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Abstract

The extended finite element method is a new approch based on finite element method.
Where finite element method need to change the mesh at every step of a crack propagation,
extended finite element method does not because the mesh does not need to follow the crack
anymore, that’s why this method is very well suited for fracture problems. This master’s
thesis is the development of the 2D part of this method in the Aster code, the finite element
code for Electricité de France. This method uses a definition of the crack by level sets to
add new degrees of freedom and new functions to the nodes around a crack. It also solves
the problem of contact and friction between the lips of the crack.
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Chapter 1

Introduction

The Finite Element Method (FEM) has been widely used when dealing with prob-
lems of Linear Fracture Mechanics. A crack are usually due to microscopic defects
in the material. Depending on the loadings on the material, a crack can become
larger and propagate through the material. If a crack or numerous crack become too
important, it might lead the structure might simply break or loose some properties
such as impermeability. To know what will happen with the material, the crack
and his propagation has to be studied. The classical way to propagate a crack is to
create a new mesh at each step of the propagation. Besides, it is also costly to per-
form a parametric study on the location and shapes of cracks. The re-meshing step
can be easily automatically generated in 2D (see [4]), but in 3D automatic meshing
programs often generate a large number of badly-shaped elements which are not
reliable and imply ill-conditioned stiffness matrices. As a consequence, human work
to supervise the remeshing process increases dramatically as the geometry of the
3D crack gets more complex (as helix-shaped cracks in rotor shafts). In addition to
these practical difficulties, the projection of quantities such as stresses from a mesh
to the next-step mesh raises fundamental theoretical problems (verification of the
conservation of energy, quantity of movement and mass). Alternative methods, such
as Meshless methods have been proposed to avoid a mesh which must follow the
crack geometry (see [3]). A recent method named eXtended Finite Element Method
(X-FEM) allows one to consider a crack in a unique and simple mesh within the
classical framework of the FEM. The crack, represented explicitly, is independent
of the mesh, so the mesh does not need to follow the geometry of the crack faces
and re-meshing is avoided. X-FEM uses an enrichment of the classical shape func-
tions. To represent displacement discontinuities through the interface, a generalized
Heaviside function is introduced. Moreover, adding singular asymptotic fields at the
crack tip gives accurate results in linear elastic fracture mechanics. In addition, the
level set method is a convenient way to describe a crack in 3D and efficient for the
propagation phase (see [5]). However, to take into account the possible closure of
the crack, penetration of one side into the other one must be prevented. Indeed,
surveys of real industrial cases when fatigue occurs for example have shown that
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contact between the crack faces should not be neglected. The aim of this project
was to complete the XFEM already partially developed in 3D in order to be able
to compare 2D and 3D cases and for further development of 2D problems. The
method is implemented in the Aster code, the finite element code of Electricité de
France.

This document is divided into 4 parts. The first one is this introduction. The
second one presents the extended finite element method and more precisely the one
included in the Aster code. It shows how the level sets are used to represent the
fracture, how the finite element functions are enriched and how the final problem
can be solved with contact and friction at the crack. The third part presents the
results obtained and the validation cases which have been done to test particular
aspects of the method. The last part presents an overview of Aster, the process for
working on such a code and the different pieces of code needed to work with Aster.



Chapter 2

Aster’s extended finite element method

The extended finite element method is very useful to deal with crack growth without
remeshing. In order to do so, level sets have to be introduced to represent the crack,
some degrees of freedom have to be added, the matrices to solve the new problem
have to be changed and this has to be applied to fracture with contact and friction.

2.1 Level sets

2.1.1 Level sets definition

A crack can be represented by 2 functions, a tangential level set (F}) and a normal
level set (F,,). F, defines on which side of the fracture the point is located, and F}
defines if the projection of the point on the fracture plane is inside or outside the
fracture. That will define geometrically a crack (see Figure 2.1). These functions
must have the following properties at a point X of the mesh:

F,(X) < 0 on one side of the crack.
F,(X) > 0 on the other side of the crack.
F,(X) = 0 on the crack plane.

F;(X) < 0 over or under the crack.
F;(X) > 0 outside the crack.

Fi(X) = 0 on the crack tip.

The crack is therefore defined by F,(X) = 0 and F;(X) < 0 and the crack tip is
defined by F,,(X) = 0 and Fi(X) = 0. Level sets are often taken as signed distance
function, what allows to use the gradient of these level sets later on. F) usually
represents the distance to the fracture plane and F; the distance to the crack tip
projected on the fracture plane. It’s not a required condition to use level sets but
we use it in Aster as soon as there is a crack tip in the mesh.

3
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Ft'_::: 0 thj:::: 0
F -0
|
N
1 - SR
- v
y F
4

Crack plane

Figure 2.1. Level sets graphics in 2D and 3D

2.1.2 Level sets calculation

Those level sets have to be calculated on every node of the mesh. There are two
ways to do it in the Aster code. Either a function is given for each level set, or the
crack is given by a group of elements to localize the crack and the crack tip. The
first case is quite easy because the functions can be evaluated at every node of the
mesh knowing the coordinates (z,y) of the nodes. For example, consider a squared
sheet going from x = 0 to x = 2 and from y = 0 to y = 2, and a horizontal crack
from the middle of the sheet (x,y) = (1,1) to a border of the sheet (z,y) = (0,1).
The level sets for this crack are given by F,(z,y) = y — 1 and Fy(z,y) = = — 1.
With those formulas, over the crack for example, i.e. for all node with coordinate
y>1,F, >1—1so0 F, > 0. All the level set properties for this crack can be found
from those formulas. The second case requires a little bit more work. The nodes
coordinates and the coordinates of the elements of the crack are known, therefore
geometric calculations can be made. For F),, the distance to the crack for each
node needs to be calculated. First all the elements are sorted to obtain a list of
contiguous elements. Then for each node M, and for all the elements the distance
to the element is calculated by taking the distance from M to its projection P on
the element (or to one vertex of the segment element if P is outside the element).
Only the smallest distance M P is then kept. But a signed distance is needed, so the
first element will define an arbitrary orientation, and all the following elements will
take the same orientation. That’s why the elements were sorted at the beginning.
For F;, for each node M and each crack tip element I, the point R is determined,
R; being the projection of M along the normal to the crack element connected to
1. The shortest distance I Ry is then kept. Once again a signed distance is needed,
but vertices are known to be on the crack only or on the crack tip so a simple scalar
product determines if Ry is on the crack tip side or on the other side of the crack
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Figure 2.2. Crack tip local basis

element and therefore give us the sign of F;. After that some of those level sets have
to be adjusted to prevent ill conditioned stiffness matrices, because if the crack is
too close to the border of an element, the ratio of the surfaces between both side of
the crack will be too large. Therefore all F,, values that are under 1% of the value
at a node on the same edge will be set to 0, the crack is "moved" to the edge of the
element. Those things done, a good approximation of the level sets on every point
of the structure and a fairly exact value on the nodes of the mesh are obtained.

2.1.3 Crack tip local basis

For a further use, a crack tip local basis is also defined with the level sets (see Figure
2.2). This basis is defined as follows.

er = Y ¢VF(Xi)

nodes 1
e2 = Y &VF(Xi) (2.1)
nodes 1
(and ez = ejNey in 3D)

With A being the operator for cross product. This basis will be used to define polar
coordinates for a crack tip enrichment.

2.2 Fracture problem with XFEM

2.2.1 General problem

The general problem equations of a fractured structure are needed here. The situ-
ation is sketched in Figure 2.3. We consider a domain 2 with a crack T'.. 0€ is the
border of 2 with exterior normal n.xt. Crack lips are called I'1 and I'y with outward
normals n; and ny. The stress and displacement fields are called ¢ and u respect-
ively. A quasi-static load is put on the structure with a density of volume force f
and a density of surface forces t on I';y. The structure is fixed on I',. Equilibrium
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Figure 2.3. General problem notations

equations can be written:
Vo = f in Q
0 Next = t on I}y (2.2)
u = 0 on Iy

To keep the problem simple, only small displacements and deformations are con-
sidered here, therefore can be written :

e = Vaw) = 5(V(w) +7 V(w) (2.3)

where V, is the symmetric part of the gradient, 7 the operator for transposition
and € the deformation tensor. We consider a linear elastic material, therefore :

c=C:¢ (2.4)

where C is the Hooke tensor which depend on the type of material and : the operator
for tensor product. The following weak form is finally obtained :

/Qa(u) :g(v)dQ_/Qf-vd(H—/Ftt-vdF v (2.5)

2.2.2 XFEM enrichment

The idea of X-FEM is to enrich the basis functions in order to represent the fracture
behavior. New degrees of freedom are added for the crack jump, and new degrees
of freedom are added for the crack tip opening. Classic FEM functions are usually
written like that:

ux)= > ai(x) (2.6)

€N, (%)

Where ¢; represent finite element nodal basis functions. They will be changed to
the following formulas :

ux)= Y adi(x)+ Y biH(F(x)di(x)

€N, (%) 1ENL(x) K



2.2. FRACTURE PROBLEM WITH XFEM 7

Y D AaFN(F(x), B(x)) (2.7)

€N, (x) (N L a=1

The same functions ¢; are kept but two new terms are added, a Heaviside function
H(F,(x)) to represent the jump and four singular functions F<(F,(x), Fi(z)) to
represent the behavior at the crack tip. IV, (x) is the group of nodes with a support
that contains x and K and L are two domains where we apply those enrichments.
The basis functions ¢; that have been used in this project are the standard bilinear
basis functions. For the quadrilaterals they are for example (when centered in the
middle of the element):

¢&m) = (1= —n)/4
$2(&m) = (1+8(A—n)/4 (2.8)
¢3(&m) = (1+&(A+n)/4
Pa&m) = (1=8A+n)/4

Other basis function could of course have been used with this method. Those
enrichment are the core of the XFEM and will be detailed thereafter. The first
enrichment is an heaviside enrichment. H is defined as follows:

H : R—-{-1,1}
H(zx) = -1 if <0 (2.9)
H(z) =1 if >0

Combined with F,, we have H(F),) positive on one side of the crack and H(F,)
negative on the other side. Therefore it will help to represent the displacement
jump at the crack. K is the group of nodes with a support completely cut by the
crack. The b; are enriched degrees of freedom. The second enrichment is needed
to represent the singularity at the crack tip. Four functions F'“ are used. Those
functions have been chosen so that one can build the expressions of the asymptotic
expansion of the displacement field in mechanics of the elastic linear fracture. Those
expression were determined for a plane crack with infinite boundaries (see [6]). The
¢ are enriched degrees of freedom. The basis chosen is therefore :

F* e {\/?sing, \/;cosg, ﬁsingsinﬂ, ﬁcosgsin(G)} (2.10)

If the level sets have be chosen to represent a signed distance, the polar coordinates
of the node can be easily expressed from the values of the level sets (see Figure 2.4):

r=/F,+F (2.11)

F,
0= arctanﬁ (2.12)

Those enrichment should be chosen for every node of the mesh. To find which kind
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€2
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€1

Figure 2.4. Polar coordinates in the local basis

LT | T~

I !
Figure 2.5. Nodes enrichment around a crack (circled nodes : heaviside enrichment,
squared nodes : crack tip enrichment)

of enrichment is needed, tests on the level sets signs are performed. But to avoid
having a huge number of elements types, the number of new element types in the
code was restricted to 3:

o Heaviside elements with only b; as new degrees of freedom, with at least one
node enriched with heaviside.

o Crack tip elements with ¢ with at least one node enriched with singular
functions.

e Combined elements with both degrees of freedom added and with both types
of nodes.

Other elements types with different types of enriched nodes are not created,
therefore some elements have too many degrees of freedom, those degrees will be
removed later on.
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Figure 2.6. Possible cases of cutting for triangular elements
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§ Crack
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Figure 2.7. Cutting of a quadrilateral element

2.2.3 Elements cutting

With the XFEM enrichment, there are some discontinuous terms to integrate to
solve the problem, due to the Heaviside term and to one of the singular function
which are both discontinuous when the crack is crossed. The integration use Gaus-
sian quadrature, so we need to integrate only continuous functions. The elements
will therefore be cut into smaller elements on both side of the crack. To stay close
to the realization in 3D, it was chosen to first cut all the quads in triangles and to
deal with both types of meshes with triangles then. One, two or three sub elements
can be obtained depending on how the crack is cutting the triangle (see Figure 2.6).
For a quad, a maximum of six sub-elements can be obtained (see Figure 2.7). All
the sub elements are triangles.
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2.2.4 Integration

The displacement field in every element can be written with XFEM:

(01 Hpr Flor F2¢1 F3¢1 Fign &
u= : (2.13)
¢n  Heén Flén F2¢, F3¢, F'¢,) | 4

OO 0.0 o
SEIWINI—I

n being the number of nodes of the element or
u=Ng (2.14)

Where N is the enriched base of basis functions and g if the vector of nodal degree
of freedom. All the types of elements don’t need all the degrees of freedom, therefore
some of them will be set to 0 later on. Deformations can be written :

e = [Blg (2.15)

where [B] is equal to V4(N). In a domain Q the stiffness matrix is :

K] = /Q (BJ![D][BlaS) (2.16)

And after cutting this domain in sub elements, we can write with only continuous
functions:
K= Y [ BrD)Bd. (2.17)
sub—elements se
With the help of the element cutting a Gaussian quadrature is suitable. The Gaus-
sian quadrature chosen use three Gauss points for integration, because the maximum
degree of the integrated terms is four, and three gaussian points should therefore
be sufficient for the triangular sub elements.

2.3 Contact and friction with XFEM

2.3.1 Contact laws

Be P a point of I'.. We call P! and P? the corresponding points on I'! and I'?
(See figure 2.8). The condition of non interpenetration between P! and P? can be
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X(P") - x(P?)

P P2

Figure 2.8. Jump definition

An

I r

Figure 2.9. Definition of contact effort density

written in direction of n, the normal to I'! :

d, = (x(P') — x(P?)) n <0

11

(2.18)

We decompose the contact effort density r in a normal part A, the normal contact

pressure and a tangential part r; (see Figure 2.9).

r=An-+ry

With those notations, contact laws are written :

dy <0, A<0, Ap=0

In order to get rid of the inequality these equations are rewritten :

A= x(gn)gn =0

Where x is a step function defined by :

_ 1 if z<0
X@=910 i 2>0

(2.19)

(2.20)

(2.21)

(2.22)
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and g, is the term of augmented contact :
Gn = A — pndnp, (2.23)
where p,, is a strictly positive parameter arbitrarily chosen.

2.3.2 Friction laws

For friction phenomenon, we use Coulomb’s law :

ool < pfAl
if |lr7] < p|A| then v, =0 (2.24)
if |[r7|| = w|A| then 3a > 0 such as v, = —ar,

where  is the Coulomb’s friction coefficient and v, is relative tangential speed of
the contacting bodies. Those laws can be rewritten as for contact :

rr = puAA
A — Pgoa)(g) = 0 (2.25)
gr = A+prv;

A is the half friction multiplier, g; is the half augmented friction multiplier, Ppq 1)
is the projection on the unity sphere and p, is a strictly positive parameter. A
complementary condition to those friction laws is the following exclusion law :

dn,A = 0 or, equivalently, (1 — xg,)A =0 (2.26)

2.4 Mixed weak form

The following mixed weak form is finally obtained. Find (u,r), such as :

/Qa(u):ede—/Qf-de—i—/FthvdI‘—i-/cr-[[v]]dFC o (2.27)

Where [[v]] is the jump of v and is equal to v(P!) — v(P?). Including contact and
friction, the weak form becomes : Find (u, A\, A) such as for all (v, \*, A¥) :

/Qo(u):s(v)dQ/Qf-de/FttvdF

- / x(gn)gnm.[v]] T, — /F 3 (gm)HAP(0 1) (g:).[[V]]dTe = 0

/ L g dr =0 (2.28)
r. Pn

- n A * *
/ ’“"iff)u ~ Py (g:))AdTe + / (1 - X(ga))AN"dLe = 0
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2.5 Discretization of finite elements

To calculate A and A the values at the intersection points between edges and the
fracture are used. These intersections define a polygon inside an element (contact
segment for 2D case). The contact and friction multiplier are calculated on these
elements. The following equation are obtained with the segment basis functions :

2
AX) =D Aiti(x) (2.29)
=1

The same approximation is used for A. The segment basis functions used are linear
functions (centered on the middle of the element) :

Y1 = (1-¢)/2
Yo = (1—-n)/2 (2.30)

We can notice that those intersection points aren’t in the initial mesh. In order to
use them within the classic element code of Aster, we associate those points to the
middle points of the edges of the elements even if they are not geometrically at the
middle position. If the crack is located inside an element, only middle points will
have activated contact degree of freedom. If it falls on a side of an element, contact
points are nodes of the mesh and contact is activated at the vertex nodes of the
elements.

2.6 Resolution strategy

The strategy of resolution is the same as the one used with classic finite element
method in Aster (see [7]). There is a nonlinear term in every equation, for example,
X(gn)u in the equilibrium equation. Therefore, we will suppress these nonlinearities
by putting some parameters in some parts of the computation. We first initialize
a friction threshold to some arbitrary value A\s and we begin the friction loop, at
every step of this loop this term will be calculated and put as a constant in the inner
part. Then we do the same thing for the contact status x and we begin a contact
loop (x(gn)u becomes yu therefore the nonlinearity disappear). In the innermost
loop we solve the last nonlinear term by a Newton method.

2.7 Linearized elementary terms

2.7.1 Matrix form the linear problem

The linearized system obtained is:

Kmeca + Au + Bu AT BT du L71neca + Liont + L}”rot
A C 0 S | = L2 ,
B 0 F, SA L3 o

(2.31)
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which can be written :
[K]ou =F. (2.32)

e The unknowns are an increment of the terms since the last Newton iteration,
o Kinecq is the mechanical stiffness matrix defined by (2.17),

e A, is the augmented stiffness matrix due to contact,

e B, is the augmented stiffness matrix due to friction,

o A is the matrix linking the displacement and contact terms,

e B is the matrix linking displacement and friction terms,

e C is the matrix used to determine contact pressure for non-contact case,

e F) is the matrix used to determine friction terms for non-frictional case,

e Ll .. is the right-hand side representing the intern forces and the loading

increments,
e Ll ,and L? , are the right-hand sides due to contact,

. L}mt and Li’vmt are the right-hand sides due to friction

2.7.2 Contact elementary matrices

From the previous equations and discretizations, the contact matrices can be cal-
culated.

(Al = [ e, (2b, + 27 nd, (2.33)
Ay = [ xpudu(2bi-+ 2v/7elIng, (2b; + 27l (2:34)
1
(Cly == [ (1= 0w, (2:35)
Note that all the continuous terms (aj,c?,c?,c?) disappear in the contact part. The

[C] matrix is the same than without XFEM. Terms in /7 come from derivation of
crack tip enrichment functions F'<.

2.7.3 Right-hand sides for contact forces

Right-hand sides for contact forces use the previous Newton iteration, the variables
of the previous iteration are indicated by the superscript k£ — 1.

M&A=éﬁﬁ*%ﬁ*w%ﬁ2W@Wmﬂ (2.36)

1_
waAz—A<pXﬁl+x%1WMM? (2.37)
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2.7.4 Friction matrices

The following expressions can be obtained for the friction matrices :
[Bulij = —/FXMPr¢i(2bi +2v/r¢; ) (20 + 2¢/rc) [P]T[K,] [PldT, (2.38)

where the matrix P represent the projection on the contact plane with a normal n.
This matrix can be written as:

[P] = ( i%’i Irf”%’ ) (2.39)
Blij = — /F Xt s K] [Pl (205 + 24/(r)c by, (2.40)

As
[Foi; = — /F AP s Airs[Id — K| [Pl AirsdD + /F (1 — \)apymmydl.  (2.41)

pr

2.7.5 Right-hand sides for friction forces

Right-hand sides for friction forces use the previous Newton iteration, the variables
of the previous iteration are indicated by the superscript & — 1.

Loty = — /F X1Asi(2b; + 2¢/rc} ) [P]T Ppo1) (g% — 1)dT (2.42)

A _
Loy = / X2 i i (AR — Py, (g — 1)dT (2.43)

T

Where k-1 is the previous Newton iteration.






Chapter 3

Results and test cases

Different test have been performed. The aim of those test was to validate the method
and to complete the database of test cases which is used to verify the integrity of
the Aster code. Some of them are therefore performed on very simple meshes.

3.1 Level sets validation

The level sets shapes are tested on different simple cases: horizontal fracture with
a crack given with functions, or with segment elements, and also a curved crack.
The methodology is shown below on the curved crack. Figure 3.1 shows the mesh
given and the level sets obtained. The mesh consists of 20*100 square elements.
The crack is the curved shape close to the middle of the mesh. Both values and
shapes of level sets seem correct on those figures as well as on all the cases obtained.
Figure 3.2 shows the node status given to the different nodes. Those node status
help us to attribute element types later in the program. The different types of
nodes on the figure are shown. There are normal nodes (status = 0, dark blue), the
heaviside nodes, for elements completely cut by the crack (status = 1, light blue),
the nodes around the crack tip (status = 2, yellow) and mixed nodes (status = 3,
red). Knowing that the crack coincide with a node of the mesh on the upper side
and finishes inside an element on the lower side, we get the results we wanted. The
nodes with status = 1 are circled nodes and those with status = 2 are squared nodes
in Figure 2.5 on p.8. The fracture is at the same place as in Figure 3.1. Finally
investigations on a bigger mesh have been done, using a mesh previously created
for other Aster tests. It consists of an inclined crack with an angle to the horizontal
plane of 37 degrees. This mesh is composed of 14888 nodes and 6674 elements
(see Figure 3.3). On this mesh the crack tip local basis is tested (see Figure 3.4).
This basis corresponds to level set gradients and therefore the first vector can be
written é; = %(cos(B)ez + sin(B)éy) depending on which side of the crack the point
is located. 12 points are tested with both methods of crack definition (functions or
with segment elements). The maximum error range that we find is of 10713 which
is conclusive.

17
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Figure 3.1. Curved crack in a mesh of quadrilaterals and corresponding level sets
(normal then tangential)

3.2 Resolution validation in traction (no contact or
friction)

3.2.1 5 and 10 elements meshes

It was first decided to test the method on a simple mesh consisting of 5 elements
and cut in the middle (see figure 3.5 (a) and (b)). Doing so, it was possible to put
displacements on normal elements, without imposing loadings directly on XFEM
elements. The model is a simple sheet in traction with quadrilateral elements first
(see figure 3.5 (c)), then with 10 triangular elements (see figure 3.5 (d)). The crack
is defined by the following functions :

LY
Fo(z,y) =y — - Fi(z,y)=—2z—1 (3.1)
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Figure 3.2. Node status

The crack tip is therefore located outside the sheet which permits us to have a
completely cut sheet and work only with heaviside terms. On these mesh with
quadrilateral elements, there is a cut element in the middle, two other XFEM ele-
ments around it and two normal elements at the top and at the bottom. Those
elements have different degrees of freedom. Normal elements have the usual degrees
of freedom that are called A, and A,. XFEM elements have additionally enriched
degrees of freedom, to keep the same notation as in the second chapter they are
called a,, a, and b, and b, for the Heaviside degrees of freedom. We bind the bottom
level (no displacement possible) and we put a fixed displacement of U, = 107%m
on the top of the mesh. Theoretical results give no displacements on the X axis,
therefore null degrees of freedom, and the following degrees of freedom for the Y
axis:

e 1st level of nodes (bottom): A, =0

 2nd level of nodes : Ay = a, — b, = 0 (the displacement for the node is of
course equal for both side, therefore for both kind of elements with this node
which is between a normal and an XFEM element). a, = b, = U, /2

e 2nd level of nodes : a, — b, =0 and a, = b, = U,/2
« 3nd level of nodes : ay — b, =0 and ay = b, = U,/2
e 4nd level of nodes : ay + b, = U, and ay = b, = U, /2

« 5nd level of nodes : Ay =ay +b, =U, and a, = b, = U, /2
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VAN

Figure 3.3. Global and inner mesh

 5nd level of nodes : 4, =U,

Results calculated with Aster are identical to these theoretical values. The max-
imum error range is in the order of 107!2. We find the expected opening of the
crack if we test points over and under the crack. The triangular element mesh gives
the same kind of results.

3.2.2 1 element mesh

This case uses a single quadrilateral element. This element is cut by a crack in its
middle. This is a XFEM element and therefore loadings have to be imposed directly
on XFEM degrees of freedom because normal degrees of freedom no longer exists.
Imposed displacements are :

 on the lower nodes, no displacement, a, — b, = 0 and a, — b, =0

« on the upper nodes, displacement of U, = 1076 on the Y axis, ay — by, = Uy
and a; — b =0
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Figure 3.4. Global and inner mesh
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Figure 3.5. Sheet geometry and meshes
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Figure 3.6. Mesh and crack for compression cases

The analytic solution is an opening of the block with a, = b, = U, /2 and a, = b, =
0 for the 4 nodes. These are the results found by Aster, with a very good precision
once again, the error is at the maximum in the order of 10~13.

3.3 Resolution validation in compression

This time we use a bigger mesh. We use a 20%20 mesh of quadrilaterals of size
1m? and a fracture with an angle § with the horizontal plane (see Figure 3.6).
This fracture completely cuts the crack. The lower part is blocked and an imposed
displacement of —107%m is imposed in these tests. The Young’s modulus of the
material is put to 10%Pa.

3.3.1 Contact validation

For the first compression case, the angle 6 is equal to 0. Therefore the crack is
horizontal and there is no friction involved. That allows to test the contact part
first. From (2.28) the expression of the contact multiplier with a linear compression
can be found :

U,
= = Fe = =YL 3.2
Oyy € LY ( )
So with the given values A = —5Pa .This value is tested on all the elements along

the crack and once again we obtain very good results. The maximum error in the
order of 10712,

3.3.2 Friction validation

The second compression case is with an angle 6 equal to —30 degrees. The friction
terms can therefore be tested. To stay in small displacement and to avoid sliding
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and any need of any new pairing of the nodes, the friction threshold is taken equal
to 1000. A is defined by :

U,
A=n-0-n=n,0,n, = oyycos(0)? = Eﬁcos(ﬁ)Q7 (3.3)

where n is the normal to the interface. The half friction multiplier A is defined by:
rr = AuA, (3.4)
with the tangential effort density that can be written :
rr=(7-0-n)r, (3.5)
and 7 is the tangent to the interface. So :
T-0-n Ty

A-7= = (3.6)

J73 3 e s

With the given values it holds A = —3,75Pa and A -7 = 100%)\/? That’s the results

obtained with a maximum error in the order of of 10712,






Chapter 4

A short overview of the Aster code

4.1 Aster, a free finite element software for engineering

The Aster code is a code of calculation developed by EDF since 1989 and based on
the finite element method. It collects all the work done by the R&D department
of EDF in structure mechanics and the feedback from other users. EDF mainly
works on power plants, electricity transportation and distribution. This tool has
been developed to answer the needs of engineers for development and maintenance
purposes. Therefore ASTER is used by engineers of EDF in many different areas
of applications, e.g. mechanics, acoustics, metallurgy, fluid-structure interaction,
fatigue, fracture, and so on. It is used to model linear and nonlinear behaviors,
statically and dynamically. In order to facilitate the use of Aster by other companies
working with EDF, EDF decided 3 years ago to give a free access to Aster to other
users. This also helps its development by creating a wider community of users.
Aster is therefore now under a gnu general public license and can be downloaded
at the website of the Aster code [2].
Aster in numbers means :

e 1 million of lines of code in 3 different language, mostly Fortran, but also C
and python,

« about 1500 non-regression and qualification tests,
« 10 000 pages of documentations,

e 200 users at EDF,

e a team of 20 developers,

e an industrial version every 2 years,

e a development version updated every week.

To ensure a non-regression of the code, every modification is tested with previous
cases studied on different platforms. Every modification also follows a complicated

25
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process in order not to collide with other modifications developed at the same time.
To add a piece of code, the developer first needs to run a verification software, to
verify that the code conforms to the Aster rules of code writing (no lower case, no
common variables, no unreached piece of code...). Then the restitution program
checks that the developer worked with the latest version and that there is no conflict
with other developers. The changes need to be discussed and accepted during a
development meeting and after that they have to pass all the test cases. An history
of modifications is also kept. This procedure allows EDF to ensure the quality
quality of the software.

4.2 Development in Aster and work done on the 2D
method

The different parts of an Aster program are shown here, with the help of some of
the files created for the XFEM implementation in 2D. Those parts can be sorted
into Fortran subroutines, catalogs of elements, mesh files and command files. They
will be described here. The files are a little bit shorter than they are in practice
to keep things readable. The compilation process or any hardware aspect are not
included here, because that part was managed by the software Astk, an interface
for Aster, but the code was tested on different platforms with the complete Aster
program. All the detailed parts of the code can be found at Aster’s website [2].

4.2.1 Mesh files

First a mesh has to be created, to model the problem to be solved or as a support
for development routines. Gibi, a mesher originally developed for Cast3m [1], was
usually used for this part during this master’s thesis. For example, to create a mesh
of 20*20 quadrilateral elements, the mesh file looks like the following:

o dimension and element choice
opti dime 2 elem qua4 ;

e Mesh size and number of elements

LX 20; LY = 20;
NX = 20; NY = 20;

e Mesh construction : first the points are defined, then the lines and the surface

pl =0. 0.;
p2 = LX 0.;
p3 = LX LY;
p4 = 0. LY;

ligl = droit pl p2 NX;
lig2 = droit p2 p3 NY;
lig3 = droit p3 p4 NX;
ligd = droit p4 pl NY;
surf=DALL ligl 1lig2 1lig3 lig4 PLAN;
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e Graphic output generation for visual verification
trac surf;
e Mesh saving and end of file

MAILLE = surf;

opti sauv format ’./mesh.mgib’ ;
sauv format maille ;

fin ;

4.2.2 Command files

When the mesh file is finished, the problem can be treated by Aster. A command
file contains all the command that Aster will execute. This file is written in Python
and can also be divided into different parts.

e Name and version information

# AJOUT
# TITRE BLOC AVEC INTERFACE EN CONTACT FROTTANT AVEC X-FEM
DEBUT (CODE=_F (NOM="SSNV182D’, NIV_PUB_WEB=’INTERNET’,),);

e Mesh reading and modification, the mesh is first read here, then nodes are
added in the middle of the edges to allow friction and contact multiplier on
these middle nodes.

PRE_GIBI();
MAILLAG1=LIRE_MAILLAGE(INFO=1,);
MAILLAG2=CREA_MAILLAGE(MAILLAGE=MAILLAG1,

LINE_QUAD=_F (GROUP_MA=’SURF’,),);

e Model declaration.Except for the upper and lower lines where we want to im-
pose displacements, the mesh has an XFEM model with plane stress (C_ PLAN_X)

MODELEIN=AFFE_MODELE (MAILLAGE=MAILLAG2,
AFFE=(_F(GROUP_MA=(’SURF’,),
PHENOMENE="MECANIQUE’,
MODELISATION=’C_PLAN_X’,),
_F(GROUP_MA=(’LIG1’,’°LIG3’,),
PHENOMENE="MECANIQUE’,
MODELISATION=’C_PLAN’,),),);

e Level set and fracture definition. Here the definition of the crack by functions
is used (LN and LT for F,, and F}), and the contact and friction mode and
their parameters are specified (pu is COEF_REGU__CONT for example).
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THETA=-30./180.*pi
LN=FORMULE (NOM_PARA=(’X’,’Y’) ,VALE=" (Y-10) *cos (THETA) -sin (THETA) * (X-10) ’) ;
LT=FORMULE (NOM_PARA=(’X’,’Y’) ,VALE="-X*cos (THETA) -Y*sin (THETA)-100’) ;
FISS=DEFI_FISS_XFEM(MODELE=MODELEIN,
DEFI_FISS=_F (FONC_LT=LT,
FONC_LN=LN,),
GROUP_MA_ENRI=’SURF’,
CONTACT=_F (INTEGRATION="GAUSS’,
COEF_REGU_CONT=100.,
ITER_CONT_MAXI=4,
CONTACT_INIT="0UI’,
FROTTEMENT=’COULOMB’ ,
COULOMB=1000.0,
ITER_FROT_MAXI=6,
COEF_REGU_FROT=1000.,
SEUIL_INIT=-5,
),);

The following command will affect the different types of elements and remove
irrelevant degrees of freedom.

MODELEK=MODI_MODELE_XFEM(MODELE_IN=MODELEIN, FISSURE=FISS,);

Material description : this part specifies the physical properties of the material
like the Young’s modulus.

E=100.0E6
nu=0.
ACIER=DEFI_MATERIAU(ELAS=_F (E=E,NU=nu,RH0=7800.0,),);
CHAMPMAT=AFFE_MATERIAU (MAILLAGE=MAILLAG2,
MODELE=MODELEK,
AFFE=_F (GROUP_MA=(’SURF’,’LIG1’,’LIG3’,),
MATER=ACIER,
TEMP_REF=0.0,),);

Loadings : this part impose the different displacement of pressures and the
second command links XFEM degrees of freedom and normal degrees of free-
dom.

CH1=AFFE_CHAR_MECA (MODELE=MODELEK,
DDL_IMPO=(_F(GROUP_MA=’LIG1’,
DX=0.0,
DY=0.0,),
_F(GROUP_MA=’LIG3’,
DX=0.0,
DY=-1.E-6,),),);
CHXFEM=AFFE_CHAR_MECA (MODELE=MODELEK , LTIAISON_XFEM=’QUI’,);

The next part calls the non linear solver and specifies the time step (here only
1 step), uses the previously defined loadings, models, materials and defines
some resolution parameters (number of iteration for the solver, method).



4.2

DEVELOPMENT IN ASTER AND WORK DONE ON THE 2D METHOD 29

L_INST=DEFI_LIST_REEL(DEBUT=0.0,INTERVALLE=_F (JUSQU_A=1.0,NOMBRE=1,),);
UTOT1=STAT_NON_LINE (MODELE=MODELEK,
CHAM_MATER=CHAMPMAT,
EXCIT=(_F (CHARGE=CHXFEM, ),
_F(CHARGE=CH1,),),
COMP_ELAS=_F (RELATION="ELAS’,
GROUP_MA="SURF’,),
INCREMENT=_F (LIST_INST=L_INST,
INST_FIN=1.0,),
CONVERGENCE=(_F (ARRET="0UI"’,
RESI_GLOB_RELA=1E-9)),
SOLVEUR=_F (METHODE="MUMPS’ ,
PCENT_PIVOT=250,),
NEWTON=_F (REAC_ITER=10,),);

e Finally a table is created, which contains the contact and friction variables
for all the nodes along the crack. Then this table is tested and the values are
compared to known analytic values. If any test fails, Astk will point it out to
the user.

LAG=POST_RELEVE_T (ACTION=_F (INTITULE=’"DEPLE’,
NOEUD=(’N261’,’NS222’,°NS223"’,’NS224°,
’NS259°,°NS260°,°NS261°, ’NS298” , ’NS299°,
’NS335’,°NS336°,°NS337°, ’NS372°, ’NS3737,
'NS374’,°NS411°,°NS448° ,’NS449° ,’NS4857,
'NS486° ,°NS487°,°NS522’,’NS523”,
'NS524’,°NS561°,°NS562° , ’NS598” ,
’NS599° ,’NS600°’ ,°NS636°,°NS638”,),
RESULTAT=UTOT1,
NOM_CHAM="DEPL’,
NUME_ORDRE=1,
NOM_CMP=(’LAGS_C’,’LAGS_F1°,),
OPERATION=’EXTRACTION’,),);
REF=-5.%3./4.
REF2=.001/(3.%*.5)
# TESTS
TEST_TABLE (TABLE=LAG,
NOM_PARA="LAGS_C’,
TYPE_TEST="MAX’,
VALE=REF,
CRITERE=’RELATIF’,
PRECISION=1.E-10,
REFERENCE=’>ANALYTIQUE’,);

TEST_TABLE (TABLE=LAG,
NOM_PARA="LAGS_C’,
TYPE_TEST="MIN’,
VALE=REF,
CRITERE=’RELATIF’,
PRECISION=1.E-10,
REFERENCE=’ANALYTIQUE’,);

TEST_TABLE (TABLE=LAG,
NOM_PARA="LAGS_F1’,
TYPE_TEST=’MAX’,
VALE=REF2,
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CRITERE=’ABSOLU’,
PRECISION=1.E-12,
REFERENCE=’ANALYTIQUE’,);

TEST_TABLE (TABLE=LAG,
NOM_PARA="LAGS_F1’,
TYPE_TEST="MIN’,
VALE=REF2,
CRITERE=’ABSOLU’,
PRECISION=1.E-12,
REFERENCE=’ANALYTIQUE’,);

FINQ);

4.2.3 Fortran code

Now that a mesh and a command file is done, Aster can be run on this simple case.
With this kind of support, the code can be developed and the Fortran routines
modified. That’s the part where the most of the work had been done. The code
was greatly inspired from the 3D code already done. Sometimes, there were only
small modifications necessary (split the program in a 2D part and a 3D part, test
the dimension to change some variables) and sometimes more work was needed. For
example for integration, informations have to be kept about the intersection points,
the number of the edges concerned, the number of sub-elements and their topology.
The size of the objects containing this information is quite different in 2D and in
3D. For example, we have at the most 3 intersection points in 2D for a quadrilateral
and we can have until 11 intersections points in 3D for a cube. Therefore all those
objects have therefore been resized. The Fortran routine for calculating contact and
friction is presented hereafter:

¢ Routine name and parameters, this option has very few parameters, because
it is an elementary routine. The needed variables are obtained later in the
program.

SUBROUTINE TE0533(0OPTION,NOMTE)
IMPLICIT  NONE
CHARACTER*16 OPTION,NOMTE

e Version and copyright information and small description of the routine utility

C CONFIGURATION MANAGEMENT OF EDF VERSION

C MODIF ELEMENTS DATE 22/02/2006  AUTEUR MASSIN P.MASSIN

C

C COPYRIGHT (C) 1991 - 2005 EDF R&D WWW.CODE-ASTER . ORG
C CALCUL DES MATRICES DE CONTACT FROTTEMENT POUR X-FEM

C (METHODE CONTINUE)

e Standard common memory allocation variables. Aster has it’s own memory
allocation management with the procedure JEVEUX. For example to get a
integer stored at a particular address, one will just use ZI(address).
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C ———————- DEBUT DECLARATIONS NORMALISEES JEVEUX -——-——-——-——————————
INTEGER ZI
COMMON /IVARJE/ZI(1)

COMMON /KVARJE/ZK8(1),ZK16(1),ZK24(1),ZK32(1),ZK80(1)
C - FIN DECLARATIONS NORMALISEES JEVEUX -----------———-—-—----

e Declaration of Fortran variables used in the routine.

INTEGER I,J,K,L,1J,IFA,IPGF,INO,ISSPG,NI,NJ,NLT,NL],PLT,PL]
INTEGER JINDCO, JDONCO, JLSN, IPOIDS, IVF, IDFDE, JGANO, IGEOM
REAL*8 PTKNP(3,3) ,TAUKNP(2,3) ,TAIKTA(2,2) ,IK(3,3) ,NBARY(3)
REAL*8 LSN,LST,R,RR

e Initialization of the different variables and objects needed for computation, for
example dimension, gauss points families, address for the level sets or topology
of contact elements.

¢ INITIALISATIONS
CALL ELREF1(ELREF)
CALL ELREF4(’ ’,’RIGI’,NDIM,NNO,NNOS,NPG,IPOIDS,IVF,IDFDE,JGANO)

CALL JEVECH(’PLSN’,°L’,JLSN)
CALL JEVECH(’PLST’,’L’,JLST)
CALL JEVECH(’PPINTER’,’L’,JPTINT)

e Here comes the main program, large pieces were removed from that part.
There were different kinds of modification testing the dimension, here can
be seen an IF loop testing the dimension to choose the gauss points family
for integration (FPG). Then the contribution of 1 gauss point of 1 contact
element to the matrix A, is calculated, this matrix has now a size which will
depend of the dimension as almost every other object in the program.

IF (NDIM .EQ. 3) THEN
IF (INTEG.EQ.1) FPG=’XCON’
IF (INTEG.EQ.4) FPG=’FPG4’
IF (INTEG.EQ.6) FPG=’FPG6’
IF (INTEG.EQ.7) FPG=’FPGT7’

ELSE

FPG="MASS’

ENDIF

DO 100 IFA=1,NFACE
DO 110 IPGF=1,NPGF
IF (OPTION.EQ.’RIGI_CONT’) THEN
IF (INDCO(ISSPG).EQ.0) THEN

ELSE IF (INDCO(ISSPG).EQ.1) THEN
C I.2. CALCUL DE A_U
DO 140 T = 1,NNO
DO 141 J = 1,NNO
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DO 142 K = 1,DDLH
DO 143 L = 1,DDLH
MMAT (DDLS* (I-1)+NDIM+K,DDLS*(J-1)+NDIM+L) =

& MMAT (DDLS* (I-1)+NDIM+K,DDLS* (J-1)+NDIM+L)+
& 4 .DO*RHON*FFP (I)*FFP (J) *ND (K) *ND (L) * JAC*MULT
143 CONTINUE
142 CONTINUE
141 CONTINUE
140 CONTINUE

110 CONTINUE
100 CONTINUE

e Data saving and end of routine. The calculated matrix is stored in an Aster
object.

DO 200 J = 1,NDDL
DO 210 I =1,J
IJ = (J-1)*J/2 + I
ZR(IMATT+IJ-1) = MMAT(I,J)
210 CONTINUE
200 CONTINUE
END

4.2.4 Catalogs of elements

The previous routine was an elementary subroutine. Aster will first call global
routines, but then some part of the calculations will have to be done on each element.
To go from global subroutine to elementary subroutine, Aster calls a routine that
looks for the type of element, and for each type of element Aster will choose a
certain elementary subroutine and associated parameters. This fork is done with
the help of catalogs. For example, 4 catalogs have been developed for XFEM in
2D. They use new routines, or routines from XFEM in 3D with other parameters
and define some properties of the elements. The different parts of a catalog are
described here (pieces of the catalog have been removed). The following catalog is
used for all mixed elements (both enrichments on quadrilaterals and triangles).

e Version and copyright information, as for other Aster’s files.

%& MODIF TYPELEM DATE 09/01/2006  AUTEUR GENIAUT S.GENIAUT

YA CONFIGURATION MANAGEMENT OF EDF VERSION
h
% COPYRIGHT (C) 1991 - 2005 EDF R&D WWW.CODE-ASTER . ORG

% THIS PROGRAM IS FREE SOFTWARE; YOU CAN REDISTRIBUTE IT AND/OR MODIFY ...

o First the catalog name and elements description are given (name, type, sub
elements or edges, gauss points families and group of nodes).

GENER_MECPL2_XHT
TYPE_GENE__
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ENTETE__ ELEMENT__ MECPQUS8_XHT

ELREFE__ QU4 GAUSS__
ELREFE__ TR3 GAUSS__
ELREFE__ SE2 GAUSS__
ENS_NOEUD__ EN2 =
ENS_NOEUD__ EN1 =

MAILLE__ QUADS8
RIGI=FPG4 MASS=FPG4 XFEM=XFEM72
RIGI=FPG1 MASS=FPG3 XFEM=XFEM36
RIGI=FPG2 MASS=FPG3
6 7 8
2 3 4

33

o After that the variables used are shown, here for example the displacement
and its degrees of freedom for both kind of nodes (vertex nodes or middle
node), a variable for intersection topology and the geometric coordinates of

the nodes.

MODE_LOCAL__
DDL_MECA

ESNEUTI

NGEOMER

DEPL_R

NEUT_I

GEOM_R

ELNO__ DIFF__
EN1  (DCX DCY H1X H1Y E1X E1Y
E2X E2Y E3X E3Y E4X E4Y
LAGS_C LAGS_F1 )
EN2  (LAGS_C LAGS_F1 )
ELEM__ (X1 X2 X3 X4 X5 X6
X7 X8 )
ELNO__ IDEN__ (X Y )

e Here the elementary subroutines are called, the previous subroutine might be
called for 2 different options RIGI_CONT and RIGI_FROT, one calculates
the contact stiffness matrix and the other one calculates the friction stiffness
matrix. The catalog gives the option name, the name of the subroutine called
(teOxxx.f, here te0533.f) and the structures used by the subroutine.

OPTION__
RIGI_CONT

RIGI_FROT

533 IN__

0uT

533 IN__

0UT_

NGEOMER PGEOMER
EINEUTI PINDCOI
NiINEUT_R PLSN
E2NEUTI PCFACE
EINEUTR PSEUIL
MMATUUR PMATUUR
NGEOMER PGEOMER
EINEUTI PINDCOI
NINEUT_R PLSN
E2NEUTI PCFACE
EINEUTR PSEUIL
MMATUUR PMATUUR

DDL_MECA
CONTX_R
E4NEUTR
E2NEUTI

DDL_MECA
CONTX_R
E4NEUTR
E2NEUTI

PDEPL_M
PDONCO

PPINTER
PLONCHA

PDEPL_M
PDONCO

PPINTER
PLONCHA

DDL_MECA
NiNEUT_R
ESNEUTR
ESNEUTR

DDL_MECA
NiNEUT_R
ESNEUTR
ESNEUTR

PDEPL_P
PLST

PAINTER
PBASECO

PDEPL_P
PLST

PAINTER
PBASECO






Chapter 5

Conclusion

Aster’s extended finite element method in 2D has been implemented and verified in
different cases. All the results obtained seem to show that there is no more problem
with level sets, XFEM elements, contact and friction resolution. But there are still
a lot of improvement to do on this method to be able to use it in a wider context
as just a complement to the Aster classic code.

Different possible improvement have already been started or scheduled. Some
of those improvement are:

e Calculation of stress intensity factors from the displacement obtained at the
crack tip in order to calculate how will behave the crack.

e Propagation of the level set with propagation of the crack in order to model
crack propagation.

e Implementation of multiples fractures within XFEM, with multiple level sets
and enrichment functions for use in various application, for example thermic
cracking.
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