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Abstract

Action recognition has become a very important topic in computer vision,
with many fundamental applications, in robotics, video surveillance, human
computer interaction, and multimedia retrieval among others and a large va-
riety of approaches have been described. The purpose of this survey is to give
an overview and categorization of the approaches used. We concentrate on
approaches that aim on classification of full-body motions, such as kicking,
punching, waving, etc. and we categorize them according to how they repre-
sent the spatial and temporal structure of actions; how they segment actions
from an input stream of visual data; and how they learn a view-invariant
representation of actions.
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1. Introduction

Action recognition is a very active research topic in computer vision with
many important applications, including human-computer interfaces, content-
based video indexing, video surveillance, and robotics, among others. His-
torically, visual action recognition has been divided into sub-topics such as
gesture recognition for human-computer interfaces [27, 88], facial expres-
sion recognition [152], and movement behavior recognition for video surveil-
lance [44]. However full-body actions usually include different motions and
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require a unified approach for recognition, encompassing facial actions, hand
actions and feet actions.

Action recognition is the process of naming actions, usually in the simple
form of an action verb, using sensory observations. Technically, an action is a
sequence of movements generated by a human agent during the performance
of a task. As such, it is a four-dimensional object, which may be further
decomposed into spatial and temporal parts. In this paper, we are only
concerned with visual observations, typically by means of one or more video
cameras, but it should be noted that actions can of course also be recognized
from other sensory channels, including audio. An action label is a name, such
that an average human agent can understand and perform the named action.
The task of action recognition is to name actions, i.e. determine the action
label that best describes an action instance, even when performed by different
agents under different viewpoints, and in spite of large differences in manner
and speed. A typical set-up for testing and evaluating action recognition
systems consist in sending instructions to the actors, using simple action
verb imperatives, and to compare them with the recognized action names.
Figure 1 illustrates the major components of a generic action recognition
system and their typical arrangement.

Feature extraction is the main vision task in action recognition and
consist in extracting posture and motion cues from the video that are dis-
criminative with respect to human actions. Very different representations
can be used, ranging from complex body models to simple silhouette images.
In either case, issues such as person location, robustness to partial occlusion,
background clutter, shadows and different illumination need to be addressed.
Further representations should provide some insensitivity to different types
of clothing and physiques.

Action learning and classification are the steps of learning statistical
models from the extracted features, and using those models to classify new
feature observations. A major challenge thereby is to deal with the large
variability that an action class can exhibit, in particular if performed by
different subjects of different gender and size, and with different speed and
style. Action categories which might seem clearly defined to us, such as
kicking, punching, or waving, for instance, can have very large variability
when performed in practice. It is thus a particular challenge to design an
action model, which identifies for each action the characteristic attitudes,
while maintaining appropriate adaptability to all forms of variations.

Action segmentation is necessary to cut streams of motions into single
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Figure 1: A typical data-flow for generic action recognition system comprises inter-
dependent stages of feature extraction, learning, segmentation and classification.

action instances that are consistent to the set of initial training sequences
used to learn the models.

Vision-based techniques for representing, segmenting and recognizing hu-
man actions can be classified according to many different criteria, e.g. the
body parts involved (facial expressions, hand gestures, upper-body gestures,
full-body gestures, etc.); the selected image features (interest points, land-
marks, edges, optical flow, etc.); the class of statistical models used for learn-
ing and recognition (nearest neighbors, discriminant analysis, Markov mod-
els, etc.). The classification we have found to be the most useful is how the
different methods proposed in the literature represent the spatial and tempo-
ral structure of actions. Indeed, our analysis of the recent literature in com-
puter vision reveals a large variety of approaches in both the temporal and
the spatial dimensions, which can be summarized as follows. In the spatial
domain, action recognition can be based on global image features, aligned
to the geometry of the scene or camera; or on parametric image features,
aligned to the geometry of the human body; or on statistical models describ-
ing the spatial distribution of local image features. We review those three
important classes in Section 2. In the temporal domain, action recognition
can be based on global temporal signatures, such as stacked features, that
represent an entire action from start to finish; or on grammatical models that
represent how the moments of actions are organized sequentially, usually with
several states and transitions between those states; or as well on statistical
models, describing distributions of possibly sparse an unstructured feature
observations over time. We review those three important classes in Section
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Trajectories, e.g.

Messing[76]

Feature Template e.g.
Laptev[59], Ke[55]

Bag of Events e.g.
Schuldt[110], Boiman[9],
Dollar[24], Niebles[81],
Niebles[82], Klaser[57],

Laptev[60]

Table 1: Classification of Action Recognition Methods based on Spatial (vertical axis) and
Temporal Representations (horizontal axis). Only some of the more recent approaches are
listed in each cell.

3. By combining the three main spatial classes with the three main temporal
classes, we end up with a synoptic classification of action recognition into
nine basic classes shown in Table 1.

The paper is organized as follows. First, we present a general overview of
action recognition methods, based on how they represent the spatial structure
of actions in Section 2, and the temporal structure of actions in Section 3.
Then, we review the special topics of action segmentation in Section 4, view-
invariance in Section 5 and experimental evaluations on publicly available
datasets in Section 6.

2. Spatial Action Representations

We begin this survey with a review of spatial representation used to dis-
criminate actions from visual data. As mentioned previously, a first step in
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Figure 2: Illustration of moving light displays, taken from [50]. Johansson showed that
humans can recognize actions merely from the motion of a few light displays attached to
the human body. Awaiting publisher permission

action recognition is the extraction of image features that are discriminative
with respect to posture and motion of the human body. Various represen-
tations have been suggested. They mainly contrast by the amount of high
level information they represent versus how efficient they are to extract in
practice. For the purpose of this survey, we classify them into three main
groups: body models, image models, and local statistics.

2.1. Body models

In this section, we review methods that represent the spatial structure
of actions with reference to the human body. In each frame of the observed
video stream, the pose of a human body is recovered from a variety of avail-
able image features, and action recognition is performed based on such pose
estimates. This is an intuitive and biologically-plausible approach to action
recognition, which is supported by psychophysical work on visual interpreta-
tion of biological motion [50].

Johansson showed that humans can recognize actions merely form the
motion of a few moving light displays (MLD) attached to the human body
(Figure 2). Over several decades his experiments inspired approaches in
action recognition, which used similar representations based on motion of
landmark points on the human body. His experiments were also origin of the
unresolved controversy on whether humans actually recognize actions directly
from 2D motion patterns, or whether they first compute a 3D reconstruction
from the motion of the patterns [122, 35]. In the context of machine vision,
those two approaches have resulted in two main classes of methods [77]: 1)
recognition by reconstruction of 3D body models and 2) direct recognition
from 2D body models.

Recognition by reconstruction divides the task of action recognition
in two well separate stages - a motion capture stage which estimate a 3D
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model of the human body, typically represented as a kinematic joint model;
and an action recognition stage which operates on joint trajectories. Two
major difficulties are the large number of degrees-of-freedoms of the human
body and the high variability of their shapes. As a result, a parametric model
of the human body must be carefully selected and calibrated to support
action recognition and generalization. A large variety of parametric models
have been proposed over the years and we can only mention some of them.
See Figure 3 for some examples.

In their early theoretical work on representation of three dimensional
shapes [72], Marr and Nishihara proposed a body model consisting of a
hierarchy of 3D cylindrical primitives, see Figure 3 a). Such a model was
later adopted by several approaches, e.g. [42, 103]. More flexible body mod-
els based on super-quadrics have been used in [33], and models based on a
textured spline model have been used in [36]. The approaches [96, 45] start
from tracked patches in 2D and then lifts the 2D configurations into 3D, see
Figure 3 c). Motion capture techniques requiring special markers attached
to the human have also been used for action recognition, e.g. [16], see Figure
3 b). Other approaches directly work on the trajectories of 3D anatomical
landmarks, e.g. head and hand trajectories [15, 12, 140].

Direct recognition approaches work from 2D models of the human
body, i.e. labeled body parts, without lifting these into 3D. Common 2D
representations are stick figures [40, 83], Figure 3 f), and 2D anatomical
landmarks similar to Johansson’s MLDs [35]. Other direct recognition ap-
proaches use coarse 2D body representations based on tracked blobs and
patches, e.g. hand and head trajectories [121, 12], see Figure 3 d) or full
body representations [143, 13].

To conclude this section, we should note that finding body parts and es-
timating parametric body models from images remains an unresolved prob-
lem, independent of the model used (2D or 3D). Even commercial MOCAP
systems using special markers attached to the body rely on heavy user in-
teraction, which makes them unsuitable for recognition tasks. Monocular,
marker-less MOCAP, which is typically based on difficult non-convex opti-
mizations, is highly prone to such issues as false initialization, convergence
to local optima, or non-recovery from failure. Recent methods [104, 1] use
strong prior learning to reduce such issues by assuming particular types of
activities, walking or running for instance. Such prior models hence reduce
the search space of possible poses considered, which however limits their
application to action recognition [151, 90].
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3: Body model representations: (a) hierarchical 3D model based on cylindrical
primitives [73]; (b) ballet dancer with markers attached to body [16]; (c) body model
based on rectangular patches [96]; (d) blob model [12]; (e) 2D marker trajectories [148];
(f) stick figure [40]. Awaiting publisher permission
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2.2. Image models

In this section, we review global, image-based representations of actions,
also sometimes called holistic representations, which do not require the de-
tection and labeling of individual body parts. They only need to detect a
region of interest (ROI) centered around the person. In most cases, features
are then computed densely on a regular grid bounded by the detected region.
As a general term, we call such a representation an image model of action.
See Figure 4 for some examples.

Image models can be much simpler than parametric body models. As a
result, they can be computed more efficiently and robustly. Paradoxically,
they have also been shown to be just as discriminative as body models with
respect to many classes of actions.

A typical image model is presented by Darell et al. [23], where images of
hand gestures are directly correlated, without feature extraction. Their work
assumes however a static black background. In most other cases, background
subtraction and feature extraction must be performed in a pre-processing
stage.

An important class of image models uses silhouettes and contours of the
human agent performing the action. As a good example, the seminal work on
HMMs for action recognition by Yamato et al. [144], uses silhouette images
quantized into super-pixels, each pixel counting the ratio of black and white
pixels within its underlying region, as features. A similar representation is
also used in [130], see Figure 4 a) and b). In [7] silhouettes are integrated
over time in so called motion history images (MHI) and motion energy im-
ages (MEI), see Figure 6 a). Instead of integrating a time sequence into a
single image, [5, 147] work directly on the space-time volume spanned by a
silhouette sequence over time, see Figure 6 c). Other silhouettes and contour
based based representation have been used for instance in [85, 98, 17], see
Figure 4 c).

One way to deal with noisy silhouettes, e.g. in outdoor scenes where
exact background segmentation is difficult, is to use the chamfer distance as
for instance in [26, 135], or by using shape context descriptors [70, 119, 150].

As demonstrated by many of the above mentioned approaches, silhouettes
provide strong cues for action recognition, and moreover have the advantages
of being insensitive to color, texture, and contrast changes. On the downside,
silhouette base representations fail in detecting self-occlusions, and depend
on a robust background segmentation.

8



(a)

(b) (c)

(d)

(e)

Figure 4: Global posture representations: (a) Silhouettes of tennis strokes [144]; (b) sil-
houettes pixels accumulated in regular grid [130]; (c) spline contours [98]; (d) optical flow
magnitude accumulated in regular grid [94]; (e) optical flow split into directional compo-
nents, then blurred [25]. Awaiting publisher permission
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A second important class of image models uses dense optical flow ex-
tracted from consecutive images. An early example of using optical flow for
action recognition is given by Polana and Nelson [93], where they compute
temporal-textures, i.e. first and second order statistics based on the direction
and magnitude of normal flow, to recognize events such as motion of trees in
wind or turbulent motion of water. In [94] Polana and Nelson propose fea-
tures for human action recognition based on flow magnitudes accumulated
in a regular grid of non-overlapping bins, see Figure 4 d). Another early
approach which uses optical flow is proposed by Cutler and Turk [20], where
the optical flow field is clustered into a set of motion blobs, and motion, size,
and position of those blobs are used as features for action recognition.

More recently, [25] split the optical flow field into four different scalar
fields (corresponding to the negative and positive, horizontal and vertical
component of the flow), see Figure 4 e), which are separately matched. This
representation was also used in [99, 134].

In the works [54, 61, 29], the adaboost-based Viola–Jones face detector
is extended to action recognition by replacing the rectangular image features
with spatio-temporal cubes computed over optical flow.

Flow based representations do not depend on background subtraction,
which makes them more practical than silhouettes in many settings, because
they do not require background models. On the downside, they rely on the
assumption that image differences can be explained as a result of movement,
rather than changes in material properties, lighting, etc.

Another important class of image features is based on gradients. [149]
compute gradient fields in XY T direction and represent each frame through
the histogram over those gradients. Also the HOG descriptor, which has
been very successfully applied to person and object detection [22], has been
used for action recognition [124]. Instead of computing a single gradient
histogram per frame, the HOG descriptor divides the image grid into regular
spaced overlapping blocks, and computes a histogram within each of those
blocks.

Gradient features share many properties with optical flow features: they
do not depend on background subtraction, but likewise are sensitive to ma-
terial properties, textures, and lighting, etc. In contrast to optical flow,
gradients are discriminative for both moving and non-moving parts, which
has advantages as well as disadvantages. For instance static non moving
body parts can also provide important cues for an action, but might be
easily confused with static object in the background with strong gradients.
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Recently several works demonstrated superior results by combining gradients
and flows [61, 60], or silhouettes and flow [126].

The last class of image models which we discuss, is based on the neuro-
scientifically inspired HMAX approach [113]. For instance the approaches
[49, 109] combine Gabor filters and optical flow in a max-pooling scheme,
to simulate the basic stimulus-response functions of a virtual cortex. Be-
cause low-frequency Gabor filters can have very similar shapes than oriented
gradient filters, both provide similar cues. Yet by using higher-order Gabor
filters, additional information can be introduced, which however also leads
to a strong increase in computational time.

As explained earlier, image models of actions result in strong simplifica-
tions compared to parametric body models. One important consequence is
that they are very sensitive to variations in the view direction of the camera
and body sizes of the agent performing the action. It is thus important to
account for such variation, either through a large number of different tem-
plate instances, or by using suitable features and matching functions that
are insensitive to such transformations.

Image-based representations have been used by many approaches of very
different kinds, however, they are often based on strong assumptions that
need to be addressed in future work. In particular many approaches as-
sume that a ROI around a person, possibly even background subtracted,
is provided by a previous processing stage. Consequently, these approaches
strongly depend on the progress in related fields such as person detection
and tracking. Also, most approaches only operate on fully visible bodies
and do not investigate how to adapt global models to partial observations,
e.g. occluded bodies or close-up views. Note anyway that video surveillance
adapts well to these assumptions since far-views are frequent. Moreover, in
such applications additional sensors, including time-of-flight cameras, sonars
and tags, can alleviate poor background subtraction or poor motion analysis.

2.3. Spatial statistics

In this section, we review local representations of action which decompose
the image/video into smaller regions, not linked to body parts or image
coordinates. Instead, actions are recognized based on the statistics of local
features from all regions. An immediate advantage of those approaches is
that they neither rely on explicit body part labeling, nor on explicit human
detection and localization.
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(a) (b)

Figure 5: Local posture representations: (a) Space-time interest points in [59] are com-
puted at points of high spatio-temporal variation (“spatio-temporal corners”). (b) Spatio-
temporal features in [24] are designed to be more responsive than the former space-time
interest points. Awaiting publisher permission

Local features can be computed in a dense or sparse set of regions. Space-
time interest points [59, 24] were specifically introduced to generalize interest
points and local descriptors [19, 68] already used in object recognition and
image classification to the case of action recognition and video classification.
Such approaches are typically based on bottom up strategies, which first de-
tect interest points in the image, mostly at corner or blob like structures,
and then assign each region to a set of preselected vocabulary-features. Im-
age classification reduces then to computations on so called bag of features
(BOF), i.e. histograms that count the occurrence of the vocabulary-features
within an image. Similar interest point detectors for action recognition have
been proposed by [59] and later by [24], see Figure 5.

The work [59] originally extend Harris corner detection [41] and auto-
matic scale selection [63] to 3D space and time. The vocabulary features
used in this work are the responses to a set of point-centered and scale-
adapted higher order gradient filters. This work was extended to BOF and
SVM classification in [110]. Dollar et al. [24] proposed an alternative in-
terest point detector based on a quadrature pair of 1D Gabor filters applied
temporally and spatially. This work also introduces several SIFT-like [68]
space-time descriptors based on local PCA and histogramming of gradient,
flow, or brightness values. Another interest point detector is proposed in
[141], where an image sequence is decomposed into spatial components and
motion components using non-negative matrix factorization (NMF). Interest
points are then independently detected in 2D spatial and 1D motion space
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using difference of Gaussian (DoG) detectors.
A practical advantage of interest-point approaches is that the detection of

the agent need not be performed explicitly for the computation of the space-
time features. The detected interest points need to show some consistency
for similar observations, but usually they can also account for some outliers.
On the downside, the detected features are usually unordered and of vari-
able size, and consequently modeling geometrical and temporal structure is
difficult with space-time features. Many approaches stick therefore with the
previously mentioned spatial bags of features representation, which describes
sequences simply through histograms of feature occurrences, hence without
modeling any geometrical structure between the feature locations.

To add structural information, some approaches [82, 142, 31] use graphi-
cal models with hidden variables for the position of patches. In [34] so called
compound features are proposed, which can be seen as some kind of super
features taking into account the relative positions of several features in a
neighborhood. Another possibility to add structural information is to divide
the image space into several local BOF histograms [60]. Other interesting
issues with BOF based approaches are: how to select a small but discrimi-
native vocabulary [67], and how to combine different types of features, e.g.
local features and silhouette based features [65].

Finally it is also important to mention, that although most of the previous
approaches compute SIFT-like histograms over cubes in 3D space and time,
the gradients used in the histograms are nevertheless mostly only 2D spatial.
In fact, finding a uniform quantization for vectors on a 3D sphere is a well
known problem, which was recently addressed by several papers [111, 57] in
the context of deriving 3D SIFT descriptors for action recognition.

Though the majority of local feature representations is based on the pre-
viously discussed extensions of SIFT, several other local representations have
been proposed. In [55] local patches are computed from a color-based over-
segmentation of the space-time volume. Loosely spatial relations between the
resulting segments are then learned via pictorial structures [32], and used for
matching actions. The work [9] does not identify patches via segmentation
or feature detectors, but searches instead over all possible images patch con-
figurations of a given size.

In summary, statistical methods based on local features have recently
drawn a lot of attention in the action recognition community because they
promise the same advantages as in static object recognition, and because they
can easily apply to difficult scenes, e.g. movies or video clips from the inter-
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net, that evidently will be very difficult to model with full-fledged image or
body models. However, the very nature of complex human actions will prob-
ably make it necessary to combine those methods with stronger spatial and
temporal models, e.g. computing spatial statistics over dense (rather than
sparse) image grids, and relying on human detection for scenes containing
multiple persons. The combination of spatial statistics with strong tempo-
ral models (including grammars, templates and keyframes) will be further
investigated in the next section.

3. Temporal Action Representations

In the previous section we discussed the different kind of image features
that can be extracted from a video sequence to represent the spatial structure
of actions. We will now describe the different representations that can be
used to learn the temporal structure of actions from such features. As a
result, we further classify approaches to action recognition, based on how
they express the temporal component of the observations. We distinguish
between three main categories of representations: grammars, templates and
temporal statistics.

3.1. Action grammars

The approaches discussed in this section represent an action as a sequence
of moments, each with their own appearance and dynamics. A common way
to approximate a dynamical system over feature observations is to group fea-
tures into similar configurations, i.e. states, and to learn temporal transition
functions between these states. Such models fall generally into the class of
graphical models, which are best described as probabilistic grammars.

Among the versatile probabilistic grammars used for action recognition
the most prominent is certainly the hidden Markov model (HMM) [95]. The
HMM came in particular to fame because of its great success in the speech
and natural language processing community.

The first work on action recognition using HMMs is probably that of
Yamato et al. [144], where a discrete HMM is used to represent sequences over
a set of vector quantized silhouette features of tennis footage, see Figure 4 a).
[121] use a continuous HMM for recognition of American sign language. [139]
are recognizing hand gestures using a HMM. [13] learns a kind of switching-
state HMM over a set of autoregressive models, each approximating linear
motions of blobs in the video frame.
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There are many other approaches using HMMs, to name a few: [10]
investigated how a HMM can be learned in one space, e.g. parametric body
poses, and mapped to another, e.g. 2D silhouette observation. [132] propose
a distance measure between HMMs for unsupervised clustering of gestures.
[69] use HMMs as weak classifiers in an adaboost based action recognition
approach.

HMMs are purely sequential models of action, which severely limits their
use for full-body action recognition, where the different body parts may move
independently and in parallel. Various extensions to the more general class
of dynamic Bayesian networks (DBN) have been proposed to overcome this
limitation. [12] learn coupled HMMs to model interactions between several
state variables, e.g. interactions between left and right hand motions. [87]
use a complex DBN to model interactions between two persons.[91] model
interactions between people and objects. [70, 136] extend HMMs with explicit
latent states for view point, to model actions seen from arbitrary views in a
single model. [76] use a mixture of Markov chains to model distributions of
dense KLT trajectories.

A less obvious limitation of HMMs is that they are generative models
of actions, which rely on simplifying statistical assumptions for computing
the joint probability of the states and the observed features, whereas a more
general discriminative model may better predict the conditional probability
of the states given the observed features. As a result, several authors have
investigated the use of discriminative models of actions.

[119] proposes to use Conditional Random Fields (CRF) instead of HMMs.
CRFs are discriminative Markov models which can use non-independent fea-
tures and observations overs time (contrary to the HMM assumption). Fur-
thermore, CRF parameters can be trained to maximize the discriminative
power of the classifier, rather than the joint probability of the training exam-
ples. Modeling sub-structures within actions is, however, not as straightfor-
ward with a CRF as with a HMM. This issue was overcome in [131, 78, 130]
by using hierarchical layers of latent variables.

Other dynamic models that have been used for action recognition are:
auto regressive models [13, 98, 4], time delayed neural networks [146], context-
free grammars [48] and feature-structure grammars [58, 124].

A strong advantage of action grammars is their high degree of modular-
ity. This makes them suitable for generalizing over large variations in acting
speeds and styles. Grammars are also compositional, i.e. grammar models
of primitive actions can also serve as smaller vocabulary units to build larger

15



networks of complex actions [45], and similarly, complex models can be used
to segment sequences into smaller units [11, 36, 89], as discussed more in de-
tail in Section 4.3. Parameters of probabilistic grammars can also be learned
quite efficiently, using small numbers of labeled examples in supervised mode,
or large numbers of non-labeled examples in non-supervised mode. But the
structure of probabilistic grammars must usually be chosen manually (see
Kitani et al. [56] for an notable exception). As a result, learning and evalu-
ation of grammar-based action recognition remains an outstanding problem
with large numbers of actions classes.

3.2. Action templates

Instead of representing features and dynamics explicitly and separately
in a layered model, some methods attempt to directly learn the appearance
of complete temporal blocks of features - which we call templates. Typically,
template-based approaches directly represent dynamics through example se-
quences, either by stacking features from several frames into a single feature
vector, or by extracting features from the n-dimensional space-time volume
spanned by a sequence over time, see also Figure 6. Though most of the
approaches that use templates are based on image models, such as [5, 147]
that build templates by stacking multiple silhouette images into a single
volumetric representation, they can also be used with parametric models
[40, 83, 143, 97, 37] or even local representations [55].

Templates are typically computed over long sequences of frames, and
should not be confused with spatio-temporal features or optical flow (Section
2.2 and 2.3), which are computed over small time windows (typically 2-4
frames) and serve as components of other action classifiers. The seminal
work on action templates is that of Bobick and Davis [7], who build a motion
history image (MHI) by mapping successive frames of silhouette sequences
into a single image, see Figure 6 a). MHIs are generally similar to a depth
map computed from a space-time volume. Various variants of MHIs have
been proposed in [74, 75, 14], see Figure 6 b). MHIs have been also extended
to motion history volumes (MHVs) [138], see Figure 6 b), by using visual
hulls computed from multi view sequences instead of the 2D silhouettes used
in the original work.

Templates are usually fixed-size vector representations, which makes them
straightforward to implement in combination with most static classification
techniques. Often simple nearest-neighbor assignment or naive Bayes classi-
fication are used in experiments. Contrary to grammars and state-transition
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(a)

(b)

(c)

Figure 6: Action template methods: (a) motion history images (MHI) [7]; (b) motion
history volumes (MHV) [138]; (c) space-time shapes [5]. Awaiting publisher permission
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models, templates cannot represent variations in time, speed, and action
style through special variables. Variations are instead implicitly represented
through large sets of example sequences, making the classification problem
more difficult. In those cases, advanced statistical learning methods have
been proposed, such as neural networks [40], support vector machines [75]
and adaboost [61, 54, 29].

To deal with actions with variable durations, an additional normalization
step may be necessary to ensure that the resulting feature vectors have the
same dimension, or the more advanced dynamic time warping (DTW) [23,
83, 33, 128] may be used.

Instead of using multiple templates in a conventional classifier, [100] pro-
poses to build a single template from a collection of templates using a MACH
filter, which can then simply be correlated with new observations sequences.

Other important examples of action templates use Fourier or wavelet rep-
resentations in the temporal domain, [93, 64]. Trajectories of body parts or
image features can be also used as templates. For instance, [71] introduce
templates of body feature trajectories after tracking over extended time se-
quences.

In summary, template based representations of very different kind have
been proposed. Generally they are effective and discriminative action repre-
sentations, and in particular attractive for action classification tasks because
they straightforward integrate with powerful static classifiers such as SVMs
or adaboost. On the down side, they are less amenable to action detection
tasks because they do not have efficient methods for temporal segmenta-
tion (see Sections 4.3 and 4.2 for a comparison between template-based and
grammar-based action segmentation), and they do not generalize very well
to incomplete or missing observations, e.g. occlusions.

3.3. Temporal statistics

In contrast to previous references, some approaches attempt to build sta-
tistical models of the appearance of actions, without an explicit model of
their dynamics. Typical examples are methods that learn an appearance
model of action from a single characteristic key-frame as in a photograph
[133, 62] or from the histograms of (image, body or local) features over time.

Carlsson and Sullivan [17] introduce the use of key-frames, i.e. a sin-
gle characteristic frames of an action, to recognize forehand and backhand
strokes in tennis recordings. Matching in [17] is based on a sophisticated
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point to point matching between edge filtered images, to measure the de-
formation of a edge template with respect to the image observation. [109]
extend key-frames to very short snippets of frames, raising the interesting
issue of how many frames are required to perform action recognition.

Besides single static images, sequences can be also encoded without tak-
ing temporal relations into account. Histogram techniques, i.e. temporal bag
of features approaches, have been used to represent sequences simply base
on the frequency of feature occurrence over time [110, 24, 81, 111, 134]. The
biologically motivated system of [49] uses a different technique with feature
vectors computed as maximum match responses to a set of prototypes. Sim-
ilarly, [135] use an exemplar-based embedding, which represents a sequences
via its minimum distances to a set of prototypes.

An extension to temporal BOF based on “temporal binning” is proposed
in [84] to explicitly take into account the short-time temporal ordering of vi-
sual words. Spatial-temporal correlograms have also been proposed for adding
temporal and spatial dependencies to BOF methods [111, 67, 108]. [107]
model explicit temporal (before and after) and (near and far) spatial rela-
tions between spatio-temporal interest points. In [60] a sequence is split into
several localized BOF histograms to add temporal and spatial constraints.

Clearly, such dynamic-free representations cannot be applied to discrim-
inate all kind of actions, e.g. two actions that share similar poses but in
different temporal order. However, there is growing interest in such repre-
sentations, and in particular the BOF approach. This is partially imposed by
the recent trend in using local features, which simply seem to work best with
such a simplified representation. Nonetheless, and in particular for modeling
small atomic motions, they have powerful properties, such as being efficient
to compute, insensitive to timescale variation, and very discriminative, which
makes them very attractive for large-scale action recognition.

4. Action Segmentation

In the first two sections of this survey, we have mostly been concerned
with approaches that extract visual features from video streams and com-
bine them in space and in time for making a decision on what actions are
present in the video. In many cases, those approaches are demonstrated
with results obtained using segmented video clips each showing a single ac-
tion from start to finish, both for training and testing. But can the two tasks
of action segmentation and action recognition really be performed separately?
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There appears to be very little evidence from neuroscience on how motion
segmentation and recognition interact in the human visual system. From a
computational point of view, it is of course beneficial to segment the video
stream before applying recognition, since labeling a segment is much more ef-
ficient than labeling all subsegments in a stream. But this raises the difficult
issue of finding a generic vocabulary of parts of actions, and generic meth-
ods for breaking video streams into the corresponding segments. In practice,
this appears to be a problem no less difficult than action recognition itself.
This section discusses different methods used for temporal segmentation. We
classify those methods into three broad classes: boundary detection, sliding
windows and grammar concatenation.

4.1. Boundary Detection

A common strategy for recognizing actions is to use a generic segmenta-
tion method based on detecting motion boundaries, then separately classify
the resulting segments. Such motion boundaries are typically defined as
discontinuities and extrema in acceleration, velocity, or curvature of the ob-
served motions. The choice of boundaries thus implicitly results in a basic
motion taxonomy.

An early paper by Marr and Vaina [73] discusses the problem of seg-
menting the 3D movement of the human body, and suggests the use of rest
states, i.e. local minima, of the 3D motion of the limbs as natural transitions
between primitive movements. Similar, Rubin and Richards define in their
work [105] two elementary kinds of motion boundaries: starts and stops and
dynamic boundaries. Starts and stops are analog to the rest states defined
by [73]. Dynamic boundaries appear between starts and stops and result
from discontinuities, e.g. steps or impulses, in force applied to the object in
action.

Following this theoretical line of research, computational approaches for
motion boundary detection have been proposed. [106] perform an SVD de-
composition of a long sequence of optical flow images and detect discontinu-
ities in the trajectories of selected SVD components to segment video into
motion patterns. Also [85] segment action sequences by detecting minima
and maxima of optical flow inside body silhouettes. In [129] impulses in
motion, so called ballistic dynamics, are used to detect motion boundaries.
Other approach to detect motion boundaries are: [137] that computes motion
features based on visual hulls, [132, 97] that uses 2D trajectories of hands,
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see Figure 7(b), and [52] that uses a hierarchical body model. In [14] motion
boundaries are detected using sequential change detection methods.

In theory, boundary detection methods are attractive because they pro-
vide a generic segmentation of the video, which is not dependent on the action
classes. In practice, the segmentation must be used with some precautions
because (a) they are subject to errors in the recovery of the motion field; (b)
they are not stable across view-points; and (c) they are easily confused by
the presence of multiple, simultaneous movements.

4.2. Sliding Windows

Another strategy for recognizing actions divides the video sequence into
multiple, overlapping segments, using a sliding window. Classification is per-
formed sequentially on all the candidate segments, and peaks in the resulting
classification scores are interpreted as action locations. In contrast to bound-
ary detection methods, the segmentation here depends very strongly on the
recognition stage. As a result, it should be clear that those methods are not
applicable in the training stage. A consistent segmentation of the training
examples must be provided manually or through another method, and is a
crucial elements for the success or failures of those methods.

A sliding window approach can be used with any of the previously dis-
cussed feature representations and classifiers. Many template-based repre-
sentations [149, 153, 30, 54, 55] use a sliding window. Some approaches use
them in combination with dynamic time warping (DTW) [23, 79] and even
grammars [6, 140].

Compared to boundary detection methods, sliding window methods are
usually much more computationally intensive, as they involve many evalua-
tion of all classifiers. To achieve robustness against the duration of actions,
they often require multiple window sizes as well, which results in an ad-
ditional computational burden. Sliding window methods may also produce
unpredictable results in the presence of unknown action categories. However,
sliding window methods make less assumptions, i.e. they do not assume spe-
cial boundary criteria, and can be easily integrated on top of any action
classifier without requiring further computation of special segmentation fea-
tures.

4.3. Grammar concatenation

In Section 3.1 we reviewed representations of individual action classes
with grammars, which give a model of the transitions between states in the

21



action. This suggests a general approach for segmenting actions by concate-
nating action grammars to model the transitions between actions as well.
Indeed, this provides an effective means of simultaneously segmenting and
recognizing actions. Concatenative grammars can be build for instance by
joining all models in a common start and end node and by adding a loop-
back transition between these two nodes. It is also possible to allow for more
complex transitions between actions, e.g. actions may share states and tran-
sitions between actions may be adjusted individually to reflect more realistic
the probabilities of one actions following another. Such complex structure
are similar to HMM networks used in continuous speech recognition. Seg-
mentation and labeling of a complex action sequence is then computed as a
minimum-cost path trough the network using dynamic programming tech-
niques, e.g. the Viterbi path for HMMs [95]. The works [11, 36, 89, 69] use
such networks for action recognition based on HMMs. Similar [119, 78] use
CRFs, and [116] Semi-Markov models. The work of [98] uses autoregressive
models to represent actions, and a condensation filter to switch between these
models.

Those approaches make neither the assumptions of the boundary detec-
tion methods, nor do they require heavy evaluations such as sliding win-
dow approaches. The segmentation is elegantly and efficiently solved using
dynamic programming techniques. However, it should be emphasized that
learning a concatenative grammar with many actions requires a much larger
amount of training data, especially when transitions between actions are
learned from real data. In speech recognition such data is available in form
of text-documents, word-transcriptions, and phonetically labeled sequences.
Similar data does, however, currently not exist for action recognition, and
therefore transitions between actions are often set manually, or with strong
assumptions, such as uniform transition probabilities.

5. View-Independent Action Recognition

As mentioned earlier (Section 2.1), fundamental considerations on the
model representation, i.e. whether to use a 2D or 3D representation, have a
long history in action recognition, and approaches demonstrating the quali-
ties of either direction have been proposed.

Following the initial success of those approaches, new challenges, such as
learning larger number of action classes and robustness under more realistic
settings, gained importance. Within this scope a very important demand
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is independence to viewpoint, which wasn’t address by most of the early
approaches. It is our opinion, that such considerations bring the issue on how
to represent posture, i.e. in 2D or 3D, into a interesting new perspective.

We take our taxonomy for view-independent action recognition from work
on view-independent shape matching [53], which names three strategies for
view-independent matching: normalization, invariance, and exhaustive search.
In the following we discuss approaches based on these strategies, and separate
as well between view representations in 2D or 3D.

5.1. View normalization

During view-normalization, each observation is mapped to a common
canonical coordinate frame. Therefore normalization approaches generally
first estimate cues that indicate the transformation from the canonical view
frame to the current view of the observation, and then correct the observation
with respect to the estimated transformation. Matching then takes place in
the normalized coordinate frame.

5.1.1. Normalization in 2D

Normalization is used by many approaches as a preprocessing step to
remove global scale and translation variations. In particular image models
(Section 2.2) often extract a rectangular ROI around the subject, and scale
and translate this region to a unit frame. This normalization removes global
variations in body size, as well as some scale and translation variations re-
sulting from perspective changes.

Normalization with respect to out-of-plane transformations, e.g. a camera
rotation, is not trivial given a single 2D observation. Nevertheless, [101]
propose a method, which estimates the 3D orientation of a person from its
walking direction in 2D, using knowledge about the ground homography and
camera calibration. Assuming only horizontal rotation of the body in 3D, the
2D silhouette of the person is perspectively corrected onto a fronto parallel
view and matched against a set of canonical silhouettes.

5.1.2. Normalization in 3D

Although it somehow limits the application of action recognition ap-
proaches, walking direction as orientation cue was as well used by sev-
eral 3D based approaches to compute a reference frame for normalization
[8, 21, 102, 151, 90]. Given a 3D body model, an orientation independent
joint representation can be computed based on the global body orientation.

23



Often the torso is used as reference object to normalize all joints with respect
to its orientation. It is further possible to represent each body part with and
individual coordinate frames. For example, [33] compute individual reference
frames for the torso, arms, and hips.

In summary, normalization approaches are based on the estimation of the
body orientation. If strong cues, such as walking direction or a reconstructed
body model are available, the orientation can be easily derived. However,
all following phases depend on the robustness of this step. Misalignments,
because of noisy estimations or intraclass variations, are likely to affect all
following phases of the approach.

5.2. View Invariance

View-invariant approaches do not attempt to estimate view transforma-
tions between model and observation. Instead view-invariant approaches
search for features and matching functions that are independent with respect
to the class of view transformations considered.

5.2.1. View Invariance in 2D

A simple form of view-invariance is based on histogramming. Instead
of representing image features in a fixed grid, only the frequency of feature
occurrences is stored. Such an representation has been used for instance by
[149] to represent distributions of space-time gradients. This representation,
however, only provides invariance to translations in the image plane.

The availability of point correspondences, e.g. in form of anatomical
landmarks, was frequently used for view-invariant matching between pairs
of observations, see Figure 7 for some examples. For instance, an epipolar
geometry can be estimated from a subset of point correspondences and then
used to constrain the set of all point correspondences, and respectively a
matching cost over changing views can be computed without requiring a full
3D reconstruction. I.e. given point matches (xi, x

′
i), i = 1, . . . , n ≥ 8 in pairs

of images I, I ′, the fundamental matrix F , which holds the relation xiFx
′
i =

0, can be estimated. This relation holds however only if all point pairs
come from the same rigid object. Hence the resulting residual

∑
i |xiFx′i|2

can be used as matching cost [123, 37, 114, 147, 148, 115]. Similar, matrix
factorization and rank constraints, as in structure from motion estimation
[125], can be used to validate whether point correspondences in two images
came from the same single rigid object [112, 97].
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(a)

(b)

Figure 7: View invariant action recognition: (a) geometrical invariants can be computed
from 5 points that lie in a plane [86]; (b) View-invariant matching of hand trajectories
[97]. Point matches between different observations are computed from discontinuities in
motion trajectories. Awaiting publisher permission
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Geometric invariants, i.e. measures that do not change under a geometric
transformation, can also be used for invariant matching of landmark points.
These invariants can be computed from 5 points that lie in a plane [86].

More recently, an invariant approach that optionally uses point corre-
spondences or image features is proposed in [51], based on frame-to-frame
self-similarities within a sequence. The representation discards all informa-
tion related to an absolute reference frame and is only based on the relative
change between frames. It is shown in [51] that such features remain surpris-
ingly stable under changing viewing conditions. Farhadi et al. [28] provides
some kind of view-invariance by using a transfer learning approach, which
maps an action model from a source-view into a novel target-view. To estab-
lish such a transfer mapping, explicit samples of corresponding observations
from source and target view must be available during learning, those need
however not provide views of the same action class, for which the transfer
function is learned.

5.2.2. View Invariance in 3D

Campbell et al. [15] investigate 10 different view-invariant representa-
tions based on 3D body part trajectories. These include shift invariant ve-
locities (dx, dy, dz) in cartesian coordinates, and shift and horizontal rotation
invariant velocities (dr, dθ, dz) in polar coordinate. In evaluation on 18 Tai
Chi gestures, the polar coordinate representation has best overall recognition
rates. [18] proposes a view invariant pose representation based on a voxel
reconstruction and cylindrical 3D histograms similar to the 2D shape context
descriptor [3]. The same descriptor was later used by [92] for action recog-
nition. Another invariant representation based on 3D shape-context and
spherical harmonics was proposed in [43]. [138] proposes a view-invariant
representation in 3D, based on Fourier coefficients in cylindrical coordinates.
The same representation was later used in [127], but with a more sophisti-
cated modeling approach based on Stiefel and Grassmann manifolds.

In summary, invariant approaches remove view-dependent information
during feature computation. Computing a single view-independent feature
per action is certainly more efficient than considering all possible views, and
moreover does not depend on a possible false recovery of view orientation.
However, removing view-dependent information will usually always also re-
sult in a loss of discriminative information.
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Figure 8: Generative MOCAP: Hierarchical HMM body model and tracking results using
the generative approach in [90]. Awaiting publisher permission

5.3. Exhaustive Search

Instead of deciding on a single transformation, as it is typical for normal-
ization methods, or discarding all transformation dependent information, as
with invariant methods, one can search over all possible transformations con-
sidered.

5.3.1. Exhaustive Search using Multiple 2D Views

Several approaches use a fixed set of cameras installed around the ac-
tor, and simultaneously record the actions from this multiple views. During
recognition, an observation is then matched against each recorded view and
the best matching pair is identified. In their work on MHIs, [7] record actions
with 7 cameras, each with an offset of 30◦ in the horizontal plane around the
actors. During recognition two cameras with 90◦ offset are used, and matched
against all pairs of recorded views with the same 90◦ offset. Similar [85, 2]
use 8 prerecorded views, and a single view during recognition.

5.3.2. Exhaustive Search using a 3D Model

To achieve more flexibility with respect to changes in camera setup, an
internal model based on a 3D representation can be used. From such a
3D representation, and given camera parameters, any possible 2D view ob-
servation can be rendered. Such generative approaches are frequently used
in MOCAP, where parameterized 3D models of the human body are pro-
jected into 2D. These models have explicit variables for global 3D position
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Figure 9: Generative model based on set of exemplary 3D key-poses. Used for view-
independent action recognition in [136]. Awaiting publisher permission

and orientation, that are estimated simultaneously with the remaining joint
parameters, e.g. [117, 90], see also Figure 8.

Similar methods haven been proposed for action recognition, and ex-
tended such that they do not require a joint model. The approach [70] uses
a small set of synthetic 3D key-poses, rendered from a modeling software.
Observations are then compared against the silhouettes, produced by pro-
jecting the poses into 2D with respect to all possible view transformations.
Dynamics over poses and changes in view transformations are modeled in a
dynamic network, and the best pose-view sequence is found via a dynamic
programming search. The approach [136], see Figure 9, shares as well the
idea of projecting a set of learned 3D key-poses into 2D to infer actions from
arbitrary views. This work uses a HMMs with additional capabilities to
model unknown view transformations. Another approach based on the same
ideas is proposed in [80], which uses a CRF instead of the HMM.

Instead of using a data-driven approach to producing the 2D projections,
[120] directly learn an analytical function, which takes as input the viewpoint
in 3D and outputs the corresponding silhouette representation in 2D. Another
direction is taken in [145]. Instead of projecting a 3D model into 2D, features
are detected first in 2D, and then back-projected onto 4D action shapes. This
approach requires as well an optimization over the possible view orientations
to find the best 2D-3D matching.

In summary, approaches based on exhaustive search have recently gained
some interest, partially because their computational expense is about to be-
come fairly manageable with modern computer systems. They neither de-
pend on deterministic detections of body orientation, nor do they discard dis-
criminative information during an invariant feature computation step. They,
however, depend strongly on the availability of specially recorded and an-
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notated multi-view datasets, and usually require assumptions on the search
space, i.e. restrictions to certain classes of view-transformations.

6. Dataset

Finally, we want to discuss some of the dataset, which are currently used
by many of the action recognition approaches as a benchmark. Unfortunately
acquiring realistic action footage, including ground truth data, is a very
difficult and time consuming task, and currently there is certainly lack of
such data in action recognition.

The three popular datasets, which are currently used by most of the
approaches are: KTH [110], Weizmann [5], and IXMAS [138]. They all
contain around 6-11 action performed by various actors. They are all not very
realistic and share strong simplifying assumptions, such as static background,
no occlusions, given temporal segmentation, and only a single actor.

The recognition rates of the papers discussed in this survey on those
datasets are given in Table 2. It is however important to note that not all
approaches follow the exactly same evaluation methodologies, so approaches
can’t be compared purely based on those results. Moreover, in light of the
simplifying assumptions made in the datasets, it is not evident how those
results might extrapolated to more complex scenarios. The three datasets
are detailed in the following.

6.1. The KTH Dataset

The KTH dataset [110], Figure 10, contains the six actions walking, jog-
ging, running, boxing, hand waving and hand clapping, performed several
times by 25 subjects in four different scenarios. Overall it contains 2391 se-
quences. It has fewer action classes than the two other datasets, but the most
samples per class. It is hence well suited for learning intensive approaches,
e.g. approaches based on SVMs.

In difference to the two other datasets it does not provide background
models and extracted silhouettes, and moreover some of the scenes are recorded
with a shaking and zooming camera. Most approaches that evaluate on the
KTH dataset are hence based on local features (Section 2.3) which are best
suited to such scenarios. Recently, however some approaches [49, 109] that
require person detection reported as well results. The original paper [110]
reported a recognition rate of 71.7% on the dataset. More recently several
approaches reported recognition rates above 90% up to 94%.
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Figure 10: Example images from the KTH dataset

The results of the different approaches are shown in Table 2. Note how-
ever, as also pointed out in [60], not all approaches follow the same evaluation
methodology of the original paper, which makes a direct comparison difficult.
In the original paper the data was split into a training set (8 persons), a vali-
dation set (8 persons), and a test set (9 persons). In the table we distinguish
between approaches that use this split, and those that use a leave-one-out
cross-validation. Note that the latter usually gives better results, because
more data is available for training.

6.2. The Weizmann dataset

The Weizmann dataset [5], Figure 11, contains the nine actions run-
ning, walking, bending, jumping-jack, jumping-forward-on-two-legs, jumping-
in-place-on-two-legs, galloping-sideways, waving-two-hands, waving-one-hand,
performed by nine different actors. Overall it contains 93 sequences, all per-
formed in front of similar plain backgrounds, and with a static camera. It is
the smallest of the three datasets considered.

The original approach [5] reported already a very high recognition rate
of 99.6%, and similar results have been archived by many of the subsequent
approaches. It appears hence to be the easiest of the three datasets. Never-
theless it is still used in recent works.

Generally approaches which use the background subtracted silhouettes
achieve best rates (up to 100%). Recently also several approaches that only
depend on person location, but not on extracted silhouettes could report very
high recognition rates, e.g. [109, 135].

The reported average recognition rates of the different approaches are
shown in Table 2. Note however that approaches are using slightly different
evaluation methodologies, which makes direct comparison purely based on
these values difficult. For instance, some of the approaches use only eight
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Figure 11: Example images from the Weizmann dataset

of the nine actions, some evaluate on small segments others on the complete
sequences, etc.

6.3. The IXMAS dataset

The INRIA XMAS dataset [138], Figure 12, contains the 11 daily-life ac-
tions: check watch, cross arms, scratch head, sit down, get up, turn around,
walk, wave, punch, kick, pick-up, performed each 3 times by 11 non-professional
actors. Note that there are two more actors and actions on the dataset’s web-
site, but those have not been used by most of the approaches. The actions
were filmed with 5 carefully calibrated and synchronized cameras. Overall it
contains hence 429 multi-view sequences, or, if the views are considered indi-
vidually, 2145 sequences. It also provides background subtracted silhouettes
and reconstructed visual hulls.

The scenes are recorded in front of simple static studio-like backgrounds.
Its main difficulty comes from the changing viewpoint, that is caused by the
different camera configurations and the fact that actors freely chose their
orientation while performing the actions. Respectively, the dataset is in
particular used by view-independent approaches (Section 5).

The best known recognition rates were recently reported by [127] (98.78%)
using 3D MHVs [138] and a modeling approach based on Stiefel and Grass-
mann Manifolds. Approaches which use only a single camera for recognition
reported results up to 82%.

Results of the different approaches are shown in Table 2, and we distin-
guish between approaches working in 2D and in 3D. Moreover, and similar
as for the two other datasets, the evaluation methodologies of the different
approaches vary slightly, which makes direct comparison difficult. For in-
stance, some of the approaches use only a subset of the provided sequences
for evaluation.

31



Figure 12: Example images from the five view used in the IXMAS dataset

6.4. Other datasets

There are several other not so frequently used datasets available. The
CMU MoBo database [38] and the HUMAN-EVA database [118] were pri-
marily designed for motion capture and hence only contain very simple ac-
tion. Nevertheless they have been used by some approaches in action recog-
nition. The HOHA datasets [60] are a large collection of short segments
of real Hollywood movies, annotated with 12 action classes: answer-phone,
drive-car, eat, fight-person, get-out-car, hand-shake, hug-person, kiss, run,
sit-down, sit-up, stand-up. The actions are performed by professional ac-
tors, under a wide range of camera viewpoints and in very different styles.
This is a very challenging dataset, including inter-actions with people (fight-
person, hand-shake, hug-person, kiss) and objects (answer-phone, drive-car,
getout-car), which are outside the scope of this survey.

year paper spatial temp segm view KTH Weiz IXMAS
org loo 2D 3D

1978 Marr [72] bm - - - - - - - -
1982 Marr [73] bm - bd - - - - - -
1985 Rubin [105] - - bd - - - - - -
1989 Goddard [35] bm gr bd - - - - - -
1992 Polana [93] im tmp - - - - - - -
1992 Yamato [144] im gr - - - - - - -
1993 Darrell [23] im tmp - - - - - - -
1994 Guo [40] bm tmp - - - - - - -
1994 Niyogi [83] bm tmp - - - - - - -
1994 Polana [94] im tmp pd - - - - - -
1995 Campbell [16] bm gr sw - - - - - -
1995 Gavrila [33] bm tmp - norm - - - - -
1996 Campbell [15] bm gr - inv - - - - -
1997 Brand [12] bm gr - - - - - - -
1997 Bregler [13] bm gr sw - - - - - -
1997 Seitz [112] bm tmp - inv - - - - -
1998 Bobick [6] bm gr sw - - - - - -
1998 Yacoob [143] bm tmp - - - - - - -
1999 Brand [10] im gr gr exh - - - - -
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1999 Rittscher [98] im gr gr - - - - - -
2000 Brand [11] bm gr gr - - - - - -
2000 Rui [106] - - bd - - - - - -
2001 Bissacco [4] bm gr - - - - - - -
2001 Bobick [7] im tmp sw exh - - - - -
2001 Carlsson [17] im key sw - - - - - -
2001 Syeda-Mahmood [123] im tmp - inv - - - - -
2001 Wang [132] bm gr bd - - - - - -
2001 Zelnik-Manor [149] im tmp sw - - - - - -
2002 Kojima [58] bm gr - - - - - - -
2002 Rao [97] bm tmp bd inv - - - - -
2002 Zhao [151] bm gr - norm - - - - -
2003 Bodor [8] im tmp - norm - - - - -
2003 Cohen [18] im - - inv - - - - -
2003 Efros [25] im key sw - - - - - -
2003 Elgammal [26] im gr - - - - - - -
2003 Kahol [52] bm - bd - - - - - -
2003 Laptev [59] ss tmp - - - - - - -
2003 Masoud [74] im tmp - - - - - - -
2003 Parameswaran [86] bm tmp - inv - - - - -
2003 Park [87] bm gr - - - - - - -
2003 Ramanan [96] bm gr - exh - - - - -
2003 Cuzzolin [21] im gr - norm - - - - -
2004 Green [36] bm gr gr - - - - - -
2004 Gritai [37] bm tmp - inv - - - - -
2004 Ogale [85] im gr - exh - - - - -
2004 Schuldt [110] ss ts - - 71.7 - - - -
2004 Zhong [153] im tmp sw - - - - - -
2005 Blank [5] im tmp sw - - - 99.6 - -
2005 Boiman [9] ss key sw - - - - - -
2005 Dollar [24] ss ts - - - 81.2 - - -
2005 Feng [30] im tmp sw - - - - - -
2005 Ke [54] im tmp sw - 63.0 - - - -
2005 Peursum [91] bm gr sw - - - - - -
2005 Robertson [99] im gr sw - - - - - -
2005 Sheikh [114] bm tmp - inv - - - - -
2005 Sminchisescu [119] im gr gr - - - - - -
2005 Yilmaz [147] im tmp - inv - - - - -
2005 Yilmaz [148] bm tmp - inv - - - - -
2006 Ahmad [2] im gr - exh - - - - -
2006 Kitani [56] bm gr - - - - - - -
2006 Lv [69] bm gr/tmp gr - - - - - -
2006 Niebles [81] ss ts - - - 81.5 - - -
2006 Pierobon [92] im tmp - inv - - - - -
2006 Rogez [101] im - - norm - - - - -
2006 Roh [102] im tmp - norm - - - - -
2006 Veeraraghavan [128] im tmp - - - - - - -
2006 Wang [133] bm gr sw - - - - - -
2006 Weinland [138] im tmp bd inv - - - - 93.3
2007 Guerra-Filho [39] bm gr gr exh - - - - -
2007 Ikizler [46] bm bow - - - - 100 - -
2007 Ikizler [45] bm gr gr exh - - - - -
2007 Jhuang [49] im key - - - - 98.8 - -
2007 Ke [55] ss tmp sw - - - - - -
2007 Laptev [61] im tmp sw - - - - - -
2007 Li [62] ss - - - - - - - -
2007 Lv [70] im gr - exh - - - 80.6 -
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2007 Meng [75] im tmp - - 80.3 - - - -
2007 Morency [78] bm gr gr - - - - - -
2007 Niebles [82] ss ts - - - - 72.8 - -
2007 Nowozin [84] ss ts - - 84.7 - - - -
2007 Peursum [90] bm gr - norm - - - - -
2007 Scovanner [111] ss ts - - - - 82.6 - -
2007 Wang [130] im tmp - - - - 100 - -
2007 Wang [134] im ts - - - 92.4 - - -
2007 Weinland [136] im gr - exh - - - 81.3 -
2007 Wong [141] ss ts - - - 81.0 - - -
2008 Farhadi [28] im tmp - inv - - - 58.1 -
2008 Fathi [29] im tmp - - - - 100 - -
2008 Filipovych [31] ss ts - - - - 88.9 - -
2008 Gilbert [34] ss ts - - 89.9 - - - -
2008 Holte [43] im tmp - inv - - - - -
2008 Junejo [51] im/bm tmp - inv - - 95.3 72.7 -
2008 Klaser [57] ss ts - - 91.4 - 84.3 - -
2008 Laptev [60] ss ts - - 91.8 - - - -
2008 Liu [67] ss ts - - - 94.2 - 82.8 -
2008 Liu [65] im/ss ts - - - - 89.3 78.5 -
2008 Natarajan [80] im gr - exh - - - - -
2008 Rodriguez [100] im tmp - - - - - - -
2008 Schindler [109] im key - - - - 100 - -
2008 Shen [115] bm tmp - inv - - - - -
2008 Shi [116] ss gr gr - - - - - -
2008 Souvenir [120] im tmp - exh - - - - -
2008 Turaga [127] im gr - - - - - - 98.8
2008 Thurau [124] im ts - - - - 94.4 - -
2008 Tran [126] im key - - - - 100 81 -
2008 Vitaladevuni [129] im gr bd - - - - - 87.0
2008 Weinland [135] im ts - - - - 100 - -
2008 Yan [145] im tmp - exh - - - 78.0 -
2008 Zhang [150] im ts - - - 91.3 92.9 - -
2009 Messing [76] ss gr - - 74.0 - - - -
2009 Ryoo [107] ss ss - - 91.1 - - - -

Table 2: We list the papers discussed in this survey with respect to the spatial
representation used (spatial): body model (bm), image model (im), or spatial
statistics (ss); the temporal model (temp): grammar (gr), templates (tmp),
temporal statistics (ts), or temporal statistics (ts); the temporal segmenta-
tion (temp): boundary detection (bd), sliding window (sw), grammar (gr);
and the view-independence representation (view): normalization (norm), in-
variance (inv), or exhaustive search (exh). We also show the recognition rates
reported for the datasets: KTH, Weizmann, and IXMAS. For KTH we dis-
tinguish between approaches that use the data-split described in the original
paper (org), and those that use a leave-one-out cross-validation (loo). We
only show results for approaches that follow one of these two strategies.

7. Conclusion

In this paper we have given a survey of work in action recognition. We
have classified approaches with respect to how they represent the spatial
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and temporal structure of actions, how they segment and recognize actions
from a continuous video stream, and how they handle variations in camera
viewpoint. We identified a large body of different proposals and selected 150
representative papers. The survey reveals important progress made in the
last ten years in small-vocabulary, single-person, full body action recognition.
Important issues that must still be addressed in future work are scalability
of action recognition systems with respect to vocabulary size; recognition in
the presence of unknown actions; scenes containing multiple persons; and
interactions between multiples persons.

A problem that we could in particular identify for action recognition is
the lack of widely-available, realistic datasets. Working with true surveil-
lance footage, sport recordings, movies, and video data from the Internet,
can help shift focus to the important open issues mentioned above. This has
been well understood by the community, and recently several very realistic
datasets have been published, for instance using short clips from Hollywood
movies [60] or Youtube videos [66]. Those data sets are challenging the state
of the art reported in this survey. Currently, approaches that model spa-
tial and temporal statistics over local feature points are showing the most
promising results on those difficult sequences. This is mostly because they do
not depend on person or body part detection, which is especially challenging
in completely uncontrolled scenes. However, future work needs to come up
with more robust feature point detectors and descriptors, and efficient ways
to incorporate spatial and temporal structure into the statistics over the de-
tected points (over short term and long term). Some conceptually promising
ideas have been already presented [82, 111, 142, 60, 108, 76, 107]. In our tax-
onomy, such methods fall under the categories of bags of trajectories, feature
templates and bags of events.

We also believe that other representations discussed in this survey will
remain important, especially in more controlled environments, such as for
instance human-computer interaction and video surveillance, where camera
parameters can be controlled and background models can be learned more
easily; and entertainment applications, where the positions and appearances
of actors are usually known in advance. Body or image models in combination
with temporal templates or grammars provide efficient solutions to model
temporal and spatial structure of actions in such scenarios. Their success
will however strongly depend on much-needed progress in body part detection
and tracking.
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