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ABSTRACT

We develop a framework for assessing the quality of stereo-
scopic images that have been afflicted by possibly asymmetric
distortions. An intermediate image is generated which when
viewed stereoscopically is designed to have a perceived qual-
ity close to that of the cyclopean image. We hypothesize that
performing stereoscopic QA on the intermediate image yields
higher correlations with human subjective judgments. The
experimental results confirm the hypothesis and show that the
proposed framework significantly outperforms conventional
2D QA metrics when predicting the quality of stereoscopi-
cally viewed images that may have been asymmetrically dis-
torted.

Index Terms— Binocular Rivalry, Image Quality, Stereo-
scopic Quality Assessment, Stereo Algorithm

1. INTRODUCTION

The theory of stereoscopic vision was invented in 1838 [1]
and the production of 3D films can be dated back to 1903.
Since then, numerous 3D films have been produced, but none
was as succeeded as 2D films until Avatar in 2009. Avatar
broke several box office records during its release and became
the highest-grossing film of all time in the U.S. and Canada.
The success of Avatar inspired 3D film production and tech-
nologies of 3D content capture and display. In 2011, mobile
phones supporting 3D capturing and viewing have been re-
leased and broadcast 3D content over the internet is already
available. With the release of 3D phones and 3D broadcasting
services, it is a reasonable prediction that the amount of 3D
content will increase exponentially in the near future. How-
ever, even though 3D movies are popular and prevalent today,
our understanding of the quality of stereoscopic viewed 3D
videos is still limited and needed to be advanced.

Research on 3D QA models can be divided into two
classes based on whether computed disparity information is
considered. The first group directly applies 2D QA model to
the 3D QA problem. The methods in [2, 3] do not use dispar-
ity information and apply 2D QA algorithms to the left and
right views independently, then combine (by various means)

the two scores into a predicted 3D quality score. The models
in this class are based on the hypothesis that the quality of a
binocularly viewed image may be deduced from the quality
of the 2D images without accessing disparity or the third
dimension. However, other studies [4] provide evidence that
the quality of stereoscopically viewed images is generally
different than a simple combination of the qualities of the 2D
viewed images.

The second class of models takes depth information into
account, typically by applying 2D quality assessment (QA)
algorithms on both stereo images and also on the estimated
disparity map [5, 6]. A 3D quality score is then generated us-
ing a combination of the various predicted 2D scores. The
hypothesis underlying these QA models is that 3D viewing
quality is correlated with depth quality. However, it is dif-
ficult to assess the quality of perceived depth or disparity,
since ground truth disparity or depth is generally not avail-
able. Such models can only assess the depth quality using es-
timated disparity maps (computed from a pristine stereopair
and/or from a distorted stereopair). Hence 3D QA perfor-
mance may be substantially affected by the accuracy of the
disparity estimation algorithm that is used. Moreover, bench-
mark tests on stereo algorithms [7] utilize high-quality stereo
images, and the performance of stereo algorithms on distorted
stereo images is rarely considered.

In this paper, we proposed a 3D QA framework that is
motivated by the results of studies on masking and facilitation
effects experienced when viewing stereoscopic images [8]. In
particular, we make a model of the influence of binocular ri-
valry between the left-right views. Binocular rivalry is a per-
ceptual effect that occurs when the two eyes view mismatched
images at the same retinal location(s). Here, mismatch means
that the stimuli received by the two eyes are sufficiently dif-
ferent from each other to cause match failures or to otherwise
affect stereo perception. Failures of binocular matching trig-
ger binocular rivalry, which is experienced in various ways,
i.e., a sense of failed fusion or a bi-stable alternation between
the left and right eye images. Figure 1 shows an example
of binocular rivalry when mismatched stimuli are present. In
Figure 1, in the interval (t0, t1), the observer saw the stim-
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Fig. 1. Illustration of binocular rivalry: Two different stimuli
are presented to the left eye (an arrow) and the right eye (a
star). The blue line indicates that the stimulus is perceived by
a human observer inside that time interval.
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Fig. 2. Illustration of binocular suppression: Two different
stimuli are presented to the left eye (an arrow) and the right
eye (a star). An observer only sees the arrow when s/he expe-
riences binocular suppression.

ulus from the left eye (the arrow). Then, the stimulus from
the right eye (the star) dominated until time t2, after which
the observer again saw an arrow. This fluctuation continues
when an observer is experiencing binocular rivalry. The fluc-
tuation period may vary from a fraction of a second to several
seconds, and it may depend on the color, shape, and texture
of the stimuli. Binocular suppression [9] is a special case of
binocular rivalry. When binocular suppression is experienced,
no rivalrous fluctuations occur between the two images when
viewing the mismatched stereo stimulus. Instead, only one of
the images is seen while the other is hidden from conscious
awareness. Figure 2 shows an example of binocular suppres-
sion.

The rest of the paper was organized as follows. The over-
all 3D QA framework is described in Section 2 including the
derivation of a practical 3D QA algorithm from the models.
Section 3 describes the experiments conducted on the 3D QA
database and analyzes the model performance. Finally, Sec-
tion 4 is the conclusion.

2. A FRAMEWORK FOR QUALITY ASSESSMENT
OF DISTORTED STEREO IMAGES

The logical goal of a 3D stereoscopic QA model is to esti-
mate the quality of the true cyclopean image formed within
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Fig. 3. The proposed framework for 3D quality assessment.

an observer’s mind when presented with a stereo image are
presented with a stereopair. Of course, simulating the true cy-
clopean image associated with a given stereopair is a daunting
task, since it would require accounting for the display geom-
etry, the presumed fixation, vergence, and accommodation.
This task is herculean, and is compounded by the fact that it
is still unclear how a cyclopean image is formed! Towards a
limited approximation of this goal, however, we seek to syn-
thesize an internal image having a quality level that is close to
the quality of the true cyclopean image. By way of notation,
henceforth we still use the term “cyclopean” image to repre-
sent the synthesized image and cyclopean image to mean the
one formed in the observer’s mind. By performing 3D qual-
ity assessment on the “cyclopean” image we hope to produce
accurate estimates of 3D quality perceived on the cyclopean
image.

The concept underneath the model framework is shown in
Figure 3. Given a stereo image, an estimated disparity map is
generated by a stereo algorithm, while Gabor filter responses
are generated on the stereo images using a bandpass filter
bank. A “cyclopean” image is synthesized from the stereo
image pair, the estimated disparity map, and the Gabor filter
responses. A “cyclopean” image is created from the reference
stereopair and another “cyclopean” image is calculated from
the test stereopair. Finally, full reference 2D QA models are
applied to the two “cyclopean” images to predict 3D quality
scores.

2.1. Stereo Algorithms

Research on stereo algorithm design has been a topic of in-
tense inquiry for decades. However, there is no consensus
on the type of stereo matching algorithm that should be used
in 3D QA other than it be of low complexity. Further, there
is scarce literature on the performance of stereo algorithms



operating under different distortion regimens. Therefore, we
deploy a variety of these efficient stereo depth-finding algo-
rithms differing considerably in their operational constants
along with the framework we described above to assess per-
ceived 3D quality.

In order gain insights into the influence of stereo algo-
rithms on the performance of 3D QA models, three stereo
algorithms were selected based on their complexity and per-
formance. In general, better stereo algorithms (based on
results on the Middlebury database [7]) have higher com-
putational complexity, and we balanced this tradeoff in the
choice of stereo matching models. The first algorithm has
the lowest complexity. It uses a very simple sum-of-absolute
difference (SAD) luminance matching functional without a
smoothness constraint. The disparity value of a pixel in a
stereopair is uniquely computed by minimizing the SAD be-
tween this pixel and its horizontal shifted pixels in the other
view with ties broken by selecting the lower disparity solu-
tion. The second algorithm [10] has the highest complexity
among the three models. This segmentation-based stereo al-
gorithm delivers highly competitive results on the Middlebury
database [7]. The third is a SSIM based stereo algorithm that
uses SSIM scores to choose the best matches. The disparity
map of a stereopair is generated by maximizing the SSIM
scores between the stereopair along the horizontal direction,
again resolving ties by a minimum disparity criterion.

2.2. Gabor Filter Bank

As discussed earlier, when the two images of a stereopair
present different degrees or characteristics of distortion, the
subjective quality of the stereoscopically viewed 3D image
generally cannot be predicted from the average quality of the
two individual images. Binocular rivalry is a reasonable ex-
planation for this observation. Levelt [11] conducted a se-
ries of experiments that clearly demonstrated that binocular
rivalry/suppression was strongly governed by low-level sen-
sory factors. He used the term stimulus strength, and noted
that stimuli that were higher in contrast, or had more con-
tours, tend to dominate the rivalry. Inspired by this result,
we use the energy of Gabor filter bank responses on the left
and right images to model stimulus strength and to simulate
rivalrous selection of “cyclopean” image quality.

The Gabor filter bank extracts features from the lumi-
nance and chrominance channels. These filters closely model
frequency-orientation decompositions in primary visual cor-
tex and capture energy in a highly localized manner in both
space and frequency [12]. A complex 2-D Gabor filter is de-
fined

G(x, y, σx, σy,ζx, ζy, θ) =

1

2πσxσy
e
− 1

2 [(
R1
σx

)2+(
R2
σy

)2]
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where R1 = x cos θ + y sin θ, and R2 = − sin θ + y cos θ,

σx and σy are the standard deviations of an elliptical Gaus-
sian envelope along x and y axes, and ζx and ζy are spatial
frequencies, and θ orients the filter. The design of the Gabor
filter bank was based on the work conducted by Su, et al. [13].
The local energy is estimated by summing Gabor filter mag-
nitude responses over four orientations (horizontal, both diag-
onals, and vertical (90 degrees) at a spatial frequency of 3.67
cycles/degree.

2.3. Cyclopean Image

A linear model was proposed by Levelt [11] to explain the
experience of binocular rivalry in perceived Cyclopean image
when a stereo stimulus is presented. The model he proposed
is:

C = wlEl + wrEr (2)

where El and Er are the stimuli to the left and the right eye
respectively, wl and wr are weighting coefficients for the left
and right eye that are used to describe the process of binocular
rivalry, where wl + wr = 1, and C is the cyclopean image.

Given that a foveally presented monocular stimulus gen-
erally does not disappear spontaneously, he hypothesized that
the duration of a period of dominance period of an eye does
not depend on the strength of the stimulus presented to that
eye, but rather on the stimulus strength presented to the other
eye. Therefore he concludes that the experience of binocu-
lar rivalry is not correlated to the absolute stimulus strength
of each view, but is instead related to the relative stimulus
strengths of two views. He also proposed a model whereby
the weighting coefficients are positively correlated with the
stimulus strengths, which we embody in a biologically plau-
sible model whereby the local energies of the responses of
a bank of Gabor filters are used to weight the left and right
image stimuli. Since binocular rivalry is a local phenomena,
broading Levelts model in this manner is a natural way to sim-
ulate a synthesized cyclopean image. In our model, as in Lev-
elts; the stereo views used to synthesize to the cyclopean view
are disparity-compensated. Thus the localized linear model
that we use to synthesize a “cyclopean” image is :

CI(x, y) =

WL(x, y)× IL(x, y) +WR((x+ d), y)× IR((x+ d), y)
(3)

where CI is the simulated “cyclopean” image, IL and IR
are the left and right images respectively, and d is a dispar-
ity index that corresponds pixels from IL to those in IR. The
weights WL and WR are computed from the normalized Ga-
bor filter magnitude responses:

WL(x, y) =
GEL(x, y)

GEL(x, y) +GER((x+ d), y)
(4)

WR(x+ d, y) =
GER((x+ d), y)

GEL(x, y) +GER((x+ d), y)
(5)



Table 1. SROCC scores obtained by averaging left and right
QA scores (center column) and using the 3D “cyclopean”
model (right column)

2D Baseline “Cyclopean Model”

PSNR 0.672 0.762

SSIM 0.796 0.856

MS-SSIM 0.78 0.901

where GEL and GER are the summation of the convolution
responses of the left and right images to filters of the form
(1). Because of the normalization in (4, 5), increased Ga-
bor energy of either (the left or right) stimulus suppresses the
contribution of the other view when there is binocular rivalry.
Finally, the task of 3D QA is performed by applying a full ref-
erence 2D QA algorithm on the reference “cyclopean” image
and on the test “cyclopean” image.

3. EXPERIMENT AND DISCUSSION

A human study (33 subjects) was conducted to construct a
subjective data set to be used in assessing algorithms of this
type. The data set has 8 pristine stereo image pairs that have
ground truth disparity maps (measured by high-precision
laser range scanner) and 360 distorted stimuli. Five distor-
tion types (white noise, blur, JPEG compression, JPEG2000
(JK2K) compression, and fast-fading (FF) distortions) were
included. Stimuli were distorted both asymmetrically and
symmetrically. We followed the recommendation for a single
stimulus continuous quality scale (SSCQS) [14] to collect the
3D subjective image quality of each distorted stereoscopic
image. Finally, difference mean opinion scores (DMOS)
were obtained for each distorted stereo image pair.

We studied three widely-used full-reference 2D QA met-
rics (PSNR, SSIM [15], and MS-SSIM [16]) as candidate
2D QA methods to be used in the 3D QA framework. This
is the final stage of predicting the quality of the cyclopean
image. We used Spearman’s rank ordered correlation coeffi-
cient (SROCC)to measure the performance of 3D QA models.
Higher SROCC values indicate good correlation with human
perception.

3.1. Performance Using Ground Truth Disparity Map

We begin the performance analysis by using ground truth
depth, which minimizes the effects of flaws in the stereo
matching algorithms. The performance numbers are shown
in Table 1. Also included are the performance numbers ar-
rived at using the same 2D FR QA algorithms, simply applied
to the left and right views and the QA scores averaged. The
“cyclopean” QA algorithm does significantly better than the
2D baseline QA algorithms on the mixed data set containing

both symmetric and asymmetric distorted data.
It is clear from Table 1 that MS-SSIM delivers the best

performance among the three 2D QA algorithms when em-
bedded in the “cyclopean” model. To obtain deeper insights
into how the performance of the “cyclopean” 3D QA model is
improved by accounting for binocular rivalry, its performance
on the separated symmetric and asymmetric distorted stere-
opairs is reported in Table 2. The performance numbers in
Table 2 indicate that the “cylopean” model did not boost per-
formance on symmetric distorted stereoscopic images. How-
ever, performance was greatly enhanced on the asymmetric
distorted stereopairs. Furthermore, Table 2 indicates that the
task of predicting the quality of asymmetric distorted stere-
opairs is more difficult than that of predicting the quality of
symmetric distorted data.

3.2. Influence of Stereo Matching Algorithms

The preceding discussion describing the stereoscopic “cyclo-
pean” QA model assumed that highly accurate ground truth
depth values are available. Next, we study stereoscopic QA
performance when estimated depth is used as computed by
stereo algorithms. The performance of the “cyclopean” model
using ground truth disparity, estimated disparity, and no dis-
parity information are reported in Table 3. Table 3 shows that
there is no significant difference in the performance attained
using the ground truth and estimated disparities, although the
performance of the very simple SAD-based stereo algorithm
is slightly lower than the other two stereo algorithms. All
three significantly outperform the no-disparity case indicat-
ing that estimated disparities provide useful information when
predicting the quality of the stereo 3D images in the database.
These results suggest that we should not use bad-pixel rate to
evaluate stereo algorithms in the context of 3D image quality
assessment algorithm design.

Table 3. SROCC relative to human subjective scores attained
by “cyclopean” model using different disparity maps.

Stereo Algorithm SROCC

Ground Truth 0.901

SAD 0.876

SSIM 0.893

Klaus 0.890

No depth information 0.817

4. CONCLUSION AND FUTURE WORK

We presented a new framework for conducting automatic ob-
jective 3D QA that delivers highly competitive performance,
with a clear advantage when left-right distortion asymmetries



Table 2. SROCC scores relative to human subjective scores. Obtained using averaged left-right QA scores (2D baseline) and
the “Cyclopean” model on symmetric and asymmetric distorted stereopairs

Symmetric Asymmetric
2D Baseline “Cyclopean” Model 2D Baseline “Cyclopean” Model

PSNR 0.781 0.819 0.596 0.698

SSIM 0.826 0.85 0.742 0.827

MSSSIM 0.912 0.929 0.687 0.854

are present. The design of the framework is motivated by
studies on the perception of distorted stereoscopic images,
and theories of binocular rivalry. The “cyclopean” 3D QA
model that we derived was tested on the LIVE Asymmetric
3D Image Quality Database, and found to significantly out-
perform conventional 2D QA models and well-known 3D QA
models. The impact of the stereo algorithm used to conduct
3D QA was discussed. We also found that a low-complexity
SSIM-based stereo algorithm performs quite well for estimat-
ing disparity in the ”cyclopean” algorithm in the sense that a
high level of 3D QA performance is maintained.
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