
SPAM: A Microcode Based Tool for Tracing Operating System Events

Stephen W. Melvin
Yale N. Patt

Computer Science Division
liniversity of Glifornia, Berkeley

Berkeley, CT.4 947.20

ABSTRACT

We have developed a tool called SPAM
(for System Performance Analysis using Mi-
crocode), based on microcode modifications
to a VAX 8600, that traces operating system
events as a sideeffect to normal execution.
This trace of interrupts, exceptions, system
calls and context switches can then be pro-
cessed to analyze operating system behavior
for the purpose of debugging, tuning or de-
velopment. SPAM allows measurements to be
made on a fully operating UNIX system with
little perturbation (typically less than 10%)
and without the need for modifying the ker-
nel.

1. Introduction
The interactions that occur on a large multipro-

grammed computer with a modern operating system
are so varied and complex that analyzing the behavior
of the system is not a simple matter. Hardware moni-
tors can be used to take measurements, and they don’t
affect what is being measured, but they are generally
inflexible and have limited resources. In addition, hard-
ware monitors are generally expensive and cumbersome
to use.

Alternatively, the operating system kernel can be
modified to collect data which, although satisfactory for
some types of measurements, can be impractical or can
cause an unacceptable perturbation of the measurement
for others. In addition, modifying the kernels of most
operating systems is not a matter to be taken lightly. It
is often difficult to determine the effect that a seemingly

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. TO
copy otherwise, or to republish, requires a fee and/or specfic
permission.

small change can have on other parts of the kernel.
Most of the advantages of both hardware and soft-

ware methods can be achieved with a microprogrammed
measurement gathering technique. By modifying the
microcode, measurements can be taken with a very
small effect on the system. In addition, microcode-
based systems can be very flexible and easy to use.
Once the core microcode is installed that implements
the data collection tool, everything else can be under
software control. Furthermore, since the data collection
takes place below the operating system, there is no need
to modify the kernel and the same measurement can be
taken on different operating systems.

We have implemented a microcode based event
tracer which we call SPAM (for System Performance
Analysis using Microcode). It is based on microcode
modifications to a VAX 8600 which include additional
machine level instructions p well as side effects to ex-
isting microcode flows. It traces interrupts, exceptions,
system calls and context switches and the information
traced includes instruction counts, microsecond counts,
processor mode and process and user IDS. Because the
VAX architecture is preserved (with some minor excep-
tions), all operating system functions and utilities op-
erate without modification. In a previous paper [I], we
discussed the creation of a general environment for non-
invasive performance measurement. SPAM is a specific
tool that we have implemented within that general envi-
ronment which is targeted at operating system measure-
ments. This paper is divided into five sections. Section
2 illustrates SPAM as seen by the user. The format of
the trace record is discussed along with how the tool
is invoked. Section 3 provides an overview of the im-
plementation of SPAM. Section 4 presents some results
that we have collected. Finally, section 5 concludes with
details of future work.

2. User level view of SPAM

2.1. Trace generation, retrieval and analysis
From the users’ point of view, there are three sepa-

rate activities taking place: the generation of the event
trace, the retrieval of the trace from the trace buffer,
and the analysis of the collected trace. The retrieval
and analysis can either take place during the trace gen-

0 1987 ACM 089791-250-O/87/0012/0168 $1.50

168

eration or afterward. If the least system perturbation
is desired and the buffer can hold the size of the trace
desired, data collection and retrieval would be separate
activities. The trace would accumulate in the buffer (a
reserved portion of physical memory, 1 megabyte in the
current implementation) during the measurement pe-
riod and would be retrieved afterward. Tracing can be
explicitly disabled or it will automatically be disabled
when the buffer is full.

In certain circumstances, it may be desirable to
retrieve and possibly analyze the data as it is being
generated. This would be the case if the buffer is too
small to hold the size of the trace desired, and/or the
effect on the data being collected is insignificant. In
this case, the trace could either be accumulated on disk
or it could be analyzed dynamically (e.g. the genera-
tion of a histogram for a particular measurement). The
advantage of writing the data directly to disk is that
then the post-processing can gather whatever data is
desired. The advantages of doing the analysis in mem-
ory is that data can be collected over longer periods of
time and the perturbation of the system is less. De-
pending on the workload, the current implementation
of SPAM accumulates data at a rate of approximately
one half of a megabyte per minute, so a large amount of
disk space may be required if traces are desired over a
long period of time. Note, however, that the data could
be significantly compacted before being written to disk
and future implementations of SPAM are likely to allow

Figure 1
Record Format

Format of basic record (8 bytes):

instruction counter microsecond counter

Format of extended record (8 bytes):

process ID user ID

more selective event tracing, which could significantly
reduce the bandwidth.

2.2. Record Format
Whenever an event is encountered, if tracing is en-

abled, an eight-byte record is written to the trace buffer.
If that event happens to be a LDPCTX instruction, an
additional &byte record is written to the buffer. This
instruction occurs on a context switch to load process
specific registers from memory into the processor. The
basic eight-byte record consists of a 16-bit microsecond
counter, a 16-bit instruction counter, the high 16 bits of
the PSL, and information identifying the event. The ex-
tended eight-byte record contains the process and user
IDS of the process being loaded as well as information
identifying the file which contains the program that the
process is executing (see figure 1).

The 16-bit instruction count field is the least sig-
nificant word of a 32-bit internal instruction counter.
This register is implemented through an unused inter-
nal register which is incremented by the microcode at
the end of every instruction (unfortunately, the hard-
ware does not provide such a register). We are relying
on an event occurring at least every 65535 instructions.
Since timer interrupts occur every 1Oms (on both UNIX
and VMS), the system would have to execute at 6.55
MIPS in order for this to be a problem. This trans-
lates to 1.91 cycles per instruction on an 8600 and 2.77
cycles per instruction on an 8650. While 65535 NOP’s
could probably execute this fast, the average number of
cycles per instruction is 6 to 7, so this isn’t much of a
problem. Note, however, that if a more selective tracing
scheme were implemented (i.e. in which not all events
get traced), it might be necessary to store more of the
32-bit instruction counter.

The microsecond count field is the least significant
word of a 32-bit microsecond counter. It gets incre-
mented by hardware every microsecond and upon reach-
ing -1 generates a timer interrupt and gets reloaded with
-10,000. Thus, the least significant word is the only one
that ever changes. The most significant word of the
PSL really only contains three pieces of useful informa-
tion: the IS bit (indicating if the processor is currently
servicing an interrupt), the current and previous modes
(kernel, executive, supervisor or user) and the IPL (in-
terrupt priority level). UNIX only uses kernel and user
modes while VMS uses all four. Software interrupts take
place at interrupt priority levels 0 to 15 and hardware
interrupts take place at levels 16 - 31. The SIRR is
a register used to request software interrupts and the
SISR is a register which indicates current pending soft-
ware interrupts.

2.3. New instructions
The manipulation of the trace generation process

and the retrieval of data are both controlled by new
macro instructions. There are six new instructions in all
which execute new microcode to exercise the data collec-
tion tools. These new instructions are defined to be op-
codes that are unused in the VAX architecture. To use

169

one of these instructions, a simple assembly language
program can be written which executes the instruction,
possibly moving registers between global variables. This
assembly language routine can then be linked with a
program written in a high level language. Alternatively,
the new opcodes may be inserted at strategic places in
assembly language routines. Figure 2 provides the com-
plete semantics of the new instructions.

3. The Implementation of SPAM
A description of the 8600 microarchitecture and de-

tails of our microcode baased measurement gathering en-
vironment is contained in [l]. In this section we will
only describe the SPAM-specific parts of the imple-
mentation. Figure 3 provides an overview of SPAM
microcode flows. The cycle previous to every macro
instruction has the microorder “IRD”. It is in this cy-
cle that the microcode--maintained instruction counter
is incremented. (Note that there are numerous places
in the microcode which contain this microorder.) If no
interrupt is pending, the next microcycle will be the in-
struction dependent entry point, otherwise, a microtrap
will be taken to interrupt microcode.

The SPAM trace microcode is logically inserted at
the end of all traced flows. Where the instruction oth-
erwise would have gone to an IRD state, it branches to
trace microcode to create a trace record (if tracing is
enabIed). Note that if we want the instruction counter
to accurately reflect the number of entry points rather
than the number of IRD states, we must decrement the
traced value on hardware interrupts. This can easily be
done by the post-processor.

The trace buffer is a section of physical memory
which is disabled before the operating system is booted,
and then re-enabled by microcode afterward. Thus, the
new SPAM instructions are the only way to read from
the trace buffer. As far as the operating system is con-

Figure 2
New instructions

OPade tnwt
FDOO (now)

-I----

Figure 3
SPAM Microcode Flows CHM(.

SVPCTX. n IDPClX
Fu

Mb~OCCd.

‘IO”)

cerned, that memory doesn’t exist. Note, however, that
the cache could be significantly affected (especially since
the 8600 has a write-back cache). We solve this problem
by “translating” memory references. The microcode
which reads and writes to the trace buffer remaps its
addresses so that consecutive references are to the same
set in the cache. This technique minimizes the effect on
the cache of the tracing microcode.

4. Some Results
A useful piece of information for the development

and tuning of network communication protocols is the
the overhead, of sending a message across the network.
That is, how much CPU time is spent in processing a
network message. For UNIX this is separated into two
processes: the interrupt service routine and the network
server process.

The CF’U responds to a network event by gen-
erating a software level 12 interrupt. The interrupt
handler then does the absolute minimal amourit of
work necessary to get the message from the hardware
buffer to an operating system buffer. Then, a process
(/etc/XNSrouted) works on behalf of the operating sys-
tem to determines how to get that message to the proper
destination process by executing the appropriate prote
cols. The time spent servicing the network interrupt
in addition to the time used by the XNSrouted process
would give t,he total amount of overhead incurred by
a network event. The network interrupt service time
is incurred immediately upon receipt of a message and
that the rest of the overhead can be incurred when the
operating system determines it is convenient to do so.

We wrctte a program which continuously reads
SPAM records and generates a histogram of the time
spent in the network interrupt rctutine. This program
uses approximately 5% of the CPU, but it does not gen-

170

Figure 4
Network Interrupt Service Time (microseconds)

mean = 566.0
standard deviation = 206.0

number of events = 25,428

0 500

erate any network traffic, so the program itself doesn’t
affect the measurement. Figure 4 shows the results from
a particular data collection run. It was taken over ap
proximately a 4 hour period during the middle of the
day with moderate network activity. It shows that a
network event causes the system to use about 0.6 mil-
liseconds of CPU time. In order to complete this anal-
ysis, we plan to set up SPAM to also measure the time
spent by the XNSrouted process. We can simply write a
program to recognize the loading of this process (based
on inode) and accumulate statistics.

5. Conclusions
The use of microcode instrumentation to gather

data for operating system analysis has many advan-
tages. Unlike a purely software method, system per-
turbation is minimal and no messy hooks in the kernel
are needed and unlike a hardware monitor, we have the
flexibility, low cost and ease of use of a software system.

We have described SPAM in its current state, but
the potential exists for many more features. In particu-
lar we are in the process of developing the user interface
such that people involved in debugging, tuning and de-
velopment of operating systems can manipulate SPAM
to gather a wide variety of measurements without the
need to be familiar with details of its implementation.
We are making the trace record more general, and able
to be specified by the user. The current record captures
a core set of information that should be useful in most
applications, but the need also exists to trace measure-
ment specific data, for example a particular memory
location. In addition, we are making trace triggering
more general. The user should be able to specify ex-
actly when tracing should be enabled and disabled (e.g.

only certain processes or users, only after certain events
have occurred, etc.) and also be able to control the
types of events that are traced. Even this only scratches
the surface, many more improvements and features are
possible.

6. Acknowledgement
The authors wish to acknowledge the Digital

Equipment Corporation for their generous support of
our research, in particular Bill Kania for providing us
with the VAX 8600 in order to enhance our ability
to do research in microarchitecture and microprogram-
ming; also, Fernando Colon Osorio, Mario Troiani, Nii
Quaynor, Steve Ching and Harold Hubschman, from
DEC’s High Performance Systems and Clusters Group
in Marlboro. We would also like to acknowledge Joe
Pasquale for help with the network interrupt example
and many helpful suggestions. Our work in microarchi-
tecture is part of a larger architectural research effort
at Berkeley, the Aquarius Project. We acknowledge our
colleagues in the Aquarius group for the stimulating en-
vironment they provide. Finally, we acknowledge that
part of this work was sponsored by the Defense Ad-
vanced Research Projects Agency (DOD), Arpa Order
No. 4871, monitored by Space and Naval Warfare Sys-
tems Command under Contract No. N00039-84-C-0089.

REFERENCES

[l] S. W. Melvin and Y. N. Patt, “A
Microcode-Based Environment for Non-Invasive
Performance Analysis,” Proceedings to The 19th
Annual Workshop on Microprogramming, October
X-17, 1986, New York, New York.

171

