
type (B) (20) . 
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1.3 Gastric and oesophageal adenocarcinoma 

1.3.1 Epidemiology 

In spite of a steady decline in the overall incidence of gastric cancer, observed in most 

countries in the last decades, incidences of cardia cancer have increased in recent years (16-

18, 21). Meanwhile, the overall incidence of oesophageal cancer (including oesophageal 

squamous cell carcinoma) has decreased throughout the last thirty years; while 

adenocarcinoma of the distal oesophagus has increased dramatically in most Western 

countries as well as in some other countries over the worlds (16-18, 21). Thus gastric cancer 

and oesophageal cancers still remain the second and the sixth leading cause of cancer-

related death, respectively (19, 22) (Figure 1.3A and B).  

Gastric and oesophageal adenocarcinoma, similar to most other GI malignancies, are the 

diseases of older age groups in most countries. The mean age at diagnosis is 63 years and 

the risk increases with increasing age (19, 22). The diseases predominantly affect men and 

white patients twice as often as black patients (14, 19, 23). Furthermore, in relation to sub-site 

distribution, Roder (2002) states that the percentage of gastric cancers sited in the cardia, 

as opposed to more distal specified sub site, was 31.7 % for males and 18.8 % for females, 

with higher percentages applying to male than females in each region (24).  

The geographical variation of oesophagus and cardia adenocarcinoma differs between 

countries. In developed countries, the incidence of distal stomach cancer has decreased, 

while stomach cancer in the most proximal cardia region and GOJ has increased 

substantially. According to a review of literature, the highest incidence has been reported 

in the United Kingdom, Australia, and United States. However, low incidence has also 

been reported in Eastern Europe and Scandinavia (14, 19). 
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(A) 

 

(B) 

 

 

Figure 1.3: Age- standardised incidence of adenocarcinoma of oesophagus (A) and gastric cardia (B) 
cancer Solid black line adenocarcinoma in male; dashed line adenocarcinoma in female (18). 
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1.3.2 Aetiology  

The reasons for the sharp increase in the incidence of adenocarcinoma of the oesophagus 

and the gastric cardia over the past fifty years are still unknown. However, one explanation 

for these similar trends may be that the adenocarcinoma of the oesophagus and the gastric 

cardia share at least some aetiological factors (18, 25-27).  

Cancer of the oesophagus and gastric cardia differs from cancer of the more distal stomach 

(21, 28-31) (Figure 1.4). The cancer of the distal stomach develops against a background of 

atrophic gastritis and hypochlorhydria, usually due to H. pylori infection and is more 

common amongst those from lower socioeconomic classes (29, 31). In contrast, the cancer of 

GOJ and cardia occurs in patients with healthy acid secreting mucosa, normal secretary 

function, who are usually H. Pylori negative, and are more in the professional social class 

population (21, 28-31).  

Aetiology of Upper GI AdenocarcinomaAetiology of Upper GI Adenocarcinoma

Cancer of mid+ distal stomachCancer of mid+ distal stomach

HypochlorhydriaHypochlorhydria

Atrophic gastritisAtrophic gastritis

Low socioeconomic classLow socioeconomic class

Adenocarcinoma of oesophagusAdenocarcinoma of oesophagus
and cardiaand cardia

H.PyloriH.Pylori -- veve

Middle social classMiddle social class

H.Pylori  H.Pylori  +ve+ve

Normal Normal secretorysecretory functionfunction

Healthy mucosaHealthy mucosa

 

Figure 1.4:. Aetiology of upper GIT adenocarcinoma (cardia versus non cardia). 
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1.3.3 Risk factors of gastric and oesophagus adenocarcinoma 

The pathogenesis of gastric cancer in general, and adenocarcinoma of the oesophagus and 

gastric cardia in particular, are complex with multiple steps and multi-factorial processes. 

However, the disease is the end-result of cellular and molecular changes triggered by 

endogenous and environmental factors (32, 33). The mutagen responsible remains unknown, 

but important clues have been established and are discussed below (34). 

 Gastro-oesophageal reflux  

Gastro-oesophageal reflux is a strong risk factor in the development of adenocarcinoma of 

the oesophagus (19, 35). Chronic exposure to gastric and bile acid leads to progressive 

damage and changes to the squamous mucosa of the oesophagus and causes its 

replacement by metaplastic columnar mucosa. The longstanding damage caused by gastric 

and bile reflux to the oesophageal squamous mucosa transforms it to gastric columnar 

mucosa, then into intestinal mucosa followed by dysplasia and finally adenocarcinoma (14, 

36). However, the sequence of events leading to oesophageal adenocarcinoma is not 

mandatory for the development of the disease, although large cohort studies have 

established a strong association between reflux disease and oesophageal adenocarcinoma 

(37).   

The aetiology of adenocarcinoma of gastric cardia remains unknown; however, it may 

have a similar aetiology to oesophageal adenocarcinoma (18, 25-27). Many studies have 

shown there are weak associations between the reflux disease and adenocarcinoma of 

cardia (35, 37). However, recently several studies have established that cardia cancer might 

arise from the distal segment of the oesophagus mucosa when this segment is exposed to 

acid but the oesophageal sphincter does not allow the acid to reflux into the main body of 

the oesophagus(14, 38). 
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This explanation suggests that cardia cancer might resemble the oesophageal 

adenocarcinoma, and therefore may have at least two different aetiological factors.  

 Helicobacter  pylori infection 

Recent studies have indicated that infection with H. pylori might be inversely associated 

with the risk of adenocarcinoma of the oesophagus and gastric cardia (39). However, this 

association between the H. pylori infection and adenocarcinoma of the cardia is much 

weaker than that of between H. pylori infection and oesophageal adenocarcinoma (40, 41). 

The postulated mechanism for the protective effect might be that infection could reduce the 

occurrence of acidic reflux by introducing atrophic gastritis, which in turn would reduce 

the harmful effects of acidity in the oesophagus (42). Moreover, the eradication of H. pylori 

infection in individuals might lead to an increase in the incidence of oesophageal 

adenocarcinoma. However, the causal relation between the two remains unclear (19). 

The association between H. pylori infection and gastric cancer may vary by the anatomical 

site; many studies have demonstrated that H. pylori infection is associated with a risk of 

non-cardia cancer (31, 40, 43). However, the association with adenocarcinoma of gastric cardia 

is very complex and some studies have pointed out that H. pylori infection is not involved 

in the aetiology of cardia cancer (40, 41). In contrast, other studies have confirmed there is an 

inverse association between the H. pylori infection particularly cagA+ strains, and 

adenocarcinoma of gastric cardia (39, 44, 45). Furthermore, recent studies have examined the 

relationship between the intra-gastric location of cancer, H. pylori infection, and atrophic 

gastritis (44). These studies have confirmed that there is a strong association between H. 

pylori infection and atrophic gastritis and cancer of non cardia. However, a significant 

negative association between H. pylori infection and cardia cancer has also been detected. 

Individuals who are seropositive for H. pylori are at an increased risk for gastric cardia 

cancer particularly if they had atrophic gastritis (44).  
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This view is consistent with the fact that cardia cancer is a complex disease and has at least 

two distinct aetiologies (46). One type resembles non-cardia cancer being associated with H. 

pylori infection and atrophic gastritis. The other type resembles the oesophageal 

adenocarcinoma and this type is shown to have a negative association with H. pylori 

infection and is more likely to be due to short segment gastro-oesophageal reflux disease 

(14).  

Moreover, there is geographical variation between the H. pylori infection and gastric cardia 

cancer. For example, there is a strong negative association between H. pylori infection and 

cardia cancer in Western countries, while there is a positive association between H. pylori 

infection and cardia cancer in China and other Eastern countries (40).  

 Luminal chemistry of the gastric cardia  

Recently many studies have pointed out that the luminal chemistry of the cardia region is 

different from the rest of the stomach. For example, the post-prandial acidity of gastric 

juice is decreased in the body of the stomach due to the buffering effect of food. However, 

the GOJ and gastric cardia are escape the buffering effect of meals and remain highly 

acidic compared to the body of the stomach. Thus the acidity of gastric cardia would 

facilitate the chemical reaction occur at low pH (47). The formation of nitrosating species 

and N-nitroso compounds from salivary nitrite, derived from dietary nitrate, in the acidic 

environment of the stomach is maximal at the cardia region (48-50). These N-nitroso 

compounds are potential pre-carcinogens for the oesophagus and stomach in animals 

models (51). Ascorbic acid, actively secreted in gastric juice, provides protection by 

converting nitrosating species to nitric oxide (52-54). The luminal generation of nitric oxide 

(the reaction between nitrosating species and ascorbic acid) is maximal at GOJ and gastric 

cardia (50, 55-57). Nitric oxide is known to be mutagenic through its ability to react rapidly 

with oxygen to form N2O3, which can damage DNA directly via deamination of bases or 

indirectly through generation of N-nitroso compounds (58-61). Moreover, nitric oxide can 
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inhibit a number of DNA repair enzymes (62) . Furthermore at this anatomical site the 

nitrite:ascorbic acid ratio is higher than any other region of the stomach (48). There is also a 

substantial concentration of thiocyanate, which is an important catalyst in this chemistry 

(48). All of these observations indicate that the GOJ and cardia region of stomach are likely 

to be regions of high nitrosative stress; mechanisms may contribute to a high incidence of 

metaplasia and neoplasia at these anatomical sites.  

1.4 Luminal nitrosative chemistry 

1.4.1 Nitric oxide 

Nitric oxide is an important free radical playing a significant role in various biological 

events. In general, nitric oxide has beneficial regulatory functions in cardiovascular, 

immune and nervous system (63-65). Nitric oxide is involved in the regulation of gastric 

mucosa blood flow, mucus secretion and gastric motility, as well as being implicated in 

gastrin and gastric acid secretion (66-68). Furthermore, it has an important antimicrobial 

activity against a large variety of pathogenic micro-organisms (69-71). However, imbalance 

of this biological molecule secretion is implicated in a number of different diseases such as 

hypertension, arteriosclerosis, diabetes and neurodegenerative disorders (63, 65, 72, 73). 

Nitric oxide is produced from the amino acid L- arginine by the enzyme NO synthase and 

there are three isoforms of nitric oxide synthase enzyme(74). Nitric oxide is generated at 

low concentration (constitutive nitric oxide synthase) by endothelial type (e NOS) neuronal 

type (n NOS) to modulate neuromuscular and vascular function. While the inducible form 

NO synthase (i NOS) produced nitric oxide at high concentration in order to influence the 

immune and inflammatory response (74, 75). The nitric oxide  generated by the inducible 

form has been implicated in the aetiology of mutagenesis and neoplasia related to chronic 

inflammation (76). 
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Over the last decades, in addition to enzymatic production another alternative pathway 

(non enzymatic) has been described, which generated large concentration of nitric oxide in 

the stomach (57, 77). Nitric oxide arises from the reduction of nitrite, derived from entero-

salivary recirculation of dietary nitrate, to nitrosating species and nitric oxide (in presence 

of ascorbic acid) under the acidic condition of the stomach (53-55, 57). 

1.4.2 Dietary nitrate and entero-salivary recirculation. 

Over the last two decades, there has been concern about the role of luminal nitrite in the 

aetiology of human gastro-oesophageal junction and gastric cardia malignancies.(49, 78) This 

arises from the fact that the acidic environment of the stomach converts nitrite in the saliva 

to nitrous acid and nitrosating species (28, 49, 78). These nitrosating species can generate 

potentially carcinogenic N-nitroso compounds through their ability to react with secondary 

amines and amides (28, 49, 78). The major source of nitrite in gastric juice of the healthy 

stomach is swallowed saliva, which in turn is derived mainly from the entero-salivary 

recirculation of dietary nitrate(79, 80).The main dietary source of nitrate is green leafy 

vegetables; after ingestion nitrate is rapidly absorbed from the small intestine into the 

blood and it reaches its maximum plasma concentration after sixty minutes from ingestion. 

Most of the nitrate is excreted in the urine, while only about 20-30% of all nitrates (from 

dietary source or produced endogenously) is re-circulated and taken up by the salivary 

glands and secreted into the mouth (79, 81-84). The nitrate-reducing bacteria on the dorsum of 

the tongue reduce at least 25% of that nitrate to nitrite (Figure 1.5) (83, 85, 86). Approximately 

1500 ml of saliva is swallowed every 24 hours, containing high concentrations of nitrite as 

a consequence of the reduction of dietary nitrate. Under fasting conditions, the nitrite 

concentration of saliva is approximately 50 µM and this increase to 200 µM after ingestion 

of a nitrate-rich meal (79, 83, 87, 88). 
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1.4.3 Acid catalysed nitrosative stress  

When the nitrite-rich saliva reaches the stomach and encounters the acidic gastric juice, 

nitrite is rapidly converted to nitrous acid and nitrosating species such as N2O3, NO+ (28, 49, 

78). The latter reacts with thiocyanate (SCN), which is derived from the diet (milk and 

vegetables) and also secreted by salivary glands, at a considerable concentration, to form 

the particularly potent nitrosating species NOSCN (89-92). In addition, thiocyanate is 

secreted directly into the gastric juice (89). Thiocyanate concentration in saliva is much 

higher in smokers than non-smokers as a consequence of the detoxication of cyanide 

compounds in tobacco (93). These nitrosating species can react with a variety of organic 

nitrogenous compounds to regenerate potentially carcinogenic N-nitroso compounds (49, 78). 

Over the last two decades, N-nitroso compounds have been used as carcinogens in animal 

models of the GOJ and gastric cardia of the stomach (94). In addition, these nitrosating 

species can trigger oxidative stress in gastric mucosa by inducing more consumption of 

local antioxidants; this mechanism may be relevant to upper gastrointestinal tract 

malignancies (48, 53).  

The main factor protecting against the formation of the N-nitroso compounds, formed by 

the reaction between the nitrosating species and intra-gastric amines and amides, is 

ascorbic acid (52, 54, 95-97). Ascorbic acid actively competes with secondary amines and 

amides for nitrosating species, preventing nitrosation (54, 98-100). In this reaction, ascorbic 

acid reacts with nitrosating species and the latter is reduced to nitric oxide and the former 

oxidized to dehydro ascorbic acid (52-54, 101). Stoichiometrically, one molecule of ascorbic 

acid should convert two molecules of nitrite in acidic conditions to nitric oxide (102). 
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Figure 1.5: Dietary nitrate and entero-salivary recirculation, 25% of dietary nitrate is re-circulated, 
taken up by salivary glands and reduced to nitrite by the reducing bacteria on the dorsum of the 
tongue. The nitrite in the swallowed saliva is immediately converted to nitrous acid and nitrosating 
species such as N2O3, NO+ when encounter acidic gastric juice. Further reaction with ascorbic acid 
takes place to produce nitric oxide and the former is oxidised to dehydroascorbic acid. The gastric 
cardia is where the nitrite in saliva first meets gastric acid, however, in patients with GORD the 
reactant site is the distal oesophagus (87).  
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Previous studies have reported that the active luminal nitrite chemistry takes place where 

the reactants first meet (i.e. when the nitrite in saliva encounters acidic gastric juice) (48, 87). 

In the healthy acid-secreting stomach, the gastric cardia is the site where nitrite in saliva 

first meets gastric acid. However, in the patient with gastro-oesophageal reflux disease, the 

reaction site is moved proximally. Thus, the distal oesophagus instead of the cardia region 

has the highest concentration of nitrosating species and nitric oxide where the refluxing 

gastric acid meets the saliva (48, 55, 87, 103). In addition, at these anatomical locations there is 

maximum local consumption of antioxidants in gastric juice, particularly ascorbic acid, as 

a result of active luminal chemistry (53). 

It is also important to highlight the chemical environment of proximal gastric cardia and 

GOJ which may be relevant to high incidence of mutagenesis and neoplasia. Firstly at 

these locations, the nitrite to ascorbic acid ratio is high. Secondly, there is an adequate 

concentration of thiocyanate, which is an important catalytic agent for the nitrite 

conversion reaction, consequently causing the more rapid consumption of ascorbic acid. 

Thirdly, oxygen tension, swallowed food is the main source of oxygen delivered into the 

stomach; in addition to the epithelial cells, which are contains oxygen as well. In the 

presence of oxygen nitric oxide re-forms nitrosating species and this recycling pathway 

will continue until either the oxygen or ascorbic acid is completely consumed. Finally, 

gastric juice acidity is an important factor for the conversion reaction of nitrite to 

nitrosating species and it increases the rate of the recycling pathway (48, 53, 55, 87, 103, 104). 

This suggests that in the healthy acid secreting stomach, the gastric cardia of the stomach is 

most fulfilling these criteria, while in patients with GORD the distal oesophagus is the 

optimal site. Indeed this might contribute to the high incidence of metaplasia and neoplasia 

in the proximal region of stomach and GOJ.  
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Therefore, an investigation of the influence of ascorbic acid, thiocyanate, oxygen tension, 

and different pH values on nitrite chemistry at the human GOJ was important.  

1.5 Inhibition of nitrosative stress by vitamin C  

Vitamin C is one of the most essential vitamins for good human health, as it plays an 

important role in numerous biological systems and also has a protective effect against 

carcinogenesis processes in many cells (105). It acts as co-factors for many enzymes, which 

are involved in the synthesis of hormones, neurotransmitters, collagen, and other 

substances (106). In addition, several studies have confirmed that it is one of the most 

important antioxidants in the aqueous fluid of most living tissues, as it neutralises the 

reactive oxygen and nitrogen species (99, 107, 108). 

Vitamin C has two major forms: ascorbic acid (AA) and dehydroascorbic acid (DHA), and 

both of these forms have vitamin C activity and are inter-convertible by redox chemistry 

(109) . Under fasting conditions vitamin C is present in gastric juice mainly in the reduced 

form, ascorbic acid(54, 110) and is a potent antioxidant known to prevent gastric 

carcinogenesis through it ability to quench free radicals and inhibit nitrosamine 

formation(101, 111, 112). 

However, little is known about the regulation of ascorbic acid secretion by gastric mucosa, 

other than that it is concentrated in the gastric mucosa and then actively secreted into 

gastric juice reaching a concentration of 20-300µM (52, 54, 113, 114). Many factors affect the 

ascorbic acid concentration in gastric juice, for example, elevated pH of the gastric juice; 

chronic gastritis and infection with H. pylori significantly reduce the ascorbic acid 

concentration in gastric juice (54, 115, 116).  
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The main protective effect of ascorbic acid is not only that it neutralises the harmful DNA 

damaging effect caused by free radicals generated by H. pylori infection or smoking (117, 

118). Ascorbic acid reduces N-nitroso compounds formation by actively competing with 

secondary amines and amides for reaction with nitrosating species (54, 98-100, 112). Ascorbic 

acid has a protective effect against gastric carcinogenesis through its ability to quench 

nitrosating species as well as inhibiting N-nitroso compounds formation in gastric juice. 

However, it has been recognised that the luminal nitric oxide can react with oxygen and re-

form nitrosating species, which can react with any remaining ascorbic acid (61, 104, 119, 120). 

The rate of the reaction between nitric oxide and oxygen is increased by increasing the 

nitric oxide concentration, as it is related to the concentration of oxygen and the square of 

the nitric oxide concentration (61). The recycling of nitric oxide in the presence of oxygen to 

re-form the nitrosating species continues until the ascorbic acid is depleted and this induces 

more nitrosative stress (48, 50, 104). Moreover, the nitrosating species such as N2O3 are 

potentially carcinogenic compound directly through their ability to deaminate DNA bases 

or indirectly by forming of N- nitroso compounds (58-60). Furthermore, nitric oxide in high 

concentration is shown to be mutagenic via the inhibition of a number of DNA repair 

enzymes (62).  

However, recent studies have demonstrated that ascorbic acid may promote the nitrosation 

reaction within the epithelial lipid compartment despite inhibiting nitrosation within the 

luminal compartment (53, 121). This due to that the nitric oxide generated by the reaction 

between salivary nitrite and ascorbic acid diffusing into adjacent epithelial cells and lipid 

compartments and reacting there with oxygen to generate N2O3 
(56, 57, 61). Indeed, the rate of 

reaction between the nitric oxide and oxygen is more rapid within the lipid than the 

aqueous compartment because both are more soluble in lipid than aqueous solutions (60, 122). 

Thus, the  presence of the lipid transforms the effect of ascorbic acid from a protecting 

against to promoting nitrosation (121). The presence of lipid significantly alters acid 
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catalysed nitrosative chemistry (Figure 1.6). The lipid converts the effect of ascorbic acid 

from a inhibiting to promoting N-nitroso compounds formation. The ascorbic acid 

completely inhibits N-nitrosamines formation in the aqueous phase but not in the presence 

of the lipid (121). 

Thus, other dietary antioxidants such as dietary phenolics have attracted considerable 

attention in recent years, as a consequence of ascorbic acid poor lipo-solubility and it is 

limitation in the adjacent lipid compartment.  

 

Figure 1.6: Proposed mechanism of N-nitrosamine formation in a dual-phase system on the presence of 
AA in the aqueous phase (121).  
 

1.6 Dietary antioxidants 

1.6.1 Phenolics in the diet 

Dietary antioxidants have received considerable attention and interest in recent years. This 

arises from evidence that they may have beneficial effects against reactive oxygen species 

(ROS) and reactive nitrogen species (RNS). These ROS and RNS have been implicated in 
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the aetiology of many diseases such as cancer of the oesophagus and gastric cardia (123-125). 

One the most important natural dietary antioxidants are dietary phenolics (126-129). These 

water-soluble phenolic antioxidants are naturally present in the human diet, in a variety of 

fruits and vegetables as well as most beverages (130, 131). It has been suggested that dietary 

phenolics play a beneficial role against nitrosation and nitrating species, however, their 

exact mechanism of action is still unclear (127, 132, 133). 

Phenolic compounds are one of the major groups of polyphenol compounds, which consist 

of flavonoids, stilbenes, and lignans (130). These polyphenol compounds are classified into 

different groups according to their phenol rings and the elements that bind these rings (130, 

131). In this study we examined a range of phenolics: caffeic acid (CA), ferulic acid (FA), 

chlorogenic acid (CGA), and gallic acid (GA). Gallic acid, belonging to the 

hydroxybenzoates, is mainly found in tea (tea leaves contain up to 4.5g/kg) and fruits while 

caffeic acid, ferulic acid, and chlorogenic acid belonging to the hydroxycinnamates, and 

are found in coffee and a variety of fruits such as apples, pears, peaches, plums (130, 131). 

Vegetables (stems and leaves) are also an important source of dietary phenolics (130, 131). 

Dietary phenolics are believed to have an important beneficial effect on human health. 

Many studies have evaluated the antioxidant activity of phenolic compounds in relation to 

atherosclerosis (134-136) . However less attention has been paid to the antioxidant activities 

of phenolic compounds in relation to gastric cancer. Therefore, an investigation of the 

antioxidant activity of dietary phenolics is important.  

1.6.2 Antioxidant capacities 

The stomach, particularly the cardia is subjected to many oxidative stresses (ROS and 

RNS) (48, 50, 53). The production of nitrosating species, which are derived from the 

acidification of nitrite, can cause injury to gastric mucosa and play a significant role in the 



Chapter 1  39 

aetiology of gastric adenocarcinoma (28, 49, 78). Several studies have shown that an increased 

intake of dietary antioxidants may be associated with a lower risk of gastric cancer (123-125, 

137). The exact mechanism by which these dietary antioxidants may reduce the risk of 

gastric cancer has not been completely elucidated, although some studies suggested these 

antioxidants may provide protection against cancer by scavenging the nitrosating species 

and inhibiting the formation of N-nitroso compounds (127, 132, 133). Several studies have 

reported that caffeic acid and related compounds provides protection against the N-

nitrosamine compounds (reaction of nitrite and secondary amines in gastric juice) by the 

inhibition of the N-nitrosation reactions (138-140). Furthermore, chlorogenic acid and related 

polyphenols competitively inhibit the nitrosation reaction of DNA by the nitrosating agent 

produced by nitrite under acidic conditions (141) and this may contribute to the protective 

effects of dietary phenolics against gastric cancer.   

Moreover, recently many studies have demonstrated that the consumption of green tea 

inhibits nitrosation by competing with secondary amines for the nitrosating species (142, 143).  

1.7 Aim 

The aim of this in vitro study was to model the chemical reactions occurring at the human 

gastro-oesophageal junction (GOJ) after ingestion of nitrite; a mechanism which may be 

relevant to upper GI malignancies. The study aimed to elucidate the role of ascorbic acid 

(AA), sodium thiocyanate (NaSCN), different pH values (1.5, 2.5 and 3.0) and oxygen 

(O2) on the nitrite chemistry in the simulated gastric juice.  

This study also investigated the influence of a range of water- soluble dietary phenolics on 

the nitrite chemistry at simulated GOJ environment to compare their effect with that of 

ascorbic acid.  



 

 

 

 

 

 

Chapter 2 – Materials and Methods 
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2.1 Chemicals and reagents 

All chemicals (solvents and reagents) used in the studies were obtained from Sigma 

Aldrich (Poole, UK), except the ethylenediaminetetraacetic acid (EDTA) which was 

obtained from BDH Ltd., (Liverpool, UK).  

2.2 The bench-top model 

All studies were performed in a purpose-designed closed bench-top model, representing 

the human gastro-oesophageal junction, to study the chemical reaction occurring when 

nitrite encounters the simulated gastric juice. These studies focused on the measurement of 

nitric oxide formation and oxygen consumption by electrochemical detection. 

The model consisted of a glass cylinder (75 mm tall and 25 mm internal diameter) 

equipped with a tight-fitting cap with two ports enabling insertion of the electrochemical 

nitric oxide and oxygen probes, as well as a third sampling port (Figure 2.1). The nitric 

oxide and dissolved oxygen meters were interfaced to a computer, converting the electrical 

signal (volts) to nitric oxide concentration in µM and oxygen level in %, respectively. 

The capped glass cylinder was filled with 36ml of simulated gastric juice. The simulated 

gastric juice (HCl, 0.1M, pH 1.5) contained 1mM EDTA, 1mM sodium thiocyanate 

(NaSCN), and ascorbic acid or phenolic acid. Ascorbic acid (AA) was tested in final 

concentrations of 100µM, 500µM or 2000µM in parallel with negative controls. Dietary 

phenolics including ferulic acid, caffeic acid, gallic acid, and chlorogenic acid were tested 

in final concentrations of 250µM and 2000µM.  

The system was immersed in degassed water and the experiments carried out in a 37°C 

water bath (Figure 2.1). The total incubation time was 70 minutes and the assay was 

initiated by adding NaNO2 after ten minutes from incubation. 
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(A) 

 

 

 

(B) 

2O  &  NO Probes

 

Figure 2.1 The bench-top model, (A) photograph and (B) diagram, representing the human GOJ, to 
study the chemical reactions occurring when nitrite encounters the simulated gastric juice 
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Elimination of oxygen from the system 

One of the most important shortcomings of the early experimental set-up under anaerobic 

condition was the entry of oxygen into the system. To overcome this problem, a tight 

fitting cap was especially designed. The system was then immersed under deoxygenated 

water to reduce any entry of oxygen into the system. Indeed, it was found in subsequent 

experiments that this set-up resulted in the maximum reduction of oxygen entering the 

system. Furthermore, to achieve anaerobic conditions, the head space of the capped 

cylinder was filled with argon gas.  

2.3 Assay set-up 

To study the influence of AA, NaSCN, O2 and different pH values (1.5, 2.5 and 3.0) on the 

nitrite chemistry was carried out in a bench-top model; described under section 2.2.  

To investigate the influence of ascorbic acid in nitrite chemistry, the simulated gastric juice 

(HCl, 0.1M, pH 1.5) contained 1mM EDTA, 1mM NaSCN, in the absence or presence of 

ascorbic acid (100µM, 500µM or 2000µM).    

Under aerobic conditions, the contents of the cylinder were aerated for two minutes before 

the incubation, whereas for anaerobic conditions the dissolved oxygen was removed from 

the solutions by purging helium through it for 5- 10 minutes, followed by a flow of argon 

to fill the headspace of the capped cylinder.  

The contents of the cylinder were constantly mixed with a magnetic stirrer and the system 

was immersed under water, which was also purged with helium and placed in water bath at 

37°C (Figure 2.1).  

The assay was initiated by the addition of sodium nitrite (100 µM) at t=10 minutes and the 

incubated time was 60 minutes.  
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Furthermore, to investigate the influence of other parameters on the nitrite chemistry, each 

of the experiment was performed with and without NaSCN (1mM), at different pH values 

(1.5, 2.5 or 3.0) under both aerobic and anaerobic conditions.  

Samples were taken from the cylinder to measure the AA and DHA at the start and end 

(50µl or 500µl) respectively, of the incubation period. All experiments were carried out in 

duplicate. 

To assess the influence of a range of dietary phenolics on nitrite chemistry in comparison 

with ascorbic acid, the studies were carried out in the bench-top model described under 

section 2.2. The simulated gastric juice (HCl, 0.1M, pH 1.5) contained 1mM EDTA, 1mM 

NaSCN, in the presence of either ascorbic acid or dietary phenolics. The dietary phenolics, 

including ferulic acid, caffeic acid, gallic acid and chlorogenic acid were tested in final 

concentrations of 250µM and 2000µM. The studies were performed under both aerobic 

and anaerobic conditions. All experiments were carried out in duplicate. 

2.3.1 Nitric oxide measurement 

Nitric oxide levels were monitored with an isolated dissolved nitric oxide electrode and 

meter (ISO – NO Mark II; World Precision Instruments, Sarasota, Florida, U.S.A). The 

nitric oxide probe was calibrated by adding successive bolus of 50µl NaNO2 (0.7µM) to 

sulphuric acid (0.1 M) containing potassium iodide (0.1M) in a starting volume of 36 ml. 

Before adding the bolus of NaNO2 to the solution, dissolved oxygen was removed by 

purging the system with helium for five minutes. Under these conditions, nitric oxide 

concentration in the solution was equal to nitrite concentration, i.e. one mole of nitrite 

produces one mole of nitric oxide. The NO meter was interfaced to a computer, converting 

the electrical signal (volt) to nitric oxide concentration in µM; the electrode response was 

linear to the range of concentrations tested (Figure 2.2A and B).  
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(A) 

 

(B) 

 

Figure 2.2 Calibration of nitric oxide probe, (A) by adding successive bolus dose of 50µl NaNO2 to 
sulphuric acid (0.1M) containing potassium iodide (0.1M), and (B) obtaining a linear response between 
electrical signal of NO (volts) and NO concentration (µM).).  
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2.3.2 Oxygen Measurement 

The dissolved oxygen in the solution was monitored using an isolated dissolved oxygen 

meter and electrode (Mark II, World Precision Instrument Inc., Sarasota, U.S.A). The 

oxygen probe was calibrated at 37ºC by repeatedly transferring the probe between two 

beakers filled with aerated HCl (20.4% oxygen) and degassed HCl (bubbling helium 

through) under constant stirring. The NaSCN (1mM), AA (2000µM) and NaNO2 (100µM) 

were added to degassed HCl in order for the meter to display zero% of oxygen (Figure 

2.3A and B).  

(A) 

 

(B) 

 

Figure 2.3 Calibration of oxygen probe, (A) the arrow is indicates the time of the addition of NaSCN, 
AA, and NaNO2 and (B) obtaining a linear response between electrical signals of O2 (volts) andO2 
levels (%). 
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One of the major difficulties of these experiments was the accurate calibration of the 

oxygen probe. The difficulties were mainly due to the extremely sensitive nature of the 

probe to achieve a right calibration. Any inaccuracy in the calibration process can result in 

over- or under-estimation of the value of the dissolved oxygen in the solution. This, in turn, 

would undermine the measurement processes. Therefore, great care was taken during the 

calibration of the oxygen probe. Indeed, it was common practice to calibrate the oxygen 

probe daily before starting the experiment. It was found that with this practice the 

experiments were highly reproducible. 

2.4 Sampling procedure 

Before starting the reaction, two 50µl samples were taken from the cylinder to be used to 

measure the baseline values of ascorbic acid (AA) and dehydroascorbic acid (DHA). After 

sixty minutes from the addition of nitrite, a further two samples (500µl) were taken to 

assess final AA/ DHA levels.  

The samples for AA measurement (50µl or 500µl) were added to Eppendorf tubes 

containing an equal volume of 2% metaphosphoric acid and 0.5% sulfamic acid. The 

samples for DHA measurement (50µl or 500µl) were added to Eppendorf tubes containing 

an equal volume of 6 mg/ml dithiothreitol (DTT) and 2% metaphosphoric acid.  

The purpose of the DTT was to generate AA from any DHA in the sample, thus allowing 

quantification of the total vitamin C (TVC) levels, allowing the amount of DHA present in 

the sample to be estimated by subtracting AA from TVC. To remove any remaining nitrite, 

sulfamic acid was added to the sample. All samples were kept at - 20°C until analysis by 

high performance liquid chromatograph (HPLC), based upon the method of Sanderson and 

Schorah (144, 145)  
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2.4.1 Ascorbic acid analysis 

Before the analysis, samples were thawed and centrifuged at 1000g ALC (Multi-Speed 

Refrigerated Centrifuge) (CPK 131R) from Thermo Life Sciences. Remove 0.3ml of the 

samples supernatant were further centrifuged in a minifuge at 9000g (Mini-spine, 

Eppendorf). AA and TVC levels were measured by HPLC. The instrumentation was 

comprised of a Shimadzu L-ECD-6A Electrochemical Detector, Shimadzu LC-10AT VP 

pump, and Shimadzu model SIL-10AD VP with 50µl loop injector. AA was measured 

using reverse- phase on a Phenomenex 5µm C 18 Luna analytical column 150 x 4.6 mm 

and protected by an Anachem guard column 20 x 3 mm; Packing Material, Lichroprep RP-

18 (25-40µm). The acetate buffer solution consisted of 0.1M sodium acetate and 0.1M 

octylamine adjusted to pH 4.3 using 50% acetic acid. The mobile phase pumped through 

HPLC consisted of 85% acetate buffer and 15% acetonitrile. The flow rate was 0.8ml/min, 

generating a column pressure of approximately 1000psi. The retention time of AA was 2.4 

minutes. The aqueous stock standard solution was prepared by adding 5 mg AA to 5.0ml 

of DDT (3.5mg/ml) in MPA/SA 50/50 volumes. In working standards of 5, 10, 20, 30, and 

40µg/ml of AA were prepared by taking 50, 100, 200, 300 and 400 ml of 1 mg/ml AA 

stock standard solution (1mg/ml), making the volume up to 10 ml in MPA/SA 50/50 

volumes. The auto-sampler was programmed to inject 25µl aliquots of standards and 

samples. To remove the oxidizing sites on the column 25µl of the DDT solution was 

injected prior to the standards and samples. The number of injections through the HLPC 

was restricted to 55 due to the decomposition of AA, these include the standards before 

and after  two sets of 20 samples (145, 146). 

2.5 Data analysis 

All the data is presented as mean values of two experiments.  The nitric oxide and oxygen 

values were highly reproducible and thus only two experiments performed per study and 
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presented as mean value.  The Pearson correlation coefficient (CC) was calculated for 

typical experiments in which there were changes in nitric oxide values with time 

(experiment 3.1.2) between the two duplicates and this gave values of CC=0.75, 0.97 and 

0.91 for 100µM, 500 µM and 2000 µM, respectively.  Similarly, for experiment 3.1.3 

where oxygen varied with time and again the changes in the mean values of the two 

duplicates of the each experiment were correlated tightly, the Pearson correlation 

coefficient were 0.79, 0.91 and 0.63 for 100µM, 500µM and 2000 µM, respectively. The 

statistical analysis of data of ascorbic acid results was performed either by ANOVA or by 

Student t- test. Statistically significance of the differences was depicted with P value of 

less than 0.01 and 0.05. 
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OVERVIEW 

In this chapter experimental results are presented using the simulated gastric juice system 

described in Chapter 2.2, to study the role of various factors affecting nitrite chemistry at 

the simulated GOJ environment.  

Also presented are the effects of a range of dietary phenolics (water-soluble antioxidant) 

on the nitrite chemistry and a comparison of their effect with ascorbic acid. 

The study focused on the measurement of NO and O2 levels by electrochemical detection. 

The result of these sections is followed by brief discussion. 
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3.1 Nitrite chemistry in the simulated gastric juice: effect of ascorbic 

acid 

3.1.1 Nitric oxide and dissolved oxygen levels following nitrite addition in the 

absence of ascorbic acid 

The addition of nitrite (100µM) to the simulated gastric juice (with NaSCN, pH 1.5, under 

aerobic condition) in the absence of ascorbic acid only led to a limited amount of nitric 

oxide being formed (0.34µM) (Figure 3.1). Meanwhile, dissolved oxygen levels decreased 

slightly after nitrite addition (from 20.7% to18.7%) before returning to baseline levels at t= 

70 minutes (Figure 3.1).  

Figure 3.1: Nitric oxide levels (µM) (squares) and dissolved oxygen levels (%) (triangles) in the 
simulated gastric juice (NaSCN, pH 1.5) following nitrite addition (100µM) at t=10 min, in absence of 
ascorbic acid under aerobic condition. Values are presented as mean of two experiments. 
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3.1.2 Nitric oxide levels following nitrite addition in presence of different 

concentrations of ascorbic acid 

When ascorbic acid was present in the system described under 3.1.1, it increased the 

production of nitric oxide and produced a more marked fall in oxygen concentration 

(Figure 3.2 and 3.3). With ascorbic acid 100M, the nitric oxide concentration reached a 

peak value of 17.45M one minute after the addition of nitrite. The nitric oxide 

concentration then slowly decreased to 2.2M by the end of the incubation time period. 

With ascorbic acid 500M, the nitric oxide concentration peaked at 68M approximately 

five minutes after the addition of nitrite and then fell to 3M after thirty minutes. With 

ascorbic acid 2000M, the nitric oxide rose in a similar manner to that observed following 

ascorbic acid 500M, reaching a value of 63.1M at ten minutes. However, unlike the two 

lower concentrations of ascorbic acid, the nitric oxide concentration following ascorbic 

acid 2000M remained elevated throughout the duration of the experiment (Figure 3.2).   

 

Figure 3.2: Nitric oxide levels (µM) in the simulated gastric juice (NaSCN, pH 1.5), following nitrite 
addition (100µM) at t=10 min, in presence of ascorbic acid 100µM (squares), 500µM (triangles) or 
2000µM (circles) under aerobic condition. Values are presented as mean of two experiments. 
The CC between the two duplicates was 0.75, 0.97 and 0.91 for 100µM, 500µM and 2000µM, 
respectively. 
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3.1.3 Dissolved oxygen levels following nitrite addition in presence of different 

concentrations of ascorbic acid 

In the presence of ascorbic acid 100M, the rise in nitric oxide concentration was mirrored 

by a fall in oxygen concentration from a baseline value of 20% to 16% one minute after the 

addition of nitrite. Thereafter, the oxygen concentration remained steady or slightly 

increased back towards baseline level. With ascorbic acid 500M, the more marked rise in 

nitric oxide was mirrored by a more marked fall in dissolved oxygen concentration with 

the nadir of oxygen concentration occurring at five minutes after the addition of nitrite 

being only 1% and then slowly increasing and returning to 15% by the end of the 

experiment. With ascorbic acid 2000M, the oxygen concentration decreased to become 

undetectable within the first three minutes and remained undetectable throughout the 

duration of the experiment (Figure 3.3). 

 

Figure 3.3: Dissolved oxygen levels (%) in the simulated gastric juice (NaSCN, pH1.5), following nitrite 
addition (100µM) at t=10 min, in presence of ascorbic acid 100µM (squares), 500µM (triangles) or 
2000µM (circles). Values are presented as mean of two experiments. 
The CC between the two duplicates was 0.79, 0.91 and 0.63 for 100µM, 500µM and 2000µM, 
respectively. 
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3.1.4 Ascorbic acid measurements 

In the experiment with 100M ascorbic acid, the ascorbic acid was entirely consumed by 

the end of the experiment. In the experiment with 500M ascorbic acid, 91.5% of the 

ascorbic acid was consumed. With 2000M ascorbic acid significant amounts of ascorbic 

acid remained at the end of the experiment with only 32% being consumed (Table 3.1).   

Table 3.1: Ascorbic acid consumed (%) in the simulated gastric juice (NaSCN, pH 1.5), following 
nitrite addition (100µM) in the presence of ascorbic acid 100µM, 500µM or 2000µM over 60 minutes 
incubation, under aerobic conditions. Values are presented as mean of two experiments and their 
statistical difference.  

 

[AA] µM (at t= 0) AA consumed (%) (at t= 70 min) P value 

100 99.18  P < 0.05 

500 91.47  P < 0.05 

2000 32.05  P < 0.01 
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3.1.5 Discussion  

The addition of nitrite 100M to the HCl pH1.5 containing sodium thiocyanate 1mM 

produced only a very small increase in the nitric oxide concentration reaching a peak of 

0.34M. The pKa of nitrite is 3.5 and at the experimental pH of 1.5, the added nitrite is 

converted to nitrous acid, nitrosating species including N2O3, NO+ and NOSCN, and the 

small concentration of nitric oxide (28, 49, 78). When the experiment was repeated in the 

presence of 100M ascorbic acid, the rise in nitric oxide was much more marked reaching 

a peak of 17.45M. This can be explained by the ascorbic acid reacting with the nitrosating 

species with the latter being reduced to nitric oxide and the former being oxidised to 

dehydroascorbic acid (52-54, 101).  

 
 

Scheme 3.1:. Nitrite chemistry in acidic aerobic solutions (147).  
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In the presence of ascorbic acid 100M, the addition of nitrite also resulted in a fall in the 

dissolved oxygen concentration from 20% to 16% and this fall mirrored the rise in nitric 

oxide. This fall in oxygen can be explained by the nitric oxide formed by the reaction 

between the ascorbic acid and the nitrosating species reacting with the dissolved oxygen to 

form NO2, N2O3, nitrous acid and nitrosating species scheme 3.2 (61, 104, 119, 120).  

 

Scheme 3.2: Chemical reaction occurring when nitrite encounter the simulated gastric juice containing 
thiocyanate and ascorbic acid under aerobic condition. 

 

The rate of the reaction between nitric oxide and oxygen is directly related to the 

concentration of oxygen and to the square of the nitric oxide concentration (61, 119). The 

reaction between the nitric oxide and dissolved oxygen to re-form nitrosating species 

results in recycling of the nitrosating species and thus consumption of the ascorbic acid. 
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This can explain why only 17.45M nitric oxide was formed when equimolar amounts of 

ascorbic acid and nitrite were present. As the nitric oxide was being produced, it was also 

being consumed by reacting with the oxygen. This recycling also meant that the ascorbic 

acid would be fully consumed; preventing any further formation of nitric oxide and thus 

the nitric oxide concentration fell. In the experiments with ascorbic acid 100M, there was 

no ascorbic acid detectible at the end of the experiment.   

The experiment with the ascorbic acid 500M showed a much more marked rise in nitric 

oxide, a more marked fall in oxygen, and again the great majority of ascorbic acid was 

consumed by the end of the experiment. The changes noted with ascorbic acid 500M can 

again be explained by the mechanism discussed above.   

When the experiment was performed with ascorbic acid 2000M present, clear differences 

were seen from those observed with the lower doses. The nitric oxide concentration 

reached a peak of 63M and remained at this level throughout the study period. In 

addition, the oxygen concentration fell to undetectable levels and remained undetectable 

throughout the experiment. Furthermore, the experiment differed from the earlier 

experiments in that all the added ascorbic acid was not consumed during the experiment. 

The higher concentration of ascorbic acid in this experiment would mean that recycling of 

nitrosating species could continue until the oxygen was completely depleted. In contrast, in 

the earlier experiments the rate controlling factor in the recycling process was the ascorbic 

acid which became completely depleted rather than the oxygen. The complete depletion of 

the oxygen and the persistence of ascorbic acid can explain why the nitric oxide 

concentration remained elevated throughout the experiment without showing any evidence 

of a fall. The main reason for the nitric oxide falling in the earlier experiments was that it 

was reacting with oxygen to re-form nitrosating species and nitrous acid (61, 104, 119, 120). In 

the absence of oxygen, this reaction cannot take place. In addition, if any small amounts of 
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oxygen were to enter the system and react with nitric oxide to re-form nitrosating species 

then the remaining ascorbic acid would rapidly react with these nitrosating species to 

reproduce nitric oxide. 

Though we added nitrite 100M we did not produce nitric oxide100M. There are several 

explanations for this. The first is that some of the nitric oxide may have been lost from the 

system. The second is that during the recycling process some of the products end up as 

nitrate and in this way can no longer be recycled (147).  

 

 

 

 

 

 

 



Chapter 3  60 

3.2 Nitrite chemistry in the simulated gastric juice: effect of 

thiocyanate 

3.2.1 Nitric oxide and dissolved oxygen levels following nitrite addition in the 

absence of ascorbic acid 

In the absence of ascorbic acid, the change in nitric oxide and oxygen on adding nitrite to 

hydrochloric acid pH1.5 was identical in the presence or absence of sodium thiocyanate 

1mM (Figures 3.4A and B). 

(A) 

 

(B) 

 

Figure 3.4: Effect of thiocyanate, presence (A) and absence (B) on nitric oxide levels (µM) (squares) 
and dissolved oxygen (%) (triangles) in the simulated gastric juice, following nitrite addition (100µM) 
at t=10 min, in absence of ascorbic acid. Values are presented as mean of two experiments. 
 



Chapter 3  61 

3.2.2 Nitric oxide levels following nitrite addition in the presence of different 

concentrations of ascorbic acid 

When nitrite 100M was added to the HCl pH1.5 containing ascorbic acid 100M in the 

presence of sodium thiocyanate it produced a higher peak nitric oxide concentration of 

17.45M compared with 8.6M in the absence of thiocyanate. In the presence of 

thiocyanate the peak nitric oxide concentration occurred one minute after the addition of 

nitrite and then slowly fell. The rise in nitric oxide in the absence of thiocyanate appeared 

to be slower and not occurring until two minutes after the addition of nitrite (Figure 3.5A).  

With ascorbic acid 500M there was a marked difference in the peak nitric oxide 

concentration reached. In the presence of thiocyanate a peak nitric oxide concentration of 

68M was reached five minutes after adding nitrite. In contrast, the peak nitric oxide 

concentration in the absence of thiocyanate was 20.7M and occurred ten minutes after the 

addition of nitrite. The profile of the rise in nitric oxide was also different in the presence 

and absence of thiocyanate. In the presence of thiocyanate there was a clear rise and then 

clear fall in the nitric oxide concentration. In contrast, in the absence of thiocyanate the 

nitric oxide spheres to plateau at a level of approximately 20M and remained at that level 

between two and ten minutes after adding the nitrite and then it slowly fell (Figure 3.5B). 

With ascorbic acid 2000µM there was a marked rise in nitric oxide both in the presence 

and absence of thiocyanate and in both cases the nitric oxide remained elevated throughout 

the duration of the experiment. However, there did appear to be some differences in the 

profile of the nitric oxide response in the presence versus absence of thiocyanate.  
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(A)

 

(B)

 

(C)

 

Figure 3.5: Nitric oxide levels (µM) in the simulated gastric juice at pH 1.5, on absence of thiocyanate 
(triangles) and presence (squares), following nitrite addition (100µM) at t=10min, in the presence of 
ascorbic acid 100µM (A), 500µM (B) or 2000µM (C) under aerobic condition. Values are presented as 
mean of two experiments. 
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In the presence of thiocyanate, the initial rise in nitric oxide was more rapid than in the 

absence of thiocyanate and in the presence of thiocyanate the level of the plateau of nitric 

oxide was approximately 15M lower than that obtained in the absence of the thiocyanate 

(Figure 3.5C). 

3.2.3 Dissolved oxygen levels following nitrite addition in presence of different 

concentrations of ascorbic acid 

With the ascorbic acid 100M, the change in oxygen concentration reflected the changes 

in nitric oxide with a more rapid fall in oxygen in the presence of thiocyanate (Figure 

3.6A).   

With the ascorbic acid 500M, the changes in oxygen also reflected the changes in nitric 

oxide. In the presence of thiocyanate the oxygen level fell more rapidly and was almost 

undetectable for five minutes and then slowly increased again. In contrast, in the absence 

of thiocyanate the fall in oxygen was slower, reaching a nadir of 5% at twenty minutes and 

then showing a slow rise (Figure 3.6B).   

With the ascorbic acid 2000M, the oxygen was completely depleted in the presence of 

thiocyanate within the first three minutes and remained undetectable throughout the 

experiment. In contrast the fall in oxygen was less rapid in the absence of thiocyanate, 

reaching a nadir of 1.5% at six minutes and then slowly rising (Figure 3.6C). 
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(A) 

(B) 

(C)

 

Figure 3.6: Dissolved oxygen levels (%) in the simulated gastric juice on absence of thiocyanate 
(triangles) and presence (squares), following nitrite addition (100µM) at t=10 min, in the presence of 
ascorbic acid 100µM (A), 500µM (B) and 2000µM (C). Values are presented as mean of two 
experiments. 
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3.2.4 Ascorbic acid measurements 

In the ascorbic acid 100M, all of the ascorbic acid was consumed in the presence of 

thiocyanate whereas only approximately 50% was consumed in the absence of thiocyanate. 

In addition with ascorbic acid 500M, 91% was consumed in the presence of thiocyanate 

compared with only 80% in the absence of thiocyanate. With the ascorbic acid 2000M 

substantial amounts remained present in both the presence and absence of thiocyanate 

(Table 3.2). 

Table 3.2 Thiocyanate effect on ascorbic acid consumption (%) in the simulated gastric juice pH 1.5 
under aerobic condition, following nitrite addition (100µM) in presence of ascorbic acid 100µM, 
500µM or 2000µM over 60 minutes incubation. Values are presented as mean of two experiments.  

 

[AA]µM 
at t=0  

AA consumed (%) with  
NaSCN at t= 70 min 

AA consumed (%) without  
NaSCN at t= 70 min 

P Value 

100 99.18  44.43  P < 0.05 

500 91.47  80.72  P < 0.05 

2000 32.05  29.24  
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3.2.5 Discussion 

In the presence of thiocyanate, the rise in nitric oxide concentration was more rapid and at 

the two lower concentrations of ascorbic acid, produced a higher peak concentration.  In 

the presence of thiocyanate, at acidic pH, the NO+ reacts with thiocyanate to form the 

nitrosating species NOSCN (49, 78, 90-92). This is the dominant species which is thought to 

react with ascorbic acid to form nitric oxide (49, 78, 90-92). In contrast, in the absence of 

thiocyanate the nitrosating species are N2O3 and NO+. The more rapid rise in nitric oxide 

concentration can be explained by the raised affinity of NOSCN following ascorbic acid 

compared to these other nitrosating species at the pH of this experiment. 

In the experiment with ascorbic acid 500M, the presence of thiocyanate produced a clear 

peak nitric oxide concentration and then clear fall, whereas in the absence of thiocyanate 

there was a lower peak concentration but more of a plateau of nitric oxide with a less rapid 

fall. The more rapid fall in nitric oxide in the presence of thiocyanate may be explained by 

the more rapid consumption of ascorbic acid and the fall in nitric oxide concentration 

occurring when the ascorbic acid has been depleted(104). The consumption of ascorbic acid 

occurs due to the recycling of nitric oxide and its reactive oxygen to reform nitrosating 

species. In the thiocyanate the fall in oxygen was more rapid. This can be explained by the 

higher concentration of nitric oxide produced in the presence of thiocyanate and the 

reaction between nitric oxide and oxygen being related to the square of nitric oxide 

concentration (61, 119, 120). The changes in the ascorbic acid concentration would also be 

consistent with the ascorbic acid being more rapidly consumed in the presence of 

thiocyanate as the concentrations of ascorbic acid at the end of the experiment were lower 

in the presence versus absence of thiocyanate. The slower consumption of ascorbic acid in 

the absence of thiocyanate would mean that when nitric oxide reacted with oxygen to 

reform nitrosating species, the latter could still react with ascorbic acid and reform nitric 
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oxide. One would therefore have a steady state with the consumption of nitric oxide by its 

reaction with oxygen equal to the rate of its regeneration by the reaction of nitrosating 

species with ascorbic acid and therefore producing the plateau level of nitric oxide.  

In the presence of thiocyanate the oxygen concentration was higher at the end of the 

experiment than in the absence of thiocyanate. The rise in oxygen in the presence of 

thiocyanate can be explained by oxygen diffusing into the system. Though this would also 

happen in the absence of thiocyanate, the persisting nitric oxide in the absence of 

thiocyanate would be able to react with the oxygen converting it into nitrous acid.   

In the experiment with ascorbic acid 2000M, the rise in nitric oxide was more rapid in the 

presence of thiocyanate but the plateau level achieved was slightly lower. The more rapid 

rise in nitric oxide can again be explained by the higher affinity of NOSCN for ascorbic 

acid than that of other nitrosating species. The lower level of the plateau in the presence of 

thiocyanate is likely to be explained by greater recycling of nitric oxide in the presence of 

thiocyanate leading to a greater proportion ending up as nitrate (104). The greater rate of 

production of nitric oxide in the presence of thiocyanate will lead to a greater rate of 

recycling and thus a higher proportion of the nitric oxide ending up as nitrate(104, 147). 

Further evidence of this greater rate of recycling was seen in the fact that the oxygen 

concentration in the presence of thiocyanate fell more rapidly in the presence of 

thiocyanate than in its absence (120). 

In the absence of thiocyanate, a small amount of oxygen was still detectible throughout the 

experiment with ascorbic acid 2000M present. In contrast, no oxygen was detectible after 

three minutes in the presence of thiocyanate. The reason for this is unclear. In both 

experiments nitric oxide was maintained at a high level throughout the experiment and 

indeed was slightly higher towards the end of the experiment in the absence of thiocyanate. 

Reasons for this are unclear. 
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3.3 Nitrite chemistry in the simulated gastric juice: effect of different 

pH values (1.5, 2.5 and 3.0) 

3.3.1 Nitric oxide and dissolved oxygen levels following nitrite addition in the 

presence of different concentrations of ascorbic acid 

With ascorbic acid 100M present, the rise in nitric oxide concentration on adding nitrite 

100M to HCl containing thiocyanate was related to the pH of the HCl. The rise in nitric 

oxide was greatest at the lowest pH of 1.5 and least at pH 3. In addition, the rate of rise in 

nitric oxide was more rapid at pH1.5 and much slower at pH 3 (Figure 3.7A). These 

changes in nitric oxide were reflected in similar changes in degree of fall in the oxygen 

concentration (Figure 3.8A).   

With ascorbic acid 500M the rise in nitric oxide was more marked than with the ascorbic 

acid 100M and again the degree of rise was influenced by the pH. The increase in nitric 

oxide was greatest at pH 1.5 reaching a peak of 68M at five minutes and then falling to 

6.5M at twenty minutes. At pH 2.5, the peak nitric oxide was 30.7M reached at 5 

minutes and again slowly falling. At pH 3, the rise in nitric oxide concentration was very 

slow but continuous, reaching a peak of 11.9M at the end of the experiment (Figure 

3.7B). The changes in oxygen concentration with the ascorbic acid 500M again reflected 

the changes in nitric oxide at the different pH with the most marked and rapid fall in 

oxygen being seen at pH 1.5. Interestingly, the rise in oxygen concentration in the latter 

part of the experiment was most marked also with the pH 1.5 solutions (Figure 3.8B).   

With ascorbic acid 2000M the rate of rise in nitric oxide was closely related to the pH 

being most rapid at pH 1.5 and slowest at pH 3. At each pH, the final concentration 

obtained was approximately 70M, though the plateau did seem to be slightly lower in the 
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lowest pH solutions (Figure 3.7C). The change in oxygen concentration again reflected the 

rise in nitric oxide being most rapid at pH 1.5 and slowest at pH 3. In addition, at pH 3 

there seemed to be some residual oxygen present (Figure3.8C). 

(A)

 

(B)

 

(C)

 

Figure 3.7: Nitric oxide levels (µM) in the simulated gastric juice (NaSCN, aerobic condition) of 
different pH values pH 1.5 (squares), 2.5 (triangles) and 3.0 (circles), following nitrite addition 
(100µM) at t=10 min, in the presence of ascorbic acid 100µM (A), 500µM (B) or 2000µM (C). Values 
are presented as mean of two experiments. 
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(A)

 
(B)

 
(C)

 

Figure 3.8: Dissolved oxygen levels (%) in the simulated gastric juice (NaSCN, under aerobic 
condition) of different pH values pH 1.5 (squares), 2.5 (triangles) and 3.0 (circles) on, following nitrite 
addition (100µM) at t=10 min, in the presence of ascorbic acid 100µM (A), 500µM (B) or 2000µM (C). 
Values are presented as mean of two experiments. 
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3.3.2 Discussion 

The effect of pH on nitric oxide and oxygen were similar at the ascorbic acid 100M and 

ascorbic acid 500M experiments. However, the changes are clearer in the ascorbic acid 

500M experiment and therefore discussion will focus on that experiment. With the 

ascorbic acid 500M the rise in nitric oxide was most rapid and greatest at pH 1.5 and 

slowest at pH 3. This can be explained by the effect of the pH on the proportion of 

nitrosating species present with a high affinity for reacting with ascorbic acid. The 

concentration of NO+
 in the solution of nitrite is inversely related to the pH value being 

greatest at lowest pH (50, 104). The reactive nitrosating species in the presence of thiocyanate 

is thought to be NOSCN, which is formed by a reaction between NO+
 and SCN-. 

Consequently, lowering the pH will increase the concentration of NOSCN and thus 

increase the rate of reaction of ascorbic acid and the rate of formation of nitric oxide. The 

initial fall in the oxygen concentration was also greatest at lowest pH, again being 

consistent with the fall in oxygen being directly related to the concentration of nitric oxide 

which will then react with the oxygen to form nitrosating species again (50, 104, 120). 

In the ascorbic acid 500M experiment the fall in nitric oxide concentration following its 

peak was more marked at pH 1.5 than at pH 2.5 and this was reflected in a more rapid rise 

in oxygen following its nadir at pH 1.5 than at pH 2.5. This is likely to be related to the 

fact that at pH 1.5 the more rapid recycling will result in the complete depletion of ascorbic 

acid whereas at pH 2.5 the slower chemistry results in a slower rate of recycling and thus 

some ascorbic acid will remain (104). Though ascorbic acid was not measured in this 

particular experiment, the results from earlier experiments indicate that at pH 1.5 in the 

presence of thiocyanate, ascorbic acid would be fully depleted. 
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In the 500M experiment at pH 3 the rise in nitric oxide concentration was very slow but 

at the end of the experiment it was higher than at the lower pHs where nitric oxide 

concentration had fallen back to almost zero. In this experiment the slow rate of production 

of nitric oxide results in very slow recycling and thus ascorbic acid remains. In the 

presence of adequate ascorbic acid equilibrium will therefore be produced between the 

production of nitric oxide by the reaction in nitrosating species and ascorbic acid and the 

loss of nitric oxide due to the reaction of nitric oxide with the oxygen. The latter reaction 

will be very slow at this low concentration of nitric oxide.  

With the ascorbic acid 2000M, the rise in nitric oxide was most rapid with the pH 1.5 

solution and slowest with the pH 3 solution. In each case, the final concentration achieved 

at the end of the experiment was fairly similar at approximately 70M and it seemed to be 

slightly lower with the lowest pH. The fall in oxygen concentration again reflected the rise 

in nitric oxide. In this experiment the ascorbic acid being in gross excess will not be rate-

controlling and therefore one can see the clear effects of the pH on the rate of production 

of nitric oxide. Again the slightly lower plateau with nitric oxide at pH 1.5 may be 

explained by the more rapid recycling at this pH and thus greater conversion of the 

nitrosating species to nitrate which can no longer be converted to nitric oxide. 
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3.4 Nitrite chemistry in the simulated gastric juice: effect of oxygen  

3.4.1 Nitric oxide levels following nitrite addition in theabsence of ascorbic 

acid  

The addition of nitrite (100µM) to the simulated gastric juice (with NaSCN, pH 1.5) in 

absence of ascorbic acid under both aerobic and anaerobic conditions produced very 

limited amount of nitric oxide were, 0.34µM and 2.25µM, respectively. 

3.4.2 Nitric oxide and dissolved oxygen levels following nitrite addition in 

presence different concentration of ascorbic acid 

The presence of oxygen had a profound effect on the rise in nitric oxide when nitrite 

100M was added to HCl pH 1.5 containing thiocyanate and this was most marked at the 

lowest ascorbic acid concentration. 

With ascorbic acid 100M in the presence of oxygen, the peak nitric oxide concentration 

was 17.4µM occurring one minute after the addition of nitrite and then it slowly fell during 

the experiment. In contrast, in the absence of oxygen a peak nitric concentration of 78µM 

occurred one-two minutes after adding nitrite and this only showed a slight fall throughout 

the remainder of the experiment (Figure 3.9A).  

With the ascorbic acid 500M and ascorbic acid 2000M, the rises in the nitric oxide level 

under the anaerobic conditions were similar to that seen with ascorbic acid100M. 

However, under aerobic conditions the rise in nitric oxide concentration was greater with 

the ascorbic acid 500M reaching a peak of 68M at five minutes and then falling to 

undetectable levels at the end of the experiment (Figure 3.9B). With the ascorbic acid 
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2000M, the rise in nitric oxide under the aerobic conditions reached a peak of 63M at 

ten minutes and remained elevated throughout the experiment (Figure 3.9C).  

(A)

 

(B)

 

(C)

 

Figure 3.9: Nitric oxide levels (µM) in the simulated gastric juice (NaSCN, pH 1.5) under aerobic 
(squares) and anaerobic (triangles), conditions, following nitrite addition (100µM) at t=10min, in the 
presence of ascorbic acid 100µM (A), 500µM (B) or 2000µM (C). Values are presented as mean of two 
experiments. 
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3.4.3  Ascorbic acid measurements 

The presence of oxygen had a marked effect on the amount of ascorbic acid consumed 

during the experiment. In the absence of oxygen ascorbic acid remained present at the end 

of each experiment even when only ascorbic acid 100M had been added. In contrast, in 

the presence of oxygen all the ascorbic acid was consumed during the experiment at 

100M and more than 90% with the ascorbic acid 500M but only 32% with the ascorbic 

acid 2000M (Table 3.3). 

Table 3.3: Ascorbic acid consumed (%) in the simulated gastric juice (NaSCN, pH 1.5), following 
nitrite addition (100µM) in the presence of ascorbic acid 100µM, 500µM or 2000µM over 60 minutes 
incubation, under both aerobic and anaerobic conditions. Values are presented as mean of two 
experiments.  

 

 [AA]µM 
at t=0  

AA consumed (%) with  
 oxygen at t= 70 min 

AA consumed (%) without   
oxygen at t= 70 min 

P Value 

100 99.18  72.13 P < 0.05 

500 91.47  48.89 
 

2000 32.05  10.12 
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3.4.4 Discussion 

These experiments show the dramatic effect that the presence of oxygen has on this 

chemistry. With ascorbic acid 100M in the presence of oxygen, the peak nitric oxide 

concentration was only 17.4µM and then rapidly fell whereas in the absence of oxygen the 

nitric oxide concentration reached a peak value of 78µM and remained elevated throughout 

the experiment. Consequently, the area under the nitric oxide time curve was of the order 

of 20 times greater in the absence than in the presence of oxygen. As shown in earlier 

experiments, the key reaction in producing the nitric oxide in the acidified nitrite solution 

is the presence of ascorbic acid. The much lower nitric oxide concentration in the ascorbic 

acid 100M experiment in the presence of oxygen can be explained by the rapid 

consumption and depletion of ascorbic acid (50, 104). This is consistent with the fact that no 

ascorbic acid was detectible at the end of the experiment. Stoichiometrically, one molecule 

of ascorbic acid should convert one molecule of nitrite in acidic conditions to one molecule 

of nitric oxide. This chemistry was apparent in the absence of oxygen where nitrite 100M 

produced 80M nitric oxide. However, in the presence of oxygen the nitric oxide formed 

in this way rapidly reacted with the oxygen to reform nitrosating species which can further 

react with the ascorbic acid and they converted that to nitric oxide. However, these 

recycling results in the rapid consumption of ascorbic acid and consequently the nitrosating 

species formed cannot be converted back into nitric oxide. The rapid rate of this recycling 

appears as 1.5 in the presence of thiocyanate and is demonstrated by the fact that ascorbic 

acid must be consumed within a minute of adding the nitrite, as the nitric oxide 

concentration was markedly lower at this time point which represents its concentration in 

the presence of oxygen. 

In the anaerobic experiments increasing the ascorbic acid concentration to 500M or 

2000M had no significant effect on the nitric oxide response. This can be explained by 
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the fact that adequate ascorbic acid was available even at its lowest concentration and 

therefore increasing the concentration had little effect on the nitric oxide profile. In 

contrast, in the presence of oxygen increasing the ascorbic acid concentration markedly 

changed the nitric oxide profile and at the ascorbic acid 2000M concentration the nitric 

oxide profile became very similar to that in the absence of oxygen. The latter can be 

explained by the fact that at high concentrations of ascorbic acid the recycling of the nitrite 

results in depletion of oxygen (see earlier experiment 3.1.2) and consequently the 

experiment then becomes an anaerobic experiment. In the absence of oxygen, the nitric 

oxide formed remains as nitric oxide as it cannot react with oxygen to return to nitrosating 

species and nitrite.   
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3.5 Nitrite chemistry in the simulated gastric juice: effect of different 

concentrations of dietary phenolics in the presence of oxygen 

3.5.1 At low concentration (250M) 

3.5.1.1 Nitric oxide and dissolved oxygen levels following nitrite addition in the 

presence of caffeic acid (CA), ferulic acid (FA), chlorogenic acid (CGA) and 

gallic acid (GA) individually in comparison with ascorbic acid  

In the presence of oxygen the addition of nitrite 100µM to the simulated gastric juice 

containing NaSCN (1mM) and AA or a range of dietary phenolics (FA, CA, GA and CGA, 

250µM) individually at pH 1.5, resulted in nitric oxide production and a fall in oxygen 

concentrations (Figure 3.10 and 3.11). With ferulic and caffeic acid (250µM), the nitric 

oxide concentration reached a peak value of 3.5µM and 5.6µM respectively two minutes 

after addition of nitrite. These nitric oxide concentrations then slowly decreased to 

undetectable level by the end of the experiment. With gallic acid (250µM) the nitric oxide 

reached a plateau at 7.8µM and remained at that level between two and ten minutes after 

adding the nitrite. The nitric oxide concentration then slowly fell to 4µM by the end of the 

incubation time period. With chlorogenic acid (250µM) the nitric oxide rose in a similar 

manner to that observed following gallic acid, reaching a plateau at 6.5µM, although, it 

remained elevated throughout the duration of the experiment. With ascorbic acid (250µM) 

the nitric oxide concentration reached a peak at 23.5µM, occurring at one minute from the 

addition of nitrite. This rise in the nitric oxide was different from that seen after other 

phenolics acids were added. There was a clear rise and then clear fall in the nitric oxide 

concentration (Figure 3.10).   

With ferulic acid or caffeic acid (250µM) the change in nitric oxide concentrations were 

reflected in similar changes in the degree of fall in the oxygen concentration. The oxygen 



Chapter 3  79 

concentrations were decreased from a baseline value 20% to 19% and 18%, respectively. 

Thereafter the oxygen concentrations remained steady or slightly increased back towards 

the baseline level. The change in oxygen concentration with gallic acid and chlorogenic 

acid (250µM) again reflected the change in nitric oxide with the most marked and rapid 

fall in oxygen being seen with gallic acid. With ascorbic acid (250µM), the marked rise in 

nitric oxide was reflected by a marked fall in the dissolved oxygen concentration with the 

lowest point of oxygen concentration occurring two minutes after the addition of nitrite 

being 14.5% and then slowly increasing and returning to 19% at the end of the experiment 

(Figure 3.11).   

 

Figure 3.10: Effect of presence of 250µM ferulic acid (squares), caffeic acid (triangles), gallic acid 
(open circles), chlorogenic acid (circles) or ascorbic acid (open squares) on nitric oxide levels (µM) in 
the simulated gastric juice, following nitrite addition (100µM) at t=10 min under aerobic conditions. 
Values are presented as mean of two experiments. 

 

Figure 3.11: Effect of presence of 250µM ferulic acid (squares), caffeic acid (triangles), gallic acid 
(open circles), chlorogenic acid (circles) or ascorbic acid (open squares) on dissolved oxygen levels (%) 
in the simulated gastric juice, following nitrite addition (100µM) at t=10 min. Values are presented as 
mean of two experiments. 
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3.5.2 At high concentration (2000M) 

3.5.2.1  Nitric oxide and dissolved oxygen levels following nitrite addition in the 

presence of caffeic acid (CA), ferulic acid (FA), chlorogenic acid (CGA) and 

gallic acid (GA) individually in parallel with ascorbic acid  

When ferulic acid (2000µM), was present in the system described under 3.5.1.1, it 

produced nitric oxide at a peak value of 5.2µM within minute of the addition of nitrite. 

With caffeic acid (2000µM), the nitric oxide rose in a similar manner to that observed 

following ferulic acid, reaching a value 7.5µM minute after the addition of nitrite. Under 

both conditions the nitric oxide concentrations then slowly decreased to become 

undetectable by the end of incubation time period. With gallic acid (2000µM), the nitric 

oxide concentration peaked at 20µM ten minutes after the addition of nitrite, and then 

slowly decreased to 6µM by the end of the experiment. With chlorogenic acid (2000µM) 

the rise in the nitric oxide concentration gradually reached a peak of 39.5µM at the end of 

the experiment. In the presence of ascorbic acid (2000µM), there was a marked rise in 

nitric oxide, which reached a value 63.1µM approximately ten minutes after the addition of 

nitrite. The nitric oxide concentration remained elevated throughout the duration of the 

experiment (Figure 3.12).    

With ferulic acid (2000µM) the rise in nitric oxide concentration was mirrored by a fall in 

the oxygen concentration from 20% to 19% within the first two minutes, and then it slowly 

decreased to 17% by the end of the experiment. With caffeic acid (2000µM), the dissolved 

oxygen concentration fell from a baseline value of 20% to 19% within the first two 

minutes after the addition of nitrite. Thereafter the oxygen concentration remained steady 

and slightly increased back towards baseline level. With gallic acid (2000µM), the rise in 

nitric oxide was mirrored by the fall in dissolved oxygen concentration with the nadir of 

8% oxygen concentration at fifteen minutes after the addition of nitrite. This then slowly 
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increased and returned to12% at the end of the experiment. With chlorogenic acid 

(2000µM), the oxygen concentration gradually decreased to become undetectable at 20 

minutes and then slowly increasing to 2% at the end of the experiment. With ascorbic acid 

(2000µM), the oxygen concentration rapidly decreased to become undetectable at first 

three minutes and remained undetectable for the duration of the experiment (Figure 3.13).  

 

Figure 3.12: Effect of presence of 2000µM ferulic acid (squares), caffeic acid (triangles), gallic acid 
(open circles), chlorogenic acid (circles) or ascorbic acid (open squares) on nitric oxide levels (µM) in 
the simulated gastric juice, following nitrite addition (100µM) at t=10 min under aerobic conditions. 
Values are presented as mean of two experiments. 

 

Figure 3.13: Effect of presence of 2000µM ferulic acid (squares), caffeic acid (triangles), gallic acid 
(open circles), chlorogenic acid (circles) or ascorbic acid (open squares) on dissolved oxygen levels (%) 
in the simulated gastric juice, following nitrite addition (100µM) at t=10 min. Values are presented as 
mean of two experiments. 
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3.6 Nitrite chemistry in the simulated gastric juice: effect of different 

concentrations of dietary phenolics in the absence of oxygen 

3.6.1  Nitric oxide levels following nitrite addition in the presence of caffeic 

acid (CA), ferulic acid (FA), chlorogenic acid (CGA) and gallic acid (GA) 

individually, in compare with ascorbic acid  

3.6.1.1 At low concentration (250M) 

In the absence of oxygen the addition of nitrite 100µM to simulated gastric juice (with 

NaSCN, pH 1.5 ) containing ferulic acid (250µM) produced nitric oxide reaching a peak 

value of 10µM at three minutes after the addition of nitrite. The nitric oxide concentration 

then slowly decreased to 2µM by the end of the incubation time period. With caffeic acid 

(250µM) the nitric oxide concentration peaked at 18.4µM two minutes after the addition of 

nitrite and then slowly decreased to 2.5µM by the end of the experiment. With the 

chlorogenic acid (250µM) the rise in nitric oxide concentration was gradual but 

continuous, reaching a peak of 36.4µM by the end of the experiment. With gallic acid 

(250µM) there was a marked rise in nitric oxide reaching a peak of 50µM at twenty five 

minutes and then slowly fall to 40.7µM by the end of the experiment. With ascorbic acid 

(250µM) there was a clear rise in the nitric oxide concentration reaching a peak value of 

89.5µM minute after the addition of nitrite. The nitric oxide then slowly decreased to 

58µM by the end of the incubation time (Figure 3.14). 

3.6.1.2 At high concentration (2000M) 

In the absence of oxygen, the rise in the nitric oxide profile after adding nitrite (100µM) to 

simulated gastric juice (with  NaSCN, pH 1.5) was similar in the presence of ferulic or 

caffeic acid (2000µM). With ferulic acid (2000µM) the nitric oxide concentration reached 
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a peak value of 17.5µM minute after the addition of nitrite and then slowly decreased to 

2.2µM at seventy minutes. With caffeic acid (2000µM) the nitric oxide rose in a similar 

manner to that observed following ferulic acid, reaching a value approximately 15µM 

higher than that obtained with ferulic acid (2000µM). With chlorogenic (2000µM) the rise 

in nitric oxide concentration gradually reached a plateau at a level of 54µM occurring at 

ten minutes from adding nitrite. The nitric oxide concentration remained elevated 

throughout the duration of the experiment. With gallic acid or ascorbic acid (2000µM), the 

addition of nitrite it produced high peak nitric oxide concentration occurred approximately 

ten minutes after the addition of nitrite. With gallic acid, the nitric oxide peak value was 

80µM and then this gradually decreased to 46µM by the end of the incubation time period. 

With ascorbic acid, the nitric oxide peak was approximately 15µM lower than that 

observed with gallic acid and by the end of experiment it was 49µM (Figure 3.15).   

 

Figure 3.14: Nitric oxide levels (µM) in the simulated gastric juice, following nitrite addition (100µM) 
at t=10 min, in presence 250µM of ferulic acid (squares), caffeic acid (triangles), gallic acid (open 
circles), chlorogenic acid (circles) or ascorbic acid (open squares) under anaerobic conditions. Values 
are presented as mean of two experiments. 
 



Chapter 3  84 

 

Figure 3.15: Nitric oxide levels (µM) in the simulated gastric juice, following nitrite addition (100µM) 
at t=10 min, in presence 2000µM of ferulic acid (squares), caffeic acid (triangles), gallic acid (open 
circles), (circles) or ascorbic acid (open squares) under anaerobic condition. Values are presented as 
mean of two experiments. 
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3.6.2 Discussion 

The second aim of this study was to compare the ability of common dietary antioxidants, 

belonging to the phenolics, with that of ascorbic acid at reducing nitrite to nitric oxide 

under conditions simulating those occurring in the upper gastrointestinal tract. Four 

phenolic acids were tested alongside ascorbic acid in two different concentrations: caffeic 

acid, ferulic acid, chlorogenic acid, and gallic acid. Phenolic acids occur in most fruits, 

vegetables, and dicotylenous plants either in free or conjugated form. Caffeic and ferulic 

acids are hydroxycinnamates occurring in fruits and vegetables; chlorogenic acid, an ester 

of caffeic acid and quinic acid, is abundant in coffee and apples; meanwhile, gallic acid is a 

major building block in the synthesis of tannins, which are abundant and confer their 

astringent properties to tea and red wines (130, 131). Ascorbic acid, which is actively secreted 

in the stomach, is a major inhibitor of acid catalysed nitrosation in the lumen (148-150). 

Meanwhile, the potential chemo-protective effect of phenolic compounds against 

nitrosative stress has been highlighted in the past (151-153). Previous studies investigated the 

nitrosation inhibiting potential of dietary phenolics in single-phase systems, based on their 

nitric oxide promoting abilities (154, 155). However, recent studies have demonstrated that 

high nitric oxide production in the presence of lipids is the main cause for the transfer of 

the nitrosative stress from the aqueous to the lipid compartment, an issue relevant to 

transfer of nitrosation to the gastric epithelium (156). 

The present experiments compared the nitric oxide generating abilities of the four phenolic 

acids with ascorbic acid. The addition of nitrite (100µM) to the simulated gastric juice 

containing 1mM NaSCN and low concentration ascorbic acid (250µM) caused a rapid rise 

in nitric oxide to 23M followed by a fall in nitric oxide accompanied by an initial fall in 

oxygen. At high concentration ascorbic acid (2000µM) increased nitric oxide to 63M 

which was maintained and accompanied by the complete depletion of oxygen. When the 
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low dose ascorbic acid experiment was repeated under anaerobic conditions, the nitric 

oxide reached 89.5M and was maintained at this level. The rapid rise and then fall of 

nitric oxide with low dose ascorbic acid in the presence of oxygen can be explained by the 

rapid depletion of ascorbic acid due to the nitric oxide reacting with oxygen to re-form 

nitrosating species, which can react again with the remaining ascorbic acid as shown in 

Scheme 3.3. This recycling has been shown to lead to the rapid depletion of ascorbic acid 

under aerobic conditions (157, 158). The reaction between nitric oxide and oxygen is second 

order with respect to nitric oxide and the rapid depletion of ascorbic acid can be explained 

by the high concentrations of nitric oxide initially produced by the ascorbic acid (159, 160). 

When the experiment was performed in the presence of low concentration gallic acid and 

chlorogenic acid, it produced a slower and less marked initial rise in nitric oxide than 

ascorbic acid (i.e. longer lasting than a burst); however, the nitric oxide level was 

maintained and there was a less marked early depletion of oxygen. When the low dose 

gallic acid and chlorogenic acid experiment was repeated under anaerobic conditions, the 

final concentration obtained was lower in both cases than with the ascorbic acid. The less 

rapid initial rise in nitric oxide suggests that these phenolic acids have a lower affinity for 

the nitrosating species than ascorbic acid under similar experimental conditions. Previous 

studies proposed that the nitric oxide-promoting ability of chlorogenic acid is related to the 

presence of the catechol group, enabling formation of nitric oxide upon encounter with 

nitrous acid, and leading to the formation of an intermediate o-semiquinone radical able to 

then react with nitrogen dioxide to generate a nitrated polyphenol end-product, this 

depleting the system in nitrosating species and limiting further nitric oxide formation 

scheme 3.3 (155).  
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Scheme 3.3: proposed mechanism of nitric oxide release from acidified nitrite in presence of ascorbic 
acid (left) and chlorogenic acid (right).(147). 
 

Ferulic acid and caffeic acid produced a different response with respect to both nitric oxide 

and oxygen than the other antioxidants tested. At both low and high concentrations they 

produced a rapid but limited rise in nitric oxide to 5M at low concentration and 7.5M at 

high concentration, followed by a rapid fall and in both cases with little discernable change 

in oxygen concentration. In the absence of oxygen the initial rise in nitric oxide was higher 

(35M) but was again followed by a rapid fall with similar pattern with both low and high 

concentrations. The nitric oxide response observed with caffeic acid and ferulic acid 

suggests that the nitrite are reduced to nitric oxide but that a subsequent reaction then 

occurs leading to a fall in nitric oxide. It has been demonstrated that both ferulic and 

caffeic acids can form nitroso-derivatives upon encounter with acidified nitrite, via 

preferential reaction between their side chain and the nitrosating species, with limited or no 

nitric oxide production (161-164). This mechanism is key in ensuring the efficient, stable 

scavenging of nitrosating species, without generating nitric oxide. According to Peri et 

al.(2005) the limited nitric oxide production by ferulic acid is linked to the absence of a 

catechol group, preventing the formation of an o-semiquinone radical to react with 
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nitrogen dioxide (155). However, this research indicates, however, that the nitric oxide 

promoting ability of caffeic acid was similar to that of ferulic acid, despite the fact that 

caffeic acid possesses a catechol group. It is therefore likely that the nitric oxide promoting 

abilities of phenolic acids may not be entirely based on the presence or lack of a catechol 

group. 
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General conclusion 

Over the last fifty years there has been concern about luminal nitrite as a risk factor for 

upper gastro-intestinal malignancies (49, 78). This has arisen from evidence that salivary 

nitrite generates nitrosating species and nitric oxide when encountering acidic gastric juice 

(49, 78, 100).  

Therefore it was important to study the influence of ascorbic acid, sodium thiocyanate, 

oxygen, and pH on nitrite chemistry in the simulated GOJ environment. It was also 

relevant to investigate the effect of other dietary antioxidants such as ferulic acid, caffeic 

acid, gallic acid, and chlorogenic acid on the nitrite chemistry under conditions simulating 

the lumen at the GOJ.  

Previous studies both in the simulated bench-top system and in situ have examined the fate 

of salivary nitrite when it encounters acidic gastric juice (48, 103, 104). This study, in 

accordance with the literature, has demonstrated that nitrite in the simulated GOJ 

environment is rapidly converted to nitric oxide in the presence of ascorbic acid (50, 53, 

104).This is due to fact that only a very limited amount of nitric oxide is produced in the 

absence of ascorbic acid. Thus ascorbic acid is effectively reducing the nitrosating species 

to nitric oxide and in the process is oxidized to dehydroascorbic acid. However, the 

presence of oxygen reduces the efficacy of ascorbic acid because nitric oxide can react 

with dissolved oxygen to reform nitrosating species. The recycling of nitric oxide means 

more ascorbic acid is consumed and this was clearly observed in this study. We also 

observed that ascorbic acid at low or medium concentrations is an important controlling 

factor for the recycling processes, while with higher concentrations of ascorbic acid 

dissolved oxygen in the system was the main factor controlling the recycling pathway. 

These findings further support previous observations that nitric oxide recycling is 

maintained until either the ascorbic acid or oxygen is depleted (104). 
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The present study also demonstrated that the pH of the simulated gastric juice had a clear 

effect on the rate of nitric oxide production in the presence of ascorbic acid. The nitric 

oxide concentration in a solution of nitrite containing ascorbic acid is inversely related to 

the pH, being greatest at the lowest pH of 1.5. The presence of sodium thiocyanate in the 

simulated gastric juice also enhances the conversion of nitrite to nitric oxide and increases 

the ascorbic acid consumption. Moreover, the absence of oxygen in the system markedly 

increases nitric oxide concentration and also resulted in ascorbic acid being present 

throughout the experiment.  

This study has demonstrated a different pattern of nitric oxide production from acidified 

nitrite in the presence of a range of dietary phenolics concentrations compared with 

ascorbic acid under conditions simulating the GOJ. Ferulic and caffeic acids produced only 

a small increase in nitric oxide, which was not sustained under both aerobic and anaerobic 

conditions. However, unlike ferulic and caffeic acids, gallic and chlorogenic acids 

produced a much more marked rise in nitric oxide which remained elevated under both 

aerobic and anaerobic conditions. In contrast, ascorbic acid produced a strong increase in 

nitric oxide production, which was followed by a clear fall under aerobic conditions. 

However, with high concentration of ascorbic acid and under anaerobic conditions, nitric 

oxide was sustained throughout the duration of experiment.  

In summary, nitric oxide has numerous potential effects in the mediation of physiological 

and pathological mechanisms. It remains to be seen whether the generation of nitric oxide 

at the GOJ and the factors we have demonstrated to influence this are involved in the high 

incidence of disturbed physiology and pathology occurring at this anatomical site. 

Further studies are required to investigate the biological significance of the nitric oxide 

generated at the GOJ. In addition, it may be important to study the effect of the various 

dietary anti-oxidants in modifying any biological effects. 
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