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Abstract—We present a bit-precise decision procedure for the
theory of binary floating-point arithmetic. The core of our ap-
proach is a non-trivial generalisation of the conflict analysis al-
gorithm used in modern SAT solvers to lattice-based abstractions.
Existing complete solvers for floating-point arithmetic employ
bit-vector encodings. Propositional solvers based on the Conflict
Driven Clause Learning (CDCL) algorithm are then used as a back-
end. We present a natural-domain SMT approach that lifts the
CDCL framework to operate directly over abstractions of floating-
point values. We have instantiated our method inside MATHSAT5
with the floating-point interval abstraction. The result is a sound
and complete procedure for floating-point arithmetic that out-
performs the state-of-the-art significantly on problems that check
ranges on numerical variables. Our technique is independent of
the specific abstraction and can be applied to problems beyond
floating-point satisfiability checking.

Index Terms—floating point, decision procedures, abstract in-
terpretation.

I. INTRODUCTION

Floating-point computations are used pervasively in low-
level control software and embedded applications. Such pro-
grams are frequently used in areas where safety is of critical
importance, such as the automotive and aerospace industry.

Floating-point numbers have a dual nature that complicates
complete logical reasoning. On the one hand, they are approxi-
mate representations of real numbers, suggesting a numeric ap-
proach to their analysis. On the other hand, their discrete nature
leads to “odd behaviours”, which purely numeric techniques are
ill-equipped to handle.

Current complete satisfiability decision procedures for con-
straints over floating-point numbers are based on bit-vector
encodings [1]. The resulting instances are often hard for cur-
rent Satisfiability Modulo Theory (SMT) solvers. On the other
hand, inexpensive techniques such as floating-point interval
propagation [2] can be employed to solve some instances very
efficiently.

To illustrate this point, consider the formula x ∈ [0.0, 10.0]∧
y = x5 ∧ y > 105, over double-precision floating-point
variables x and y. Interval propagation can deduce in a fraction
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of a second that y ∈ [0.0, 100000.0] holds, which contradicts
the final conjunct y > 105. In stark contrast, the SMT solver
Z3 requires 16 minutes on a modern processor to prove un-
satisfiability of a corresponding bit-vector encoding. Likewise,
it is possible to construct very simple formulas that interval
propagation cannot solve: Consider the floating-point formula
z = y ∧ x = y · z ∧ x < 0. Standard interval propagation
cannot determine that y · z must be positive and fails to prove
unsatisfiability. Z3 solves the problem above in less than a
second.

The power of an incomplete proof technique such as interval
propagation can be boosted by decomposing the proof attempt
into cases. In classic DPLL(T) [3], for example, a SAT solver
based on the Conflict Driven Clause Learning (CDCL) algo-
rithm enumerates cases by assigning predicates occurring in the
formula to candidate truth values. A separate theory decision
procedure is then used to check whether the resulting cases are
consistent.

In the above examples, classic DPLL(T) would not be able to
provide a further refinement since all predicates must be true for
the formulas to be satisfiable. However, further decomposition
into cases is still possible if we directly enter the domain of the
theory. If we assume that y < 0 it follows that z < 0, which is
sufficient to show that x > 0. The complementary case y ≥ 0
can be shown with similar ease. A complete procedure can be
obtained in this way since i) interval propagation is complete
for sufficiently small cases, e.g., the case where every variable
is assigned to a singleton range and ii) there is a finite number
of such cases that need to be checked.

In essence, it is possible to use the DPLL(T) framework to
perform case splitting directly in the theory [4]. This requires
introduction of a potentially large number of new propositions
to represent theory facts and makes implementation of good
learning heuristics difficult, since the propositional learning
algorithm is unaware of the theory semantics associated with
propositions. To handle problems such as the above, the emerg-
ing area of natural domain SMT procedures [5]–[9] aims at
increasing the power of SMT techniques by lifting them directly
to richer logics. For example, where a CDCL solver makes
decisions that force Boolean variable to true or false, a natural
domain SMT solver for linear integer arithmetic may set a
variable to some specific integer value [6]. Such procedures



typically require custom, domain-specific decision heuristics
and learning procedures.

The work presented in this paper can be seen as a systematic
derivation of a learning algorithm for floating-point logic from
an abstract domain. We exploit a simple insight, advocated in
an earlier paper [10]: Propositional SAT solvers internally op-
erate over a lattice-theoretic abstraction that overapproximates
the space of possible solutions. Natural liftings of CDCL-style
learning to richer logics can be obtained by considering a wider
scope of abstractions.

In this paper, we show how the FIRST-UIP learning algo-
rithm [11] used in CDCL solvers can be lifted to a wider range
of domains. This lifting is non-trivial since it has to address the
additional complexity of abstractions for domains that go be-
yond propositional logic. We present a new implementation of
our approach for floating-point logic as part of the MATHSAT5
framework. The implementation outperforms approaches based
on bit-blasting significantly on our set of benchmarks.

Contribution: The contributions of this paper are three-
fold: (i) we present a novel natural domain solver for the theory
of floating-point arithmetic that significantly outperforms the
state of the art; (ii) we introduce a lifting of the FIRST-UIP
conflict analysis algorithm used in modern SAT solvers to
abstractions, (iii) we evaluate our work on a set of benchmarks.

Outline: Section II provides a brief introduction to
floating-point numbers, the theory of floating-point arithmetic
and some formal background on abstract interpretation. Sec-
tion III gives a high-level account of model search and conflict
analysis over abstract domains. The main algorithmic contribu-
tion is presented in Section IV: A lifting of the FIRST-UIP algo-
rithm to abstract domains. The implementation of our floating-
point solver, the specific heuristics we used and experiments
are discussed in Section V. An extensive survey of related work
from the areas of theorem proving, abstract interpretation, and
decision procedures is given in Section VI.

II. FLOATING-POINT ARITHMETIC AND ABSTRACTION

A. Floating-Point Arithmetic

This section gives an informal introduction to the theory of
floating-point arithmetic. For an exhaustive treatment, see [12]
which formalises the IEEE-754 floating-point standard as an
SMT theory.

Floating-point numbers are approximate representations of
the reals that allow for fixed size bit-vector encoding. A
floating-point number represents a real number as a triple of
positive integers (s,m, e), consisting of a sign bit s taken
from the set of Booleans B =̂ {0, 1}, a significand m and an
exponent e. Its real interpretation is given by (−1)s · m · 2e.
Note that all numbers have a sign, therefore, the real number 0
is represented both by an unsigned zero +0 and a signed zero
−0.

A floating-point format determines the number of bits used
for encoding significand and exponent. The IEEE-754 standard
defines several floating-point formats and their bit-encodings.
An example of an IEEE-754 binary16 floating-point number
is given below.

1 1 0 0 1 0 0 1 0 1 0 1 1 0 0 0
s e m

= −1 · 218−15 · 1.3359375
= −10.6875

Some bit-patterns are used to encode the special values positive
infinity +∞, negative infinity−∞, and NaN , which represents
an invalid arithmetic result. We do not go into details regarding
this encoding and simply define F to be the set of all floating-
point numbers including the special values.

Terms in FPA are constructed from floating-point variables,
constants, standard arithmetic operators and special operators
such as square roots and combined multiply-accumulate oper-
ations used in signal processing. Most operations are parame-
terized by one of five rounding modes. The result of floating-
point operations is defined to be the real result (computed with
‘infinite precision’) rounded to a floating-point number using
the chosen rounding mode.

Formulas in FPA are Boolean combinations of predicates
over floating-point terms. In addition to the standard equality
predicate =, FPA offers a number of floating-point specific
predicates including a special floating-point equality =F, and
floating-point specific arithmetic inequalities < and ≤. Since
these operators approximate real comparisons they have un-
usual properties. For example, any comparison with the value
NaN returns false, therefore =F is not reflexive since NaN =F
NaN does not hold. On the other hand, +0 and −0 compare as
equal since they represent the same real number.

B. Lattices and Abstractions

Following the theory of abstract interpretation [13] we define
abstraction in terms of lattices and closure operators. A com-
plete lattice is a partially ordered set (P,v) in which any subset
S ⊆ P has a unique least upper bound

⊔
S and unique greatest

lower bound
d
S. A complete lattice has a least element ⊥

and a greatest element >. A powerset lattice of a set Q is
a complete lattice (℘(Q),⊆) with least upper bound

⋃
, and

greatest lower bound
⋂

. A transformer on P is a monotone
function f : P → P . Transformers over P form a complete
lattice under the pointwise order, f v g if ∀p ∈ P.f(p) v g(p).
Least upper bounds and greatest lower bounds extend pointwise
to the transformer lattice, e.g., f u g = λp. f(p) u g(p). We
denote the least fixed point of a transformer g as lfpX. g(X)
or lfp g, and the greatest fixed point gfpX. g(X) or gfp g. The
image of f is the set Img(f) =̂ {f(p) | p ∈ P}.

A closure operator on P is a transformer ζ : P → P such
that for all p, q ∈ P , (i) ζ is extensive, i.e., p v ζ(p) and
(ii) ζ is idempotent, i.e., ζ(p) = ζ(ζ(p)). An abstraction of
a lattice (P,v) is a complete sublattice (Q,v) with Q ⊆ P ,
such that Q = Img(ζ) for some closure operator ζ. We call P
the concrete and Q the abstract domain. The closure operator
ζ maps a set to its most precise abstract representation. We
assume throughout this paper that ζ(⊥) = ⊥. An abstract
transformer g : Q → Q is an overapproximation of a
transformer f : P → P if ∀q ∈ Q. f(q) v g(q) and an
underapproximation if ∀q ∈ Q. g(q) v f(q). The unique best
overapproximation of f : P → P w.r.t. to a closure operator ζ
is the function g = ζ ◦ f ◦ ζ. A best underapproximation does,



in general, not exist.

Example II.1 (Intervals for ℘(F)). Intervals approximate sets
of numbers by their closest enclosing range. In addition to the
arithmetic ordering ≤, the IEEE-754 standard dictates a total
order � over all floating-point values, including special values
such as NaN . The interval abstraction is defined by a closure
operator ζ : ℘(F)→ ℘(F) where ζ(S) =̂ {v ∈ F | min�(S) �
v � max�(S)}.

C. Logic and Abstraction

In this section, we summarise our basic framework for
model-theoretic approximations of logical formulas using ab-
straction (see [10] for more details) and show how it applies
to FPA. Let Forms be the set of formulas, Structs be a set of
semantic structures. The semantics of a logic are given as an
interpretation function J·K· : (Forms × Structs) → B. An
element σ ∈ Structs is a model of a formula ϕ ∈ Forms
if JϕKσ = 1 and a countermodel otherwise. A formula is
satisfiable if it has a model and unsatisfiable otherwise.

Semantic structures in FPA are given by floating-point assign-
ments, defined as FloatAsg =̂ Vars → F, where Vars is a
finite set of first-order variables.

For a formula ϕ, we define two transformers on the powerset
lattice ℘(Structs).

Definition II.1. The model transformer modsϕ and the conflict
transformer confsϕ are defined as follows.

modsϕ(S) =̂ {σ ∈ Structs | σ ∈ S ∧ JϕKσ = 1}
confsϕ(S) =̂ {σ ∈ Structs | σ ∈ S ∨ JϕKσ = 0}

The model transformer maps a set of structures to its smallest
subset that contains the same models. The conflict transformer
(also referred to as the universal countermodel transformer
in [10]) maps a set of structures to its largest superset that
contains the same models. The model transformer can be used
to refine an overapproximation of a set of models, and the
conflict transformer to generalise an underapproximate set of
countermodels.

Satisfiability can be expressed in terms of these opera-
tors. Note that modsϕ and confsϕ are idempotent, therefore
modsϕ(Structs) = gfpmodsϕ and confsϕ(∅) = lfp confsϕ.

Theorem 1. The following statements hold.
1) gfpmodsϕ = ∅ exactly if ϕ is unsatisfiable.
2) lfp confsϕ = Structs exactly if ϕ is unsatisfiable.

We can compute these fixed points abstractly to perform
incomplete satisfiability checks. Propositional solvers use the
partial assignment abstraction [10]. For example a partial as-
signment 〈p:true, q:false〉 abstractly represents the set of as-
signments σ from propositions to truth values, where σ(p) =
true and σ(q) = false and all other propositions may be mapped
to either truth value.

In this paper, we use the interval abstraction. Recall that
IEEE-754 requires a total ordering �. We use it to define an
interval abstraction for the powerset lattice ℘(FloatAsg). An
interval assignment, written 〈x1 : [l1, u1], . . . , xk : [lk, uk]〉, is

a set of floating-point assignments {σ | ∀i. li � σ(xi) � ui}.
We denote the set of all interval assignments by IF, which forms
a complete lattice under the set order ⊆. The closure operator
defining the interval abstraction is given as ζ(S) =̂ 〈x1 :
[l1, u1], . . . , xk : [lk, uk]〉 where li = min�{σ(xi)|σ ∈ S}
and ui = max�{σ(xi)|σ ∈ S}.

For example, let f = {x 7→ 4.2, y 7→ 2.3} and g = {x 7→
1.8, y 7→ 10.5}, then applying ζ yields ζ({f, g}) = 〈x :
[1.8, 4.2], y : [2.3, 10.5]〉.

We can use the interval abstraction to approximate the fixed
points of Theorem 1.

Theorem 2. Let amodsϕ be an overapproximation of modsϕ
and let aconfsϕ be an underapproximation of confsϕ.

1) If gfp amodsϕ = ∅ then ϕ is unsatisfiable.
2) If lfp aconfsϕ = Structs then ϕ is unsatisfiable.

One view is that overapproximations of modsϕ perform
deduction by establishing necessary properties of models, while
underapproximations of confsϕ perform abduction by finding
sufficient conditions (or explanations) for conflicts.

III. LIFTING CDCL TO ABSTRACTIONS

CDCL consists of two interacting phases, model search and
conflict analysis. Model search aims to find satisfying assign-
ments for the formula. This process may fail and encounter
a conflicting partial assignment, that is, a partial assignment
that contains only countermodels. Conflict analysis extracts
a general reason which is used to derive a new lemma over
the search space in the form of a clause. In this section we
show how model search and conflict analysis can be lifted to
abstractions to yield an Abstract CDCL (ACDCL) algorithm. We
assume familiarity with CDCL [14].

A. Abstract Model Search
Model search alternates two steps, deductions and decisions,

which refine a given partial assignment. We model these steps
as transformers on abstract lattices.

1) Deduction: Deduction rules are overapproximations of
the model transformer. Modern CDCL solvers use efficient but
imprecise overapproximations, such as the unit rule.

Definition III.1. A deduction rule for an abstraction Q of
℘(Structs) and formula ϕ ∈ Forms is an overapproximation
ded : Q→ Q of modsϕ.

Example III.1. Consider the formula ϕ = ϕ1 ∧ ϕ2 ∧ ϕ3 with
ϕ1 =̂ (5 ≤ x ≤ 10), ϕ2 =̂ (x = y) and ϕ3 =̂ (y = z). We
define a deduction rule ded(S) =̂

d
i∈{1,2,3} ζ(modsϕi(ζ(S)))

by computing the best overapproximations of modsϕi for
i ∈ {1, 2, 3} and intersecting the result. We now compute the
greatest fixed point gfp ded which is the analogue of performing
Boolean constraint propagation in propositional solvers, where
F0 = > and Fi = ded(Fi−1).

F0 = FloatAsg F1 = 〈x : [5.0, 10.0]〉
F2 = F1 u 〈y : [5.0, 10.0]〉 F3 = F2 u 〈z : [5.0, 10.0]〉

The resulting element F3 = 〈x : [5.0, 10.0], y : [5.0, 10.0], z :
[5.0, 10.0]〉 imprecisely overapproximates the set of models.



2) Decisions: Once no new information can be deduced,
a CDCL solver makes a decision by restricting the value of
a proposition p to a truth value v. In lattice theoretic terms,
this can be viewed as computation of the greatest lower bound
π u 〈p : v〉, where π is the original partial assignment.

In terms of the abstraction, an important property of single-
ton partial assignments is that their complement is precisely
expressible as a partial assignment. We generalise:

Definition III.2. Let Q be an abstraction of ℘(Structs). The
set of complementable elements Comp(Q) ⊆ Q is the set of all
q ∈ Q such that q = Structs \ q is also in Q. A transformer
f : Q→ Q is complementable if Img(f) ⊆ Comp(Q).

Example III.2 (Complementable elements). Complementable
interval assignments map a variable to a half-open interval. The
element σ = 〈x : [+0,max�(F)]〉 is complementable, the
elements 〈x:[1, 2]〉 and 〈x:[1,max�(F)], y:[4.2,max�(F)]〉 are
not.

For convenience, we write complementable elements
〈x:[c,max�(F)]〉 and 〈x:[min�(F), c]〉 as 〈x � c〉 and 〈x � c〉,
respectively.

Modern CDCL solvers implement decision heuristics that use
statistical information generated from the execution history of
the procedure. Since we do not intend to give a fully stateful
account of CDCL here, we abstractly formalise this idea by
defining H to be a set of execution histories.

Definition III.3. A decision heuristic for an abstraction Q of
℘(Structs) and ϕ ∈ Forms is a function decide : H → Q →
Q s.t. for all h ∈ H, q ∈ Q, decide(h)(q) is a complementable
element and q u d = q implies that q is a set of models of ϕ.

B. Abstract Conflict Analysis

Model search iterates deduction and decisions until a con-
flicting element a is encountered, that is, an element that does
not represent any models. The aim of conflict analysis is to
obtain a more general element a′ ⊇ a that is still conflicting.
Conflict analysis can be viewed as an instance of abductive rea-
soning, since the goal is to find a general reason or explanation
for a given deduction.

1) Abduction: A conflict analysis procedure computes a
propositional abduction rule, which generalises explanations
for a deduction π over a formula ϕ. We model this as a
transformer abdϕ,π : PartAsg → PartAsg such that for any
model σ ∈ abdϕ,π(π

′) of ϕ, σ is in π′ or in π. In other words,
the transformer may only introduce models that are in π. We
generalise:

Definition III.4. An abduction rule for an abstraction Q of
℘(Structs), an element q ∈ Q and a formula ϕ ∈ Forms
is an extensive underapproximation abdϕ,q : Q → Q of the
transformer λx. confsϕ(x) ∪ q.

Essentially, one could simply work with underapproxima-
tions of confsϕ. The slight variation presented above allows
to find explanations not only for conflicts, but also for specific
deductions q.

2) Choice: Note that in contrast to deduction rules, which
are overapproximations, there is no single best underapprox-
imate abduction rule. In general, multiple maximally general
abduction rules of incomparable generality may exist.

Example III.3. Let ϕ = . . . ∧ (p ∨ q) ∧ (p ∨ ¬q) be a propo-
sitional CNF formula, and assume that the partial assignment
π = 〈p : 0, q : 1〉 is conflicting with ϕ. The presence of either
assignment to p or q is sufficient to deduce the other. We can
build two incomparable abduction transformers abd1 and abd2

with abd1
ϕ,⊥(π) = 〈p:0〉 and abd2

ϕ,⊥(π) = 〈q:1〉.

Example III.4. Let ϕ = x + y ≤ 10.0 be an FPA formula.
The interval assignment σ = 〈x < 10.0, y � 10.0〉 is
conflicting w.r.t. ϕ, since x + y is at least 20.0. We can build
two incomparable abduction transformers, abd1 and abd2 with
abd1

ϕ,⊥(σ) = 〈x � 10.0, y � 0.0〉 and abd2
ϕ,⊥(σ) = 〈x �

1.0, y � 9.0〉.

The abduction rule used in propositional CDCL solvers is
computed using a graph-based algorithm which will be dis-
cussed in more detail in the next section. The absence of a best
abduction operator is reflected by the possibility of extracting
various incomparable partial assignments from a single graph.
Among these, one is heuristically chosen. We formalise this
heuristic choice as a function that takes as argument an exe-
cution history and returns an abduction rule.

Definition III.5. A choice heuristic for an abstraction Q of
℘(Structs), q ∈ Q and ϕ ∈ Forms is a function chooseq,ϕ :
H → Q → Q s.t. for all h ∈ H, chooseϕ,q(h) is an abduction
rule for q and ϕ.

IV. LEARNING IN ABSTRACT IMPLICATION GRAPHS

Effective learning is essential for the performance of CDCL.
Learning algorithms in CDCL solvers operate over an implica-
tion graph, a data structure that records decisions and the result
of deductions. We present a generalisation to abstract implica-
tion graphs. There are various aspects of the CDCL framework
that we do not discuss here, such as restarts, backjumps and
learning of asserting clauses. These can also be lifted from the
propositional case in a relatively straightforward way.

A. Abstract Trails from Complementable Decompositions

Partial assignments and intervals share an important property
regarding the decomposition of lattice elements.

Example IV.1. Let π = 〈x:1, y:0, z:1〉 be a partial assignment.
The element π is not complementable, but it can be decomposed
into π = 〈x:1〉 u 〈y:0〉 u 〈z : l〉. Each element of the above
decomposition is complementable.

Now let σ = 〈x : [0.5, 2.2], y : [0.5,max�(F)]〉 be
an interval assignment. Analogous to the previous case, the
complement of σ is not an interval assignment, but σ can be
decomposed into complementable elements as 〈x � 0.5〉u〈x �
2.2〉 u 〈y � 0.5〉.

Definition IV.1. An abstraction Q of ℘(Structs) has comple-
mentable decompositions if for every element q of Q there is a



finite set S ⊆ Comp(Q) of complementable elements such that
q =

d
S.

As illustrated above, both partial assignments and interval as-
signments admit complementable decompositions. We assume
the existence of a decomposition function decomp : Q →
℘(Comp(Q)). Implication graph construction necessitates a
decompositon of deduction rules into complementable trans-
formers.

Example IV.2. Let ded be the best deduction rule over interval
assignments for the predicate −x = y, and let σ = 〈x :
[5.0, 10.0]〉. It holds that ded(σ) = σ u 〈y : [−10.0,−5.0]〉.
We can decompose ded into a set of complementable rules
Ded = {ded lx, ded

u
x, ded

l
y, ded

u
y} s.t.

d
Ded = ded , and each

of the elements of Ded infers a lower or an upper bound on
x or y: ded lx(σ) = 〈x � 5.0〉, dedux(σ) = 〈x � 10.0〉,
ded ly(σ) = 〈y � −10.0〉 and deduy (σ) = 〈y � −5.0〉.

Abstract Trail: CDCL solvers record decisions and deduc-
tions in a stack-based data structure called trail, which records
variable assignments due to decisions and deductions. Deduc-
tions are associated with the clause used to derive them.

An abstract trail is a finite sequence of complementable
elements in Comp(Q). We denote the i-th element of a trail
tr by tr i, the concatenation of two sequences tr , tr ′ by tr · tr ′
and the subsequence tr i . . . tr j by tr i:j . In Algorithm 1, we
give a generic model search procedure that extends an abstract
trail tr and maps trail indices to reasons in a map reasons .
The procedure can be instantiated over any abstraction Q with
complementable decompositions and a decomposition Ded of
the deduction rule into complementable rules.

modelSearch(tr , reasons , Ded)
loop

repeat
forall the ded ∈ Ded do

q ← ded(
d

tr);
if (

d
tr) u q @

d
tr then

tr ← tr · q;
reasons[ |tr | ]← ded ;

end
if q = ⊥ then return (tr , reasons)

end
until tr unchanged;
q ← decide(getHistory())(

d
tr);

if q 6@
d

tr then return SAT ;
tr ← tr · q;

Algorithm 1: Model search with Abstract Trail

The current abstract element is represented by the greatest
lower bound

d
tr . Deduction iterates over all deduction rules

ded ∈ D, and appends a new element to the abstract trail
if applying ded refines

d
tr . If a conflict is deduced, the

procedure returns the trail and the reason map. This process is
iterated until no new deductions can be made, at which point a
decision is attempted. If the current element cannot be refined
further, SAT is returned, otherwise the procedure appends the
decision to the trail and reenters the deduction phase.

B. FIRST-UIP in Abstract Conflict Graphs

In propositional CDCL, a trail implicitly encodes a graph
structure that records dependencies between deductions on
the trail. The edges are represented implicitly by the clauses
associated with each element. The FIRST-UIP algorithm [15] is
a popular strategy for learning: it is a strategy to choose a set
of nodes in this graph called a cut that suffices to produce a
conflict. We now give a generalisation of FIRST-UIP to abstrac-
tions. Naively lifting the algorithm is insufficient to learn good
reasons in the interval abstraction as the following example will
illustrate.

Example IV.3. Consider the FPA formula z = y∧x = y·z∧x <
0 and the interval assignment σ = 〈z � −5.0〉. Starting from
σ, we can make the following deductions.

〈z � −5.0〉

〈y � −5.0〉

〈x � 25.0〉 ⊥

Arrows indicate sufficient conditions for deduction, e.g.,
〈x � 25.0〉 can be deduced from the conjunction of 〈z � −5.0〉
and 〈y � −5.0〉. The last deduction 〈x � 25.0〉 conflicts with
the constraint x < 0. A classic conflict cutting algorithm may
analyse the above graph to conclude that π = 〈z � −5.0〉 is
the reason for the conflict. It is easy to see though that there is a
much more general reason: The conflict can be deduced in this
way whenever z is negative.

analyse(tr , reasons)
i← |tr |; m← {1 7→ >, . . . , (i− 1) 7→ >, i 7→ ⊥};
loop

q ← generalise(
d

tr1:i, reasons[i],m[i]);
updateMarking(q, tr ,m);
m[i]← >; i← i− 1;
if open(tr ,m) = 1 then

return
d

1≤i≤|tr|m[i];
end

generalise(q, d, r)
repeat

abd ← choosed,r(getHistory());
q ← abd(q);

until q unchanged;
return q;

updateMarking(q, tr ,m)
Π← decomp(q);
forall the c in Π do

r ← smallest index r′ s.t. trr′ v c;
m[r]← m[r] u c;

end
Algorithm 2: Abstract FIRST-UIP

Abstract FIRST-UIP breaks down the global abduction task of
conflict analysis by finding generalised explanations for single
deduction results. We associate with each ded ∈ Ded a separate
choice function chooseded,q , which maps an execution history
h to an abductive transformer for inferring q.

The procedure is presented in Algorithm 2. It takes as input
a conflicting trail tr with final element ⊥ and a mapping from
indices i to the deduction rule used to derive an element tr i. The
main data structure is a marking m which maps trail indices to
elements of Comp(Q). Essentially, m maps each element of
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the trail tr to a generalisation that is still sufficient to produce a
conflict.

Initially, m maps only the final, conflicting element to ⊥ and
everything else to >. The procedure steps backwards through
the trail. A call to a function generalise(q,d,r) finds a
generalisation of q ∈ Q such that the current trail marking r can
still be deduced. This is done by computing a fixed point using
heuristic choice over abductive transformers. The generalised
deduction reason is decomposed into its complementables, and
for each element c of the decomposition, the earliest occurrence
of a stronger element on the trail is marked with c. Finally, the
current marking is removed and the algorithm proceeds.

An example execution of the algorithm is illustrated in
Figure 1. There, an implication graph and corresponding trail
is shown which records consequences of a decision x � 0.0.
Similar to propositional CDCL, no explicit graph is constructed.
Instead, the algorithm implicitly explores the graph via mark-
ings, which overapproximate the trail pointwise and encode
sufficient conditions for unsatisfiability. The first iteration of
the algorithm determines via abduction that ⊥ can be ensured
whenever z � 6.0 and y � 4.0 are the case. The second
iteration finds that y � 4.0 can be dropped from the reason
if x � 2.0 holds in addition to z � 6.0.

It is an invariant during the run of the procedure that the
greatest lower bound over all markings is sufficient to ensure a
conflict. Hence the procedure could essentially terminate during
any iteration and yield a sound global abduction result. We use
the usual FIRST-UIP termination criterion and return once the
number of open paths open(tr ,m) reaches 1. This number is
defined as the number of indices j greater or equal to the index
of the most recent decision, such that m[j] 6= >.

C. Abstract Clause Learning

Propositional solvers learn new clauses that express the
negation of the conflict analysis result. The new clauses open
up further possibilities for deduction using the unit rule. The
unit rule states that for a clause l1 ∨ . . . ∨ lk, if l1 to lk−1 are
contradicted by the current partial assignment, then the partial
assignment can be refined to make lk evaluate to true.

We model learning directly as learning of a new deduction
rule, rather than learning a formula in the logic. A lattice-
theoretic generalisation of the unit rule is given below. Note that

we define the rule directly in terms of the conflicting element,
rather than its negation.

Definition IV.2. For an abstraction P of ℘(Structs) with
complementable decompositions, let c ∈ P be an element that
contains no models of ϕ. The abstract unit rule Unitc : P → P
is defined as follows.

Unitc(p) =̂


⊥ if p v c
r otherwise, if r ∈ decomp(c) and
∀r′ ∈ decomp(c) \ {r}. p v r′

> otherwise

Example IV.4. Let c = 〈x:[0.0, 10.0], y � 3.2〉 be a con-
flicting element of ϕ. Let p = 〈x:[3.0, 4.0], y:[1.0, 1.0]〉, then
Unitc(p) = ⊥, since p v c. Let p′ = 〈x:[3.0, 4.0]〉, then
Unitc(p

′) = 〈y � 3.2〉, since p′ v 〈x � 0.0〉 and p′ v 〈x �
10.0〉.

The unit rule Unitc for a conflicting element c soundly
overapproximates the model transformer. Furthermore, it is
complementable; we can perform learning by adding Unitc to
Ded .

V. IMPLEMENTATION AND EXPERIMENTS

We have implemented our approach over floating-point in-
tervals inside the MATHSAT5 SMT solver [16]. We call our
prototype tool FP-ACDCL. The implementation uses the MATH-
SAT5 infrastructure, but is currently independent of its DPLL(T)
framework. The implementation provides a generic, abstract
CDCL framework with FIRST-UIP learning. The overall ar-
chitecture is shown in Figure 2. An instantiation requires
abstraction-specific implementations of the components de-
scribed earlier, including deduction, decision making, abduc-
tion and heuristic choice. We first elaborate on those aspects of
the implementation and then report experimental results.

A. Abstract CDCL for Floating-Point Intervals

1) Deductions: We implement the deduction rule ded using
standard Interval Constraint Propagation (ICP) techniques for
floating-point numbers, defined e.g., in [2], [17]. The imple-
mentation operates on CNF formulae over floating-point predi-
cates.

Propagation is performed using an occurrence-list approach,
which associates with each variable a list of the FPA clauses
in which the variable occurs. Learnt clauses (corresponding

Floating Point IntervalsInterval
Splitting

Trail-guided
Choice

Abstract CDCL

Model Search Conflict Analysis

Decision
Heuristic Deduction Abduction Choice

Heuristic

Fig. 2. FP-ACDCL Solver Architecture



to new unit rules) are stored as vectors of complementable
elements and are propagated in a similar way. When a deduction
is made, we scan the list of affected clauses to check for new
deductions to be added to the trail. This is done by applying ICP
projection functions to the floating-point predicates in a way
that combines purely propositional with theory-specific rea-
soning. A predicate is conflicting if some variable is assigned
the empty interval during ICP. If all predicates of a clause are
contradicting, then we have found a conflict with the current
interval assignment and ded returns ⊥. If all but one predicate
in a clause are conflicting, then the result of applying ICP to the
remaining predicate is the deduction result. In this case, ded
returns a list containing one complementable element 〈x � b〉
(or 〈x � b〉) for each new bound inferred.

2) Decisions: FP-ACDCL performs decisions by adding to
the trail one complementable element 〈x � b〉 or 〈x � b〉
that does not contradict the previous value of x. Clearly, there
are many possible choices for (i) how to select the variable x,
(ii) how to select the bound b, and (iii) how to choose between
〈x � b〉 and 〈x � b〉.

In propositional CDCL, each variable can be assigned at most
once. In our lifting, a variable can be assigned multiple times
with increasingly precise bounds. We have found some level
of fairness to be critical for performance. Decisions should be
balanced across different variables and upper and lower bounds.
A strategy that proceeds in a “depth-first” manner, in which the
same variable is refined using decisions until it has a singleton
value, shows inferior performance compared to a “breadth-
first” exploration, in which intervals of all the variables are
restricted uniformly. We interpret this finding as indication that
the value of abstraction lies in the fact that the search can be
guided effectively using general, high-level reasoning, before
considering very specific cases.

FP-ACDCL currently performs decisions as follows: (i) vari-
ables are statically ordered, and the selection on which variable
x to branch is cyclic across this order; (ii) the bound b is chosen
to be an approximation of the arithmetic average between the
current bounds l and u on x; note that the arithmetic average
is different from the median, since floating-point values are
unevenly distributed; (iii) the choice between 〈x � b〉 and
〈x � b〉 is random. Considering the advances in heuristics for
propositional SAT, there is likely a lot of room for enhancing
this. In particular, the integration of fairness considerations with
activity-based heuristics typically used in modern CDCL solvers
could lead to similar performance improvements. This is part of
ongoing and future work.

3) Generalised Explanations for Conflict Analysis: In ab-
duction, a trade-off must be made between finding reasons
quickly and finding very general reasons. We perform ab-
duction that relaxes bounds iteratively. As mentioned earlier,
there may be many incomparable relaxations. Our experiments
suggest that the precise way in which bounds are relaxed is
extremely important for performance. Fairness considerations
similar to those mentioned for the decision heuristic need to be
taken into account. However, there is an additional, important
criterion. Learnt lemmas are used to drive backjumping. It

is therefore preferable to learn deduction rules that allow for
backjumping higher in the trail. This will lead to propagations
that are affected by a smaller number of decisions, and thus will
hold for a larger portion of the search space.

Our choice heuristic, called trail-guided choice, is
abstraction-independent, and is both fair and aims to increase
backjump potential. In the first step, we remove all bounds
over variables from the initial reason q which are irrelevant to
the deduction. Then we step backwards through the trail and
attempt to weaken the current element q using trail elements.
The process is illustrated below.

. . . x � 5.2 . . . y � 1.3 . . . y � 7.2 x � 0.4

Step 1: Attempt weakening x � 0.4 to x � 5.2

Step 2: Attempt weakening y � 7.2 to y � 1.3

When an element tr j is encountered such that tr j is used in
q (that is, q v tr j), we attempt to weaken q by replacing the
bound tr j with the most recent trail element more general than
tr j . If no such element exists, we attempt removing the relevant
bound altogether. We check whether the weakened q is still
sufficiently strong to deduce d. If not, we undo the weakening,
and do not consider any further weakenings with elements more
general than tr j . After this, we repeat the process for element
tr j−1. The algorithm terminates once no further generalisations
are possible.

Since we step backwards in order of deduction, we heuristi-
cally increase the potential for backjumps: The procedure never
weakens a bound that was introduced early during model search
at the expense of having to uphold a bound that is ensured only
at a deep level of the search.

We have experimented with stronger but computationally
more expensive generalisation techniques such as finding maxi-
mal bounds for deductions by search over floating-point values.
Our experiments indicate that the cheaper technique described
above is more effective overall. We see two main avenues
for improvement: First, for many deductions it is possible to
implement good or optimal abduction transformers effectively
without search. Second, we expect that dynamic heuristics that
take into account statistical information may guide conflict
analysis towards useful clauses.

B. Experimental Evaluation

We have evaluated our prototype FP-ACDCL tool over a set
of more than 200 benchmark formulas, both satisfiable and
unsatisfiable. The formulas have been generated from problems
that check (i) ranges on numerical variables and expressions,
(ii) error bounds on some numerical computations using dif-
ferent orders of evaluation of subexpressions, and (iii) feasi-
bility of systems of inequalities over bounded floating-point
variables. The first two sets originate from verification prob-
lems on some C programs performing numerical computations,
whereas the instances in the third set are randomly generated.
We make our benchmarks and the FP-ACDCL tool available
for experimentation by other researchers at http://www.cprover.
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Fig. 3. Comparison of FP-ACDCL against Z3 with bit-vector encoding (a);
effects of generalisations in conflict analysis (b). Darker colour indicates
unsatisfiability. Points on the borders indicate timeouts (1200 s).

org/fmcad2012/. All results have been obtained on an Intel
Xeon machine with 2.6 GHz and 16 GB of memory running
Linux, with a time limit of 1200 seconds.

We have performed two different sets of experiments. In the
first, we have compared FP-ACDCL with the current state-of-
the-art procedures for floating-point arithmetic, based on en-
coding into bit-vectors. We have generated bit-vector encodings
of all the benchmark instances in our set using MATHSAT5
and solved them with the Z3 SMT solver [18], which was
the winner of the main bit-vector division in the SMT-COMP
2011 competition. The results of this comparison are reported
in Figure 3(a). FP-ACDCL over FPA significantly outperforms
Z3 over corresponding bit-vector encodings on most of the
instances, often by several orders of magnitude. More specif-
ically, FP-ACDCL could solve 35 benchmarks more than Z3,
with an overall total speedup of more than 25x (for the subset
of benchmarks that both tools could solve).1 There are some
instances that turn out to be relatively easy for Z3, but cannot be
solved by our tool. This is not surprising, since there are simple
instances that are not amenable to analysis with ICP, even with

1FP-ACDCL timed out in 28 instances, whereas Z3 ran out of time or memory
in 63 cases. On the subset of benchmarks solved by both tools, the total run time
was of 585 seconds for FP-ACDCL, and of 15973 seconds for Z3.

the addition of decision-making and learning.2 To handle such
cases, our framework can be instantiated with abstract domains
or combinations of domains [13] that are better suited to the
problems under analysis.

The second set of experiments is aimed at evaluating the
impact of our novel generalisation technique. In order to do
this, we have run FP-ACDCL with generalisation of deductions
turned off, and compared it with the default FP-ACDCL. Es-
sentially, FP-ACDCL without generalisation corresponds to a
naive lifting of the conflict analysis algorithm. The results are
summarised in Figure 3(b). From the plot, we can clearly see
that generalisation is crucial for the performance of FP-ACDCL:
without it, the tool times out in 44 more cases, whereas there
is no instance that can be solved only without generalisation.
However, there are a number of instances for which perfor-
mance degrades when using generalisations, sometimes signif-
icantly. This can be explained by observing that (i) generali-
sations come at a runtime cost, which can sometimes induce
a non-negligible overhead; (ii) the performance degradation
occurs on satisfiable instances (shown in a lighter colour in the
plots), for which it is known that the behaviour of CDCL-based
approaches is typically unstable (even in the propositional
case).

VI. A SURVEY OF RELATED WORK

We separately survey work in three related branches of re-
search: 1) the analysis of floating-point computations, 2) lifting
existing decision procedure architectures to richer problem
domains and 3) automatic and intelligent precision refinement
of abstract analyses.

A. Reasoning about Floating-Point Numbers

This section briefly surveys work in interactive theorem
proving, abstract interpretation and decision procedures that
target floating-point problems. For a discussion of the special
difficulties that arise in this area, see [19].

Theorem Proving: Various floating-point axiomatisations
and libraries for interactive theorem provers exist [20]–[23].
Theorem provers have been applied extensively to proving
properties over floating-point algorithms or hardware [24]–
[31]. While theorem proving approaches have the potential
to be sound and complete, they require substantial manual
work, although sophisticated (but incomplete) strategies exist
to automate substeps of the proof, e.g., [32]. A preliminary
attempt to integrate such techniques with SMT solvers has
recently been proposed in [33].

Abstract Interpretation: Analysis of floating-point com-
putations has also been extensively studied in abstract inter-
pretation. An approach to specifying floating-point properties
over programs was proposed in [34]. A number of general
purpose abstract domains have been constructed for the analysis
of floating-point programs [35]–[40]. In addition, specialised
approaches exist which target specific problem domains such

2A simple example of this is the formula x = y ∧ x 6= y, which requires
an abstraction that can express relationships between variables. Intervals are
insufficient to efficiently solve this problem.



as numerical filters [41], [42]. The approaches discussed so
far mainly aim at establishing the result of a floating-point
computation. An orthogonal line of research is to analyse the
deviation of a floating-point computation from its real counter-
part by studying the propagation of rounding errors [43], [44].
Case studies for this approach are given in [45], [46]. Abstract
interpretation techniques provide a soundness guarantee, but
may yield imprecise results.

Decision Procedures: In the area of decision procedures,
study of floating-point problems is relatively scarce. Work in
constraint programming [47] shows how approximation with
real numbers can be used to soundly restrict the scope of
floating-point values. In [17], a symbolic execution approach
for floating-point problems is presented, which combines in-
terval propagation with explicit search for satisfiable floating-
point assignments. An SMTLIB theory of FPA was presented
in [12]. Recent decision procedures for floating-point logic are
based on propositional encodings of floating-point constraints.
Examples of this approach are implemented in MATHSAT5 [16],
CBMC [48] and Sonolar [49]. A difficulty of this approach is
that even simple floating-point formulas can have extremely
large propositional encodings, which can be hard for current
SAT solvers. This problem is addressed in [1], which uses
a combination of over- and underapproximate propositional
abstractions in order to keep the size of the search space as
small as possible.

B. Lifting Decision Procedures

The practical success of CDCL solvers has given rise to
various attempts to lift the algorithmic core of CDCL to new
problem domains. This idea is extensively studied in the field
of satisfiability modulo theories. The most popular such lifting
is the DPLL(T) framework [50], which separates theory-specific
reasoning from Boolean reasoning over the structure of the
formula. Typically a propositional CDCL solver is used to
reason about the Boolean structure while an ad-hoc procedure
is used for theory reasoning. The DPLL(T) framework can
suffer from some difficulties that arise from this separation. To
alleviate these problems, approaches such as theory decisions
on demand [4] and theory-based decision heuristics [51] have
been proposed.

Our work is co-located in the context of natural-
domain SMT [5], which aims to lift steps of the CDCL algorithm
to operate directly over the theory. Notable examples of such
approaches have been presented for equality logic with unin-
terpreted functions [52], linear real arithmetic and difference
logic [5], [6], linear integer arithmetic [7], nonlinear integer
arithmetic [9], and nonlinear real arithmetic [8]. The work in [9]
is most similar to ours since it also operates over intervals and
uses an implication graph construction.

We follow a slightly different approach to generalisation
based on abstract interpretation. The work in [10] shows that
SAT solvers can naturally be considered as abstract interpreters
for logical formulas. Generalisations can then be obtained by
using different abstract domains. Our work is an application of
this insight. A similar line of research was independently un-

dertaken in [53], [54], which presents an abstract-interpretation
based generalisation of Stålmarck’s method and an application
to computation of abstract transformers.

C. Refining Abstract Analyses

A number of program analyses exist that use decision pro-
cedures or decision procedure architectures to refine a base
analysis. A lifting of CDCL to program analyses over abstract
domains is given in [55]. In [56], a decision-procedure based
software model checker is presented that imitates the architec-
ture of a CDCL solver. A lifting of DPLL(T) to refinement of
abstract analyses is presented in [57] which combines a CDCL
solver with an abstract interpreter.

Modern CDCL solvers can be viewed as refinements of the
original DPLL algorithm [58], which is based on case-analysis.
Case analysis has been studied in the abstract interpretation
literature. The formal basis is given by cardinal power domains,
already discussed in [13], in which a base domain is refined
with a lattice of cases. The framework of trace partitioning [59]
describes a systematic refinement framework for programs
based on case analysis. The DPLL algorithm can be viewed as
a special instance of dynamic trace partitioning applied to the
analysis of logical formulas.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a decision procedure for the theory of
floating-point arithmetic based on a strict lifting of the conflict
analysis algorithm used in modern CDCL solvers to abstract do-
mains. We have shown that, for a certain class of formulas, this
approach significantly outperforms current complete solvers
based on bit-vector encodings. Both our formalism and our
implementation are modular and separate the CDCL algorithm
from the details of the underlying abstraction. Furthermore,
the overall architecture is not tied to analysing properties over
floating-point formulas.

We are interested in a number of avenues of future research.
One of these is a comparison of abstract CDCL and DPLL(T)-
based architectures, and investigating possible integrations. An-
other avenue of research is instantiating ACDCL with richer
abstractions (e.g., octagons). Combination and refinements of
abstractions are well studied in the abstract interpretation lit-
erature [13]. Recent work [60] has shown that Nelson-Oppen
theory combination is an instance of a product construction
over abstract domains. We hope to apply this work to obtain ef-
fective theory combination within ACDCL. In addition, product
constructions can be used to enhance the reasoning capabilities
within a single theory, e.g., by fusing interval-based reasoning
over floating-point numbers and propositional reasoning about
the corresponding bit-vector encoding.

We see this work as a step towards integrating the abstract
interpretation point of view with algorithmic advances made in
the area of decision procedures. Black-box frameworks such
as DPLL(T) abstract away from the details of their component
procedures. Abstract interpretation can be used to express an
orthogonal, algebraic “white-box” view which, we believe, has
uses in both theory and practice.
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[32] A. Ayad and C. Marché, “Multi-prover verification of floating-point
programs,” in IJCAR. Springer, 2010, pp. 127–141.

[33] S. Conchon, G. Melquiond, C. Roux, and M. Iguernelala, “Built-in
Treatment of an Axiomatic Floating-Point Theory for SMT Solvers,” in
SMT Workshop, 2012.
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analysis via satisfiability modulo path programs,” in POPL, 2010, pp. 71–
82.

[58] M. Davis, G. Logemann, and D. Loveland, “A machine program for
theorem-proving,” CACM, vol. 5, pp. 394–397, July 1962.

[59] X. Rival and L. Mauborgne, “The trace partitioning abstract domain,”
TOPLAS, vol. 29, no. 5, 2007.

[60] P. Cousot, R. Cousot, and L. Mauborgne, “The reduced product of abstract
domains and the combination of decision procedures,” in FoSSaCS, 2011,
pp. 456–472.


