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Abstract 
A deep problem in cognitive science is to explain the 
acquisition of abstract semantic relations, such as antonymy 
and synonymy. Are such relations necessarily part of an 
innate representational endowment provided to humans? Or, 
is it possible for a learning system to acquire abstract relations 
from non-relational inputs of realistic complexity (avoiding 
hand-coding)? We present a series of computational 
experiments using Bayesian methods in an effort to learn and 
generalize abstract semantic relations, using as inputs pairs of 
specific concepts represented by feature vectors created by 
Latent Semantic Analysis.  
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Introduction 
An intelligent human adult can recognize that the concepts 
day and night are related in much the same way as hot and 
cold, but not in the same way as day and hour. This ability 
to appreciate abstract semantic relations is fundamental to 
analogical reasoning, and is arguably a core component of 
what is special about the human mind (Penn, Holyoak & 
Povinelli, 2007). But how are such abstract relations 
acquired?  If they are learned, how this could be achieved is 
far from obvious. On the face of it, no perceptual or other 
features seem to be available to represent such abstract 
relations as antonymy, synonymy, or superordination. 
Almost by default, it might be assumed that abstract 
relations must be innate (Fodor, 1975). 
 Research on cognitive development has clearly 
established the phenomenon of a relational shift (Gentner & 
Rattermann, 1991), such that children process relations 
more effectively with increasing age. In particular, children 
move from a focus on global similarities of objects to 
similarities defined by specific dimensions, such as size or 
color (Smith, 1989; Smith & Sera, 1992). Less is known 
about the development of abstract relations that seem yet 
further divorced from perceptual similarity (see Halford, 
1993). Analyses of corpora of child speech have identified 
systematic use of antonyms by children aged 2-5 years 
(Jones & Murphy, 2005). Children aged 6-7 years are more 
accurate in detecting the falsity of sentences such as Some 
valleys are mountains as compared to Some valleys are 

lakes, where the former sentence type contains an 
antonymous pair (Glass, Holyoak & Kossan, 1977), 
suggesting that some sense of antonymy is available prior to 
any formal instruction about this concept. 

The Problem of Relation Learning 
Regardless of whether abstract relations are learned or 
mature over the course of development, there is no doubt 
that adults can distinguish among instances of relations such 
as antonymy versus synonymy. In the present paper we pose 
the following computational problem: Given as inputs a 
modest number of pairs of concepts that instantiate an 
abstract relation (e.g., day-night and hot-cold, which 
instantiate antonymy), is it possible to extract a 
representation of the abstract relation that may then be used 
to accurately classify novel instantiations (e.g., valley-
mountain)? 
 Most recent connectionist models of relation learning 
(e.g., Rogers & McClelland, 2008) have focused on the 
acquisition of small numbers of specific input-output pairs 
(e.g., “canary” + “can” → “fly”), but have not demonstrated 
the capacity to generalize to novel inputs dissimilar to the 
training items. In contrast, achieving such generalization is 
the central aim of our project. Moreover, an important 
constraint we imposed is that inputs to the learning system 
could not be hand-coded, as has been commonplace in the 
literature on computational models of analogy and relation 
learning. For example, Doumas, Hummel, and Sandhofer 
(2008) showed how structured relations corresponding to 
relative adjectives such as bigger-than can be extracted by 
bottom-up mechanisms given inputs consisting of 
unstructured feature vectors of objects. However, the 
modelers ensured that “size” features were present among 
the relatively small feature set defining the inputs, setting 
the stage for selecting these size features to form a part of 
the to-be-learned relational predicate. While perceptual 
relations may indeed be derived from the perceptual features 
of objects, this assumption is unwarranted for more abstract 
relations, for which hand-coding of features is even more 
problematic. In addition, realistic semantic representations 
would seem to require very large numbers of features, 
raising all the difficulties associated with search in a large 
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representational space. Learning models that are developed 
for small, hand-tailored inputs at best postpone the 
challenges of “scaling up”. Another approach to learning 
relations is to combine statistical techniques with structured 
representations. For example, Kemp and Tenenbaum (2008) 
showed how Bayesian techniques can operate on relational 
structures to learn relational systems such as hierarchies and 
linear orderings. The relational structures are provided to the 
system by including a grammar that generates possible 
structures. Although this approach may be appropriate for 
relations that have a well-defined logical structure known to 
the modeler, it is not clear that it can readily be extended to 
the full range of “messy” semantic relations. In addition, 
since the postulated grammar of relations is not itself 
learned, rather strong nativist assumptions remain. 

Learning Relations from Unstructured Inputs 
In this project, we have taken the tack of attempting to 
model the learning of abstract relations through essentially 
data-driven statistical learning, using Bayesian algorithms 
applied to large, unstructured input representations that we 
the modelers did not create. The raw inputs are vector 
representations of words, derived by Latent Semantic 
Analysis (LSA; Landauer & Dumais, 1997). Such vectors, 
the product of singular value decomposition applied to 
lexical co-occurrence data from a large corpus of text, have 
proved extremely useful in many applications, often serving 
as good measures of semantic similarity of concepts (Wolf 
& Goldman, 2003). However, LSA vectors do not provide 
any direct basis for identifying abstract relations between 
concepts (although some modest success has been achieved 
by exploiting LSA vectors for relation words, such as 
opposite; Mangalath, Quesada & Kintsch, 2004). Related 
machine-learning algorithms have had some success in 
solving relational analogies by working directly from co-
occurrence data for word combinations found in a large 
corpus of text (Turney & Littman, 2005). However, our goal 
is different in that we aim to model learning of relational 
representations from the LSA vectors for a small (< 20) set 
of word pairs that instantiate each abstract relation. The task 
of learning relations from representations of simpler 
concepts bears at least some resemblance to the task a child 
might face in acquiring an abstract relation from a modest-
sized set of examples that instantiate it.  
 For our present purpose, we do not assume that LSA 
provides anything like an optimal psychological 
representation of concepts (indeed, it has well-known and 
serious limitations, notably problems dealing with lexical 
ambiguity). However, by using LSA inputs we ensure that 
we have in no way tailored the inputs so as to “hand hold” 
the learning algorithms we test. Moreover, we do not 
assume that it is in fact possible to acquire human-like 
representations of abstract relations solely by data-driven 
learning. Rather, by pressing the limits of data-driven 
approaches, we may be able to identify more clearly what 
nativist assumptions may ultimately prove essential. 

A General Framework for Relation Learning  
Here we report a preliminary investigation of relation 
learning based on two variants of the same basic framework. 
Our goal is to learn an explicit representation of a relation 
from a training set, S, consisting of pairs of concepts that 
each instantiate the relation. We assume that a decision 
regarding whether a pair of concepts instantiates a particular 
relation R is determined by a representation that includes 
both the basic features of the input concepts and additional 
features that the model automatically derives from the basic 
features. The full input representation is comprised of the 
basic features of two concepts, A and B, which are 
represented by LSA vectors, and of derived features Φ(A, 
B) computed from A and B (see Fig. 1). In this study the 
derived features included two types, product features AB = 
[ ]1 1 2 2 d dAB A B A BL  and absolute difference features 

1 1 2 2 ,d dA B A B A B− = − − −⎡ ⎤⎣ ⎦A B L  both defined 
across corresponding positions in the A and B vectors. The 
length of each type of derived vector is thus equal to the 
length of each basic vector, so that the total size of the input 
vector scales linearly with the number of basic features. 

If we let X denote the full vector including basic and 
derived features, X = [A, B, Φ(A, B)], then the 
computational goal of relation learning is to estimate the 
distribution of a corresponding weight vector w from a set 
of training pairs that share the same relation. That is, we 
calculate ( | , 1)P =S Sw X R , where the subscript S indicates 
the set of training examples (the source) and SR  is a set of 
binary indicators, each of which (denoted by R) indicates 
whether a particular pair of concepts instantiates the relation 
or not. The vector w constitutes the learned relational 
representation, which can be interpreted as attention weights 
reflecting the importance of the corresponding features in X. 
To test generalization of the learned relational 
representation, we test on new transfer pairs, denoted by the  
subscript T. The inference step needs to estimate the 
probability that a target pair shares the same relation as the 
training pairs, ( 1 | , , 1)T TP R = =S SX X R .  
 

 
Figure 1: Graphical representation of the general 
framework.  A and B denote two vectors of concept features 
(LSA inputs); Φ(A, B) denotes derived features based on 
the two concepts, i.e., product features AB and absolute 
difference features |A – B|.  Vector w represents the 
unknown relational weights that define R, and is learned 
using the training set of examples instantiating R. 
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The models we consider are both based on Bayesian 
logistic regression, as described by Silva, Airoldi and Heller 
(2007) and Silva, Heller and Gharamani (2007). Given a 
small set of word-pairs S that all instantiate a given abstract 
relation R, both models compute the posterior probability 
that ( , )T TA B  is an example of the same relation, 
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T T
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X w w X R
 (1)      

where the likelihood is assessed using  a logistic regression 
function to predict the probability of a word-pair 
instantiating a given relation, 
 T( 1 | , ) logistic( ) P R = =X w w X  (2) 

where ( ) ( ) 1logistic 1 xx e
!!= + . 

For the first model we consider (based directly on Silva et 
al., 2007), the posterior distribution for w is found by 
applying Bayes’ rule using the prior distribution for w and 
the training word-pairs:   

  (3) 

Because of the high dimensionality of the learning problem 
we are tackling, the choice of a good prior  is 
essential to the performance of any model. We investigated 
two kinds of priors, a simple empirical prior proposed by 
Silva and colleagues, and our own hierarchical model.  

The Empirical Prior 
Intuitively, our simple empirical prior distinguishes word-
pairs that instantiate any of the to-be-learned relations from 
unrelated word-pairs. The empirical prior takes the form 

, in which the sample mean estimate 
 is by found by fitting a logistic regression classifier 

using maximum-likelihood estimation on a relatively small 
set of related word pairs (positive examples), and a larger 
set of unrelated word pairs (negative examples), reflecting 
the fact that most pairs of actual concepts do not instantiate 
any abstract relation. The covariance matrix  for this 
empirical prior is calculated by 
  (4) 

where c is a user-defined smoothing parameter set to twice 
the number of related pairs in the training samples, N is the 
total number of word pairs in the training set, and X is a 
matrix containing the features of all (related and unrelated) 
word pairs in the training set. M is a diagonal matrix with 
each entry defined as  
  (5) 
where  is the MLE predicted probability of the ith word 
pair being related, given by Eq. (2). 

The Hierarchical Prior 
The above model computes its prior based on the observed 
data.  This empirical prior uses all related pairs as members  

 
Figure 2: Graphical representation of hierarchical model.  
Distribution of α is determined by the hyperparameters that 
model the variance of the relational weight vector w. The 
other notations are the same as in Figure 1. 
 
of the set of positive training cases, and numerous unrelated 
pairs as negative cases. An alternative empirical prior could 
be computed by considering pairs of a specific relation as 
positive examples and pairs instantiating other relations as 
negative examples.  Although empirical priors are a sensible 
choice to facilitate inference in the high-dimensional space, 
the question of how the best data set for learning an 
empirical prior could be constructed remains unresolved.    

Here we explored a different approach, specifying a 
hierarchical prior on the distribution of the weight vector w 
(see Fig. 2). Specifically, the posterior distribution of w 
learned from training data is derived (replacing Eq. 3) by 
  (6) 

where vector  determines the precision (the 
inverse variance) of each element of the weight vector . 
We use a conjugate prior distribution in the form of a 
Gamma distribution for  with two hyperparameters a0 
and b0:  
  (7) 

The individual prior for each element in vector is 
assigned in the form of a normal distribution: 
  (8) 

This normal distribution imposes a general prior that the 
value of iw  is centered at 0 (i.e., the ith feature dimension is 
not expected to be relevant in predicting whether a certain 
relation exists between the two words).  However, the value 
of  controls the certainty about this prior belief.  A low 
precision value makes the prior belief uninformative, 
whereas a high precision value imposes a strong bias that 

 is most likely 0.  Accordingly, the hyperparameters play 
an important role in determining the relevance of feature 
dimensions in predicting the existence of a relation. 

The other term in Eq. (6) can be derived by applying 
Bayes rule directly,   
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The Inference Algorithm 
Although the general framework of the relation learning 
models is straightforward, the inference step is non-trivial 
because the calculation of the normalization terms in Eqs. 
(3) and (9) and integrals in Eq. (6) are intractable, lacking 
analytic solutions. A sampling approach is impractical for 
dealing with high feature dimensionality.  We therefore 
employed variational methods developed by Jaakkola and 
Jordan (2000) to obtain a closed-form approximation to the 
posterior distribution.  Specifically, the variational method 
updates the mean of vector w and its covariance matrix V 
iteratively: 
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Computational Experiments 
The Training Set and Generalization Test 
Table 1 shows some examples of pairs of concepts that we 
used to train and test the two models. We used four different 
relations: function, synonyms, linear ordering, and 
antonyms.  For each relation, we chose 15-20 pairs that 
were examples of that relation to use as the training set. We 
will refer to pairs used for training as AB pairs. All pairs 
were selected from experimental materials used previously 
to form four-term verbal analogy problems, and for which 
LSA vectors (derived using the tasaALL corpus) were 
available. We selected pairs for which the cosine similarity 
between the words (based on their LSA vectors) was at least 
0.1, aiming to exclude pairs that included highly ambiguous 
words (e.g., gift-present as an example of synonyms).  
After learning representations of the abstract relations based 
on the AB pairs, the model was tested on a two-alternative 
forced-choice generalization task. For each test item, the 
model was asked to choose which of two alternative pairs 
instantiated a specified relation. We will refer to correct and 
incorrect options as CD and CD', respectively. For example, 
one item required the models to decide which pair 
instantiated antonymy, shallow-deep (CD) or shallow-depth 
(CD'). As this example suggests, the discrimination was 
quite subtle, as the C term was common to both options and 
the CD' pair also instantiated an abstract relation (but not the 
relation being queried). The words used in this 
generalization test did not overlap at all with the AB pairs 
used in training, but were selected according to the same 
general criteria. For each test problem, the models 
calculated the probability of CD and of CD' being examples 
of the relation, respectively, according to Eq. (1), and chose 
the pair with the higher probability as the answer. The 
percentage of test questions that each model answered 
correctly for each relation was calculated. 

Table 1: Examples of word pairs used in the training sets 
and generalization tests (correct option on left).  
 

Training pairs Testing pairs 

Function 

door-open 
sun-warm 

zoo-animals 

rabbit-hop vs. rabbit-bunny 
cup-drink vs. cup-mug 

smile-happy vs. smile-frown 

Synonyms 

liberty-freedom 
huge-enormous 

forest-woods 

car-auto vs. car-bus 
weak-feeble vs. weak-strong 
sad-unhappy vs. sad-sadder 

Linear ordering 

worse-worst 
kitten-cat 
tap-strike 

inch-foot vs. inch-length 
rain-downpour vs. rain-fall 

pebble-rock vs. rock-mineral 

Antonyms 

weak-strong 
start-finish 

slowly-quickly 

shallow-deep vs. shallow-depth 
float-sink vs. float-boat 
find-lose vs. find-search 

Simulation Details 
Inputs for each word were LSA vectors of length 300. The 
LSA algorithm orders its features from highest to lowest in 
terms of their predictive power. Preliminary tests indicated 
that most of the information useful for our learning models 
was encoded in the first ten features of the LSA vectors. 
Accordingly, we used just these first ten features for each 
word as inputs.  The full vector for a word pair included the 
basic and derived features, X = [A, B, AB, |A – B|], with a 
total length of 40 features. 

In the implementation of the model by Silva et al. (2007), 
the dataset for computing the empirical prior included all 
AB word pairs plus a large number (>3500) of unrelated 
word pairs. Each unrelated word pair was weighted by 
approximately the ratio of the total population of unrelated 
word pairs to the number of unrelated word pairs that were 
sampled. After obtaining the prior, the model employed 
variational methods to compute the posterior distribution for 
w using the AB training pairs for each relation separately. 

In the simulation of our hierarchical model, the values of 
hyperparameters (a0, b0) were searched separately for each 
relation to maximize generalization performance. 

To provide baselines for evaluating the two Bayesian 
learning models, we applied three simpler methods of 
judging the correct relational alternative. First, we 
calculated the mean cosine distances of the correct 
alternative and its foil to the training set using “raw” LSA 
vectors, i.e., using only the basic features [A, B] over all 
300 dimensions of the LSA vector for each word in a pair 
(yielding 600 features total). Specifically, we computed the 
average of cosine distances between a CD pair and all AB 



 

pairs in the training set, and for the corresponding CD’ pair 
and all AB pairs. The baseline decision for the 
discrimination task was determined by which pair yielded 
the closer cosine distance. The performance of this method 
informs us about the amount of information that “raw” LSA 
vectors provide for the four abstract relations of interest. 

Second, we used an additional cosine distance measure 
defined over the same feature vectors as those used by the 
Bayesian models, i.e., the X vectors, which included the 
first ten features of the LSA vector for each word, plus the 
corresponding derived features.   

Third, we examined the performance of simple logistic 
regression (which obtains the relational representation w 
through maximum-likelihood estimation) using the first ten 
LSA dimensions and the full set of derived features.  

Results and Discussion 
The five modeling methods were evaluated on nine different 
sets of training pairs and testing pairs. Each set was 
randomly chosen from the analogy problems available to us. 
Mean proportion correct over the nine different training/test 
sets for each of the methods described above is shown in 
Fig. 3. Overall, the Bayesian model incorporating the 
hierarchical prior yielded the best generalization 
performance for all four relations, and in each case was 
reliably more successful than any of the three baseline 
models. The proportions correct for the hierarchical model 
were .78 for function, .72 for synonyms, .86 for linear 
ordering, and .66 for antonyms. In general, the 
generalization performance for the Bayesian models was 
best for linear ordering and weakest for antonymy. It should 
be noted that the linear ordering relation can be viewed as a 
generalization of the type of specific comparative relation 
(e.g., “larger than”) to which the learning model proposed 
by Doumas et al. (2007) has been applied.  

The Importance of the Prior 
The improvement in generalization performance of the 
Bayesian models over the MLE logistic regression model 
illustrates the importance of the prior distribution on the 
relational weights w. This result suggests the possibility that 
children may also benefit from prior knowledge, either 
innate or acquired through previous experience, when 
learning new abstract relations. They may, for example, first 
learn to distinguish related or generally similar concepts 
from unrelated concepts before discriminating among more 
specific relations. Future experiments could explore the 
kinds of prior training that best aid human learning of new 
abstract relations, and compare the results with model 
performance using different priors. 

The superior generalization of the Bayesian model using 
the hierarchical prior compared with the model using the 
empirical prior indicates that learning can be further 
improved by introducing a more effective prior. Using the 
general prior knowledge obtained by contrasting related and 
unrelated relations is a sensible choice in the applications on 
which Silver et. al. (2007) focused.  However, this empirical 
prior may not be sufficient to provide informative guidance 
for inferences in the high dimensional space created using 
LSA inputs. Adopting a hierarchical prior increases learning 
power by incorporating soft constraints on the relational 
representation, w, and its associated uncertainty. 

Why are Antonyms so Hard? 
The fact that the Bayesian models performed relatively 
poorly on antonyms warrants further analysis. It should be 
noted that for antonyms only, the cosine distance method 
based on 300 LSA dimensions (with basic features only) 
outperformed cosine distance based on 10 LSA dimensions 
and the full set of derived features. This finding raises the 
possibility that finding a good representation for antonymy 

Figure 3: Simulation results. Prediction accuracy for generalization of relations in the two-alternative forced-choice 
relation-discrimination task.  Error bars represent 1 standard error of the mean, based on 9 random samples of training/test 
items. 



 

may require attention to more feature dimensions than is the 
case for the other relations. Another possible reason for their 
greater difficulty is that antonyms are usually very similar 
concepts that are dissimilar in only a few aspects (e.g., both 
love and hate can be used as a noun as well as a verb, and 
are strong emotions that one sentient being can have about 
another). Moreover, the aspects or dimensions on which 
antonymous concepts differ vary from one pair to another 
(e.g., love-hate vs. black-white). The shifting relevance of 
features makes learning a good representation for antonyms 
challenging, especially using a method that learns weight 
distributions over a fixed set of features. 

Conclusions 
We investigated the possibility that abstract semantic 
relations can be learned at least in part by purely data-driven 
statistical techniques applied to concept pairs represented by 
unstructured feature vectors. By using LSA vectors as 
inputs we avoided any hand-coding of semantics or 
relational structure, while assuring that inputs were of 
realistic complexity. Compared to baseline performance 
(inference based on cosine similarity of test options to the 
training set and MLE logistic regression), two models of 
relation learning based on Bayesian logistic regression 
achieved higher overall performance on a transfer test 
requiring discrimination between learned relations 
instantiated entirely by new concepts. The more successful 
of the two models incorporated hierarchical priors. 
 Neither model approached perfect performance on 
transfer problems. However, considering the small size of 
the training set (less than 20 examples of each relation), the 
total absence of overlap between training and test items, and 
the relatively subtle discrimination of relations required on 
the generalization test, these preliminary findings are 
encouraging. Further exploration of statistical approaches to 
learning abstract semantic relations appears to be warranted. 
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