Probabilistic Escrow of Financial Transactions
with Cumulative Threshold Disclosure

Stanislaw Jarecki! and Vitaly Shmatikov?

L University of California, Irvine
2 University of Texas at Austin

Abstract. We propose a scheme for privacy-preserving escrow of finan-
cial transactions. The objective of the scheme is to preserve privacy and
anonymity of the individual user engaging in financial transactions un-
til the cumulative amount of all transactions in a certain category, for
example all transactions with a particular counterparty in any single
month, reaches a pre-specified threshold. When the threshold is reached,
the escrow agency automatically gains the ability to decrypt the escrows
of all transactions in that category (and only that category).

Our scheme employs the probabilistic polling idea of Jarecki and Odlyzko
[JO97], amended by a novel robustness mechanism which makes such
scheme secure for malicious parties. When submitting the escrow of a
transaction, with probability that is proportional to the amount of the
transaction, the user reveals a share of the key under which all his trans-
actions are encrypted. Therefore, the fraction of shares that are known
to the escrow agency is an accurate approximation of the fraction of the
threshold amount that has been transacted so far. When the threshold is
reached, with high probability the escrow agency possesses all the shares
that it needs to reconstruct the key and open the escrows. Our main
technical contribution is a novel tool of robust probabilistic information
transfer, which we implement using techniques of optimistic fair 2-party
computation.

1 Introduction

Increasing demands by law enforcement and regulatory agencies to monitor fi-
nancial transactions are gradually eroding individual and organizational privacy.
A common legal requirement is that all transactions exceeding a certain thresh-
old (e.g., $10,000 for currency transactions in the U.S.) must be reported to the
financial authorities. Moreover, if a financial institution suspects that a customer
is engaged in “structuring” his transactions so as to avoid the reporting require-
ment (e.g., making regular cash deposits just under the reporting threshold),
the institution is required to report these transactions, too. This may lead to an
unnecessary loss of privacy, since the transactions in question may be innocuous.

Building on the transaction escrow scheme of [JS04], we propose an efficient
technical solution to the problem of reporting structured transactions. Our goal
is to balance individual privacy with the legally mandated cumulative threshold

disclosure requirement, e.g., “all transactions of any individual totaling T or
more must be disclosed”. Our scheme guarantees the following properties:

Privacy: With high probability, an individual whose transactions total less than
the pre-specified threshold T enjoys provable anonymity and privacy. In par-
ticular, a malicious escrow agency cannot feasibly open the escrowed trans-
actions whose cumulative amount is less than this threshold.

Cumulative threshold disclosure: Once the total amount of some individ-
ual’s escrowed transactions exceeds the pre-specified threshold 7', then with
high probability the escrow agency is able to (i) efficiently identify these
transactions among all escrows it has collected, and (ii) automatically open
these (and only these) escrows without help from their creator.

We achieve these properties assuming a trusted third party (TTP), which
is only invoked optimistically. The role of the TTP can be naturally played by
the Key Certification Authority, whose presence is required in any case in any
realistic transaction escrow system. Our protocols are optimistic in the sense
that the TTP is contacted only if one of the parties notices that the other one
misbehaves. The effect of interaction with the TTP is equivalent to interaction
with an honest counterparty in the protocol, hence there is no incentive for either
player to diverge from the protocol specification. Therefore, in practice the TTP
should only be invoked in the (rare) cases of certain communication failures.

Both privacy and cumulative threshold disclosure properties in our scheme
are probabilistic: (1) there is a small probability of erroneous disclosure, i.e., that
some individual’s transactions will be revealed to the escrow agency even though
they total less than the pre-specified threshold, and (2) there is also a small prob-
ability of erroneous non-disclosure, i.e., that some individual’s transactions will
not be disclosed even though they total more than the threshold. Both proba-
bilities decrease sharply with the distance separating the cumulative transaction
amount and the threshold T' (i.e., it is highly unlikely that privacy of some in-
dividual will be compromised if the cumulative amount of his transactions is
significantly below T', or that he will avoid disclosure if it is significantly higher
than T'). Our scheme provides a tradeoff between the computation and commu-
nication complexity of interaction between the user and the escrow agency, and
the sharpness of the slope of these functions.

Overview of transaction escrow. The concept of verifiable transaction escrow
was introduced in [JS04], but the escrow scheme in [JS04] does not support
cumulative disclosure conditions which are the focus of the present paper. Fol-
lowing [JS04], we refer to the individual performing the transaction, e.g., a bank
transfer or a stock purchase, as the user (U), and the escrow agency collecting
the escrows as the agency (A). We assume that U and A communicate over an
anonymizing channel. In particular, U may send information to and engage in
zero-knowledge protocols with A through a proxy, without revealing U’s true
identity. We refer to the full description of any transaction as the transaction
plaintext. We'll say that transactions are related if they belong to the same cat-
egory, and to simplify the exposition, we’ll equate the category with the user’s

identity. In real applications, the category of a transaction might be more fine-
grained, and determined not only by the user’s identity, but also by any predi-
cate on the transaction plaintext, such as the type of the transaction, the payee’s
identity, the jurisdiction of the payee’s financial institution, etc.

A transaction escrow scheme, as introduced in [JS04], must ensure category-
preserving anonymity: the only information the escrow agency can learn from
any two escrowed transactions is whether or not they originate from the same
user. Importantly, the agency does not learn which user this is.> The scheme
of [JS04] can also support simple threshold disclosure: the agency can effi-
ciently identify and de-escrow all transactions that belong to the same category
once the number of such transactions reaches a pre-specified threshold.

Cumulative disclosure conditions for financial transactions. A simple threshold
disclosure condition described above cannot efficiently support monitoring of
financial flows, because financial oversight laws usually call for transactions of a
certain type to be reported to the monitoring agency based on the total value
of the transactions and not just their number. Indeed, this objective is difficult
to achieve with any system in which disclosure is based just on the number of
transactions. No matter how we set the limit which determines when a single
transaction needs to be escrowed and the number of transactions that should
lead to automatic disclosure, the person performing the transactions can divide
his transactions into small pieces, each of which stays below the threshold level.

2 Overview of Escrow with Cumulative Disclosure

Let T be the pre-specified cumulative disclosure threshold for transactions orig-
inating from a single individual (e.g., $10,000 for financial transactions in the
U.S.). Conceptually, we split the threshold T into d parts, e.g., d = 20 (in sec-
tion 6, we discuss how to choose d and we describe the trade-off between efficiency
and the probability of erroneous disclosure or non-disclosure). All transactions
that belong to the same category are encrypted with the same key, using a ver-
ifiable anonymous encryption scheme. The key itself is split by the user into d
shares using standard verifiable secret sharing techniques [Fel87].

Our scheme follows the “probabilistic polling” idea proposed by Jarecki and
Odlyzko for a micropayment scheme [JO97]. Whenever the user performs a trans-
action for some amount ¢ < % (higher amounts need to be subdivided into pieces
of at most % value) and submits the corresponding escrow to the agency, the
user must also reveal one share of his encryption key with probability exactly
equal to % x t. If the probability of submitting a share is set in this way, then
regardless of the size ¢t of the individual transactions that make up a cumula-
tive amount A, the expected number of shares generated by a user who escrows
n= % transactions will be n(% x 1) = % d, which is independent of ¢.

3 Note that this requirement precludes the traditional escrow solutions where plaintext
data is encrypted under escrow agency’s public key, as the escrow agency would then
in principle be always able to decrypt all the escrowed data.

When total amount reaches A = T + 6, regardless of the pattern of trans-
actions, with probability that grows steeply with § the escrow agency will have
obtained d shares, enabling it to reconstruct the key and open all escrows of
that user. Because the agency cannot feasibly decrypt the escrows until it col-
lects d shares, all transactions of a user whose cumulative transaction value A is
A =T —) will stay secret with probability that again increases sharply with §.

Robust probabilistic information transfer with a fair coin toss. To guarantee that
the share is transferred from the user to the agency with the required probability,
we develop a joint coin tossing protocol between the user and the agency based on
fair exchange of random contributions (encrypted under the trusted third party’s
public key) using the standard techniques of optimistic fair exchange of secrets
(see, e.g., [ASWO00]). In addition to committing to his random contribution,
the user verifiably commits to a share of the escrow key, using the verifiable
encryption scheme of Camenisch and Shoup [CS03], and “signs” (see below) the
transcript of the protocol up to that point. The parties then de-commit their
contributions to the joint coin toss, and if the resulting coin toss indicates that
the share must be revealed, the user is expected to open his commitment. If the
user refuses to de-commit his random contribution correctly, or refuses to reveal
the share itself, the agency can appeal to a trusted third party, who will open
the escrow and reveal the user’s share if the joint coin toss should indeed result
in a transfer of the share. Thus neither the user, nor the agency can skew the
probability with which the key share is transferred between them.

Note that the agency must be able verify the user’s signatures without learn-
ing his identity. Since the TTP is allowed to know the user’s identity, we com-
bine the unlinkable credentials technique of [CLO1] with the verifiable encryption
of [CS03] and have the user issue signatures under a public key which is itself
encrypted under the TTP’s public key. The escrow agency does not learn the
user’s public key, but can verify that (1) some CA-certified valid public key was
used and the TTP will be able to identify it, and (2) the transcript was signed
under that key, and the TTP will be able to verify it.

There is a small privacy leak in our scheme since the escrow agency must
know the probability with which the information is to be transferred. Since this
probability is proportional to the transaction value, the agency essentially learns
this value. This leak appears harmless in practice since the agency does not
learn the identity of the user, or anything else about the transaction plaintext,
except that the transaction must be related to some other previously escrowed
transactions, and thus that they all originate from the same (unknown) user.

Related work. Our scheme employs Shamir’s polynomial secret sharing in such a
way that user’s revelation of enough shares enable the escrow agency to recover
the user’s keys and decrypt his/her escrowed data. Similar idea was proposed
for secure metering of web accesses by Naor and Pinkas [NP98], but in our
scheme this idea is is extended so that (1) it can be used in conjunction with a
PKI system, so that the secret sharing is determined by the user’s private key,
(2) the generated shares must be linkable to each other but unlinkable to their

originator, and (3) the shares need to be generated only with some probability,
and this probabilistic generation must be fair.

Our notion of a probabilistic information transfer owes much to works on 2-
party coin tossing [Blu82] and two-party secure computation in general [Can00].
Our implementation of this functionality utilizes the techniques and the model
of the 2-party computation with off-line trusted third party, used e.g., by the
secret exchange protocol of Asokan, Shoup, and Waidner [ASWO00], and by the
general fair 2-party computation protocol of Cachin and Camenish [CCO00].

3 Model and Definitions

A transaction escrow system involves an FEscrow Agency and any number of
Users. Users engage in financial transactions such as stock purchases, wire trans-
fers, etc. For the purposes of this paper, we will focus on one application, in which
the transactions are wire transfers (or more properly, wire transfer requests) and
the counterparties of these transactions (i.e., the entities the perform them on
users’ behalf) are banks and other financial services providers. As mentioned
in the introduction, each transaction is fully described by its plaintext, and we
define the category of the transaction as simply the user’s identity. To make
this identity unambiguous, we assume a global PKI with a trusted Certification
Authority who issues a unique public key credential to every user.

In our scheme the user, knowing the plaintext of his intended transaction,
first performs a protocol with the escrow agency in which he sends to the agency
a transaction escrow and in return receives the agency’s receipt. The user then
engages in the transaction with the counterparty, and the counterparty verifies
that the user holds a valid receipt for this transaction. Note that we have no hope
of escrowing transactions in which a counterparty aids the user in avoiding the
escrow protocol by foregoing the verification of the escrow receipt. Simply speak-
ing, if some user and counterparty want to conduct an un-monitored transaction,
they can. The transaction escrow scheme can help in monitoring only transac-
tions in which at least one of the participants, the user or the counterparty,
enables this monitoring. Similarly, the user’s privacy against the escrow agency
can only be protected for transactions with honest counteparties. A dishonest
counterparty can always forward the transaction plaintext to the agency.

We call a transaction escrow scheme (ar ¢, fr,+)-probabilistic cumulative
threshold escrow if it satisfies the following properties, where a7 ; and fr; are
both functions from real values to the [0, 1] interval, T is the global pre-specified
cumulative privacy threshold, and t is the minimum allowed transaction size.

ar-probabilistic cumulative threshold disclosure. Independently for ev-
ery user, regardless of his transaction pattern, if the user escrows transactions
whose total cumulative value equals A = T + §, then with probability at least
1 — ar4(0) (minus a negligible amount), all transactions of this user can be
efficiently identified and de-escrowed by the agency.

Or-probabilistic amount-revealing privacy. For any two escrows e, e’ of
two transactions conducted with some honest counterparties, the only thing

that a (potentially malicious) escrow agency learns about these transactions
is (1) whether or not they originate with the same user, and (2) the numerical
amounts val(e), val(e’) transacted in each case. Moreover, regardless of the user’s
transaction pattern and of the actions of the escrow agency, if the escrows cor-
respond to transactions whose total cumulative value equals A = T —§, then all
transactions of this user are revealed to the agency protection with probability
at most B74(0) (plus a negligible amount).

Unlike in [JS04], disclosure depends probabilistically on the cumulative trans-
acted amount. With probability of at least 1 — a(d), which approaches 1 as
6 = A — T increases, the escrow agency can open all escrowed transactions of
a user whose transactions add up to A. Therefore, o represents the risk of not
being able to open some user’s escrows even though their cumulative transacted
amount is higher than the threshold. Also, there is an additional privacy re-
laxation: 3 represents the risk of privacy violation for users whose cumulative
transaction amount does not yet reach the pre-specified threshold.

Our escrow scheme is actually a family of schemes, each of which is an
(o ¢, B,)-probabilistic cumulative threshold escrow scheme for some functions
ary, and Or ;. As the number of shares increases (and the scheme becomes less
efficient), the “accuracy” of probabilistic disclosure gets better in the sense that
for any value ¢, the two functions decrease more sharply, which reduces the risk of
both erroneous disclosure and erroneous non-disclosure. Both functions decrease
slower (and hence get worse) when the minimum transaction size ¢ decreases.
However, the impact of ¢ on both these functions seem very small, and we con-
jecture that a and 3 will stay approximately the same even for very small values
of t, thus eliminating the need for the minimum transaction size restriction.

4 Basic Threshold Escrow

Before summarizing the transaction escrow scheme of [JS04], we’d like to em-
phasize the difference between that scheme and the scheme proposed in this
paper. In [JS04], the disclosure condition is, roughly, as follows: “If the number
of transactions, each of which originates from the same user and satisfies a par-
ticular condition, is greater than some threshold d, then open the corresponding
escrows.” In this paper, the disclosure condition is as follows: “If the transac-
tions jointly satisfy a particular condition (namely, the total transacted amount
is above some threshold T'), then open the corresponding escrows.” One of the
contributions of this paper is to build on the techniques of [JS04] to support a
disclosure condition that spans multiple transactions of the same user.

4.1 Cryptographic toolkit

Our constructions rely on the hardness of the Decisional Diffie-Hellman (DDH)
problem in subgroup Q R, of quadratic residues in Zy, where p, q are large primes
such that p = 2¢+1, and g is a generator of Z,. Our basic cryptographic tool is
a verifiable random function (VRF) family, implemented in the Random Oracle

Model and based on DDH. Let H : 0,1 — Z, be an ideal hash function. The
VRF family is defined by

(i) the key generation algorithm that picks a secret key k € Z; and the corre-
sponding public key pk = ¢%* mod p,

(ii) the evaluation algorithm Evaly(z) which outputs y = H(z)?* mod p and
a non-interactive zero-knowledge proof 7 of equality of discrete logarithms x =
DLy (y) = DLy (pk), which proves that the function was computed correctly (such
proof can be accomplished in ROM with a few exponentiations using standard
techniques, e.g., [CP92]), and

(iii) the verification algorithm for verifying proof 7 of discrete-log equality.

4.2 Basic transaction escrow with simple threshold disclosure

We assume that every user U is initialized with a secret key ki, chosen at
random in Zg, and that the corresponding public key pky = g*FU is signed by the
Certification Authority. We assume that the escrow agency has been initialized
with the public/private key pair of an unlinkable CMA-secure signature scheme
of Camenisch-Lysyanskaya [CLO1], and that the disclosure threshold d is a global
constant. We say that two transactions m and m’ belong to the same category
if and only if they are originate with the same user.*

Suppose user U wishes to perform a transaction described by plaintext m
with some counterparty C. Before carrying out the transaction, C' demands that
the user present a receipt from the escrow agency, proving that the latter has re-
ceived a correctly formed escrow of the transaction. U starts by picking a unique
(d — 1)-degree secret-sharing polynomial f. The coefficients are computed as
k; = H(k,i) where H : 0,1* — Z, is a pseudorandom function, and the polyno-
mial is defined as f(z) = ko + k1x + ...+ kg_12%! mod q. Values {Cy, ...,Cy}
where C; = g% mod p serve as commitments to the coefficients.

The user sends to the escrow agency (via an anonymizing channel):

(i) Tag t = Evalg(1), which allows the escrow agency to separate escrows into
categories (note that ¢ is constant for all transactions of the same category);
(ii) Ciphertext ¢ = (¢, {Ci}izo....a—1, f(x)). Here ¢ = (pad™ (m|r))?** mod p is
the Pohlig-Hellman encryption of (padded) m under the key ko, {C;} are the
commitments to the polynomial coefficients, z = H(c) is point in Z; assigned
for ¢, and f(x) is the value of the polynomial on z;

(i) Anonymous signature s on (t,¢’) computed as s = Evaly(¢,).

The escrow agency verifies that (z, f(x)), for = H(c), is a true data point
on the polynomial committed to in {C;} by checking that ¢?/(®) = Cy * CF *

sk Cc(lfdl R mod p. If there already exist escrows in the same category (i.e., the
escrow agency has previously received escrows with the same tag t), the agency
checks that the commitments {C;} are the same as those supplied with previous
escrows in the category. If the checks are successful, the escrow agency signs
tuple (¢, s, ¢, Cp) using the unlinkable signature scheme of [CLO01], and returns

4 We simplify the scheme of [JS04] by assuming that all transactions are of the same
type, and so only the user’s identity determines the transaction category.

the signature to the user as the escrow receipt. We omit the details of the protocol
from [JS04] by which user U proves to the counterparty (who knows transaction
plaintext m and the U’s public key pk, but not U’s secret k) that U possesses
the receipt on a correctly formed escrow for this transaction, which implies that
U must have given the correctly formed escrow to the escrow agency.

Provided that the escrow receipts are verified by honest counterparties, the
above scheme provides automatic and unavoidable threshold disclosure. With
each escrow, the user must submit a new share f(x) of the (d — 1)-degree poly-
nomial f, and each escrow contains an encryption of the transaction plaintext
under the same key ko = f(0). Once d escrows have been collected in the same
category, the escrow agency can interpolate the polynomial f from the d shares,
compute f(0) and decrypt all these escrows. Otherwise, this user’s escrows re-
main secret to the agency.

5 Escrow with Cumulative Threshold Disclosure

To replace simple threshold disclosure with cumulative disclosure, we need to
change the basic protocol of section 4.2 in which the user supplies a single secret-
share s = f(z) of the key kg that encrypts all of his transactions. As explained in
section 2, s must be transferred to the agency with probability equal to 8 = % xt
where t is the value associated with this transaction, a.k.a. transaction size. We
achieve this using a novel tool we call robust probabilistic information transfer.

5.1 Probabilistic information transfer: definition

A probabilistic information transfer protocol is a protocol between two parties,
user U and agency A. The public input is the probability 6 € [0, 1] with which
information transfer should take place, the user’s private input is the information
that might be transfered, which in our case is the share s = f(z), and the public
input is a commitment to this information, which in our case is Cs = ¢g° mod p.
Because we are interested in protocols that assume a trusted third party, we allow
for this protocol to involve the third party, TTP. Even though a probabilistic
information transfer will thus be a protocol between three parties U, A, and
TT P, our secure implementation of that notion will involve the TT P party only
in case one of the parties is faulty, and thus the protocol we propose works in
the “optimistic off-line trusted third party” model, similarly to, e.g., the fair-
exchange protocol of [ASWO00] or the general fair 2-party computation protocol of
[CC00]. As in [CCO00], we will assume that 7" has as the secret input its secret key
skrrp, while pkprp is publicly known. Finally, we assume that A, the agency,
has a private/public key pair (ka,pka), too, where k4 is its private key for a
VRF function and pk4 is its verification counterpart. Additionally, we allow for
an auxiliary public input aux, which represents the reference to some transaction
to which this transfer refers. In our probabilistic escrow application, we will use
auz to represent the escrow (¢,c, s) (see section 4.2 above) on account of which
this instance of the probabilistic information transfer protocol is executed.

Ideal functionality for probabilistic information transfer. The simplest way to
describe our desired security property is to specify the ideal functionality I for
the protocol, following the secure function evaluation paradigm (e.g., [Can00]).
We define a secure probabilistic information transfer protocol as a protocol that
securely realizes this ideal functionality I in the static adversarial model where
the adversary can corrupt (statically) either the user U or the agency A, but the
trusted third party TT P is never corrupted.’

As mentioned above, we assume that the public input in this protocol consists
of commitment Cs = ¢g°* mod p on U’s information s, A’s public VRF verifica-
tion key pka, TT P’s public encryption key pkrrp, the probability #, and the
auxiliary public input auzx. Given these public inputs, the ideal functionality I
for probabilistic information transfer proceeds as follows. U can contribute some
value s or a special symbol 1, which designates U’s refusal to participate. A
contributes his private key k4 and either of the two special symbols: ¢, which
designates A’s acquiescence, or L, his refusal to participate. The TT'P party
contributes his private key skrrp. The ideal functionality responds as follows. If
either party contributes symbol L, or if Cs # ¢° mod p, or if k4 does not corre-
spond to pk 4, the ideal functionality I outputs L to both U and A. Otherwise,
I casts a coin r uniformly distributed in [0,1] and hands r to both U and A.
Moreover, if r < 6 then I also gives s to A. The outputs of TT'P are null in
every case.

This ideal functionality implements a secure probabilistic information trans-
fer of s from U to A with probability 8, with the following caveats:

(1) The commitment Cs to the information s is known beforehand to A, and
this commitment could contain some information about s.

(2) Whenever both parties start the protocol, but one of them decides to with-
draw (by contributing the L input), the other party learns about this;

(3) If U decided to proceed, then A learns if the odds came to his disadvantage
and the message s has not been transferred to him; and

(4) U, too, learns whether the information has been transferred to A or not, and
thus this probabilistic transfer protocol is non-oblivious.

Definition 1. We call a protocol between U, A, and TTP, a (statically) secure
probabilistic information transfer protocol in the trusted third party model if it
securely implements the above ideal functionality in the adversarial model where
the adversary (statically) corrupts either the U or the A party, but never the
TTP. We call such protocol optimistic if the TT P party is contacted only in
case either U or A is corrupted.

Contributory protocols. In the sequel we will consider only a special class of pro-
tocols that realize such functionality securely, namely a “contributory coin-toss”
protocols, where the two players U and A make contributions 7y and 74 which
are uniquely defined by the messages sent by each player, where the resulting

® We note that Cachin and Camenish [CC00] who define a general notion of fair 2-
party computation in the same optimistic third party model as we have here, allow
for T'T'P to be corrupted as well, but this extra corruption ability seems unnecessary.

coin toss is then computed as a deterministic function of these contributions,
e.g., 7 =1y ®ra, and where the information s is transferred if and only if < 6.

No strategic advantage for U. If a probabilistic information transfer protocol
is a secure implementation of the above ideal functionality, then such protocol
offers no strategic advantage to U in the following sense. If U ever decides to
withdraw from the protocol, he may only do so before he learns A’s contribution
to the joint coin toss, and thus the likely outcome of the protocol. Clearly this
is the case for the ideal functionality, and thus U’s withdrawal at a midpoint of
the protocol must be equivalent to a refusal to engage in the protocol in the first
place, and thus can only happen before the coin toss r is decided. Consequently,
U cannot gain any advantage by stopping and re-running the protocol on new
inputs, since he can stop only when he is still oblivious to the outcome.

Technically, this suggests that there should be a communication round in the
protocol which we can call “U’s commitment point,” such that: (1) If U does
not execute this round correctly we say that “U stops before the commitment
point”, and this is equivalent to U contributing the 1 surrender sign in the
ideal world. As discussed above, before this commitment point U has only a
negligible advantage in predicting the coin toss that determines whether s is
going to be transferred to A or not. (2) If U does send this message correctly,
this is equivalent to U actually contributing the correct s input in the ideal
world. Therefore, if U stops or diverts from the protocol after the commitment
point, then an honest A must still get the correct result: a fair coin toss r and
the s value if the (r < 6) condition is satisfied. Most likely, A will have to rely
on the trusted third party to retrieve the fairly generated r and, depending on
the outcome, the correct s, using the messages U sent before (and including) the
commitment point.

5.2 Probabilistic information transfer: additional properties

Observable accountability. In any escrow scheme, but especially in our case where
the agency learns the monetary values of all escrowed transactions, a corrupt
agency may stage a directed denial of service attack against some user by refusing
to issue receipts on his escrows. (While the agency does not know the user’s
identity, all escrows of that user are linkable.) While such a DoS attack cannot
be prevented, it should at least be made detectable by an independent observer,
say, a journalist. Then a user who believes that he is being denied service can ask
the journalist to observe a (re)run of the escrow protocol. If the agency does not
reply with a valid receipt, the journalist can observe that the agency is at fault.
This “observable accountability” should be satisfied not just by the probabilistic
information transfer subprotocol, but also by the entire escrow protocol. (We
note, however, that observability in the larger escrow protocol requires some
slight modifications to the protocol presented in section 4.2.)

Observable accountability: All actions performed by both parties in the exe-
cution of the probabilistic information transfer protocol can be verified without
revealing any long-term private information.

Verifiably deterministic coin contribution for A. While giving any outside ob-
server the ability to verify whether the parties follow the protocol correctly can
work as a hedge against the denial of service attacks by a malicious agency,
it is not sufficient. Suppose that a malicious agency refuses to serve some user
if the coin comes out to the agency’s disadvantage, but when the user re-runs
the protocol, possibly accompanied by an outside observer, the agency performs
correctly. This simple cheating strategy for the agent effectively transfers the
information s to the agent with probability 1 — (1 —)2, which is greater than 6.
To prevent this attack, we will require the following property:

Verifiable deterministic coin contribution for A: In the algorithm speci-
fied by the probabilistic information transfer protocol, A’s contribution to the
coin toss is a deterministic function of (1) U’s message which commits U’s con-
tribution to the coin toss, and (2) the auxiliary input auz (which in our escrow
application will be instantiated with an escrow instance on account of which the
probabilistic transfer is taking place). Moreover, if a malicious A attempts to
compute its contribution differently, this deviation will be detected by U with
an overwhelming probability.

If A’s contribution to the coin toss is a deterministic function of U’s contri-
bution, and if the protocol is observably accountable, then A gains no advantage
by first abandoning the protocol when the coin comes out to its disadvantage,
and then agreeing to re-run it. However, A’s contribution should be the same
only when applied to the same instance aux in the context of which this pro-
tocol instance was invoked, thus facilitating only genuine re-runs. Otherwise, a
malicious U, once discovering a winning combination between his contribution
ry and A’s contribution 74 could try to use the same ryy (and hence induce the
same lucky r4 response) for many different instances of the protocol.

Note that determinism of A’s contribution does not imply that U is able
to efficiently predict A’s contribution to the joint coin toss. In our construction
described in section 5.3, A’s coin is computed using a verifiable random function
(VRF) applied to U’s inputs to the protocol. Because U does not know A’s
private VRF key, the output of the function appears random to U, yet the
function is deterministic, and A is able to prove that it was computed correctly.

5.3 Probabilistic information transfer: implementation

Even though any ideal functionality can be securely realized using secure 2-party
computation [Yao82], such general techniques do not seem to yield a practical
protocol in our case. Instead, we design an efficient (4-round, small constant
number of exponentiations for both parties) protocol which securely achieves
our ideal functionality assuming the presence of an offline Trusted Third Party
(TTP). Thus, following the “optimistic” paradigm in two-party secure computa-
tion, the TTP is only involved in case of some active faults in the protocol. In our
application the role of the TTP can be naturally played by the Key Certification
Authority, because a trusted KCA is required in our escrow scheme anyway.
Our protocol is observably accountable and “verifiably deterministic” for A.
Note that any probabilistic protocol for A can be transformed into a determin-

istic one by simply giving A a private key and asking that all its random choices
are computed via a pseudorandom generator or pseudorandom function based
on that key. To achieve observable accountability, A’s randomness will be gener-
ated by a verifiable random function (VRF) keyed with A’s private key. In our
protocol, the other party (U) can verify that the pseudorandomness involved in
A’s crucial moves is computed correctly using this VRF.

Cryptographic setup. Recall that the user U has a private/public VRF keys
(ku,pku) (see section 4.1), and message s € Z, to (probabilistically) send to A.
We assume that commitment Cs = ¢g°® mod p to s was made public before the
protocol starts. We amend the key generation procedure of the escrow scheme so
that A generates a private/public key pair (ka, pka) for the same VRF function.
We assume that U knows A’s public key pk4. (However, recall that A does not
know U’s public key pky.) The Key Certification Authority which plays the
role of the TTP picks a private/public key pair (skrrp, pkrrp) of a verifiable
encryption scheme of Camenish-Shoup [CS03], with the plaintext space including
elements of Z,. We will use the CS encryption to allow U to prove to A that the
plaintext s corresponding to an encrypted value ¢ = Encpg,..p(s) satisfies an
equation g° = Cs mod p. Such proof takes only a few exponentiations and is non-
interactive in the random oracle model (see [CS03] for more details). We assume
that the required probability # can be rounded up as 6 = i/2! for some integers
I and i € [0,2!]. We will assume a second hash function H' : {0,1}* — {0,1}!,
which we will also model as a random oracle.

Robust probabilistic information transfer protocol with off-line TTP:

1. U picks a random ry; € Zy, computes cy = Encprr,p(ry) and cs =
Encpr,rp(s), and sends (cy,cs) to A. U also sends a non-interactive zero-
knowledge proof [CS03] that the plaintext s encrypted in ciphertext c, sat-
isfies relation g®* = Cs mod p.

2. After verifying the proof, A computes ry = Evaly, (cu, aux) and sends c4 =
Encpgppp(ry) to U.

3. U sends back to A a MAC value h = Evals(aux, 8, C,,cs,cy,ca) on the
transcript so far using s as the MAC key, together with a zero-knowledge
proof that h is computed correctly under the key s committed to in Cy =
g° mod p. Note that if s is treated as a VRF key, then C; is its corresponding
verification key, and thus this is the same VRF verification as discussed in
section 4.1. This communication round is the “commitment point” for U in
the protocol.

4. If everything verifies, A opens c4 as an encryption of /4 by sending /4 to U
together with the random coins used in this encryption. A also proves that
'y is correctly computed as r/y = Evaly, (cy, auz).

5. If A’s de-commitment and the proof are correct, U similarly opens to A his
ciphertext ¢y as an encryption of r};. U also computes r = (rg & 74)/2!
where ry = H'(ry;) and 74 = H'(r’y). If r < 0 then U also sends s to A.

6. If U’s de-commitment is correct, A computes r the same way as r = (ry ®
r4)/2" where ry = H'(r};) and ra = H'(r"y). If r < 6 and A doesn’t get s
from U, or ¢° # Cs mod p, then A hands (aux,0,Cs, cs,cy,ca,h) to TTP,
together with the proof that 1’y = Evaly, (cv, auz).

7. TTP decrypts s = Decopprp(Cs), 7y = DeCopprp(cv), 'y = DecCoprrp(ca),
verifies A’s proof that /4 is computed as A’s VRF on input (cy, auz), checks
if h = Evals(aux, 0, Cs, s, cu, ca). If any verification fails, TTP sends L back
to A and stops. Otherwise, TTP recomputes ry = H'(ry;), ra = H'(r)y),
r=(ra®ry)/2. If r < 0, then TTP sends (r,s) to A, else sends 7.

Theorem 1. The above protocol is a robust probabilistic information transfer
protocol in the optimistic trusted third party model. This is a a contributory
protocol which is also observably accountable, and has a verifiably deterministic
coin contribution for A.

We postpone the proof to the post-proceedings version of the paper.

Performance. We estimate our scheme’s performance by counting the number
of cryptographic operations that the user and the agency must execute in each
session. Let C¢ be the cost of a single full exponentiation modulo 1KBit modulus.
In our setting, the cost of Camenisch-Shoup encryption is approximately 10.5Ck,
and the cost of the associated proof is approximately 13.5C,. Assuming that each
multi-exponentiation costs between 1.15C, and 1.3C,, we estimate that the user
has to perform the equivalent of 52.3C., in each protocol session, while the escrow
agency’s cost is 29C, (30C, if a share is transferred).

6 Accuracy of Probabilistic Threshold Escrow

To estimate accuracy, we are interested in the probability o+ of erroneous non-
disclosure, i.e., that the total transacted amount exceeds threshold 7', but the
escrow agency has not accumulated enough shares to reconstruct the decryption
key, and the probability Or+ of erroneous disclosure, i.e., that the escrow agency
accumulates enough shares to reconstruct the decryption key even though the
transacted amount is still under the threshold.

Suppose the decryption key is split into d shares (d is a parameter of the
system). We'll call s = % share size. This is the amount “corresponding” to one
share of the key. Suppose that the user transacts some total amount A, and, for
simplicity, assume that all transactions are of equal size t. If ¢ < s, then for each
instance of the probabilistic escrow protocol, the probability of revealing a share
is simply % If t =4s+x wherei > 0 and = < %, the escrow agency demands
1 shares straight away, and then engages in the probabilistic escrow protocol in
which the probability of revealing an additional share is .

W.lo.g., assume that ¢t < s. Let n = % be the number of transactions
performed. Since for each transaction the probability of obtaining a share f =
d%, the probability of obtaining exactly d shares after n transactions is the

binomial probability (7})(d4)?(1 — d%)"~¢, where () is the binomial coefficient

Accuracy for different number of shares (each transaction = $100 Accuracy for different number of shares (each transaction = $500)

Probability of error
-

$5000 57.000 59,000 $1000 §13000 $15000
Total transacted amount

$13000 §15000

$5.000 7,000 59,000
Total ransacted amoun

Accuracy for different single-transaction amounts t (5 shares) Accuracy for different single-transaction amounts t (20 shares)

Probability of error

Probabilty of error

3

55,000 $7.000 $9.000 $11,000 $13,000 $15,000
Total transacted amount

5000 7,000 59000 511,000 $13.000 $15,000
Total transacted amount

Fig. 1. Accuracy of probabilistic threshold disclosure.

(n_”i;)!d!. The probability that the escrow agency obtains fewer than d shares

is the “tail” of the binomial probability distribution ppq = Zf;ol (M) (dE) (1 —
d%)”‘i. The probability of disclosure is py = 1 — pnq. Unfortunately, for realistic
applications the number of trials n is insufficiently large to approximate the
binomial distribution with a normal or Poisson distribution. Therefore, we do
not attempt to derive a closed formula approximating pq.

Probability of error. Probability of error is equal to p,q if the total transacted
amount is greater than or equal to the threshold, and to pg if the total amount
is less than the threshold. In fig. 1, we set the disclosure threshold 7" = $10, 000,
and calculate the probability of error as a function of the total transacted amount
for different transaction sizes ¢t and different number of shares d.

Figure 1 illustrates the basic efficiency-accuracy tradeoff of our probabilistic
escrow scheme. For a larger number of shares, accuracy is better because (a)
for any given transaction size t, both o and § functions (respectively, left and
right sides of the “bell curve”) become steeper, i.e., the likelihood of erroneous
disclosure or non-disclosure decreases sharply with the difference between the
total transacted amount and the threshold, and (b) absolute probability of error

decreases with the increase in the number of shares. The larger the number of
shares, the less efficient the scheme is from the user’s viewpoint, due to the
difficulty of maintaining a large number of shares.

For a fixed number of shares and total transacted amount, lower single-
transaction amounts are associated with higher probabilities of error, as demon-
strated by fig. 1. Therefore, the best strategy for a malicious user who would
like to transact an over-the-threshold amount without disclosure is to split the
amount into lots of small transactions. Note, however, that the curve flattens as
transaction sizes decrease. We conjecture that the marginal benefit to the cheat-
ing user from choosing ever smaller transactions is negligible. We also argue
that for any minimum transaction size ¢, the spending pattern modeled in the
tables (i.e., total amount A is split into equal transactions, each of the minimum
permissible size) is the worst-case scenario, and that for different transactions
patterns probabilities of erroneous disclosure or non-disclosure will be better
than those shown in the figures.

Future Directions. We are currently investigating an extension of the scheme
which is oblivious to the user, i.e., he does not learn if information transfer has
been successful. The user won’t be able to “game” the system by adjusting his
behavior depending on the number of shares already accumulated by the agency.

References

[ASWO00] N. Asokan, V. Schoup, and M. Waidner. Optimistic fair exchange of digital
signatures. IEEE Journal on Selected Area in Communications, 18:593-610,
2000.

[Blu82] M. Blum. Coin flipping by phone. In Proc. 24th IEEE Computer Conference
(CompCon), 15(1):93-118, 1982.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols.
Journal of Cryptology, 13(1):143-202, 2000.

[CC00] C. Cachin and J. Camenisch. Optimistic fair secure computation. In Proc.
CRYPTO ’00, pages 93-111, 2000.

[CLO1] J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In Proc. EURO-
CRYPT °01, pages 93-118, 2001.

[CP92] D. Chaum and T. Pedersen. Wallet databases with observers. In Proc.
CRYPTO ’92, pages 89-105, 1992.

[CS03] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption
of discrete logarithms. In Proc. CRYPTO ’03, pages 126—144, 2003.

[Fel87] P. Feldman. A practical scheme for non-interactive verifiable secret sharing.
In Proc. FOCS ’87, pages 427-438, 1987.

[JO97] S. Jarecki and A. Odlyzko. An efficient micropayment scheme based on prob-
abilistic polling. In Proc. Financial Cryptography 97, pages 173-192, 1997.

[JS04] S. Jarecki and V. Shmatikov. Handcuffing Big Brother: an abuse-resilient
transaction escrow scheme. In Proc. EUROCRYPT ’04, pages 590-608, 2004.

[NP98] M. Naor and B. Pinkas. Secure and efficient metering. In Proc. EUROCRYPT
’98, 1998.

[Yao82] A. Yao. Protocols for secure computations. In Proc. FOCS 82, 1982.

