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Abstract. Signal analysis with classical Gabor frames leads to a fixed time-
frequency resolution over the whole time-frequency plane. To overcome the
limitations imposed by this rigidity, we propose an extension of Gabor the-
ory that leads to the construction of frames with time-frequency resolution
changing over time or frequency. We describe the construction of the resulting
nonstationary Gabor frames and give the explicit formula for the canonical
dual frame for a particular case, the painless case. We show that wavelet
transforms, constant-Q transforms and more general filter banks may be mod-
eled in the framework of nonstationary Gabor frames. Further, we present the
results in the finite-dimensional case, which provides a method for implement-
ing the above-mentioned transforms with perfect reconstruction. Finally, we
elaborate on two applications of nonstationary Gabor frames in audio signal
processing, namely a method for automatic adaptation to transients and an
algorithm for an invertible constant-Q transform.

1. Introduction

Redundant short-time Fourier methods, also known as Gabor analysis [12], are
widely used in signal processing applications. The basic idea is the analysis of a
signal f by consideration of the projections 〈f, gτ,ω〉 of f onto time-frequency atoms
gτ,ω. The gτ,ω are obtained by translation of a unique prototype function over time
and frequency: gτ,ω(t) = g(t−τ)e2πitω. This classical construction leads to a signal
decomposition with fixed time-frequency resolution over the whole time-frequency
plane. The restriction to a fixed resolution is often undesirable in processing signals
with variable time-frequency characteristics. Alternative decompositions have been
introduced to overcome this deficit, e.g. the wavelet transform [7], the constant-
Q transform (CQT) [3] or decompositions using filter banks based on perceptive
frequency scales [15]. Adaptation over time is considered in approaches such as
modulated lapped transforms [21], adapted local trigonometric transforms [29] or
(time-varying) wavelet packets [22].

Most of the cited work achieves flexible tilings of the time-frequency plane, but
efficient reconstruction from signal-adaptive, overcomplete time-frequency trans-
forms is rarely addressed. One exception is a recent approach in [23], which is in
fact a special case of the more general model considered in the present paper. The
wealth of existing approaches to fast adaptive transforms underlines the need for
flexibility arising from many applications. On the other hand, the introduction of
flexibility in a transform that is based on accurate mathematical modeling causes
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technical complications that are not always easy to overcome. We introduce an ap-
proach to fast adaptive time-frequency transforms, that is based on a generalization
of painless nonorthogonal expansions [8]. It allows for adaptivity of the analysis
windows and the sampling points. Since the resulting frames locally resemble clas-
sical Gabor frames and share some of their structure, they are called nonstationary

Gabor frames. The corresponding transform is likewise referred to as nonstationary
Gabor transform (NSGT).

The central feature of painless expansions is the diagonality of the frame operator
associated with the proposed analysis system. This idea is used here to yield pain-
less nonstationary Gabor frames and will allow for both mathematical accuracy in
the sense of perfect reconstruction (the frame operator is invertible) and numerical
feasibility by means of an FFT-based implementation. The construction of painless
nonstationary Gabor frames relies on three intuitively accessible properties of the
windows and time-frequency shift parameters used.

(1) The signal f of interest is localized at time- (or frequency-)positions n by
means of multiplication with a compactly supported (or limited bandwidth,
respectively) window function gn.

(2) The Fourier transform is applied on the localized pieces f ·gn. The resulting
spectra are sampled densely enough in order to perfectly reconstruct f · gn
from these samples.

(3) Adjacent windows overlap to avoid loss of information. At the same time,
unnecessary overlap is undesirable. In other words, we assume that 0 <
A ≤∑n∈Z

|gn(t)|2 ≤ B <∞, a.e., for some positive A and B.

We will show that these requirements lead to invertibility of the frame operator and
therefore to perfect reconstruction. Moreover, the frame operator is diagonal and
its inversion is straight-forward. Further, the dual frame has the same structure
as the original one. Because of these pleasant consequences following from the
three above-mentioned requirements, the frames satisfying all of them will be called
painless nonstationary Gabor frames and we refer to this situation as the painless

case. Since Gabor transforms, as opposed to wavelet transforms, are in a certain
sense symmetric with respect to Fourier transform, our approach leads to adaptivity
in either time or frequency. The concept of this paper relies on ideas introduced
in [18], and presented at [16]. In the present paper all formal proofs are given, the
link to frame theory is provided, the possibility to represent other analysis/synthesis
systems with this approach is established, the numerical issues are investigated and
several applications are presented.

The rest of the article is organized as follows. We fix notation and review pre-
liminary results from Gabor and frame theory in Section 2. Section 3 introduces
the construction of (painless) nonstationary Gabor frames in detail and provides a
proof for the frame property under the given conditions. The calculation of the dual
or tight frames is also explicitly given for systems adaptive in time or frequency,
respectively. Section 4 then establishes the details of implementation in a discrete
and real-life setting and provides examples together with a comparison of numerical
efficiency with existing approaches. We conclude, in Section 5 with a summary and
a brief outlook on future work.

In the sense of reproducible research we provide all algorithms and scripts to re-
produce the results in this paper at the webpage http://univie.ac.at/nonstatgab/.
Please note that a nonstationary Gabor transform is also included in the Linear

http://univie.ac.at/nonstatgab/
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Time Frequency Analysis Toolbox (LTFAT) v.0.97 [26, 27], a Matlab/Octave tool-
box, which is freely available at http://ltfat.sourceforge.net/.

2. Preliminaries

For an integrable function f , i.e. f ∈ L1(R), we denote its Fourier transform

Ff(ξ) = f̂(ξ) =
∫
R
f(t) e−2πiξtdt, with the usual extension to L2(R), the space of

square-integrable functions from R to C. The convolution of two functions f, g ∈
L1(R) is the function f ∗ g defined by (f ∗ g)(t) =

∫
R
f(x)g(t − x) dx, again with

the usual extension to L2(R). It follows that F(f ∗ g) = f̂ · ĝ. We use the notation
f(t) ≃ g(t) if there exist constants C1, C2 > 0, such that C1 g(t) ≤ f(t) ≤ C2 g(t)
for all t.

2.1. Frame Theory. We now give a short summary of frame theory on Hilbert
spaces, first introduced in [11]. A thorough discussion can be found in [4] or [6].

A sequence (ψl)l∈I in the Hilbert space H is called a frame, if there exist positive
constants A and B (called lower and upper frame bounds, respectively) such that

(1) A‖f‖2 ≤
∑

l∈I
|〈f, ψl〉|2 ≤ B‖f‖2 ∀f ∈ H,

i.e.
∑
l∈I |〈f, ψl〉|2 ≃ ‖f‖2. If A = B, then (ψl)l∈I is a tight frame. By C : H → ℓ2,

we denote the analysis operator defined by (Cf)l = 〈f, ψl〉. The adjoint of C∗ of
C is the synthesis operator C∗(cl) =

∑
l clψl. The frame operator is Sf = C∗Cf =∑

l〈f, ψl〉ψl, hence 〈Sf, f〉 = ‖Cf‖2ℓ2 .
The boundedness and invertibility of S is equivalent to the existence of frame

bounds 0 < A,B < ∞ in the frame inequality (1), as well as to the existence of
dual frames, which can be used for reconstruction. In particular, the canonical dual
frame (ψ̃l), is found by applying the inverse of S to the original frame elements,

i.e. ψ̃l = S−1ψl for all l. For all f ∈ H we then have the following reconstruction
formulas:

f =
∑

l

〈f, ψl〉ψ̃l =
∑

l

〈f, ψ̃l〉ψl.

For tight frames, the frame operator reduces to S = AI, where I denotes the identity

operator, and therefore S−1 = 1
AI. The canonical tight frame (ψ̊l) is obtained by

applying S− 1
2 to the frame elements, i.e. ψ̊l = S− 1

2ψl for all l.

2.2. Gabor Theory. Recall that for any nonzero function g ∈ L2(R) (the win-

dow), the short-time Fourier transform (STFT) of a signal f ∈ L2(R) is defined as
Vg (f) (τ, ω) = 〈f,MωTτg〉, using the translation operator Tτf (t) = f (t− τ) and
the modulation operator Mωf (t) = f (t) e2πiωt. In L2(R), we have

Vg (f) (τ, ω) =
∫

R

f(t) g(t− τ) e−2πiωtdt.

For a non-zero window function g and parameters a, b > 0, the set of time-
frequency shifts of g

G(g, a, b) = {MbmTang : m,n ∈ Z}
is called a Gabor system [13]. Moreover, if G(g, a, b) is a frame, it is called a Gabor

frame and the associated frame operator is denoted by Sg,a,b. In the succeeding
sections, where the dependence of the frame operator on the window g and the
parameters a, b is clear, we simply denote the frame operator by S. Note that the

http://ltfat.sourceforge.net/
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Gabor analysis coefficients are sampling points of the STFT of f with window g at
the time-frequency points (an, bm), i.e. Vg (f) (an, bm) = {〈f,MbmTang〉}m,n.

A central property of Gabor frames is the fact that the dual frame of a Gabor
frame is again a Gabor frame, generated by the dual window g̃ = S−1g and the
same lattice, i.e. the set of time-frequency points {(an, bm) |m,n ∈ Z}. Note that
the property that the dual system is again a system with the same structure, is a
particular property of Gabor frames, shared by nonstationary Gabor frames in the
painless setting considered in the present paper. For a more detailed introduction
to Gabor analysis, see [12] or [14].

In the finite discrete case, we take the Hilbert space H to be CL. For a good
introduction to Gabor analysis in this setting, see [28]. We shall restrict the lattice
parameters a and b to factors of L such that the numbers N = L

a and M = L
b

are integers. We regard all vectors as periodic, so discrete translation is a cyclic
operator. Therefore the discretization of time-shift and modulation is given by

Tnx = (xL−n, xL−n+1, . . . , x0, x1, . . . , xL−n−1)

and

Mmx =
(
x0 ·W 0

L, x1 ·W 1·m
L , . . . , xL−1 ·W (L−1)m

L

)

with WL = e
2πi
L , respectively. We will consider the Gabor system

G(g, a, b) = {MbmTang : n = 0, . . . , N − 1;m = 0, . . . ,M − 1} ,
which is a collection ofM ·N vectors in CL. Obviously, to fulfill the frame conditions
(1), we need at least M ·N ≥ L.

2.3. Wavelet Theory. As we will see below, nonstationary Gabor frames may
be used to construct wavelet frames. We briefly sketch the continuous wavelet
transform. Let ψ ∈ L2(R). We define the wavelet system by

(2) ψα,β(t) =
1√
α
ψ

(
t− β

α

)
= TβDαψ,

where Dα denotes the dilation operator given by Dαf(t) =
1√
α
f( tα ).

The wavelet transform is then defined as

(3) Wψf(α, β) = 〈f,TβDαψ〉 =
(
f ∗DαIψ

)
(β),

where I denotes the involution Ig(t) = g(−t).
If ψ is localized around τ0, then ψα,β(t) is centered at α · τ0 + β. The frequency

center is at η/α, where η is the center of ψ̂.

3. Construction of nonstationary Gabor frames

3.1. Resolution changing over time. As opposed to standard Gabor analysis,
where time translation is used to generate atoms, the setting of nonstationary Gabor
frames allows for changing, hence adaptive, windows in different time positions.
Then, for each time position, we build atoms by regular frequency modulation.
Using a set of functions {gn}n∈Z in L2(R) and frequency sampling step bn, for
m ∈ Z and n ∈ Z, we define atoms of the form:

gm,n(t) = gn(t)e
2πimbnt = Mmbngn(t),
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implicitly assuming that the functions gn are well-localized and centered around
time-points an. This is similar to the standard Gabor scheme, however, with the
possibility to vary the window gn for each position an. Thus, sampling of the time-
frequency plane is done on a grid which is irregular over time, but regular over
frequency at each temporal position.

Figure 1 shows an example of such a sampling grid. Note that some results exist
in Gabor theory for semi-regular sampling grids, as for example in [5]. Our study
uses a more general setting, as the sampling grid is in general not separable and,
more importantly, the window can evolve over time. To get a first idea of the effect
of nonstationary Gabor frames, the reader may take a look at Figure 2 and Figure 3,
which show regular Gabor transforms and a nonstationary Gabor transform of the
same signal. Note that the NSGT in Figure 3 was adapted to transients and the
components are well-resolved.
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Figure 1. Example of a sampling grid of the time-frequency
plane when building a decomposition with time-frequency reso-
lution evolving over time

In the current situation, the analysis coefficients may be written as

cm,n = 〈f,Mmbngn〉 = ̂(f · gn)(mbn), m, n ∈ Z.

Remark 1. If we set gn(t) = g(t − na) for a fixed time-constant a and bn = b for
all n, we obtain the case of classical painless non-orthogonal expansions for regular
Gabor systems introduced in [8].

3.2. Resolution changing over frequency. An analog construction in the fre-
quency domain leads to irregular sampling over frequency, together with windows
featuring adaptive bandwidth. Then, sampling is regular over time. An example
of the sampling grid in such a case is given in Figure 4.

In this case, we introduce a family of functions {hm}m∈Z of L2(R), and form ∈ Z

and n ∈ Z, we define atoms of the form:

(4) hm,n(t) = hm(t− nam).

Therefore ĥm,n(ν) = ĥm(ν) ·e−2πinamν and the analysis coefficients may be written
as

cm,n = 〈f, hm,n〉 = 〈f̂ ,F(Tnamhm)〉 = F−1
(
f̂ · ĥm

)
(nam).
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Glockenspiel − short window
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Figure 2. Glockenspiel (Example 1). Gabor representations with
short window (11.6 ms), resp. long window (185.8 ms).

Glockenspiel − dB−scaled Gabor transform
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Figure 3. Glockenspiel (Example 1). Regular Gabor represen-
tation with a Hann window of 58 ms length and a nonstationary
Gabor representation using Hann windows of varying length.

Hence, the situation is completely analog to the one described in the previous
section, up to a Fourier transform.

In practice we will choose each function hm as a well localized band-pass function
with center frequency bn.

3.2.1. Link between nonstationary Gabor frames, wavelet frames and filterbanks:

To obtain wavelet frames, the wavelet transform in (2) is sampled at sampling
points (βn, αm). A typical discretization scheme [20] is (nβ0, α

m
0 ). Then, the frame

elements are ψm,n(t) = Tnβ0Dαm
0
ψ(t). Comparing this expression to (4) and setting
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Figure 4. Example of a sampling grid of the time-frequency
plane when building a decomposition with time-frequency reso-
lution changing over frequency

hm = Dm
α0
ψ and am = β0, we see that a wavelet frame with this discretization

scheme corresponds to a nonstationary Gabor transform.
Another possibility for sampling the continuous wavelet transform [7] uses α =

αm0 and β = nβ0α
m
0 . Again, we obtain a correspondence to nonstationary Gabor

frames by setting hm = Dm
α0
ψ and am = β0 · αm0 .

Beyond the setting of wavelets, any filter bank [20], even with non-constant down-
sampling factors Dm, can be written as a nonstationary Gabor frame. A filter bank
is a set of time-invariant, linear filters hm, i.e. Fourier multipliers. The response
of a filter bank for the signal f and sampling period T0 is given (in the continuous
case) by

cm,n = (f ∗ hm) (nDmT0) =

∫

R

f(t)hm (nDmT0 − t) dt = 〈f, hm,n〉 ,

where hm,n(t) = h (nDmT0 − t). Setting hm = I hm and choosing am = DmT0 this
construction is realized with nonstationary Gabor frames using (4). If the filters are
band-limited and the down-sampling factors are small enough, then the conditions
for the painless case are met and the corresponding reconstruction procedure can
be applied.

3.3. Invertibility of the frame operator and reconstruction. In this central
section we give the precise conditions under which painless nonstationary Gabor
frames are constructed. The first two basic conditions, namely compactly supported
windows and sufficiently dense frequency sampling points, lead to diagonality of the
associated frame operator S, as defined in Section 2.1. The third condition, the
controlled overlap of adjacent windows, then leads to boundedness and invertibility
of S. The following theorem generalizes the results given for the classical case of
painless non-orthogonal expansions [8, 14].

Theorem 1. For every n ∈ Z, let the function gn ∈ L2(R) be compactly supported

with supp(gn) ⊆ [cn, dn] and let bn be chosen such that dn − cn ≤ 1
bn
. Then the
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frame operator

S : f 7→
∑

m,n

〈f, gm,n〉gm,n

of the system

gm,n(t) = gn(t) e
2πimbnt, m ∈ Z and n ∈ Z,

is given by a multiplication operator of the form

Sf(t) =

(∑

n

1

bn
|gn(t)|2

)
f(t).

Proof. Note that,

〈Sf, f〉 =
∑

n

∑

m

∣∣
∫

R

f(t) gn(t) e
−2πimbntdt

∣∣2

=
∑

n

∑

m

∣∣
∫ dn

cn

f(t) gn(t) e
−2πimbntdt

∣∣2,

due to the compact support property of the gn. Let In = [cn, cn + b−1
n ] for all n

and χI denote the characteristic function of the interval I. Taking into account the
compact support of gn again, it is obvious that

f gn = χIn
∑

l

Tlb−1
n
(fgn),

with the b−1
n -periodic function

∑
lTlb−1

n
(f gn). Hence, with Wm,n(t) = e−2πimbnt,

∣∣
∫ dn

cn

f(t) gn(t)Wm,n(t) dt
∣∣2 =

∣∣
∫

In

f(t) gn(t)Wm,n(t) dt
∣∣2,

=
∣∣〈f gn,Wm,n〉L2(In)

∣∣2

and applying Parseval’s identity to the sum over m yields

〈Sf, f〉 =
∑

n

∑

m

|〈f gn,Wm,n〉L2(In)|2

=
∑

n

1

bn
‖f gn‖2 =

〈∑

n

1

bn
|gn|2f, f

〉
.

�

While in general, the inversion of S can be numerically unfeasible, in the special
case described in Theorem 1, the invertibility of the frame operator is easy to check
and inversion is a simple multiplication.

Corollary 1. Under the conditions given in Theorem 1, the system of functions

gm,n forms a frame for L2(R) if and only if
∑
n

1
bn
|gn(t)|2 ≃ 1. In this case, the

canonical dual frame elements are given by:

(5) g̃m,n(t) =
gn(t)∑

l
1
bl
|gl(t)|2

e2πimbnt,

and the associated canonical tight frame elements can be calculated as:

g̊m,n(t) =
gn(t)√∑
l

1
bl
|gl(t)|2

e2πimbnt.
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Remark 2. The optimal lower and upper frame bounds are explicitly given by
Aopt = essinf

∑
n

1
bn
|gn(t)|2 and Bopt = esssup

∑
n

1
bn
|gn(t)|2.

We next state the results of Theorem 1 and Corollary 1 in the Fourier domain.
This is the basis for adaptation over frequency.

Corollary 2. For every m ∈ Z, let the function hm be bandlimited to supp(ĥm) =
[cm, dm] and let am be chosen such that dn − cn ≤ 1

am
. Then the frame operator of

the system

hm,n(t) = hm(t− nam) ,m ∈ Z, n ∈ Z

is given by a convolution operator of the form

(6) 〈Sf, f〉 = 〈F−1
(∑

m

1

am
|ĥm|2

)
∗ f, f〉

for f ∈ L2(R). Hence, the system of functions hm,n forms a frame of L2(R) if and

only if ∀ν ∈ R,
∑

m
1
am

|ĥm(ν)|2 ≃ 1. The elements of the canonical dual frame are

given by

(7) h̃m,n(t) = TnamF−1

(
ĥm∑
l

1
al
|ĥl|2

)
(t)

and the canonical tight frame is given by

(8) h̊m,n(t) = TnamF−1


 ĥm√∑

l
1
al
|ĥl|2


 (t).

Proof. We deduce the form of the frame operator in the current setting from the
proof of Theorem 1 by setting

〈Sf, f〉 = 〈Ŝf, f̂〉 =
∑

m,n

|〈f̂ , ĥm,n〉|2

and the rest of the corollary is equivalent to Corollary 1. �

4. Discrete Finite Nonstationary Gabor Frames

4.1. Discrete, time-adaptive Gabor transform. For the practical implemen-
tation, the equivalent theory may be developed in a finite discrete setting using the
Hilbert space CL. Since this is largely straight-forward from simple matrix multi-
plication, we only state the main result. Given a set of functions {gn}n∈{0,...,N−1}, a
set of integers (number of frequency samples for each time position) {Mn}n∈{0,...,N−1}
associated with the set of real values {bn = L

Mn
}n∈{0,...,N−1}, the discrete, nonsta-

tionary Gabor system is given by

gm,n[k] = gn[k] · e
2πimbnk

L = gn[k] ·Wmbnk
L .

for n = 0, . . . , N−1,m = 0, . . . ,Mn−1 and all k = 0, . . . L−1. Note that in practice,
gm,n[k] will have zero-values for most k, allowing for efficient FFT-implementation:

since Mn = L
bn
, we have gm,n[k] = gn[k] · e

2πimk
Mn and the nonstationary Gabor

coefficients are given by an FFT of length Mn for each gn.

The number of elements of {gm,n} is P =
∑N−1

n=0 Mn. Let G be the L×P matrix

such that its p-th column is gm,n, for p = m+
∑n−1

k=0 Mk.
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Corollary 3. The frame operator S = G ·G∗ is an L× L matrix with entries:

Sk,j =
∑

n∈N(k−j)

Mn gn[k] gn[j]

where Np = {n ∈ [0, N − 1] | p = 0 mod Mn} for p ∈ [−L,L]. Therefore, if

appropriate support conditions are met, S is a diagonal matrix.

4.1.1. Numerical complexity. Assuming that the windows gn have support of length
Ln, let M = maxn {Mn} be the maximum FFT-length. We consider the painless
case where Ln ≤Mn ≤M . The number of operations is

(1) Windowing: Ln operations for the n-th window.
(2) FFT: O (Mn · log (Mn)) for the n-th window.

Then the number of operations for the discrete NSGT is

O
(
N−1∑

n=0

Mn · log (Mn) + Ln

)
= O (N · (M log (M) +M))

= O (N · (M log (M)))

Similar to the regular Gabor case, the number of windows N will usually depend
linearly on the signal length L while the maximum FFT-length M is assumed to
be independent of L. In that case, the discrete NSGT is a linear cost algorithm.

For the construction of the dual windows in the painless case, the computa-
tion involves multiplication of the window functions by the inverse of the diagonal

matrix S and results in O(2
∑N−1

n=0 Ln) = O(N · M) operations. Lastly, the in-
verse NSGT has numerical complexity O (N · (M log (M))), as in the NSGT, since
it entails computing for the IFFT of each coefficient vector, multiplying with the
corresponding dual windows and evaluating the sum.

4.1.2. Application: automatic adaptation to transients. In real-life applications,
NSGT has the potential to represent local signal characteristics, e.g. transient
sound events, in a more appropriate way than pre-determined, regular transform
schemes. Since the appropriateness of a representation depends on the specific
application, any adaptation procedure must be designed specifically. For the im-
plementation itself, however, two observations generally remain true: First, the
general nonstationary framework needs to be restricted to a well defined set of
choices. Second, some measure is needed to determine the most suitable of the
possible choices. For example, in the case of a sparsity measure, the most sparse
representation will be chosen. To show that good results are achieved even when
using quite simple adaptation methods, we describe a procedure suitable for signals
consisting mainly of transient and sinusoidal components. The adaptation measure
proposed is based on onset detection, i.e. estimating where transients occur in the
signal. The transform setting is what we call scale frames: the analysis procedure
uses a single window prototype and a countable set of dilations thereof.
For evaluation, the representation quality is measured by comparison of the number
of representation coefficients leading to certain root mean square (RMS) reconstruc-
tion errors, for both NSGT and regular Gabor transforms. The results are especially
convincing for sparse music signals with high energy transient components. Other
possible adaptation methods might be based on time-frequency concentration, spar-
sity or entropy measures [23],[17],[19].
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Scale frames: In the following paragraphs, we propose a family of nonstationary
Gabor frames that allows for exponential changes in time-frequency resolution along
time positions. To avoid heavy notation and since the formalism necessary for the
discrete, finite case could obscure the principal idea, we describe the continuous
case construction. Suitable standard sampling then yields discrete, finite frames
with equivalent characteristics.

The basic idea is to build a sequence of windows gn from a single, continuous
window prototype g with support on an interval of length 1 in such a way that
the resulting gn satisfy Corollary 1. The window sequence will be unambiguously
determined by a sequence of scales. Once this scale sequence is known, it is a simple
task to choose modulation parameters bn satisfying the necessary conditions.

As a scale sequence, we allow any integer-valued sequence {sn}n∈Z such that
|sn − sn−1| ∈ {0, 1}, where the latter restriction is set in order to avoid sudden
changes of window length. Then, gn is, up to translation, given by a dilation of the
prototype g:

D2sn (g)(t) =
√
2−sng(2−snt)

This implies that a change of scale from one time step to the next corresponds to
the use of a window either half or twice as long. More precisely, for every time step
n, set s = min{sn−1, sn} and fix an overlap of 2/3 · 2s, if sn 6= sn−1 and 1/3 · 2s, if
sn = sn−1. Explicitly,

gn = TnD2sn (g),

with recursively defined time shift operators Tn given by

T0 = T0, Tn =

{
T2s5/6Tn−1, if sn 6= sn−1

T2s+1/3Tn−1, else.

Defining the time shifts in this manner, we achieve exactly the desired overlap as
illustrated in Figure 5.

2

3
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t t+ 2s 5

6

1

3
2s
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t t+ 2
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3
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2

3
2s

t t+ 2s 5

6

Figure 5. Illustration of scale frame overlaps and time shifts.

By construction, each gn has non-zero overlap with its neighbors gn−1 and gn+1

and at any point on the real line, at most two windows are non-zero. After perform-
ing a preliminary transient detection step, as explained before, the construction of
the adapted frame reduces to the determination of a scale sequence.
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In the subsequent figures and experiments we used the Hann window as pro-
totype, but other window choices are possible. The described concept can easily
be generalized by admitting other overlap factors and scaling ratio than the ones
specified above. The parameters have to be chosen with some care, though. Oth-
erwise the resulting frames might be badly conditioned, with a big or even infinite
condition number B

A , caused by accumulation points for the time shifts or gaps
between windows. A more detailed description of general and discrete scale frames
is beyond the scope of this article and will be part of a future contribution.

Frame construction from a sequence of onsets: In this paragraph, we assume
that the signals of interest are mainly comprised of transient and sinusoidal com-
ponents, an assumption met, e.g. by piano music. The instant a piano key is hit
corresponds to a percussive, transient sound event, directly followed by harmonic
components, concentrated in frequency. An intuitive adaptation to signals of this
type would use high time resolution at the positions of transients. This corresponds
to applying minimal scale at the transients and steadily increasing the scale with
the distance from the closest transient. The transients’ positions can be determined,
e.g. by so-called onset detection procedures [9] which, if used carefully, work to a
high degree of accuracy. Once the transient positions are known, the construction
of a corresponding scale frame yields good nonstationary representations for suffi-
ciently sparse signals.

Application of onset-based scale frames: We applied the procedure proposed
above to various signals, mainly piano music. For this presentation, we selected
three examples, all of them sampled at 44.1 kHz and consisting of a single channel.
Some more examples and corresponding results as well as the source sound files can
be found on the associated web-page http://univie.ac.at/nonstatgab/.

• Example 1: The widely used Glockenspiel signal shown in Figure 3.
• Example 2: An excerpt from a solo jazz piano piece performed by Her-
bie Hancock, characterized by its calmness and varied rhythmical pattern,
resulting in irregularly spaced low-energy transients. See Figure 6.

• Example 3: A short excerpt of György Ligeti’s piano concert. With highly
percussive onsets in the piano and Glockenspiel voices and some orchestral
background, this is the most polyphonic of our examples. See Figure 7.

For comparison, the plots in Figures 3, 6 and 7 also show standard Gabor coeffi-
cients with comparable (average) window overlap. A Hann window of 2560 samples
length was chosen for the computation of regular Gabor transforms. The compari-
son shows that for the three signals, the NSGT features a better concentration of
transient energy than a regular Gabor transform, while keeping, or even improving,
frequency resolution.

Efficiency in sparse reconstruction: The onset detection procedure and a sub-
sequent scale frame analysis were applied, along with a regular Gabor decompo-
sition, to the Glockenspiel and Ligeti signals. As a test of the representations’
sparsity, the signals were synthesized from their corresponding coefficients, modi-
fied by hard thresholding followed by reconstruction using a dual frame. Then the
numbers of largest magnitude coefficients needed for a certain relative root mean
square (RMS) reconstruction error for each representation were compared. The

http://univie.ac.at/nonstatgab/
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Figure 6. Hancock (Example 2). Regular and nonstationary Ga-
bor representations.

Ligeti − dB−scaled Gabor transform
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Figure 7. Ligeti (Example 3). Regular and nonstationary Gabor representations.

RMS error of a vector f and its reconstruction frec is given by

RMS(f, frec) =

√√√√
∑L−1

k=0 |f [k]− frec[k]|2∑L−1
k=0 |f [k]|2

.

All transforms are of redundancy about 5
3 . The results for NSGT and different

regular Gabor transform schemes are listed in Table 1. On the Glockenspiel signal
the NSGT method performs vastly better than the ordinary Gabor transform. For
Ligeti, the differences are not as significant, but still the NSGT-based procedure
shows better overall results.
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Glockenspiel sparse coefficients

Method Parameters 1% 2% 5% 10% Total
NSGT (192,8) 25366 14138 7142 3979 439488
GT (768,1280) 44274 28248 14655 7786 441600
GT (1536,2560) 48914 32475 16186 7582 448000
GT (3072,5120) 58048 39382 19386 7441 460800

Ligeti sparse coefficients

Method Parameters 1% 2% 5% 10% Total
NSGT (192,8) 129155 95999 57546 33892 560448
GT (768,1280) 138133 104662 66931 43122 563200
GT (1536,2560) 134896 101192 62732 37787 563200
GT (3072,5120) 138282 102740 62095 35181 563200

Table 1. RMS error in sparse representations of Example 1 and
Example 3. Parameters are hop size and window length in the
regular case or shortest window length and number of scales for
NSGT. The values are estimated to be the optimal numbers of
coefficients necessary to achieve reconstruction with less than the
respective error.

Further experiments and a more exhaustive discussion of the parameters used in
the experiments, can be found on the web-page http://univie.ac.at/nonstatgab/.
Along them, examples of regular and nonstationary reconstructions from a specified
amount of coefficients can be found, so the reader might get a subjective impression
of perceptive reconstruction quality. In conclusion, the experiments show that for
real music signals, NSGT can provide a sparser representation than regular Gabor
transforms, admitting reasonable reconstruction error.

4.2. Implementation of a discrete, frequency-adaptive Gabor Transform.

Since our construction of Gabor frames with adaptivity in the frequency domain
relies on the fact that analysis windows hm possess compact bandwidth, an FFT-
based implementation is highly efficient. We take the input signal’s Fourier trans-
form and treat the procedure in complete analogy to the situation developed for

time-adaptive transforms, i.e. hm,n[k] = Tnamhm[k] and ĥm,n[j] = M−nam ĥm[j].
As observed in Section 3.2.1, we are able to obtain wavelet frames using Gabor

frames that exhibit nonstationarity in the frequency domain. Moreover, we may
design general transforms with flexible frequency resolution, such as a constant-Q
transform. While various other adjustments (e.g. Mel- or Bark-scaled transforms)
are feasible, we will focus our discussion on the constant-Q case. To the best
knowledge of the authors, the approach to implement the constant-Q transform
directly in the frequency domain by means of FFT is new in audio processing.

4.2.1. Application: an invertible constant-Q transform. The constant-Q transform
(CQT), introduced by Brown [2], transforms a time signal into the time-frequency
domain, where the center frequencies of the frequency bins are geometrically spaced.

http://univie.ac.at/nonstatgab/
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Since the Q-factor (the ratio of the center frequencies to the window’s bandwidth)
is constant, the representation allows for a better frequency resolution at lower
frequencies and a better time resolution at the higher frequencies. This is sometimes
preferable to the fixed resolution of the standard Gabor transform, for which the
frequency bins are linearly spaced. In particular, this kind of resolution is often
desired in the analysis of musical signals, since the transform can be set to coincide
the temperament, e.g. semitone or quartertone, used in Western music.

The originally introduced constant-Q transform, however, is not invertible and
is computationally more intensive than the DFT. Perfect reconstruction wavelet
transforms with rational dilation facotrs were proposed in [1]. Since they are based
on iterated filter banks, these methods are computationally too expensive for long,
real-life signals, when high Q-factors, such as 12-96 bins per octave, are required.

A computationally efficient CQT was proposed by Klapuri and Schörkhuber [24],
but the approximate inversion introduced in their method still gives an RMS error
of around 10−3. The lack of perfect invertibility prevents the convenient modifi-
cation of CQT-coefficients with subsequent resynthesis required in complex music
processing tasks such as masking or transposition. By allowing adaptive resolution
in frequency, we can construct an invertible nonstationary Gabor transform with a
constant Q-factor on the relevant frequency bins.

Setting: For the frame elements in the transform, we consider functions hm ∈
CL, m = 1, . . . ,M having center frequencies (in Hz) at ξm = ξmin2

m−1
B , as in the

CQT. Here, B is the number of frequency bins per octave, and ξmin and ξmax are the
desired minimum and maximum frequencies, respectively. In the experiments, we
restrict ξmax to be less than the Nyquist frequency and there should exist anM ∈ N

satisfying ξmax ≤ ξmin2
M−1

B < ξs/2, where ξs denotes the sampling frequency. In
this case, we take M = ⌈B log2(ξmax/ξmin) + 1⌉, where ⌈z⌉ is the smallest integer
greater than or equal to z. While in the CQT no 0-frequency is present, the NSGT
provides all necessary freedom to use additional center frequencies. Since the signals
of interest are real-valued, we put filters at center frequencies beyond the Nyquist
frequency in a symmetric manner. This results in the following values for the center
frequencies:

ξm =





0, m = 0

ξmin2
m−1
B , m = 1, . . . ,M

ξs/2, m =M + 1

ξs − ξ2M+2−m, m =M + 2, . . . , 2M + 1.

For the corresponding bandwidth Ωm of hm, we set Ωm = ξm+1 − ξm−1, for
m = 1, . . . ,M , and Ω0 = 2ξ1 = 2ξmin. By construction, these result in a constant

Q-factor Q = (2
1
B − 2−

1
B )−1 for m = 2, . . . ,M − 1. And we can write each Ωm as

follows:

Ωm =





2ξmin, m = 0

ξ2, m = 1, 2M + 1

ξm/Q, m = 2, . . . ,M − 1

(ξs − 2ξM−1)/2, m =M,M + 2

ξs − 2ξM , m =M + 1

ξ2M+2−m/Q, m =M + 3, . . . , 2M.
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If we use a Hann window ĥ, supported on [−1/2, 1/2], then we can obtain each

hm via ĥm[j] = ĥ((j ξsL − ξm)/Ωm), where j = 0, . . . , L − 1. Letting am ≤ ξs
Ωm

,

we define hm,n by their Fourier transform ĥm,n = M−nam ĥm, n = 0, . . . , ⌊ L
am

⌋− 1.
Figure 8 illustrates the time-frequency sampling grid of the set-up, where the center
frequencies are geometrically spaced and sampling points regularly spaced.

b b b b b b

b b b b b b b b b

b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b
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t

ξm−1

ξm

ξm+1

am
︷ ︸︸ ︷

Figure 8. Exemplary sampling grid of the time-frequency plane
for a constant-Q nonstationary Gabor system.

The support conditions on ĥm imply that the sum σ =
∑2M+1
m=0

L
am

∣∣ĥm
∣∣2 is

finite and bounded away from 0. From Section 3.3, the frame operator is therefore
invertible and we can apply Corollary 2.

Note that we consider the bandwidth to be the support of the window in fre-
quency. This makes sense in the considered painless case. Very often, see e.g. [24],
the bandwidth is taken as the width between the points, where the filter response
drops to half of the maximum, i.e. the −3dB -bandwidth. This definition would
also make sense in a non-compactly supported case. For the chosen filters, Hann
windows, the Q-factor considering the −3dB -bandwidth is just double of the one
considered above.

We see in Figure 9 the standard Gabor transform spectrogram and the constant-
Q NSGT spectrogram of the Glockenspiel signal, the latter being very similar to the
CQT spectrogram obtained from the original algorithm [2] but with the additional
property that the signal can be perfectly reconstructed from the coefficients. Figures
10 and 11 compare the standard Gabor transform spectrogram and the constant-Q
NSGT spectrogram of two additional test signals, both sampled at 44.1 kHz:

• Example 4: A recording of Bach’s Little Fugue in G Minor, BWV578 per-
formed by Christopher Herrick on a pipe organ. Low frequency noise and
the characteristic structure of pipe organ notes are resolved very well by a
CQT. See Figure 10.

• Example 5: An excerpt from a duet between violin and piano. Written
by John Zorn and performed by Sylvie Courvoisier and Mark Feldman, the
sample is made up of three short segments: A frantic sequence of violin and
piano notes, a slow violin melody with piano backing and an inharmonic
part with chirp component. See Figure 11.
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Glockenspiel − dB−scaled CQ−NSGT
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Figure 9. Glockenspiel (Example 1). Regular Gabor, constant-Q
nonstationary Gabor and constant-Q representations of the signal.
The transform parameters were B = 48 and ξmin = 200 Hz.

Efficiency: The computation time of the nonstationary Gabor transform was
found to be better than a recent fast CQT implementation [24], as seen in Ta-
bles 2 and 3. The two tables list mean values for computation time in seconds and
the corresponding variance over 50 iterations, with varying window lengths and
number of frequency bins, respectively.

It is again reasonable to assume that the number of filters is bounded, indepen-
dently of L, while the number of temporal points depend on L. As the role of M
and N is switched in the assumption in Section 4.1.1 for the complexity, we arrive
at a complexity of O (L logL). This is also the complexity of the FFT of the whole
signal. So the overall complexity of the frequency-dependent nonstationary Gabor
transform is O (L logL). The advantage of the method in terms of computation
efficiency thus decreases as longer signals are considered.
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Fugue − dB−scaled CQ−NSGT
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Figure 10. Bach’s Little Fugue (Example 4). Regular and
constant-Q nonstationary Gabor representations of the signal. The
transform parameters were B = 48 and ξmin = 75 Hz.
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Figure 11. Violin and piano duet (Example 5). Regular and
constant-Q nonstationary Gabor representations of the signal. The
transform parameters were B = 48 and ξmin = 50 Hz.

Since we aim at efficient and possibly real-time processing, the next step is to
process the incoming samples in a piecewise manner, using only a single family
of frame elements for signals of arbitrary length. This entails working on finite,
discrete parts of the given signal, thus considering the Fourier-transformed versions
of vectors f · h ∈ CL, where h denotes some function of length L ≪ L. This
window, together with the frame elements, will be designed to minimize undesired
effects that stem from the cutting of the signal. Details of this piecewise processing,
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signal length CQT mean time NSGT mean time
L (in seconds) (in seconds)

262144 2.4163 0.6494
280789 2.4223 0.6847
579889 3.0910 1.2763
600569 3.1323 1.7508
805686 3.5684 1.5116

signal length CQT time NSGT time
L variance variance

262144 0.0298 0.0028
280789 0.0600 0.0566
579889 0.0626 0.0623
600569 0.0379 0.0394
805686 0.0852 0.0792

Table 2. Comparison of computation time between CQTs and
NSGTs for signals of various lengths. Parameters for all transforms
were B = 48 and ξmin = 50 Hz.

Bins per octave CQT mean time NSGT mean time
B (in seconds) (in seconds)
12 0.9459 0.3564
24 1.4358 0.4439
48 2.4163 0.6494
96 4.4954 1.0918

Bins per octave CQT time NSGT time
B variance variance
12 0.0082 0.0001
24 0.0209 0.0046
48 0.0298 0.0028
96 0.2331 0.1507

Table 3. Comparison of computation time between CQTs and
NSGTs of the Glockenspiel signals, varying the number of bins per
octave. The minimum frequency ξmin was chosen at 50 Hz.

as well as a proposed variable-Q transform, will be further discussed in a future
contribution.

5. Conclusion and perspectives

Our approach enables the construction of frames with flexible evolution of time-
frequency resolution over time or frequency. The resulting frames are well suited for
applications as they can be implemented using fast algorithms, at a computational
cost close to standard Gabor frames.

Exploiting evolution of resolution over time, the proposed approach can be of
particular interest for applications where the frequency characteristics of the signal
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are known to evolve significantly with time. Order analysis [25], in which the signal
analyzed is produced by a rotating machine having changing rotating speed, is an
example of such an application.

Exploiting evolution of resolution over frequency, the presented approach is valu-
able for applications requiring the use of a tailored non uniform filter bank. In
particular, it can be used to build filter banks following some perceptive frequency
scale, see e.g. [15]. In the present contribution, we described in detail an invertible
constant-Q transform.

One difficulty when using our approach is to adapt the time-frequency resolution
to the evolution of the signal characteristics. If prior knowledge is available, this
can be done by hand. An automatic adaptation algorithm based on onset detection
was described in Section 4.1.2. A different approach will involve the investigation
of sparsity criteria as proposed in [17]. Finally, future work will lead to adaptability
in both time and frequency leading to quilted frames as introduced in [10].
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tions. Birkhäuser Boston, 1998.
[13] D. Gabor, “Theory of communications,” J. IEE, vol. III, no. 93, pp. 429–457, 1946.
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