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Abstract—In recent years, due to the appealing features of
cloud computing, large amount of data have been stored in the
cloud. Although cloud based services offer many advantages,
privacy and security of the sensitive data is a big concern. To
mitigate the concerns, it is desirable to outsource sensitive data
in encrypted form. Encrypted storage protects the data against
illegal access, but it complicates some basic, yet important func-
tionality such as the search on the data. To achieve search over
encrypted data without compromising the privacy, considerable
amount of searchable encryption schemes have been proposed in
the literature. However, almost all of them handle exact query
matching but not similarity matching; a crucial requirement
for real world applications. Although some sophisticated secure
multi-party computation based cryptographic techniques are
available for similarity tests, they are computationally intensive
and do not scale for large data sources.

In this paper, we propose an efficient scheme for similarity
search over encrypted data. To do so, we utilize a state-of-the-
art algorithm for fast near neighbor search in high dimensional
spaces called locality sensitive hashing. To ensure the confidential-
ity of the sensitive data, we provide a rigorous security definition
and prove the security of the proposed scheme under the provided
definition. In addition, we provide a real world application of the
proposed scheme and verify the theoretical results with empirical
observations on a real dataset.

I. INTRODUCTION

In today’s data intensive environment, cloud computing

becomes prevalent due to the fact that it removes the burden of

large scale data management in a cost effective manner. Hence,

huge amount of data, ranging from personal health records

to e-mails, are increasingly outsourced into the cloud. At the

same time, transfer of sensitive data to untrusted cloud servers

leads to concerns about its privacy. To mitigate the concerns,

sensitive data is usually outsourced in encrypted form which

prevents unauthorized access. Although encryption provides

protection, it significantly complicates the computation on the

data such as the fundamental search operation. Still, cloud

services should enable efficient search on the encrypted data to

ensure the benefits of a full-fledged cloud computing environ-

ment. In fact, sizable amount of algorithms have been proposed

to support the task which are called searchable encryption

schemes [1]–[8]. Traditionally, almost all such schemes have

been designed for exact query matching. They enable selective

retrieval of the data from the cloud according to the existence

of a specified feature. In real world, however, it is more

natural to perform retrieval according to the similarity with

the specified feature instead of the existence of it.

A similarity search problem consists of a collection of data

items that are characterized by some features, a query that

specifies a value for a particular feature and a similarity metric

to measure the relevance between the query and the data items.

The goal is to retrieve the items whose similarity against the

specified query is greater than a predetermined threshold under

the utilized metric. Although exact matching based searchable

encryption methods are not suitable to achieve this goal, there

are some sophisticated cryptographic techniques that enable

similarity search over encrypted data [9], [10]. Unfortunately,

such secure multi-party computation based techniques incur

substantial computational resources. According to a recent sur-

vey [11], secure edit distance computations [10] require over

two years to compute similarity between two datasets of 1000

strings each, on a commodity server. It is apparent that we

need efficient methods to perform similarity search over large

amount of encrypted data. In this paper, we propose a secure

index based encryption scheme to meet this requirement.

The basic building block of our secure index is the state-of-

the-art approximate near neighbor search algorithm in high

dimensional spaces called locality sensitive hashing (LSH)

[12]. LSH is extensively used for fast similarity search on plain

data in information retrieval community (e.g., [13]). In our

scheme, we propose to utilize it in the context of the encrypted

data. In such a context, it is critical to provide rigorous

security analysis of the scheme to ensure the confidentiality

of the sensitive data. In fact, we provide a strong security

definition and prove the security of the proposed scheme under

the provided definition. In addition, we provide a real world

application of our scheme and verify the theoretical results

with empirical analysis. In summary, there are several notable

contributions of this paper:

Secure LSH Index : To utilize the appealing properties of

LSH in the context of the encrypted data, we propose a secure

LSH index and a similarity searchable symmetric encryption

scheme on top of this index. In addition, we adapt the widely

accepted adaptive semantic security definition of Curtmola

et. al. [4] for searchable symmetric encryption schemes and

prove the security of the proposed scheme under the adapted

definition.

Fault Tolerant Keyword Search : We provide an important

application of the proposed scheme for fault tolerant keyword

search over encrypted data. Typographical errors are common

both in the search queries and the data sources, but most of the

available searchable encryption schemes do not tolerate such



errors. Recently, a fuzzy keyword set based scheme has been

proposed to handle the problem [5]. Although the approach

of [5] provides a solution to some extent, it is specific to a

particular distance measure. On the other hand, our scheme

provides more generic solution and it can be utilized for

distinct similarity search contexts where LSH is applicable.

Separation of Leaked Information : Almost all the prac-

tical searchable encryption schemes leak some information

such as the identifiers of encrypted items corresponding to the

trapdoor of a search query. Such leakage may lead to statistical

attacks if an adversary has some background knowledge. To

mitigate the risk, we propose a two server setting to separate

the leaked information. Multi-server setting also enables an al-

ternative encryption scheme with lighter clients by transferring

more computational burden to the servers.

The remainder of the paper is organized as follows. Section

II formulates the problem. Section III provides background

information and the security definition. Section IV presents

the proposed solution. We present a potential application of

the proposed scheme as a case study in Section V and report

our experimental analysis in Section VI. We review related

work in Section VII and conclude in Section VIII.

II. PROBLEM FORMULATION

Suppose Alice has a set of sensitive data that she wants

to outsource to a cloud server owned by Bob. Due to the

confidentiality, data is stored in encrypted form on the remote

server in such a way that Bob cannot infer any useful informa-

tion about the data except for the one Alice allows to leak. In

this setting, permitted data users should be able to selectively

retrieve items from the remote server. To do so, server should

be able to search over encrypted data and return the items that

are most similar to the user’s request in a reasonable amount of

time. Efficient similarity search capability is provided through

a secure index.

Definition II.1 Similarity Searchable Symmetric Encryp-

tion: Let D be a collection of sensitive data, Fi be a feature

set that identifies Di where Di ∈ D, F be the set of all

possible features, Ci be the encrypted form of Di, and I
be the secure index. Then, similarity searchable symmetric

encryption scheme is described as follows:

Keygen(s) : Given a security parameter ψ, outputs a private

key K such that K ∈ {0, 1}
ψ

.

Enc(K, Di) : Encrypts Di with key K and outputs Ci.
Dec(K, Ci) : Decrypts Ci with key K and outputs Di.

BuildIndex(K, D) : Extracts feature set Fi for each Di ∈ D
and outputs I which is constructed with the extracted features.

Trapdoor(K, f ) : Generates a trapdoor for a specific feature

f ∈ F with key K and outputs trapdoor T .

Search(I, T ) : Performs search on I according to the

provided trapdoor of the feature f (T ) and outputs encrypted

data collection C. Suppose that Fj is the feature set associated

with Dj . Then, Cj ∈ C iff the similarity between f and some

feature in Fj is greater than a predefined threshold under the

utilized similarity metric.

Note that, the definition of Search does not assume any

categorization for the features, but consider all the features

as a member of the same category. For instance, consider a

document as a sensitive data item, words in the document

as a feature set and a query keyword as a specific feature.

Clearly, similarity searchable symmetric encryption scheme

can easily be achieved by utilizing available secure multi-

party computation protocols which enable distance calculation

between encrypted objects [9], [10]. However, such protocols

do not scale for real data sources due to the intensive com-

putational requirements. To enable efficient similarity search,

some approximation algorithms (e.g., LSH) are widely used

for plain data. We can utilize such efficient methods in the

context of encrypted data. To do so, we need to relax the

definition of search operation. Let dist : F × F 7→ R be a

function that gives the distance between two features, α and β
be the thresholds for the utilized similarity metric s.t. α < β.

Then, FuzzySearch is defined as follows:

FuzzySearch(I, T ) : Performs search on I according to

provided trapdoor of the feature f (T ) and outputs encrypted

data collection C. Suppose Fj is the feature set associated with

Dj . Then, with high probability, Cj ∈ C if ∃fi (dist(fi, f) ≤
α) and Cj /∈ C if ∀fi (dist(fi, f) ≥ β) where fi ∈ Fj .

Although FuzzySearch is not as precise as Search in terms of

the characteristics of the retrieved data, it enables very efficient

similarity searchable symmetric encryption scheme.

III. BACKGROUND AND DEFINITIONS

The basic building block of our solution is locality sensitive

hashing (LSH). We present an overview of LSH in Part III-A

and we continue with the security definition in Part III-B.

A. Locality Sensitive Hashing

LSH is an approximation algorithm for near neighbor search

in high dimensional spaces [12], [14]. The basic idea of LSH

is to use a set of hash functions to map objects into several

buckets such that similar objects share a bucket with high

probability, while dissimilar ones do not. LSH uses locality

sensitive function families to achieve this goal.

Definition III-A.1 (r1, r2, p1, p2)-sensitive Family: Let

r1, r2 be distances according to the utilized distance metric

(dist : F × F 7→ R), such that r1 < r2 and p1, p2 be

probabilities such that p1 > p2. Then, family of hash functions

H is said to be (r1, r2, p1, p2)-sensitive if for any x, y ∈ F
and for any h ∈ H

• if dist(x, y) ≤ r1, then Pr[h(x) = h(y)] ≥ p1.

• if dist(x, y) ≥ r2, then Pr[h(x) = h(y)] ≤ p2.

LSH is useful for similarity search if p1 is much higher than

p2 for some application specific r1 and r2. This is because,

search result should contain almost all the items that are close

to the query point and it should not contain more than a

reasonable amount of dissimilar items. Fortunately, we can

easily construct such locality sensitive functions from a known

family via simple constructions [15]. Suppose we are provided

with a (r1, r2, p1, p2)-sensitive family H , we can form a

locality sensitive function g : F 7→ (g1(F ), ..., gλ(F )) from



H with an AND-construction followed by an OR-construction.

The AND-construction results in a composite hash function

gi = (hi1 ∧ ... ∧ hik) which is the combination of k random

functions from H . In this context, gi(x) = gi(y) if and only if

∀j(hij (x) = hij (y)) where 1 ≤ j ≤ k ∧ hij ∈ H . The OR-

construction is formed with λ different AND-constructions

such that g(x) = g(y) if and only if ∃i(gi(x) = gi(y)) where

1 ≤ i ≤ λ. With such a construction, we can turn (r1, r2,

p1, p2)-sensitive family into a (r1, r2, p′1, p′2)-sensitive family

where p′1 = 1−(1 − p1
k)
λ

and p′2 = 1−(1 − p2
k)
λ

(we refer

the reader to [15] for further details). We could then amplify

the gap between probabilities by adjusting k and λ to push p′1
closer to 1 and p′2 closer to 0.

B. Security Definition

Over the years, many secure index based protocols have

been proposed for searchable symmetric encryption (SSE).

SSE schemes are used for finding exact matches corresponding

to a query and almost all practical SSE schemes leak some in-

formation such as the search and access patterns for efficiency.

Definition III-B.1 Search Pattern (π): Let {f1, ..., fn} be

the feature set for n consecutive queries, then π be a binary

matrix s.t. π[i, j] = 1 if fi = fj and π[i, j] = 0 otherwise.

Definition III-B.2 Access Pattern (Ap): Let D(fi) be

a collection that contains the identifiers of data items with

feature fi and {T1, ..., Tn} be the trapdoors for the query set

{f1, ..., fn}. Then, access pattern for the n trapdoors is defined

as {Ap(T1) = D(f1), ..., Ap(Tn) = D(fn)}.

In our scheme, we try to achieve similarity SSE instead of

a standard SSE. To achieve this, we extract subfeatures from

each feature via LSH. Then, we construct multi-component

trapdoors such that a single component is formed for each

subfeature. Number of common components between distinct

trapdoors may leak relative similarity between them. This kind

of leakage for multi-component trapdoors is captured by our

new definition called similarity pattern.

Definition III-B.3 Similarity Pattern (Sp): Let

(fi
1, ..., fi

y) be the subfeatures of fi, {(f1
1, ..., f1

y), ...,
(fn

1, ..., fn
y)} be the multi-component feature set for n

consecutive queries and i[j] represents the jth component

of ith feature. Then, Sp[i[j], p[r]] = 1 if fi
j = fp

r and

Sp[i[j], p[r]] = 0 otherwise for 1 ≤ i, p ≤ n and 1 ≤ j, r ≤ y.

Security definitions that allow the leakage of only the search

and access patterns have been proposed in the context of SSE.

Among such definitions, simulation based adaptive security

definition of [4] is the widely accepted one in the literature.

We adapt this definition for our similarity SSE such that

similarity pattern is leaked instead of the search pattern. This

is reasonable, because we are trying to achieve similarity

matching. For the definition, we need some auxiliary notions

that represents the interaction between the client and the server.

Definition III-B.4 History (Hn): Let D be the data col-

lection and Q = {f1, ..., fn} be the features for n consecutive

queries. Then, Hn = (D,Q) is defined as a n-query history.

Definition III-B.5 Trace (γ): Let C = {C1, ..., Cℓ}
be the collection of encrypted data items, id(Ci) be the

identifier and |Ci| be the size of Ci, Sp(Hn) and Ap(Hn) be

the similarity and access patterns for Hn. Then, γ(Hn) =
{(id(C1), ..., id(Cℓ)), (|C1|, ..., |Cℓ|), Sp(Hn), Ap(Hn)} is

defined as the trace of Hn. Trace is the maximum amount of

information that a data owner allows to leak to an adversary.

Definition III-B.6 View (v): Let C = {C1, ..., Cℓ} be the

collection of encrypted data items, id(Ci) be the identifier of

Ci, I be the secure index and T = {Tf1 , ..., Tfn
} be the trap-

doors for Hn. Then, v(Hn) = {(id(C1), ..., id(Cℓ)), C, I, T}
is defined as the view of Hn. View is the information that is

accessible to an adversary.

Definition III-B.7 Adaptive Semantic Security for Sim-

ilarity SSE: Similarity SSE scheme is said to be adaptively

semantically secure, if there exists a probabilistic polynomial

time simulator S for all probabilistic polynomial time adver-

saries A, such that S can adaptively simulate the adversary’s

view of the history from the trace with probability negligibly

close to 1. Intuitively, this definition implies that all the

information that is accessible to the adversary (view) could be

constructed from the trace which is essentially the information

that data owner allows to leak. Therefore, one can conclude

that a similarity SSE scheme does not leak any information

beyond the trace if the definition is satisfied by the scheme.

More formally, let Hn be a random history from all possible

histories, v(Hn) be the view and γ(Hn) be the trace of Hn.

Then, similarity SSE scheme satisfies the security definition if

one can define a simulator S such that for all polynomial size

distinguishers Dist, for all polynomials poly and a large r:

Pr[Dist(v(Hn)) = 1]−Pr[Dist(S(γ(Hn))) = 1] <
1

poly(r)

where probabilities are taken over Hn and the internal coins

of key generation and encryption.

IV. OVERVIEW OF THE SOLUTION

In this section, we provide an overview of our solution. To

enable efficient similarity search, Alice builds a secure index

and outsources it to the cloud server along with the encrypted

data items. Server performs search on the index according to

the queries of the data users without learning anything about

the data other than what Alice allows an adversary to learn.

In Part IV-A, we present the index structure. In Part IV-B, we

describe the search scheme that is built on top of the index.

Then, in Part IV-C, we provide a variation of the basic protocol

that involves multiple servers for more secure setting.

A. Secure LSH Index

Our similarity SSE scheme is based on a secure index

structure that is built through locality sensitive hashing (LSH).

LSH maps objects into several buckets such that similar

objects collide in some buckets while dissimilar ones do not

with high probability. Index structure is constructed on top

of this property. Secure LSH index is constructed with the

following 4 steps.

1. Feature Extraction : Let Di be a sensitive data item and

Fi = {fi1 , ..., fiz} be the set of features that characterizes Di.

Then, feature extraction step maps Di to Fi.



2. Metric Space Translation (ρ): Once the features are

extracted, we may need to translate features to vectors in

some metric space to apply LSH. This is because, we do

not always have locality sensitive function family for the

utilized similarity metric, but we can find one after metric

space translation. For instance, suppose the features are strings

and we want to use the edit distance as a similarity metric.

However, there is no known locality sensitive function family

for the edit distance. In such a case, we can embed strings

into the Euclidean space by approximately preserving the

relative edit distance between them [16]. Once strings are

translated into the Euclidean space, we can make use of the

available families that are defined for the Euclidean distance.

In summary, let Fi = {fi1 , ..., fiz} be the feature set of Di.

Then, metric space translation step maps features into a vector

set such that ρ(Fi) = ~Fi where ~Fi = { ~fi1 , ...,
~fiz}.

3. Bucket Index Construction : In step 3, we apply

LSH on the vectors of step 2. Suppose that we have a

locality sensitive function family H for the utilized similarity

metric. Then, we construct a locality sensitive function g :
(g1, g2, ..., gλ) from H according to the requirements of our

application (see Section III-A). We map each feature vector

to λ buckets via composite hash functions g1 to gλ. Suppose,

gi(~fj) be the output of gi on ~fj . Then, gi(~fj) is one bucket

identifier of the index and the data items that contain feature fj
are the members of it. Bucket content is simply a bit vector

of size ℓ where ℓ is the total number of data items to be

stored on the server. Suppose, each data item is assigned an

identifier from 1 to ℓ and let id(Dη) be the identifier of Dη ,

Bk be a bucket identifier and VBk
be the bit vector for Bk.

Then, VBk
[id(Dη)] = 1 if and only if gi(~fj) = Bk for some

fj ∈ Dη , gi ∈ g and VBk
[id(Dη)] = 0 otherwise.

4. Bucket Index Encryption : In this step, we turn LSH

index into a secure index by encrypting bucket identifiers

and contents. Bucket identifiers should be encrypted such that

only the data users are able to generate them during the

query process. Otherwise, an adversary could simply apply

the LSH steps to find out the buckets of a specific feature.

Similarly, content of the buckets should be encrypted to hide

the leakage of important information (e.g., the number of items

in a bucket) which may be utilized by statistical attacks. Let

Kid, Kpayload ∈ {0, 1}ψ be the secret keys of size ψ, EncKid

be a pseudorandom permutation1, EncKpaylaod
be a PCPA-

secure2 encryption scheme (e.g., AES in CTR mode), Bk be

a bucket identifier, VBk
be the bit vector for Bk and I be the

secure index. Then, [EncKid
(Bk), EncKpayload

(VBk
)] ∈ I .

Once encryption is done, we need to add some fake records

into the index to hide the number of features in the dataset.

Let MAX be the maximum number of features that could

occur in a dataset, λ be the number of applied composite

hash functions, c be the number of records in I , bIdsize and

1A random instance of the function family G : F 7→ F is said to be a
pseudorandom permutation if it is computationally indistinguishable from a
totally random permutation on F [17].

2Pseudorandomness against chosen plaintext attacks (PCPA) guarantees the
computational indistinguishability of ciphertexts from random values [4].

bV ecsize be the size of the encrypted bucket identifiers and

payloads respectively. Then, addition of MAX ·λ− c random

pairs (Ri1 , Ri2) where |Ri1 | = bIdsize and |Ri2 | = bV ecsize
prevents the leakage of the number of features3. This is

because, the number of entries in the index is always equal to

MAX · λ.

Secure LSH index construction is summarized in Alg. 1.

Algorithm 1 Build Index

Require: D: data item collection, g: λ composite hash functions, ψ: security
parameter, MAX: maximum possible number of features
Kid ← Keygen(ψ), Kpayload ← Keygen(ψ)
for all Di ∈ D do

Fi ← exract features of Di

for all fij
∈ Fi do

~fij
← apply metric space tranlation on fij

for all gk ∈ g do

if gk( ~fij
) /∈ bucket identifier list then

add gk( ~fij
) to the bucket identifier list

initialize V
gk( ~fij

)
as a zero vector of size |D|

increment recordCount
end if

V
gk( ~fij

)
[id(Di)]← 1

end for

end for
end for
for all Bk ∈ bucket identifier list do
VBk

← retrieve payload of Bk

πBk
← EncKid

(Bk), σVBk
← EncKpayload

(VBk
)

add (πBk
, σVBk

) to I
end for
add MAX · λ− recordCount fake records to I
return I

B. Basic Secure Search Scheme

In this part, we describe the basic protocol for our similarity

SSE scheme, overview of which is presented in Figure 1.

Fig. 1: Basic Secure Search Protocol

1. Key Generation : Initially, Alice generates private keys

Kid, Kpayload and Kcoll.

2. Index Construction : Alice builds an index for the data

collection (D) with keys Kid, Kpayload (see Section IV-A).

3Random record addition to keep the index size constant was initially
proposed in [4]. We apply the same technique on the LSH buckets.



3. Data Encryption : Alice encrypts the items in D

with key Kcoll to form the encrypted collection ED. Sup-

pose, Di ∈ D and id(Di) be the identifier of Di. Then,

(id(Di), EncKcoll
(Di)) ∈ ED where EncKcoll

is a PCPA-

secure2 encryption.

Alice sends the encrypted collection along with the secure

index to the remote server owned by Bob. Once data is

outsourced, data users should be able to selectively retrieve

data from the remote server. To do so, Alice shares the

following information with data users:

• Kcoll : secret key of data collection encryption

• Kid, Kpayload : secret keys of index construction

• ρ : metric space translation function of index construction

• g : locality sensitive hash function of index construction

Shared information enables data users to perform similarity

search on the encrypted collection.

4. Trapdoor Construction : Suppose a user is interested

in retrieving the items that contain feature fi. She initially

applies metric space translation on fi (~fi = ρ(fi)). Then, she

applies LSH to construct the plain query (g1(~fi), ..., gλ(~fi))
where gi ∈ g. Finally, she applies pseudorandom permutation

EncKid
on each component of the plain query such that Tfi

=

(EncKid
(g1(~fi)), ..., EncKid

(gλ(~fi))). Once the trapdoor Tfi

is constructed, user sends it to the server.

5. Search : Server performs search on the index for

each component of Tfi
and sends back the corresponding

encrypted bit vectors. Suppose, {πB1
, ..., πBλ

} is the com-

ponents of Tfi
. Then, the server sends back the set EV =

{σVBi
| (πBi

, σVBi
) ∈ I ∧ 1 ≤ i ≤ λ}. Once the user

receives EV , she decrypts encrypted bit vectors and ranks the

data identifiers.

Item Ranking : Suppose, S(Tfi
) = {VBk

| VBk
=

DecKpayload
(σVBk

) ∧ σVBk
∈ EV } is the set of plain

bit vectors corresponding to trapdoor Tfi
, let id(Dj) be the

identifier of Dj and Zj be a subset of S(Tfi
). Then, the score

of id(Dj) against the trapdoor Tfi
is defined as follows:

score(id(Dj)) = |Zj |,

Zj ⊂ S(Tfi
) s.t. VBk

∈ Zj iff VBk
[id(Dj)] = 1

Note that, features of Dj are mapped to some buckets

during the index construction phase. Similarly, queried feature

fi is mapped to some buckets during the search phase.

score(id(Dj)) is simply the number of common buckets

between the buckets of Dj and fi. If Dj and fi shares more

buckets, then Dj becomes a stronger candidate for retrieval

due to the properties of locality sensitive hashing. Suppose, fi
and fj are features, metric space vectors of which are mapped

to some buckets with the hash functions of g (g1 to gλ). Let X

be a random variable that represents the number of common

buckets (nb) for fi and fj and p be the probability such that

p = Pr[gk(~fi) = gk(~fj)] where gk ∈ g. Then,

Pr(X = nb) =

(

λ

nb

)

pnb(1 − p)λ−nb

Note that, Pr(X = nb) grows for larger nb’s with in-

creasing p. Locality sensitive functions are constructed in

such a way that p becomes larger with increasing similarity

between fi and fj . Therefore, large number of common

buckets implies high similarity between compared features.

Due to this property, if a feature in a data item is highly similar

to the queried feature, the score of the corresponding data

item is expected to be higher. We can use this expectation to

minimize the retrieval of irrelevant items. Only the items with

top t highest scores can be requested from the server instead

of all which share at least one bucket with the trapdoor.

After ranking, user sends identifiers of the data items with

top t highest scores to the server who sends back the encrypted

items corresponding to the provided identifiers.

6. Data Decryption : Once the encrypted items correspond-

ing to the search request are retrieved, user decrypts them with

the key Kcoll to obtain their plain versions.

The search procedure is summarized in Algorithms 2 and 3.

Algorithm 2 Search Round 1

CLIENT:
Require: ρ: metric space translation function, g: λ composite hash functions,
Kid: secret key, f : feature to search
~f ← ρ(f)
for all gk ∈ g do

πk ← EncKid
(gk(~f))

end for
Trapdoor Tf ← (π1, ..., πλ)
Send Tf to Server

SERVER:
Require: I : index, Tf : trapdoor
for all πk ∈ Tf do

if (πk, σVk
) ∈ I then

Send σVk
to Client

end if
end for

Theorem 1: Provided similarity SSE scheme is adaptively

semantically secure according to Definition III-B.7.

Proof: We will show the existence of polyno-

mial size simulator S s.t. the simulated view vS(Hn)
and the real view vR(Hn) of a n query history Hn

are computationally indistinguishable. Let vR(Hn) =
{(id(C1), ..., id(Cℓ)), (C1, ..., Cℓ), I, (Tf1 , ..., Tfn

)} be the

real view and γ(Hn) = {(id(C1), ..., id(Cℓ)), (|C1|, ..., |Cℓ|),
Sp(Hn), Ap(Hn)} be the trace of Hn. Then, S adaptively gen-

erates the simulated view vS(Hn) = {(id(C1)
∗
, ..., id(Cℓ)

∗
),

(C1
∗, ..., Cℓ

∗), I∗, (Tf1
∗, ..., Tfn

∗)} as follows:

• Identifiers of the items are available in the trace. S can

simply copy the identifier list, that is, {id(C1)
∗

= id(C1), ...,

id(Cℓ)
∗

= id(Cℓ)}. Identifier lists of vS(Hn) and vR(Hn)
are identical, thus they are indistinguishable.

• S chooses n random values {C1
∗, ..., Cℓ

∗} such that |C1
∗| =

|C1|, ..., |Cℓ
∗| = |Cℓ|. By the definition of PCPA-security

[4], output of a PCPA-secure encryption scheme is compu-

tationally indistinguishable from a random value. Hence, Ci
∗

and Ci = EncKcoll
(Di) where EncKcoll

is a PCPA-secure

encryption are computationally indistinguishable.



Algorithm 3 Search Round 2

CLIENT:
Require: EV : encrypted bit vectors, Kpayload: secret key, t: score limit

for all σVBk
∈ EV do

VBk
← DecKpayload

(σVBk
)

for i← 1 to |VBk
| do

if VBk
[i] = 1 then

add i to the candidate identifier list
increment score(i)

end if

end for
end for
idList ← select identifiers from candidates with top t highest scores
Send idList to Server

SERVER:
Require: Lid: list of data identifiers, ED : encrypted data collection

for all id ∈ Lid do

if (id, φid) ∈ ED then
Send φid to Client

end if
end for

CLIENT:
Require: C: encrypted data items, Kcoll: secret key

for all φid ∈ C do

item← DecKcoll
(φid)

end for

• Let bIdsize and bV ecsize be the size of an encrypted bucket

identifier and an encrypted bit vector respectively, MAX
be the maximum number of features that can occur in the

user’s dataset and λ be the number of components in a

trapdoor. Then, S chooses MAX ·λ random pairs (Ri1 , Ri2)
s.t. |Ri1 | = bIdsize and |Ri2 | = bV ecsize and inserts them

into I∗. Suppose, (πs, σVs
) ∈ I and (Rs1 , Rs2) ∈ I∗, then

they are computationally indistinguishable. This is because,

πs = EncKid
(s), σVs

= EncKpayload
(Vs) and outputs of

a pseudorandom permutation and a PCPA-secure encryption

are computationally indistinguishable from random values [4],

[17]. In addition, both I and I∗ contain MAX · λ records

by the construction. Computational indistinguishability of any

single record pair and the equality of the number of indistin-

guishable records implies computational indistinguishability

of I and I∗.

• S simulates trapdoors {Tf1 , ..., Tfn
} in sequence with the

help of similarity pattern (Sp). Let Tfi
= {πi1 , ..., πiλ} be

a multi-component trapdoor with λ components, Ti[j] be

the jth component of the ith trapdoor and bIdsize be the

size of an encrypted bucket identifier. If Sp[i[j], p[r]] = 1
for any 1 ≤ p < i and 1 ≤ j, r ≤ λ, set Ti[j]

∗
=

Tp[r]
∗
. Otherwise, set Ti[j]

∗
= Rij where Rij is a random

value such that |Rij | = bIdsize and Rij 6= Tp[r]
∗

for

any 1 ≤ p < i and 1 ≤ r ≤ λ. Note that, Ti[j] and

Ti[j]
∗ are computationally indistinguishable since Ti[j] is

the output of a pseudorandom permutation and Ti[j]
∗

is a

random value with the same length. In addition, similarity

pattern of {Tf1 , ..., Tfn
} is preserved in {Tf1

∗, ..., Tfn

∗} by

the construction. Therefore, simulated and real trapdoor lists

are computationally indistinguishable.

Since each component of vR(Hn) and vS(Hn) are compu-

tationally indistinguishable, we can conclude that the proposed

scheme satisfies the security definition presented in III-B.7.

We mainly concentrate on the search throughout the paper,

but we would like to stress that search and index construction

mechanisms could easily be used for the index update. For

instance, suppose f and f ′ be the original and updated versions

of a feature in a data item. Alice (data owner) can easily

generate the trapdoors for the buckets of f and f ′ and request

the corresponding encrypted bit vectors from the server. Once

received bit vectors are updated and encrypted by Alice, they

can be sent back to the server. Note that, some buckets of f ′

may not exist on the server. In such a case, Alice can ask

server to replace some fake records with the new real records.

To do so, Alice should keep identifiers of the fake records

and generate trapdoors with them for replacement request.

Similarly, if the content of some buckets for f becomes

empty after an update, Alice can ask for replacement of the

corresponding records with some fake records via a similar

replacement request. Existence of both addition and removal

of fake records hides their amount at a particular time.

C. Multi-Server Secure Search Scheme

The basic search scheme reveals the identifiers of the data

items corresponding to a particular trapdoor like most of the

available practical searchable encryption schemes 4. However,

the security pitfalls of this leakage has not been analyzed

in depth in the literature. Hence, hiding association between

trapdoors and data identifiers without significant performance

degradation is desirable. If we can use two servers instead of

a single one, we can easily hide this association. Hence, the

protocol becomes resistant to potential statistical attacks that

can exploit this leakage.

In the multi-server setting, we assume that both servers are

honest but curious and do not collaborate with each other;

a common threat model for multi-party protocols. In such a

setting, Alice can simply divide the outsourced information

between two servers and data users can use the presented basic

search scheme with a minor modification as shown in Figure

2-A. To do so, Alice outsources index to Bob and encrypted

data collection to Charlie. Then, data users send trapdoors

to Bob and receive encrypted bit vectors. Once encrypted bit

vectors are decrypted and ranked as described in Part IV-

B, identifiers with top t scores are requested from Charlie

who sends back the encrypted data items corresponding to

the requested identifiers. In summary, round 1 of the basic

search is conducted with Bob and round 2 is conducted with

Charlie. In this case, Bob observes only the trapdoors and

Charlie observes only the data identifiers. Hence, none of them

can associate the trapdoors with the identifiers.

Existence of multiple servers enables us to remove some

computational burden of the clients by loading more respon-

sibility to the servers. Generally, servers are more powerful

4Although oblivous ram model of Goldreich et. al. [18] prevents any
information leakage for searchable encryption, such a mechanism is too costly
to be practical on real data sources.



Fig. 2: Multi-Server Secure Search Protocol

than clients in terms of computational resources. Therefore,

it is preferable to minimize client computation by transferring

the burden to servers as much as possible. To do so, we utilize

a semantically secure and additive homomorphic asymmetric

encryption scheme called Paillier cryptosystem [19].

If the same message is encrypted multiple times, the ci-

phers do not equal with very high probability (almost 1).

Let, EncKpub
and DecKpriv

be the Paillier encryption and

decryption functions with keys Kpub and Kpriv , m1 and m2 be

messages, cm1
and cm2

be ciphers s.t. cm1
= EncKpub

(m1),
cm2

= EncKpub
(m2). Then, cm1

6= cm2
even if m1 = m2

with very high probability. In addition, Paillier cryptosystem

has homomorphic additive property. Given the ciphers cm1

and cm2
, there exists an efficient algorithm to compute the

encryption of m1+m2. EncKpub
(m1+m2) = cm1

⊙Kpub
cm2

where ⊙Kpub
represents the homomorphic addition of two

ciphers. Properties of Paillier enables us to construct one

round protocol for the client as shown in Figure 2-B. For this

protocol, we need a slightly different index structure which

we call a Paillier index.

Paillier Index (I’) : Let (πs, σVs
) ∈ I where I is the index

of Section IV-A. Then, we could construct I ′ as follows:

Note that, πs corresponds to a single bucket and σVs
is the

encrypted bit vector of the bucket. In Paillier index, instead

of a single encrypted bit vector, we keep encrypted form of

each bit. Suppose, (πs, σVs
) ∈ I . Then, (πs, [es1 , ..., esℓ

]) ∈ I ′

such that esj
= EncKpub

(1) if Vs[id(Dj)] = 1 and esj
=

EncKpub
(0) otherwise. That is, if Dj contains a feature that

is mapped to bucket s by some hash function, then esj
contains

the encrypted bit 1. Otherwise, it contains the encrypted bit 0.

Note that, each encryption of zeros and ones are distinct with

very high probability (almost 1) due to the fact that Paillier is

a semantically secure encryption scheme.

Special structure of the Paillier index enables one round

search scheme for the clients. Once index is constructed

with Paillier encryption, it is outsourced to Bob along with

the Paillier public key. Then, encrypted data collection is

outsourced to Charlie along with the Paillier private key.

Encryption of data collection is performed as presented in

Section IV-B. After Alice outsources the necessary information

to the servers, search could be performed as follows:

1. Trapdoor Construction : This step is exactly same as

the trapdoor construction step of the basic search scheme. User

constructs a multi-component trapdoor Tfi
= {π1, ..., πλ}.

Then, user sends Tfi
to Bob along with a parameter t which

will be used for the retrieval of items with top t highest scores.

2. Index Search (Bob) : Once Bob receives Tfi
, he

extracts the payloads corresponding to all λ components of

it and performs homomorphic addition on the encrypted bits.

Let πs ∈ Tfi
and (πs, [es1 , ..., esℓ

]) ∈ I ′. Then, for all data

identifiers i, Bob computes :

ωscore(i) = e1i
⊙Kpub

...⊙Kpub
eλi

Scores are constructed via homomorphic addition on en-

crypted bits and represent the number of common buckets be-

tween the trapdoor and a particular data item. Once encrypted

scores are computed, Bob sends (i, ωscore(i)) pairs to Charlie

along with the parameter t.
3. Identifier Resolution (Charlie) : Once Charlie receives

the necessary information from Bob, he simply decrypts the

encrypted scores. Then, he performs a ranking among the data

items according to their scores. Ranking is performed exactly

the same way as the ranking step of basic search (see Section

IV-B). After ranking, Charlie sends back the encrypted data

items with top t highest scores among the ones with a score

of at least 1.

Algorithm 4 One Round Multi-Server Search

CLIENT :
Require: ρ: metric space translation function, g: λ composite hash functions,
Kid: secret key, f : feature to search, t: score limit
~f ← ρ(f)
for all gs ∈ g do

πs ← EncKid
(gs(~f))

end for
Trapdoor Tf ← (π1, ..., πλ)
Send (Tf , t) to Bob

SERVER (Bob):

Require: I′ : index, Tf : trapdoor, Kpub : Paillier public key, t : score limit
for all i ∈ identifier list of data collection do

for all πs ∈ Tf do
if (πs, [es1 , ..., esi , ...esℓ

]) ∈ I′ then
ωscore(i) ← ωscore(i) ⊙Kpub

esi

end if
end for

end for

Send (i, ωscore(i)) pairs and parameter t to Charlie

SERVER (Charlie):
Require: SL : encrypted score list, Kpriv : Paillier private key, EC : en-

crypted data collection
for all (id(Di), ωscore(id(Di))

) ∈ SL do

score(id(Di))← DecKpriv
(ωscore(id(Di))

)
end for
Send encrypted data items corresponding to the identifiers with top t highest
scores to the client

One round scheme which is summarized in Alg. 4 removes

some burden from the client by assigning a considerable

amount of load on servers in terms of storage, computation

and bandwidth. However, such extra load may worth it in

some scenarios since cloud servers have significantly more

resources compared to the clients. For instance, reduction of a



little burden may sometimes be very valuable for some clients

such as mobile devices. Note that, the computation and the

bandwidth consumption of servers are linear in the number

of data items but not in the number of features. Hence, one

round scheme will be preferable if the number of data items is

relatively small for a specific user but the number of features

is large. In summary, we can say that there exists a trade-

off between one and two round schemes according to the

computational resources of clients and servers and the number

of data items. We evaluated the computational burden of both

one and two round schemes in Section VI.

V. CASE STUDY: ERROR AWARE KEYWORD SEARCH OVER

ENCRYPTED DATA

In this part, we provide a specific application of the

proposed similarity searchable encryption scheme to clarify

its mechanism. Most of the available searchable encryption

schemes for keyword search is designed for exact matching.

Hence, they do not tolerate any typographical errors in the

queries or data sources which is common for many real world

scenarios. Our similarity SSE scheme offers efficient similarity

tests and could easily be utilized for fault tolerant keyword

search.

In this context, data items be the documents, features of

the documents be the words in them and query feature be

a keyword. Initially, we need to find a metric for measur-

ing the similarity between strings. Next, we need a locality

sensitive function family that enables us to locate similar

strings efficiently. To find a similarity metric along with a

known locality sensitive function family, we need to apply

some translation on the strings. One of the most effective

and simplest translation that we could use is to embed strings

into Bloom filters. Translation of strings into the Bloom filter

encodings is widely used for similarity measurement in the

context of private record linkage [20]. After encoding, we

can measure the similarity with a set based similarity measure

such as Jaccard distance. It is known that there is an effective

locality sensitive hash family that is designed for Jaccard

measure called Minhash [21]. We could make use of Minhash

as a base to construct the locality sensitive function that we

need.

Bloom Filter Encoding : A Bloom filter is a bit array that

is affiliated with some hash functions [20]. Each function maps

a given element to a bit location with a uniform probability.

To embed string S into the filter, it is represented as the set of

substrings of length n, or n-grams. Each n-gram is then subject

to each hash function and the corresponding bit locations are

set to 1. A sample encoding is presented in Figure 3, the 2-

grams of strings are encoded with two hash functions.

Fig. 3: Sample Bloom Filter Encoding

Once strings are mapped into the Bloom filter, we can make

use of Jaccard to measure the distance. Let A and B be two

sets, then Jaccard distance between them is defined as follows:

Jd(A,B) = 1 −
|A ∩B|

|A ∪B|

Bloom filter encodings can easily be represented as sets.

If the value of a particular bit location is 1 in the encoding,

then that location is the member of the corresponding set. Let

encode be the encoding function, L be the list of bit locations

in the encoding and ρ be the function that translates strings to

sets via Bloom filter encoding. Then ρ is defined as follows:

ρ(S) = {i | i ∈ L ∧ encode(S)[i] = 1}

We make use of ρ as a metric space translation function

in this context. An example translation and Jaccard distance

calculation is demonstrated in Figure 3. As mentioned before,

there exists an effective locality sensitive family for Jaccard

distance called MinHash [21].

MinHash Family : Let ∆ be the domain of all possible

elements of a set, P be a random permutation on ∆, P [i] be

the element in ith position of P and min be a function that

returns the minimum of a set of numbers. Then minhash of a

set R under P (hP (R)) is defined as :

hP (R) = min({i | 1 ≤ i ≤ |∆| ∧ P [i] ∈ R})

MinHash family (MF ) be then simply the set of minhash

functions under distinct random permutations on ∆.

Example V.1 : In Figure 3, metric space translation is

applied on ‘john’ and ‘johhn’. In the new space, we can apply

minhash functions. Note that, the encodings are 10 bit long.

Hence, domain of all possible elements of a set corresponding

to an encoding can be specified as ∆ = {i | 1 ≤ i ≤ 10}. Let

P1 = {8, 3, 6, 1, 9, 5, 2, 4, 7, 10} be a permutation on ∆, then

hP1
(ρ(john)) = 4 and hP1

(ρ(johhn)) = 3. This is because,

{1} is the first element in P1 which is a member of ρ(john)
with location 4 in P1. Similarly, {6} is the first element in P1

which is a member of ρ(johhn) with location 3 in P1.

MinHash is shown to be a (r1, r2, 1 − r1, 1 − r2)-sensitive

family for any r1 and r2 such that r1 < r2 (see [15]).

Example V.2 : Let r1 = 0.2 and r2 = 0.7. Then, we have

a (0.2, 0.7, 0.8, 0.3)-sensitive family. We can construct a new

family from MinHash via AND construction followed by an

OR construction as presented in Section III-A. Suppose we

need a family G = {g : (g1, ..., gλ)} such that if Jd(A,B) ≤
0.2, then Pr[∃i (gi(A) = gi(B))] ≥ 0.99 and if Jd(A,B) ≥
0.7, then Pr[∃i (gi(A) = gi(B))] ≤ 0.01 where 1 ≤ i ≤ λ.

We can easily obtain such a family from MF through AND-

OR construction with parameters λ = 20 and k = 7. With this

setting, we have a (0.2, 0.7, 0.99, 0.004)-sensitive family.

Once similarity metric, metric space translation function and

locality sensitive function family are determined, remaining

steps are standard for any similarity search. Index construction

and search schemes of Sections IV-A and IV-B can easily be

applied afterward.



VI. EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation of

the proposed scheme. We investigated the success of our

scheme in the context of error aware keyword search, but we

would like to stress that the scheme can be applied to distinct

similarity search contexts over encrypted data. To perform our

evaluation, we used a publicly available Email dataset, namely

the Enron dataset [22]. We constructed a sample corpus of

5000 e-mails via random selection from Enron. Then, we

built a secure LSH index on the sample corpus. For index

construction, we embedded 2-grams of words into 500 bit

Bloom filter with 15 hash functions as described in Section

V. This setting is recommended in [20] for the encoding of

the strings.

Note that, we need to determine distance thresholds for

our FuzzySearch scheme according to requirements of our

application (see Section II). To do so, we perturbed the

keywords by introducing typographical errors and measured

the Jaccard distance between the encodings of the original

and perturbed versions. For perturbation, we used a publicly

available typo generator [23] which produces a variety of

spelling errors (e.g., skipped, reversed, inserted letters). Ac-

cording to our empirical observations, only a small percentage

of the measurements had a distance that is more than 0.8
and most of them had a distance that is less than 0.45.

Therefore, we wanted to retrieve a mail M upon query q if

∃wi(wi ∈ M ∧ Jd(ρ(wi), ρ(q)) ≤ 0.45) and not to retrieve

it if ∀wi(wi ∈ M ∧ Jd(ρ(wi), ρ(q)) ≥ 0.8), where wi is

a word in M and ρ is the encoding function. In summary,

we determined FuzzySearch thresholds (α = 0.45, β = 0.8)

via some empirical analysis. One can use other methods

to determine these thresholds depending on the application

context (e.g., domain experts, historical data analysis). We

built a locality sensitive family from MinHash according to

the thresholds. To do so, we set the parameters of AND-OR

construction (k = 5, λ = 37) such that we have a (0.45, 0.8,

0.85, 0.01)-sensitive family.

For encryption of both e-mails and secure index constructs,

we used AES block cipher in CTR mode [17] with 128

bit secret key. For one round search scheme of multi-server

setting, we make use of Paillier index (see Section IV-C).

In such setting, Paillier encryption was performed with 512

bit public key. To do so, we used our publicly available

Paillier Threshold Encryption toolbox [24]. The retrieval and

performance evaluations of our scheme are presented in parts

VI-A and VI-B respectively.

A. Retrieval Evaluation :

The experiments of this part have been conducted in a single

server setting, but note that the results are completely valid for

multi-server setting. To evaluate the retrieval success, we ini-

tially selected 1000 random keywords from the corpus. Then,

we generated queries by perturbing the selected keywords 25%

of the time via the typo generator. In other words, 250 of

the queries had some spelling error5. We formed trapdoors

for the queries by following the trapdoor construction method

of Section IV-B with the settings of the index setup (e.g.,

LSH function). To verify the LSH based theoretical results of

the scheme with empirical observation, we calculated average

retrieval ratio corresponding to the issued queries.

Average Retrieval Ratio : Let ρ be the encoding function,

q be the query, wq be a word in document Di s.t. ρ(wq) is the

most similar encoding to ρ(q) among all encodings ρ(wj) for

wj ∈ Di. Then, the distance between Di and q (dist(q,Di)) is

defined to be Jd(ρ(wq), ρ(q)) where Jd is the Jaccard distance.

Suppose D is the collection of all documents, RD(q) is the set

of retrieved documents when query q is issued, Ddk
(q) is the

set of documents within dk distance from q s.t. Dj ∈ Ddk
(q)

iff (Dj ∈ D ∧ dk ≤ dist(q,Dj) < dk + ǫ) where ǫ is a

small constant and RDdk
(q) = RD(q)∩Ddk

(q). Then, retrieval

ratio of query q and average retrieval ratio of the query set

Q = {q1, ..., qn} for distance dk are defined as:

rrdk
(q) =

|RDdk
(q)|

|Ddk
(q)|

, arrdk
(Q) =

∑n
j=1 rrdk

(qj)

n

Figure 4 shows the average retrieval ratio for the issued

queries. As mentioned in the index setup, we formed LSH

function to retrieve Di if dist(Di, q) ≤ 0.45 and not to retrieve

it if dist(Di, q) ≥ 0.8 with high probability. The range [0.45,

0.8] is the fuzzy range such that the probability of retrieval

decreases with increasing distance. Note that, probabilities for

the constructed locality sensitive function is valid for single

word pair. If the similarity of the encoded versions of a query

and a single word in a document is less than a threshold,

they don’t share a bucket with high probability. On the other

hand, a document may contain many words and we take into

account all of them for the retrieval decision. One can argue

that, this may significantly increase the retrieval probability of

irrelevant documents. Fortunately, the probabilities of bucket

sharing for distinct query, word pairs are not independent but

depend on their location in the metric space. If all the words

of a document are far from the query, they do not share any

bucket with the query most of the time as verified by our

experiments.

Another result that is due to the properties of LSH is the

correlation of the number of common buckets and the distance

between a query and a document (see Section IV-B). The

probability of sharing more buckets increases with decreasing

distance which enables item ranking for the retrieval. To verify

this, we measured the variation of the distance between a

document and a query with changing number of common

buckets. Let R
D(q)
m be the set of document identifiers that are

retrieved when query q is issued such that members of R
D(q)
m

shares m common buckets with q. Then, the distance of the

query q and average distance of the query set Q = {q1, ..., qn}
for m common buckets are defined as:

5As pointed out in [5], 23% of the time search input ”Britney” is misspelled
according to Google statistics. Hence, we chose %25 as a reasonable error
rate for our experiments.



dstm(q) =

∑

Di∈R
D(q)
m

dist(Di, q)

|R
D(q)
m |

, adstm(Q) =

∑n
j=1 dstm(qj)

n

Figure 5 depicts the adstm(Q) for issued 1000 queries. This

result verifies the applied ranking mechanism.
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To evaluate the success of the error aware keyword search,

we used precision and recall as an evaluation metric. Let D(w)
be the set of documents that contain word w and w′ be the

query issued for retrieving D(w). Note that, 25% of the time

w 6= w′ due to the perturbation. In this context, we want to

retrieve document Di upon issuing the query w′ if and only

if w ∈ Di. Suppose RD(w′) be the set of documents that are

retrieved when w′ is issued and RD(w) be the subset of RD(w′)

such that members of it contain w. Then, the precision and

recall for w′ and the average precision and recall for the set

W ′ = {w′

1, ..., w
′

n} are defined as follows:

prec(w′) =
|RD(w)|

|RD(w′)|
, aprec(W ′) =

n
∑

j=1

prec(w′

i)

n

rec(w′) =
|RD(w)|

|D(w)|
, arec(W ′) =

n
∑

j=1

rec(w′

i)

n

Once a query is issued, retrieved document identifiers are

ranked according to their scores. Then, items with top t highest

scores are requested from the server. Average precision and

recall for issued 1000 queries with changing t is demonstrated

in Figure 6. As expected, less similar items are retrieved with

increasing t.
In addition to similar item retrieval, one may want to retrieve

only the exact matches for a particular query. In such a case,

she can only request the documents which shares maximum
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Fig. 6: Error Aware Keyword Search Evaluation

possible number of buckets with the query. In our experimental

setting, each query is mapped to 37 buckets, so the query

and a document should share 37 buckets for the exact match

scenario. We issued 1000 unperturbed queries to evaluate the

success of exact match scenario. Average precision and recall

are 0.99 and 1 respectively. Hence, one can easily switch to

exact match without almost any degradation in the retrieval

quality.

Note that, the retrieval results are due to the properties of

LSH. Theory behind LSH offers successful retrieval results

and one can arrange its parameters (k, λ) according to the

requirements of a specific application (see Section III-A). Our

similarity searchable symmetric encryption scheme enables

secure utilization of LSH.

B. Performance Evaluation :

In this part, we evaluated the performance of both basic

and one round multi-server search schemes. Note that, the

computational requirement of two round multi-server scheme

is almost same as the basic scheme from the user’s perspec-

tive. For the basic scheme, we evaluated the effect of LSH

parameters (k and λ), number of data items (nd) and number

of features (nf ) on the search performance. To do so, we

measured the average search time and transferred protocol data

for 1000 queries with distinct settings in our local network.

Search time is simply the time between the search request and

the identification of the data identifiers. Protocol data is the

amount of the data transferred between the client and server

for the protocol (e.g., trapdoors + encrypted bit vectors +

document identifiers6). It does not include the final transfer

of the requested items which highly depends on the size of

the data items but not the protocol. To observe the effect of

distinct settings, we modified a single parameter at a time and

used the default values for the others. We used k = 5, λ = 37,

nd = 3000 and nf = 3000 as default values7. In error aware

keyword search context, nd is the number of documents and

nf is the number of distinct words that are indexed. That is,

we selected nf random words and nd random documents from

our sample corpus. Then, we indexed the selected documents

using only the selected words.

6In worst case, one can request all the documents that shares at least 1
bucket with the query. Hence, identifiers in the protocol data include all such
identifiers instead of the top ranked ones.

7Index construction with default settings could be done in a few minutes
on a commodity server and it can easily be parallelizable if necessary.



Both protocol data and search time decreases with increas-

ing k, as shown Figure 7-a. This is because, less number

of data items are identified by the search due to the more

restricted distance range of larger k. Large k offers retrieval of

only very similar items. In addition to less transmission time,

ranking of less items on client side decrements the search time.

Decrease in k and increase in λ have similar effects in terms of

final search results (see Section III-A). Hence, with increasing

λ, protocol data and search time increases as shown in Figure

7-b. But note that, effects of k and λ are not parallel. This is

because, increase in λ has additional cost of larger trapdoors.

Although increase in k does not improve the performance that

much after a point (e.g., only exact matches are retrieved),

decrease in λ does due to the smaller trapdoors. The effect

of changing nd and nf is demonstrated in Figures 7-c and

7-d respectively. Increase in the number of documents results

in more items that satisfies the search request. In addition,

encrypted bit vectors that are transferred to the client becomes

larger due to the fact that vector contains nd bits (see Section

IV-A). On the other hand, increment in nf does not change

the performance that much as expected. Addition of more

terms into the index slightly augments matching items against

a query which in turn causes a minor decrease in performance.

In addition to basic and two round multi-server search

schemes, we proposed Paillier index based one round multi-

server search scheme. Although one round scheme mitigates

the computational burden of the clients, it brings extra burden

to the servers which is linear in the number of data items

(nd). Hence, such scheme is useful if nd is limited but

the number of features (nf ) is high (e.g., large documents,

videos). The main bottleneck of one round scheme is the

transfer of homomorphic addition results between two servers

which depends on nd (see Section IV-C). In Figure 8-a, we

presented the change in search time and transferred protocol

data between two servers with changing nd. As expected,

the protocol data and the search time increases linearly with

increasing nd. On the other hand, search performance does

not depend on nf as demonstrated in Figure 8-b. In summary,

one round scheme is a practical setting for a limited number

of data items with large set of features. If the number of data

items is huge, then it is more practical to go with two round

schemes.
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Fig. 8: One Round Scheme Search Performance

VII. RELATED WORK

Over the years, various protocols and security definitions

have been proposed for searchable encryption. Optimal secu-

rity is achieved by the oblivous RAM model [18] of Goldreich

et. al. which does not leak any information to the server.

However, this model is impractical for real world scenarios

due to the excessive computational costs (e.g., polylogarithmic

rounds of interaction for each search). As an alternative to

heavyweight oblivious RAM, there are approaches ( [1]–[8])

to selectively leak information (e.g., search pattern and access

pattern) to provide practical searchable encryption schemes.

The first of such practical approaches was provided in [7].

Song et. al. proposed to encrypt each word of a document with

a special encryption construct. Later on, Goh et. al. proposed

a security definition to formalize the security requirements

of searchable symmetric encryption in [6]. Similarly, Chang

et. al. introduced a simulation based security definition in [2]

which is slightly stronger than the definition of [6]. However,

both definitions do not consider adaptive adversaries which

could generate the queries according to the outcomes of

previous queries. The shortcomings of [2] and [6] have been

addressed in [4], where Curtmola et. al. presented adaptive

security definition for searchable encryption schemes. In [4],

they also provided a protocol that is compatible with their

definition.

All the secure index based schemes presented so far, do

not enable similarity matching but only exact matching in

the context of keyword search. Hence, such schemes are not

resistant to the typographical errors which is common for real

world search scenarios. Li et. al. proposed wildcard based

fuzzy keyword search scheme over encrypted data in [5].

Although fuzzy scheme tolerates errors to some extent, it is

only applicable to strings under edit distance. Also, fuzzy sets

may become too big if we have long words which neces-

sitates to issue large trapdoors. Another similarity matching

technique for encrypted data was proposed in [25]. Their

approach is applicable to approximate string search under

Hamming distance. In contrast to this study, their approach

assumes categorical division in the data sources. For instance,

documents are divided into fields (e.g., email to, from fields)

in such a way that each field holds a single value.

Secure index based search was also applied in the context

of encrypted multimedia databases [26]. Lu et. al. proposed

to extract visual words from images and construct indexes

according to them. Their approach is slightly different than

traditional search such that query is not a specific feature for

an image but all features of an image. The goal is to retrieve

images that are similar to the query image.

In addition to index based schemes, there are some sophis-

ticated cryptographic techniques that enable similarity tests.

Various distance measures such as edit distance [10] and

approximation of Hamming distance [9] can be computed

securely. Also, a recent fully homomorphic encryption scheme

[27] enables secure computation of various functions on en-

crypted data. Such techniques can be utilized for similarity
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Fig. 7: Basic Scheme Search Performance

search over encrypted data. However, they are inefficient due

to their reliance on costly cryptographic operations and they

do not scale well for real world data sources.

VIII. CONCLUSION

In this paper, we proposed an efficient similarity searchable

symmetric encryption scheme. To do so, we utilized locality

sensitive hashing which is widely used for fast similarity

search in high dimensional spaces for plain data. We proposed

LSH based secure index and a search scheme to enable fast

similarity search in the context of encrypted data. In such a

context, it is very critical not to sacrifice the confidentiality of

the sensitive data while providing functionality. We provided

a rigorous security definition and proved the security of the

proposed scheme under the provided definition to ensure

the confidentiality. To clarify the properties of the proposed

scheme, we presented a real world application of it, namely the

error aware keyword search. This application enables keyword

search which is tolerant to the typographical errors both in

the queries and the data sources. Finally, we illustrated the

performance of the proposed scheme with empirical analysis

on a real data.
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