Gradient-based Learning Applied to Document Recognition

Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner

Presenter: Lu Jiang

Outline

- Introduction
- Convolutional Neural Network
- Multiple Characters Recognition
- Conclusions

Outline

- Introduction
- Convolutional Neural Network
- Multiple Characters Recognition
- Conclusions

Introduction

- Key message: better pattern recognition systems can be built by relying more on automatic learning and less on hand-designed heuristics.
 - Hand-crafted features vs. learned features

Learned filters

Why learned features:

- (a) lower dimension can be easily compared
- (b) invariant to transformations and distortions of the input patterns.

Background

- LeCun's most cited paper.
- This paper published in 1998, at that time
 - SVM (and kernel learning) are quite popular.
 - Hand-crafted features (e.g. SIFT) are dominant.
 - MNIST (58k images) is a big and challenging data.
- This paper did not become popular until 2012, when the proposed convolutional neural networks were successfully applied on ImageNet challenge (AlexNet).
- Now almost every deep learning network for visual recognition uses convolutional layers.

MNIST (NIST handwritten digit database)

ファチ17フフフフフフフフ)フ

Outline

- Introduction
- Convolutional Neural Network
- Multiple Characters Recognition
- Conclusions

Intuitions

- A network can be fed with the pixels in raw images (fullyconnected layer) but:
 - Formidable number of parameters. 256*256*3 = 196K parameters. Overfitting!
 - Sensitive to size, shift slant, position variations caused by, or example, resized images.
 - Topology in images are ignored. The fact is local nearby pixels are highly correlated. Local points can form edges, end-points, and corners.
- Proposed approaches: learn pattern that can be positioned at various locations; force learned pattern are from local pixels.
- Solution: Convolutional Neural Network
 - Convolution layer and pooling layer are inspired by "simple" and "complex" cells [Fukushima et al 1982].

- Input: inputs from a set of units located in a small neighborhood in the previous layer. First conv layer receives the resized and normalized images.
- Output: a number of feature maps (holding neurons arranged in a 3D volume)

- Input: inputs from a set of units located in a small neighborhood in the previous layer. First conv layer receives the resized and normalized images.
- Output: a number of feature maps (holding neurons arranged in a 3D volume)

slide over the input (convolution)

- Input: inputs from a set of units located in a small neighborhood in the previous layer. First conv layer receives the resized and normalized images.
- Output: a number of feature maps (holding neurons arranged in a 3D volume)

The learnable parameter in the same feature map is shared. (weight sharing) To learn meaningful pattern at different locations.

- Input: inputs from a set of units located in a small neighborhood in the previous layer. First conv layer receives the resized and normalized images.
- Output: a number of feature maps (holding neurons arranged in a 3D volume)

pooling (sub-sampling) layer

Down-sampling the input and preserve meaningful statistics (average or max pooling). Make learned pattern more invariant.

- Input: inputs from a set of units located in a small neighborhood in the previous layer. First conv layer receives the resized and normalized images.
- Output: a number of feature maps (holding neurons arranged in a 3D volume)

z measures the dot product similarity to the local inputs. Our goal is to learn the parameters w The hope is we can learn patterns frequently occurred in the inputs

Smaller strides work better in practice [Fei-fei Li et al. 2015].

Convolutional Layer in 2D filter weights feature map

Convolutional Layer in 2D feature map

Convolutional Layer in 2D filter weights feature map

Fei-fei Li et al. 2015

Pooling (Sub-sampling) Layer

In this paper, Lecun used a linear transformation.

Weighted sum of the inputs plus a bias term.

Max pooling becomes quite popular nowadays.

Down-sampling the input and preserve meaningful statistics (average or max pooling). Make learned pattern more invariant.

• C1 layer has 6 feature maps (28x28), a 5x5 receptive filed resulting in (5*5+1)*6 = 156 learnable parameters which are from 28*28*(5*5*+1)*6 = 122,304 connections.

• S1 layer has 6 feature maps (14x14), a 2x2 receptive filed resulting in (1+1)*6 = 12 learnable parameters which are from 14*14*(2*2+1)*6 = 5,880 connections.

Fewer parameters but computationally intensive to compute (#connections result from convolution)

Convolutional Neural Network Training

- Compute partial derivatives of the loss function with respect to each connection, as if there were no weight sharing. [via backprop]
- Aggregate the partial derivatives of all connections that share a same parameter. Update the parameter with the aggregated derivatives.

LeNet-5 to AlexNet

Results on MNIST

Results on MNIST

Multi-Module Recognition System

- Object-Oriented Design:
 - Every module can be a layer. For example, loss function layers, convolutional layers, and even graph transformers.
 - Every layer is an object that has functions like fprop and bprop.
 - Complex systems can be built upon those simple layers,
 and trained by gradient-based learning algorithms.
- Inspire the design of deep learning tools like caffe,
 Torch

Outline

- Introduction
- Convolutional Neural Network
- Multiple Characters Recognition
- Conclusions

Segmentation Graph

- Over-segmentation: generate a large number of different (probably incorrect) segments.
- Segmentation graph: an arc between two nodes indicate a segment result
- A complete path between start and end node contains each piece of ink once and only once

Recognizing multiple characters Graph Transformation Networks

Recognizing multiple characters: Graph Transformation Networks

To train GTN:

- Add a layer called a path selector to select the paths with correct label sequence in the interpretation graph.
- Calculate the penalty.
- Back propagate the penalty to the neural network.
- How to calculate the partial gradient with respect to graphs?
 - Define a binary function. Assign gradient 0 for the arcs not in the correct/optimal path. 1 otherwise.

Recognizing multiple characters: Displacement Neural Network

Interestingly, LeCun mentioned RNN but did not use it because he said it is hard to train.

Outline

- Introduction
- Convolutional Neural Network
- Multiple Characters Recognition
- Conclusions

Conclusions

- The most representative work of LeCun. A seminal on neural networks for visual recognition.
- This paper proposed several interesting notations:
 - Hand-crafted features should be replaced by learned features.
 - Large-sized systems can be learned by gradient-based method with efficient back propagation.
 - Proposed the notation of graph transformer layer that can be plugged into a network.

Thank you.

Any Questions?